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Here, we provide a detailed evaluation and comparison of the results of our 2 

range-wide Humboldt marten (Martes caurina humboldtensis) habitat model, presented 3 

within the main manuscript, with a previously-published model (Slauson et al. 2019). In 4 

particular, the Slauson et al. (2019) model places substantial emphasis on Humboldt 5 

marten occurrence being strongly and positively associated with an “old growth 6 

structural index” variable (hereafter, OGSI), yet we found little evidence for a similar 7 

relationship within our model. Given that OGSI is already being used as a “surrogate” 8 

for Humboldt marten habitat (e.g., Schrott and Shinn 2020, Supplemental Item Fig. S1), 9 

it may behoove managers and wildlife practitioners to understand the differences 10 

between variables incorporated into our respective models and their influences on 11 

subsequent model outputs. 12 



 13 

What is the old growth structural index and how is it calculated? 14 

OGSI is a composite index that combines several spatially-explicit, remotely-derived 15 

forest structure elements using Lemma’s gradient nearest neighbor index (Ohmann and 16 

Gregory 2002). OGSI was designed to describe the continuum of forest succession, 17 

with higher values in the later stages of succession (Spies and Franklin 1988). OGSI 18 

extends in geography to Washington, Oregon, and California and was created in part to 19 

monitor old forest conditions over broad spatial scales (Davis et al. 2015), especially 20 

areas within the Northwest Forest Plan and over the range of the northern spotted owl 21 

(Strix occidentalis caurina) (Davis et al. 2016). 22 

As an index, OGSI has evolved in both complexity and precision over time. For 23 

example, the 2006 version was calculated from five elements, including: tree age 24 

(age_dom); density of large live trees (>100 cm in diameter; tph_ge_100cm dbh); a 25 

diameter diversity index computed from tree densities in different diameter classes (ddi); 26 

density of large snags (stph_5015); and percentage of downed wood greater than 25cm 27 

in diameter (dvph_ge_25). The 2006 version of OGSI had the same inputs for all 28 

vegetative zones in the Pacific Northwest (see code block below for more detail) and 29 

index values ranged from 0 to 100. Since 2010, OGSI has been calculated from four 30 

elements: density of large live trees per hectare (ltphc); density of large snags per 31 

hectare (stph_ge); percentage of downed wood greater than 25cm in diameter 32 

(dcov_ge_25cm); and an index of diversity of tree diameter computed from tree 33 

densities in different diameter classes (ddi). Unlike the 2006 version, the more recent 34 

version has twelve vegetative zones that each have a unique threshold for what is 35 



considered a “large” live tree or a “large” snag ranging from 50 to 100cm for live trees 36 

and 50 to 75cm for calculating snag densities. In other words, this metric is dependent 37 

on forest type – for example, a “large diameter” tree or snag in a lodgepole pine (Pinus 38 

contorta) stand would be considered comparatively “small diameter” within a coastal 39 

redwood (Sequoia sempervirens) stand. Similar to the 2006 version, the 2010 OGSI 40 

version ranges between 0 and 100 (see Davis et al. 2015 and the infographic on page 41 

6).  42 

 43 

Why use the old growth structural index? 44 

With too much data or too few replicates, condensing variables into a composite 45 

index such as OGSI can be a useful tool for modeling. There are both formal and 46 

practical procedures for creating such indices. Formal methods are often applied, for 47 

example, if a goal is to describe vegetation associations with hundreds of variables 48 

(e.g., canopy cover, number and diameter of each tree species, stems per shrub, leaves 49 

per shrub, etc.), because a model would be computationally intractable with too many 50 

variables. In wildlife, common opportunities to reduce many variables into two or three 51 

composite variables include principal component, generalized discriminant, and 52 

canonical correlation analyses (Ramsey and Schafer 2002). Similarly, but less formally, 53 

one can combine correlated variables with a priori hypotheses or biological logic by 54 

adding the values. The challenge of interpreting such data is that the results are an 55 

index, not a feature. For instance, instead of describing the relationship of Humboldt 56 

marten locations to canopy cover, one would describe the relationship between “axis 1” 57 



and “axis 2” or an index without defining which components are most related to the 58 

species of interest. 59 

The challenge of index interpretation and relating it to biological expectations is 60 

not unique to OGSI. Similarly and more simply in wildlife habitat relationships, quadradic 61 

mean diameter (QMD) is √(∑𝑑𝑖
2)/n where d is the diameter of an individual (i) tree at 62 

breast height and n is the number of trees (Curtis and Marshall 2000). QMD has been 63 

used in silviculture since the early 1900s (e.g., Graves 1908) and is one of the primary 64 

components in the California Wildlife Habitat Relationship database to assign a habitat 65 

value (e.g., high or low quality) to a location based on vegetation elements (Salwasser 66 

and Laudenslayer 1982, Garrison 1994). By the nature of the calculation, the QMD 67 

value of a given forest stand increases when it is thinned, as the result of the removal of 68 

small diameter trees (Curtis and Marshall 2000). While habitat quality is generally 69 

presumed to improve with increasing QMD values for many forest-dependent species 70 

such as Pacific martens, processes such as forest thinning may in fact degrade habitat 71 

quality (e.g., Stephens et al. 2014, Moriarty et al. 2016) despite the appearance of 72 

improvement (i.e., increased QMD). As such, interpretation of indices such as OGSI or 73 

