¹ Supplementary A: ROMS model varibles

² Temperature and salinity from ROMS model, used to force the Tasman and Golden Bays Atlantis

 $_3$ model.

⁵ Supplementary B: Initial conditions and biological parame-

6 ters for species groups

Initial biomasses for each species group were estimated using a single species stochastic stock assessment model, CASAL (Bull et al., 2012). Biomass estimates for the entire Tasman and Golden 8 Bays were derived by using known biological parameters and a catch history to project back from an ç absolute abundance estimate in 2002. Values of relative abundance were available for most species 10 groups from trawl surveys conducted annually from 1992 to 2013 (see Stevenson and MacGibbon 11 (2018)). For each survey, these abundance estimates were converted to absolute values using trawl 12 catchability quotients (specific to each group) derived by our expert opinion, as fisheries scientists 13 with experience dating back more than 30 years. Estimated absolute abundance for each group in 14 2002 (the midpoint of the survey series) was taken as the mean from all the survey estimates. For 15 each species group, the initial biomass estimate was distributed across polygons in proportion to 16 the survey series estimates (i.e., the mean proportion of total biomass by polygon over the survey 17 series). The distribution of biomass by depth layer in each polygon was derived using our expert 18 opinion. 19

20

For fish species or species groups that were not sampled, or were very poorly sampled, by the survey series (i.e., snapper, kahawai, pelagic and reef fishes), initial biomasses were derived using expert opinion on their likely abundance relative to species groups that had been estimated by modelling.

25

Initial biomasses of the commercially exploited bivalve groups were derived primarily as max-26 imum estimates of biomass from any survey from the Tasman and Golden Bays (Fisheries New 27 Zealand, 2020). For cephalopods, the mean biomass of arrow squid from the 1992–2013 research 28 trawl survey series (Stevenson and MacGibbon, 2018), with a small additional allocation for octo-29 pus, was assumed to be the initial biomass. For the remaining invertebrate groups, initial biomass 30 were set based on our expert opinion on their likely abundance relative to species groups that had 31 been otherwise estimated. Initial biomasses of invertebrate groups were allocated to each cell based 32 on distribution information from all available research surveys (bivalves and cephalopods), or on 33 expert opinion on their likely distribution and density (other groups). 34

35

Initial biomass of seabirds was estimated to be 13.2 t, derived as 50 000 individuals each weighing 0.26 kg. The number of individuals was the maximum estimate of shore birds reported by Schuckard and Melville (2013) in surveys of the top of the South Island throughout the 2000s. For pinnipeds (fur seals), biomass in 1900 was likely to be low relative to estimates from recent years, ⁴⁰ owing to heavy exploitation of the species in the 1800s (Baird, 2011). An initial biomass of 8 t was
⁴¹ estimated, derived as 100 adults with an average weight of 80 kg. Pup production in recent years
⁴² in Tasman and Golden Bays is estimated to be about 500 annually (Baird, 2011), so is indicative
⁴³ of a population of at least 500 adult females.

44

For age-structured groups, initial biomass estimates were assigned to age-classes using estimates of instantaneous natural mortality (M). Initial average weights at age were calculated using Von Bertalanffy growth and length-weight conversion parameters. Values used for these parameters are in Table 1. Weights at age were split into reserve and structural components using ratio $R_N : S_N = 2.5 : 1$. This allows for an individual's body mass to decrease by approximately 70% before starving, which is within the 60–80% range suggested by Broekhuizen et al. (1994).

51

Table 1: Biological parameters assumed for age-structured species groups. VB, von Bertalanffy; M, instantaneous natural mortality rate; h, steepness value for the Beverton-Holt stock recruitment relationship. Length-weight parameters are: $W = aL^b$ (weight W in g, length L in cm). Where Reference is 'Trawl db' some data have been derived from the NIWA trawl survey database (see Mackay (2000)). Species group matches 'Name' in Tables ?? and ?? and are without punctuation.

