S1 SUPPLEMENTARY MATERIALS

S1.1 Third-party tools usage and rational
We propose here a the motivations and precise usage of the third-party tools that are employed in
StrainFLAIR.

S§1.1.1 Graph construction

vg toolkit allows to modify the graph including a normalization step. Normalization consists in
deleting redundant nodes (nodes containing the same sub-sequence and having the same parent and child
nodes), removing edges that do not introduce new paths, and merging nodes separated by only one edge.

For each cluster, if the colored paths of the corresponding graph still describe their respective input
sequences, the graph is normalized.

After the concatenation of all computed graphs (one for each cluster), the final single variation graph
is indexed using vg toolkit. Indexing a graph allows a fast querying of the graph when mapping
reads. Indexing uses two file formats: XG, which is a succinct graph index which presents a static index of
nodes, edges and paths of a variation graph, and GCSA, a generalized FM-index to directed acyclic graphs.
A SNARLS file is also generated, describing snarls (a generalization of the superbubble concept (Paten
et al., 2018)) in the variation graph and similarly allowing faster querying.

S§1.1.2 Mapping reads
vg toolkit offers two sequence-to-graph mappers. The first one, vg map, outputs one or several
final paths for each alignment. However, in case of several alignments with equal mapping scores, only
one is randomly chosen. In order to get more exhaustive and accurate results, St rainFLAIR uses vg
mpmap to map reads on the variation graph.

The mapping results are given in GAMP format, then converted into JSON format with vg toolkit,
describing, for each read, the nodes of the graph traversed by the alignment.

S$1.2 Gene-level output by SstrainFLAIR
Here we present the exhaustive description of information provided by St rainFLAIR at the gene level
(before strain-level computations). For each colored path St rainFLAIR provides the following items:

* The corresponding gene identifier.

* For each reference genome, the number of copies of the gene. Since each unique version of a gene
is represented once in the graph, whereas it can exist in several copies in the genome (duplicate
genes), the counts and abundances computed correspond to the sum of those copies. Keeping track
of the number of copies is important to normalize the counts.

* The cluster identifier to which the colored path belongs.

* For unique mapped reads: their raw number and their number normalized by the sequence length
(see Section Querying variation graphs in Methods).

* For unique plus multiple mapped reads: their raw number and their number normalized by the
sequence length (see Section Querying variation graphs in Methods).

* The mean abundance of the nodes composing the path, as defined in the manuscript.

* The mean abundance without the nodes of the path never covered by a read, as defined in the
manuscript.

* The ratio of covered nodes, as defined in the manuscript.

$1.3 Abundance metrics validation
The output of St rainFLAIR provides several metrics to estimate the abundance of the genes detected
in the sample.

For validation, we used a combination of LASSO (least absolute shrinkage and selection operator)
model and linear model on the simulated dataset to estimate the abundances at the strain-level, as the
abundance of a gene is a linear combination of the abundances of the strains it belongs to. As such,



we expect no intercept value for those models and have forced the intercept at zero for the following
modeling.

First, a LASSO model was used to perform strain selection. The response variable of the model was
the presence or absence of the genes according to the selected metric while the strains, described as their
genes content (number of copies), were the predictors. Then, a linear model was constructed with the
raw selected metric as the response variable, and only the strains selected by the LASSO model as the
predictors. The estimate of the strains relative abundance was thus the coefficients of the linear model
associated to the strains and transformed into relative values. For each metric, the sum of squared errors
between the real relative abundances and the estimated relative abundances from the linear model was
computed. The best metric was then defined as the one minimizing this sum of squared errors.

For the mixtures containing E. coli K-12 MG1655, the three expected strains were selected and thus
detected using LASSO, except for the mixture containing only 1,000 reads of K-12 MG1655 (representing
0.002% of the mixture, hence very negligible). For all the mixtures, the best metric was the mean
abundance computed from the node abundances and by taking into account the multiple mapped reads.

For the mixtures containing E. coli BL21-DE3, BL21-DE3 being absent from the reference but very
close to K-12 MG1655, we expected to get some detection of K-12 in the results. The three expected
strains were selected and thus detected using LASSO, except for the mixture containing only 1,000 reads
of BL21-DE3 (representing 0.002% of the mixture, hence very negligible). For the mixtures at 200,000,
100,000, and 50,000 reads of BL21-DE3, the best metric was the mean abundance computed from the
node abundances without the abundances at zero, and by taking into account the multiple mapped reads.
While for the others, the best metric was the mean abundance computed from the node abundances
(including the abundances at zero), and by taking into account the multiple mapped reads.