QMD can be challenging and not associated with biological realities if the situational 74 

components are not clearly described. 75 

 76 

Humboldt marten locations and OGSI 77 

We modeled using the 2016 version of the OGSI variable, despite its meager 78 

contributions to our model iterations (<5% contribution), primarily for purposes of 79 

comparison with the Slauson et al. (2019) model. When incorporated into our model, the 80 



relationship between OGSI and Humboldt marten locations was not only weak but also 81 

often negative – higher OGSI values could be interpreted as less suitable for predicted 82 

Humboldt marten use. 83 

We assume that both modeling efforts used the best available data, but the 84 

amount of effort and geographic scope of surveys for Humboldt martens have 85 

exponentially increased since 2010, the last year that data were considered for the 86 

Slauson et al. (2019) model. Although their text describes 1,159 considered surveys, 87 

their model used 559 non-detection and 44 detection locations (Table 5), with detection 88 

data being strongly spatially autocorrelated (e.g., Slauson et al. 2019, Fig. 5). 89 

Detections occurred primarily in northern California (n = 36 detections, 82%) and 90 

included a relatively small number of locations from Oregon (n = 8 detections, 18%). 91 

Further, much of the survey effort considered for the Slauson et al. (2019) model was 92 

intended to detect fishers (Pekania pennanti; e.g., Carroll et al. 1999, Zielinski et al. 93 

2010), which are larger-bodied and have substantially larger home ranges than 94 

martens. The spacing of such efforts compared to surveys intended for martens – 95 

approximately 6 km between survey points versus approximately 2 km between points – 96 

may have occurred at too coarse of a scale to detect martens, with their smaller home 97 

ranges and rigid territoriality (Moriarty et al. 2017).   98 

In our model, we combined efforts from various studies specifically designed to 99 

survey for Humboldt martens (Slauson et al. 2007, Barry 2018, Linnell et al. 2018, 100 

Moriarty et al. 2018, Gamblin 2019, Moriarty et al. 2019) while also including data used 101 

in the Slauson et al. (2019) model. Surveys included in our model had broad-scale 102 

coverage in Oregon and were randomly or evenly-distributed throughout the entire 103 



coast range, including all forested age classes (Moriarty et al. 2018, Moriarty et al. 104 

2019). We modeled using a relatively even proportion of locations throughout the range 105 

of the Humboldt marten in both California and Oregon, including data from areas 106 

previously identified as unsuitable (e.g., Zielinski et al. 2001). We compiled 10,229 107 

locations (6,768 detections, 3,461 non-detections) from 1996-2020, thinned the data to 108 

one location within a 500m by 500m cell, and modeled based on 384 locations (see 109 

main manuscript for details). 110 

Using our expanded location dataset, we investigated the assumption that 111 

Humboldt marten occurrence is strongly associated with increasing OGSI values, using 112 

summary data and models. A histogram of marten location data did not immediately 113 

suggest that there were more marten locations with increased OGSI values 114 

(Supplemental Item Fig. S3). Similarly, our thinned Humboldt marten locations were not 115 

extremely different from random locations at any measured spatial scale (Supplemental 116 

Item Fig. S4). Given that OGSI is a composite index, we further investigated the 117 

influence of the OGSI variable relative to the influence of each component variable and 118 

recreated the index as it would have been used in the 2006 version with 5 variables 119 

(forest age, diameter diversity index, large snag density, large tree density, and downed 120 

wood density). We deconstructing the OGSI variable, and modeled Humboldt marten 121 

distribution using only OGSI or including the five component variables without additional 122 

co-variates. Our model with OGSI as the sole variable to evaluate Humboldt marten 123 

distribution performed similar to a random variable (Supplemental Item Fig. S5). Our 124 

Humboldt marten model with each of the five OGSI components did better in creating a 125 

more interpretable map, possibly because the response curves could vary 126 



(Supplemental Item Fig. S6). Here, the variables that explained the most variation were 127 

percentage of downed wood and the diameter diversity index (Supplemental Item Table 128 