Species group	VB Growth			Length-weight		\mathbf{M}	\mathbf{h}	Reference
	Linf (cm)	К	T_0	a	b			
Barracouta	85.2	0.298	-0.45	0.00572	2.9706	0.3		Fisheries New Zealand (2020)
Cephalopod	35	2.4	0	0.029	3		0.8	Fisheries New Zealand (2020)
Demersal fish	78.4	0.14	-0.66	0.0103	3.1376	0.23	0.8	Manning and Sutton (2007)
Elasmobranch Invert	151.8	0.096	-0.78	0.03324	2.8779	0.3	0.3	Francis et al. (2004)
Elasmobranch Pisc	244.2	0.12	-1.76	0.00911	3.08	0.23	0.3	FishBase (Froese and Pauly, 2000)
Flatfish	48.7	0.51	-0.1	0.03846	2.6584	1.1	0.8	Colman (1978)
Red gurnard	43	0.39	-0.66	0.00608	3.1491	0.31	0.8	Sutton (1997)
Invert comm Herb						0.14	0.8	Fisheries New Zealand (2020)
Invert comm Scav						0.12	0.8	Fisheries New Zealand (2020)
Kahawai	54.2	0.3	0.25	0.0103	3.14	0.18	0.8	Drummond and Wilson (1993)
Leatherjacket	27.9	0.8	-0.05	0.027	2.903	0.5	0.8	Visconti et al. (2018)
Mackerels	36	0.3	-0.65	0.028	2.84	0.18	0.7	Horn (1991)
Mesopel fish Invert	65.1	0.225	-0.61	0.016	3.07	0.24	0.8	Horn (2001)
Mussels							0.8	
Dredge oysters	85.4	0.6	0			0.2	0.8	Osborne (1999)
Pelagic fish lge	46.2	0.28	-0.25	0.016	3.064	0.087	0.8	Walsh et al. (1999)

Pelagic fish sml	24.3	0.41	-0.18	0.00458	3.3	0.56	0.7	Paul et al. (2001)
Pinniped						0.16		Taylor et al. (1995)
Red cod	73.9	0.51	0.2	0.01178	2.9268	0.76	0.7	Beentjes (2000)
Reef fish Invert	51.8	0.23	-1.7	0.00609	3.239	0.35	0.8	Paul et al. (2000)
Reef fish Pisc	42.6	0.635	-0.19	0.02169	2.9459	0.4	0.8	Hanchet et al. (2001)
Seabird								
Scallops	14.4	0.4	0			0.46	0.8	Breen (1995)
School shark	165.8	0.104	-2.37	0.00346	3.0708	0.1	0.3	Francis and Mulligan (1998)
Surf clams	4.74	0.4	0.07	0.0002	3.153	0.4	0.8	Osborne (1999)
Snapper	66.7	0.16	-0.11	0.04467	2.793	0.075	0.9	Gilbert and Sullivan (1994)
Spiny dogfish	104.8	0.093	-3.17	0.0013	3.2639	0.2	0.3	Hanchet (1986)
Rig	147.2	0.119	-2.35	0.00477	2.9692	0.25	0.3	Francis and Ó Maolagáin
								(2000)
Tarakihi	44.7	0.237	-0.62	0.01502	3.0539	0.1	0.8	Stevenson and Horn (2004)

⁵² Supplementary C: Simulated biomass by species group from ⁵³ no-fishing model

- ⁵⁴ Simulated biomass from the un-fished model (black line) with 95% confidence intervals based on
- ⁵⁵ 20% CVs (Coefficient of Variation) shaded orange by species group.

57 Supplementary D: Size-at-age

⁵⁸ Size-at-age using values based on literature (Table 1) (orange lines), from TBGB_SS base non-fished

model at equilibrium (blue lines) and from TBGB_AM simulated years 1900–2014 with grey shaded
 area showing 90% confidence intervals.