This approach using linear models was particularly appropriate for this situation where the reference
variation graph and the sample contained a small number of strains and thus a small number of predictors
for the model. However, this can hardly transpose to a whole metagenomic sample with various species
and various strains that would lead to too many predictors and probably confusing the heuristics behind
the models. This was confirmed by applying the same methodology above on the mock dataset leading
to abundances estimation hardly comparable to expected. Compared to Kraken?2 results, the sum of
squared errors of our methodology was approximately 6 whereas for the results with the LASSO model it
was around 236. Nevertheless, those results highlighted the relevance of (i) using a metric taking into
account the multiple mapped reads and not only the unique mapped reads, and (ii) using our metric of
abundance based on the node abundances over raw read counts.
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S$1.4 Performances

Our benchmarks were performed on the GenOuest platform on a machine with 48 Xeon E5-2670 2.30
GHz with 500 GB of memory and 16 CPUs. Time results (Table S1) are the wall-clock times. We
provided rough computation time, mainly in the purpose to show that St rainFLAIR can be applied on

usual datasets.

Dataset Step Items processed Time Disk used (GB) Max mem. (GB)
Gene prediction 7 genomes 0m20 0 1.2
Gene clustering 34,011 genes 0m22 0 0.36
Graph construction 8,596 clusters 2m44 0.04 1.31
Graph concatenation 8,596 graphs Om51 0 0.25

Simulated Indexing graph 1 graph 6m23 0.16 4.24
Mapping reads 350,000 short reads 15m15 0.16 0.99
JSON conversion 1 GAMP file 3m58 42 0.03
JSON parsing 1 JSON file + 1 GFA file + 1 pickle file | 12m44 0 0.55
Abundance computing | 1 Gene abundances table Om?2 0 0.04
Gene prediction 91 genomes 1m43 1.02 6.7
Gene clustering 280,174 genes 3m38 0.14 0.98
Graph construction 270,712 clusters 41m54 1.12 9.1
Graph concatenation 270,712 graphs 14m38 0 1.05

Mock Graph indexation 1 graph 75m19 1.98 30.4
Mapping reads 21,389,196 short read pairs 147m28 7 17.5
JSON conversion 1 GAMP file 53m21 75 0.12
JSON parsing 1 JSON file + 1 GFA file + 1 pickle file | 110m44 0 5.7
Abundance computing | 1 Gene abundances table Om4 0 0.68

Table S1. St rainFLAIR performances on simulated and mock datasets.
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S1.5 Distance between the selected genomes in the simulated experiment
We estimated the distance between the complete genomes of the selected strains using fastANI (Average
Nucleotide Identity). FastANI uses an alignment-free algorithm to estimate the average nucleotide identity
between pairs of sequences.

K-12 IAI39  O104:H4  Sakai SEI15 Santai BL21-DE3 RM&8426
K-12 100 97.0652 983769 97.8703 96.8716 98.0362  98.9365 98.3657
TAI39 97.037 100 96.9742  96.7417 97.1289 96.9295 97.0197 96.8987
0104:H4 | 98.3059 96.9521 100 97.4788 96.8007 97.8896 98.249 98.7212
Sakai 97.7497 96.8627  97.5094 100 96.6657 98.1523 97.7455 97.6125
SE15 96.8453 97.1064 96.9211 96.7362 100 96.7575 96.8141 96.7763
Santai 98.0073 97.0372 97.9584  98.1797 96.8199 100 97.9279 97.9077
BL21-DE3 | 98.9983 97.1721  98.4048 97.8227 96.8448 97.9616 100 98.3204
RM&8426 98.306 96.9037 98.6801 97.5815 96.6907 97.8353 98.2567 100

Table S2. Distance between each pair of complete genome sequences from eight strains of E. coli
as computed by fastANI.

All pairs showed a distance at least greater than 95%, highlighting the strong similarities between
the strains. As a threshold, we although considered that beyond 99%, sequences were too similar to be
considered and distinguished, additionally to the effect of sequencing errors. The fastANI results showed
that none of the pairs exceeded this similarity threshold.

The strain E. coli BL21-DE3 was chosen as the unknown strain while the seven others would be used
to build the reference variation graph. According to the results of fastANI, the strain BL21-DE3 closest
genome in the present references is the strain K-12 with a similarity of 98.9%. Hence we expected to find
evidences of the strain K-12 while analyzing a sample containing the unknown strain BL21-DE3.
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S1.6 Detailed results from simulated datasets

*gff;s Method O104:H4  TAI39 K-12 Sakai SE15 Santai  RM8426
Expected 59.88 39.92 0.2 0 0 0 0

1000 Strainriatn | 5647 43.53 0 0 0 0 0
’ rain (0.995) (0.989) (0.309) (0.189) (0.151) (0.188) 0.212)
Kraken? 3891 60.72 0.22 0.04 0.07 0.03 0.02
Expected 59.41 39.6 0.99 0 0 0 0