S1). 129 

The weak contribution of OGSI to our model suggests that Slauson et al. (2019) 130 

may have overemphasized the importance of OGSI and underestimated the 131 

implications of abiotic factors. Within Slauson et al. (2019), the top-ranked model 132 

included four variables: (1) OGSI at a 1km scale; (2) serpentine at a 3km scale; (3) 133 

precipitation; and (4) adjusted elevation. Given the limitations of the dataset 134 

incorporated into the Slauson et al. (2019) model – specifically, incorporation of a small 135 

number of detections and poor coverage across the full putative distribution on the 136 

Humboldt marten – the determination that the OGSI variable was strongly influential 137 

across the entire range of the Humboldt marten may also have been an interpretive 138 

extrapolation beyond the scope of their data. Similar to the functional response curve 139 

within the previous model (Slauson et al. 2019, Fig. 3), we observed a generally neutral 140 

or negative relationship of Humboldt marten locations and OGSI with our univariate 141 

response curves. 142 

Although Humboldt marten locations appear to be weakly and potentially 143 

negatively associated with OGSI, we are not suggesting that Humboldt martens avoid 144 

older structures with complex features such as cavities or mistletoe (Slauson and 145 

Zielinski 2009, Tweedy et al. 2019). Such individual structures and microsites are 146 

strongly linked to resting and denning in Pacific martens and fishers (e.g., Matthews et 147 

al. 2019, Tweedy et al. 2019). Nonetheless, Humboldt marten locations and predicted 148 

habitat appear variable in relation to vegetation characteristics. While factors such as 149 



OGSI may be correlated to Humboldt marten locations at a local or regional level (e.g., 150 

in portions of northern California), based on available data, it is inappropriate to use 151 

OGSI as a surrogate for predicted habitat throughout the Humboldt marten range. 152 

Regardless, habitat models are an evolving opportunity to learn and we applaud efforts 153 

to continue data collection, address challenging information gaps, and inform 154 

conversation efforts. 155 

  156 



 157 

 158 

 159 
Supplemental Item Figure S1. Prior models use a remotely sensed variable, old growth 160 

structural index (OGSI), to depict “habitat cores” (Schrott and Shinn 2020).  Here, we 161 

provide examples of those cores (light green) with survey detection/non-detection 162 

locations focused on Humboldt marten distribution (orange). Black lines are areas 163 

Humboldt marten population designations and grey icons were surveyed but did not 164 

detect a marten.  The green polygons are used habitat cores within the USFWS 165 

connectivity model (Schrott and Shinn 2020), containing ~9% of known Humboldt 166 

marten locations. 167 

 168 



 169 
Supplemental Item Figure S2. We display the 2016 remotely sensed index old growth 170 

structural index (OGSI) distribution within the current extent of Humboldt marten (Martes 171 

caurina humboldtensis) locations.  High values of OGSI are green.  Humboldt marten 172 

locations are black outlined dots.  173 



 174 
Supplemental Item Figure S3. Histogram of the remotely sensed index old growth 175 

structural index (OGSI) and the value for all known Humboldt marten locations.  The 176 

median value of OGSI within the historic Humboldt marten range with the 2012 177 

vegetation layer was an index of 36 (Schrott and Shinn 2020). Here, notice the majority 178 

of marten locations were located in areas with OGSI values less than 36. 179 

  180 



 181 
Supplemental Item Figure S4. We compared the spatially thinned location data with 25 182 

random locations per known (9,600) at spatial scales presumed relevant to Humboldt 183 

marten biology.  The median for Humboldt marten locations and random locations was 184 

similar at each spatial scale. With a focal radius >30m, the median for random values is 185 

slightly higher than marten locations.  Univariate generalized linear model beta 186 

coefficients using these data starting at 50m were 0.0014, 0.00028, -0.00094, and -187 

0.00249, respectively. These suggest that when averaging at large spatial scales 188 

(742m, 1170m) the relationship between marten locations and OGSI were negative. 189 

  190 



 191 

Supplemental Item Figure S5. We created a Maxent model only with the variable old 192 

growth structural index (OGSI).  Here, it predicted Humboldt marten (Martes caurina 193 

humboldtensis) distribution slightly above a random value. Green is approximately 50% 194 

predicted probability and red would indicate high correlation with Humboldt marten 195 

locations. 196 

  197 



 198 

 199 

Supplemental Item Figure S6. We separated the index OGSI (A) to each of its 200 

components to investigate which element(s) within the OGSI index were correlated with 201 

Humboldt martens. The 5 components of OGSI, similar to the 2006 version, include 202 

percentage of large logs (B), Diameter Diversity Index (C), Density of large snags (D), 203 