⁶² Supplementary E: Proportion-at-age

⁶³ Proportions at age using M based on literature (Table 1) where available (blue lines) and from

⁶⁴ TBGB_AM simulated years 1900–2014 (boxplots).

⁶⁶ Supplementary F: Data sources for catch histories

⁶⁷ Data sources for catch histories used in TBGB_AM, TBGB_EwE and TBTB_SB for 1900–2013.

Years	Data source	Details
1989–2013	Quota Management System (QMS)	'warehou' database administered by Fisheries New Zealand, along with additional data asso- ciated with each eatch record (i.e., data, fishing
		method, target species, latitude and longitude)
1983–1988	Fisheries Statistics Unit (FSU)	'new_fsu' database administered by NIWA for Fisheries New Zealand, along with additional data associated with each catch record (i.e., date, fish- ing method, target species, latitude and longi-
		tude)
1974–1982	Fisheries Statistics Unit (FSU)	Catch records from this era were recorded by the Fisheries Statistics Unit of the Ministry of Agriculture and Fisheries, and compiled by Fran- cis and Paul (2013). Catches were available by species, by year, by port of landing (i.e., there was no information relating to month, fishing method,
1001 1050		or catch location)
1931–1973	Annual Reports on Fisheries	Annual Reports on Fisheries, compiled by the Ma- rine Department until 1971 and the Ministry of Agriculture and Fisheries until 1973 as a compo- nent of their Annual Reports to Parliament, con- tained estimates of annual catches by species and port of landing, and these were summarised by Francis and Paul (2013). There was no informa- tion relating to month, fishing method, or catch
		location
1900–1930	Annual Reports on Fisheries	Annual Reports on Fisheries, compiled by the Ma- rine Department for the years 1915 to 1930 con- tained lists of the main species landed by port, estimated landing weight of all species combined (occasionally with some estimates for individual species or species groups), as well as some in- formation on fleet structure (Marine Department Annual Report, 1916–1931).
1900–1915	Back-projected from 1915	The Annual Reports commenced in 1902, but con- tained little useful quantitative information until 1916. However, catch histories for the model were projected back to 1900, using 1915 as a starting point and assuming a commercial fishery in 1900 that was roughly 10% as productive as in 1915

⁶⁹ Supplementary G: Compare TBGB_AM Model responses to

⁷⁰ fishing to survey biomass estimates

71 TBGB_AM Model biomass (black line), forced historical fishing (grey bars) and survey biomass

72 estimates (midnightblue pluses).

⁷⁴ Supplementary H: Diet comparisons

75 Proportions of prey consumed for each predator and for each base un-fished model: TBGB_AM

 $_{76}\,$ summarised over 1900–2014 (grey bars); TBGB_EwE summarised over 1959–2014 (orange bars);

 $_{77}$ TBGB_SS at equilibrium (blue bars).

⁷⁹ Supplementary I: Model responses to historical fishing

⁸¹ catches.

⁸⁰ Simulated biomass trajectories for TBGB_AM, TBGB_EwE and TBGB_SS with forced historical

⁸³ Supplementary J: Parameters tuned during model calibration

Parameter	Description	General purpose of tuning		
pPREY	prey availability	Tuned for realistic realised diets,		
		growth rates and mortality rates		
mum (biomass pool species)	Growth of biomass pool species	Tuned to provide sufficient food for		
	groups	predators		
mQ (biomass pool species)	Quadratic (density depen-	Tuned to limit biomass expansion		
	dent)additional mortality	in cells with less predation pressure		
mL (age-structured species	Linear additional mortality	Adjusted to obtain realistic decay		
groups)		curves in the absence of fishing		
mum, ht, C (age-structured	Maximum growth, handling time	Explored and adjusted, but only		
species, predacse 8)	and clearance rate used in Holling	with respect to feeding rates and		
	Type II feeding response	growth rates in the base case		
KLP, KUP (age structured	Upper and lower gape sizes	Explored and adjusted with respect		
species groups)		to size-at-age of predator and their		
		prey, and obtaining realistic re-		
		alised diets		
KI (primary producers)	Light saturation	Explored and adjusted with respect		
		to light levels and food required		
FSM, FSMG (migratory	mortality and growth applied on re-	Adjusted with respect to growth		
species)	entering the model	and mortality curves of migrating		
		species groups		

Table 3: Parameters tuned and/or edited during model calibration.