5.000 Strainpian | 5493 42.46 26 0 0 0 0
’ rain (0.995) (0.989) (0.546) (0.202) (0.153) (0.2) 0.227)
Kraken2 38.61 60.25 0.99 0.04 0.07 0.03 0.02
Expected 58.82 39.22 1.96 0 0 0 0

10000 | strainprars | 5412 41.96 3.92 0 0 0 0
’ rain (0.994) (0.989) (0.709) 0.21) (0.155) (0.211) (0.234)
Kraken? 38.26 59.69 1.9 0.04 0.07 0.03 0.02
Expected 57.14 38.1 4.76 0 0 0 0

55000 | Strainpiace | S214 40.58 7.27 0 0 0 0
’ rain (0.994) (0.989) (0.878) (0.208) (0.153) (0.215) (0.234)
Kraken2 37.23 58.1 4.51 0.04 0.07 0.03 0.02
Expected 54.55 36.36 9.09 0 0 0 0

. 49.25 38.5 12.24 0 0 0 0

0000 | SErainFLATR | gosy  (0.989)  (0.949)  (0.203) (0.15) (0.208) (0.23)
Kraken2 35.63 55.6 8.62 0.04 0.07 0.03 0.02
Expected 50 3333 16.67 0 0 0 0

100000 | Strainprare | 4467 35.04 20.29 0 0 0 0
’ rain (0.994) (0.989) (0.979) (0.202) (0.152) (0.207) (0.229)
Kraken? 328 51.19 15.85 0.04 0.07 0.03 0.02
Expected 42.86 2857 2857 0 0 0 0

. 38.12 29.81 32.08 0 0 0 0

200,000 | StrainFLAIR | 993 (09gg) (0.99) ©211)  (0.159)  (0219)  (0.237)
Kraken2 28.31 44.18 27.35 0.04 0.08 0.03 0.02

Table S3. Reference strains relative abundances expected and computed by St rainFLAIR or
Kraken2 for each simulated experiment with variable coverage of the K-12 MG1655 strain. Best
results are shown in bold. For St rainFLAIR, the proportion of specific genes detected is shown in
parentheses.

Table S3 provides exhaustive results on simulated datasets when all queried strains are indexed in the

variation graph. Table S4 provides exhaustive results on simulated datasets when one of the queried strain
(BL21-DE3) is not indexed and highly similar to strain K-12.
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#reads

BioLpEs | Method O104H4  TAI39 K-12 Sakai SE15 Santai  RMS8426
Expected 59.88 39.92 0.0% 0 0 0 0
1000 ctrainpiarg | 5648 43.52 0 0 0 0 0
: * 0.995)  (0.989)  (0254)  (0.189)  (0.151)  (0.192)  (0.214)
Kraken2 38.93 60.76 0.11 0.05 0.08 0.04 0.03
Expected 50.41 39.6 0.99% 0 0 0 0
5.000 ctrainpiarg | 5646 43.54 0 0 0 0 0
g * 0.995)  (0.989)  (0387)  (0.216) (0.16) 0218)  (0.239)
Kraken2 38.72 60.42 0.5 0.09 0.13 0.08 0.07
Expected 58.82 39.22 1.96% 0 0 0 0
10.000 ceroinpiare | 5646 43.54 0 0 0 0 0
’ al 0995  (0.989)  (0471)  (0236)  (0.169)  (0.243)  (0.262)
Kraken2 38.47 60.05 0.92 0.14 0.19 0.12 0.13
Expected 57.14 38.1 476" 0 0 0 0
. 54.12 41.72 4.16 0 0 0 0
25,000 StrainFLAIR | h995)  (0.989)  (0.584)  (0.266)  (0.177)  (0.282)  (0.298)
Kraken2 37.75 58.93 2.16 0.28 034 025 0.29
Expected 5455 36.36 9.09% 0 0 0 0
$0.000 ctrinpiare | 277 40.62 6.61 0 0 0 0
’ a 0.994)  (0.989)  (0.652)  (0.284)  (0.187)  (0.307)  (0.321)
Kraken2 36.59 57.17 415 051 0.57 0.48 0.53
Expected 50 3333 16.67% 0 0 0 0
. 50.5 38.63 10.87 0 0 0 0
100,000 StrainFLAIR | 1993)  (0.988)  (0.687) 0.3) 0.196)  (0324)  (0.338)
Kraken2 34.53 54.03 7.68 091 0.98 091 0.96
Expected 4286 2857 28.57* 0 0 0 0
. 46.96 3532 17.72 0 0 0 0
200,000 StrainFLAIR | (n993)  (0988)  (0.711)  (0318)  (0211)  (0.346)  (0.351)
Kraken2 31.14 48.83 13.53 1.57 1.67 1.58 1.68

Table S4. Reference strains relative abundances expected and computed by St rainFLAIR or
Kraken2 for each simulated experiment with variable coverage of the BL.21-DE3 strain, absent
from the reference graph. BL21-DE3 being similar at 98.9% to K-12 strain (highest similarity
compared to the other references), we expect that reads from BL21-DE3 will map this strain, hence its
expected values are followed by an asterisk, as they correspond to BL21-DE3 strain abundances and not
K-12. Best results are shown in bold. For St rainFLAIR, the proportion of specific genes detected is
shown in parentheses.
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S1.7 Detailed results for validation on mock datasets
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Figure S1. Experimental relative abundance compared to relative abundance computed by
StrainFLAIR and Kraken2.