Density of large trees (E), and Tree age (F). These 5 components were ordered in 204 

relation to predicted probability of Humboldt marten (Martes caurina humboldtensis) 205 

occurrence (Supplemental Item Table S1).  206 

  207 



 208 

 209 

 210 

Supplemental Item Figure S7. We depict a spatial map of predicted Humboldt marten 211 

range from a Maxent model using the 5 components of the variable old growth structural 212 

index (OGSI), with our known and thinned Humboldt marten occurrences (n = 384). 213 

From these components, percentage of downed wood at a smoothed radius of 270m 214 

(down_wood_270), diameter diversity index at a smoothed radius of 1170m scale 215 

(ddi_1170), large tree density (tree_density_1170), large snag density (snag_742) and 216 

estimated tree age (age_dom_270) were the order of model rank by percent 217 

contribution.   218 

 219 



Supplemental Item Table S1. We created a Maxent model using the 5 components of 220 

the variable old growth structural index (OGSI). When evaluating either percent 221 

contribution or permutation importance, estimated tree age contributed least and either 222 

downed wood or diameter diversity contributed most to the predicted model.   223 

 224 

Variable Scale Relationship 
Percent 

contribution 
Permutation 
importance 

Downed wood 270 + 36 21.2 

Diameter diversity index 1170 + 23.5 36.2 

Large tree density 1170 + 19.2 15.9 

Large snag density 742 + 13.7 14.5 

Age dominant forest 270 + 7.5 12.2 

 225 
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 317 

Code for 2006 OGSI index: 318 

CREATE FUNCTION dbo.GET_OGSI  319 

 (@age_dom DECIMAL(9,4), @tph_ge_100 DECIMAL(9,4), 320 

  @ddi DECIMAL(9,4), @stph_5015 DECIMAL(9,4), @dvph_ge_25 321 

DECIMAL(9,4))  322 

RETURNS DECIMAL(9,4) AS  323 

  324 

BEGIN  325 

  326 

 DECLARE @age_score FLOAT, @tph_score FLOAT 327 

 DECLARE @ddi_score FLOAT, @snag_score FLOAT 328 

 DECLARE @cwd_score FLOAT, @ogsi DECIMAL(9,4)  329 

  330 

 --Live tree age 331 

 IF @age_dom <= 200.0   332 

  SET @age_score = 0.004 * @age_dom  333 

 ELSE IF @age_dom > 200.0 AND @age_dom <= 450.0  334 

  SET @age_score = 0.64 + (0.0008 * @age_dom) 335 

 ELSE IF @age_dom > 450  336 

  SET @age_score = 1.0 337 

   338 

 --Live TPH 339 

 IF @tph_ge_100 <= 17.0  340 

  SET @tph_score = 0.02941 * @tph_ge_100 341 

 ELSE IF @tph_ge_100 > 17.0 AND @tph_ge_100 <= 32.0  342 

  SET @tph_score = 0.21667 + (0.01667 * @tph_ge_100) 343 

 ELSE IF @tph_ge_100 > 32.0 AND @tph_ge_100 <= 55.0  344 

  SET @tph_score = 0.40217 + (0.01087 * @tph_ge_100) 345 

 ELSE  346 

  SET @tph_score = 1.0 347 

  348 

 --Diameter diversity index 349 

 SET @ddi_score = 0.1 * @ddi 350 

  351 

 --Snag TPH 352 

 IF @stph_5015 <= 1.0  353 

  SET @snag_score = 0.5 * @stph_5015 354 



 ELSE IF @stph_5015 > 1.0 AND @stph_5015 <= 3.0  355 

  SET @snag_score = 0.375 + (0.125 * @stph_5015) 356 

 ELSE IF @stph_5015 > 3.0 AND @stph_5015 <= 14.0  357 

  SET @snag_score = 0.68182 + (0.02273 * @stph_5015) 358 

 ELSE  359 

  SET @snag_score = 1.0 360 

  361 

 --Coarse woody debris volume 362 

 IF @dvph_ge_25 <= 40.0  363 

  SET @cwd_score = 0.0125 * @dvph_ge_25 364 

 ELSE IF @dvph_ge_25 > 40.0 AND @dvph_ge_25 <= 260.0  365 

  SET @cwd_score = 0.45455 + (0.00114 * @dvph_ge_25) 366 

 ELSE IF @dvph_ge_25 > 260.0 AND @dvph_ge_25 <= 630.0 367 

  SET @cwd_score = 0.57432 + (0.00067568 * @dvph_ge_25) 368 

 ELSE  369 

  SET @cwd_score = 1.0 370 

  371 

 --Composite old growth habitat index 372 

 SET @ogsi =  373 

  ((@age_score + @tph_score + @ddi_score + @snag_score + 374 

@cwd_score)/5.0)*100.0 375 

   376 

 RETURN @ogsi  377 

  378 

END  379 

 380 