⁸⁴ 1 References

- Baird, S., 2011. New zealand fur seals summary of current knowledge. New Zealand Aquatic
 Environment and Biodiversity Report 72.
- ⁸⁷ Beentjes, M. P., 2000. Assessment of red cod stocks (rco 3 and rco 7) for 1999. New Zealand Fisheries
- Assessment Report 2000/25.
- Breen, P., 1995. Report on MLS implications for Challenger scallops. Report prepared for the
 Challenger Scallop Enhancement Company. Unpublished report held by MPI, Wellington, 9p.
- ⁹¹ Broekhuizen, N., Gurney, W., Jones, A., Bryant, A., 1994. Modelling compensatory growth. Func-
- $_{92}$ tional Ecology 8(6), 770–782.
- Bull, B., Francis, R., Dunn, A., McKenzie, A., Gilbert, D., Smith, M., Bian, R., 2012. CASAL
- (c++ algorithmic stock assessment laboratory): Casal user manual v2.30–2012/03/21. NIWA
- 95 Technical Report 135.
- ⁹⁶ Colman, J., 1978. Tagging experiments on the sand flounder, *Rhombosolea plebeia* (Richardson), in
- ⁹⁷ Canterbury, New Zealand, 1964 to 1966. Fisheries Research Bulletin (New Zealand) 18.

Drummond, K., Wilson, A., 1993. The biology and purse-seine fishery of kahawai (Arripis trutta
Bloch and Schneider) from central New Zealand, during 1990/91–1991/92. Central Fisheries Region Internal Report 22 (Unpublished report available from NIWA library, Greta Point, Wellington).

Fisheries New Zealand, 2020. Fisheries Assessment Plenary, May 2020: stock assessments and
 stock status. Compiled by the Fisheries Science and Information Group, Fisheries New Zealand,
 Wellington, New Zealand, 1746 p.

Francis, M., Mulligan, K., 1998. Age and growth of New Zealand school shark, *Galeorhinus galeus*.
 New Zealand Journal of Marine and Freshwater Research 32, 427–440.

Francis, M., Ó Maolagáin, C., 2000. Age, growth and maturity of a New Zealand endemic shark
 (*Mustelus lenticulatus*) estimated from vertebral bands. Marine and Freshwater Research 51,
 35–42.

¹¹⁰ Francis, M., Ó Maolagáin, C., Stevens, D., 2004. Revised growth, longevity and natural mortality

of smooth skate (*Dipturus innominatus*). Final Research Report for Ministry of Fisheries Project

¹¹² MOF2003/01H. (Unpublished report available from Ministry for Primary Industries, Wellington).

Francis, M., Paul, L., 2013. New Zealand inshore finfish and shellfish commercial landings. New
Zealand Fisheries Assessment Report 2013/55.

Froese, R., Pauly, D., 2000. FishBase 2000: concepts, design and data sources. ICLARM, Los
Baños, Philippines.

Gilbert, D., Sullivan, K., 1994. Stock assessment of snapper for the 1992–93 fishing year. New
 Zealand Fisheries Assessment Research Document 1994/3.

Hanchet, S., 1986. The distribution and abundance, reproduction, growth and life history character istics of the spiny dogfish (*Squalus acanthias Linnaeus*) in New Zealand. PhD Thesis, University
 of Otago, New Zealand.

Hanchet, S., Francis, M., Horn, P., 2001. Age and growth of John dory (*Zeus faber*). New Zealand
Fisheries Assessment Report 2001/10.

¹²⁴ Horn, P., 1991. Assessment of jack mackerel stocks off the central west coast, New Zealand, for the

1990-91 fishing year. New Zealand Fisheries Assessment Research Document 91/6 (Unpublished

report available from NIWA library, Greta Point, Wellington.).

Horn, P., 2001. Validated ageing methods for blue warehou (*Seriolella brama*) and white warehou
(S. caerulea) in New Zealand waters. Marine and Freshwater Research 52, 297310.

- Mackay, K., 2000. Database documentation: trawl. Tech. rep., NIWA Internal Report. URL
 https://https://marlin.niwa.co.nz/files/sources/CE-1stopshop/DataSystems/Research
- Manning, M., Sutton, C., 2007. The composition of the commercial and research giant stargazer
 (*Kathetostoma giganteum*) catch off the west coast of the South Island (STA 7) during the 2004–
 05 fishing year. New Zealand Fisheries Assessment Report 36, 36.
- Marine Department Annual Report, 1916–1931. [Annual reports presented to the New Zealand
 Parliament.] Available from the NIWA library, Greta Point, Wellington.
- Osborne, T. A., 1999. Nelson Dredge Oyster Stock Assessment. Osborne Research Company Ltd.
 Client Report ORCO Report 7.
- Paul, L., Ó Maolagáin, C., Francis, M., Dunn, A., Francis, R., 2000. Age, growth, mortality, and
- yield per recruit for butterfish (*Odax pullus*) in Cook Strait, New Zealand. New Zealand Fisheries
 Assessment Report 2000/6.
- Paul, L., Taylor, P., Parkinson, D., 2001. Pilchard (Sardinops neopilchardus) biology and fisheries
- ¹⁴² in New Zealand, and a review of pilchard (*Sardinops, Sardina*) biology, fisheries, and research in ¹⁴³ the main world fisheries. New Zealand Fisheries Assessment Report 2001/37.
- Schuckard, R., Melville, D., 2013. Shorebirds of Farewell Spit, Golden Bay and Tasman
 Bay. Report prepared for Nelson City Council and Tasman District Council. Available at:
 http://osnz.org.nz/sites/osnz.org.nz/files/Schuckard84.
- Stevenson, M., Horn, P., 2004. Growth and age structure of tarakihi (*Nemadactylus macropterus*)
 off the west coast of the South Island. New Zealand Fisheries Assessment Report 2004/11.
- Stevenson, M., MacGibbon, D., 2018. Inshore trawl survey of the west coast South Island and
 Tasman and Golden Bays, March-April 2017 (KAH1703). New Zealand Fisheries Assessment
 Report 2018/18.
- Sutton, C. P., 1997. Growth parameters, and estimates of mortality for red gurnard (*Chelidonichthys kumu*) from off the east and west coasts of the South Island, New Zealand. New Zealand Fisheries
 Assessment Research Document 1997/1 (Unpublished report available from NIWA library, Greta
- ¹⁵⁵ Point, Wellington.).
- Taylor, R., Barton, K., Wilson, P., Thomas, B., Karl, B., 1995. Population status and breeding
 of New Zealand fur seals (*Arctocephalus forsteri*) in the Nelson-northern Marlborough region,
- 1991–94. New Zealand journal of marine and freshwater research 29 (2), 223–234.
- Visconti, V., Trip, E., Griffiths, M., Clements, K., 2018. Life-history traits of the leatherjacket
 Meuschenia scaber, a long-lived monacanthid. Journal of fish biology 92 (2), 470–486.

- ¹⁶¹ Walsh, C., McKenzie, J., Ó Maolagáin, C., Stevens, D., Tracey, D., 1999. Length and age com-
- position of trevally in commercial landings from TRE 1 and TRE 7, 1997–98. NIWA Technical
- 163 Report 66.