Figure S1 shows full results obtained on the mock dataset.
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S$1.8 Existing tools for strain identification and/or abundance estimation
Considering St rainFLAIR was designed to query a single sample, DESMAN was not suitable for this
work as it needs multiple samples in order to compute variant co-occurrences.

Similarly, considering St rainFLAIR was designed to compute strain relative abundances, PanPhlan
and StrainPhlan were not suitable as they do not provide such output.

StrainEst,DiTASiC, KrakenUniqgand mixtureS had similar inputs and outputs compared
to StrainFLAIR. Those tools were tested on two of the simulated datasets described in the main
manuscript (mixtures of O104:H4 2011¢-3493, TAI39, and K-12 MG1655 or BL21-DE3 at relative
abundances of 50%, 33.33% and 16.67% respectively). It was enough to highlight their main differences
with StrainFLAIR.

§1.8.1 StrainEst

Similarly to StrainFLAIR, StrainEst uses a set of reference genomes. E. coli K-12 MG1655 was
used as the species reference needed in the St rainEst pipeline. It was also added for the clustering step
of the representative genomes. The output is a relative abundance associated to each reference genome.
Results are presented in Table SS5.

While St rainEst gives slightly closer relative abundance estimations to the expected ones when
the three strains from the mixture are represented in the references, it does not perform well with the
mixture composed of an unknown strain (BL21-DE3). Aside from the relative abundances values that
are farther than the ones provided by St rainFLATIR, the main issue is that StrainEst assigns an
abundance to the strain RM8426 and not K-12 which is the closest strain to B121-DE3 and thus expected
to capture the signal.

§1.8.2 DIiTASIC

Similarly to StrainFLAIR, DiTASiC uses a set of reference genomes. The output is a table of
read count estimates for each reference genomes associated with a standard error and p-value for those
estimates. Read counts have been converted into relative abundances (percentages). Results are presented
in Table S5.

While DiTASiC gives accurate relative abundance estimations when the three strains from the
mixture are represented in the references, it does not perform well with the mixture composed of an
unknown strain (BL21-DE3). Although in lower abundance than the three present strains in the sample,
the absent strains are considered present even considering the p-values associated with the read count
estimates, except for the strain SE15 (p-value = 0.55).

§1.8.3 KrakenUniq

KrakenUniq assesses the coverage of unique k-mers found in each species in a dataset. It has been used
by building a custom database containing the same set of reference genomes as with StrainFLAIR.
The output is a table of, among others, the average number of times each unique k-mer has been seen,
and the coverage of the k-mers of the clade in the database, for each reference genome and their higher
taxonomic levels. The number of times each unique k-mer has been seen has been converted into relative
abundances (percentages). Results are presented in Table S5 with the coverage in parentheses.

Coverage values show a high discrimination between present and absent strains, with absent strains
being in less than 0.1% in coverage. By using a threshold on this coverage, discarding the false-positive
strains (Sakai, SE15, Santai and RM8426), the relative abundances computed are close to expected.
However, IAI39 has a coverage of 0.5 while the two other present strains are at over 0.9, which could
mislead the conclusion of IAI39 being the exact strain present in the sample, as it can been observed for
the simulation with BL21-DE3 reads, the coverage associated with K-12 (0.34) is also higher than the
absent strains and lower compared to present strains.

KrakenUniqg was also used on the mock dataset and showed similar results compared to Kraken?2
(sum of squared errors around 16 between KrakenUniqg and Kraken?2) except for two genomes which
were drastically lower in abundance and close to abundances estimated by Kraken?2 for absent strains.
Desulfovibrio piger ATCC 29098 estimated abundance was around 1,000 times lower with KrakenUniqg
compared to Kraken2, and Methanobrevibacter oralis DSM 7256 around 60 times lower.

S§1.8.4 mixtureS
mixtureS uses a single reference genome. The output is the inference of the number of haplotypes
and an estimate of their relative abundance. Inferred haplotypes are not associated with known refer-
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ences. For both simulated datasets, mixtureS gave similar results with 5 haplotypes predicted with
abundances between 11 and 31% overall. Thus, those results could not be matched with the ones given by
StrainFLAIR, StrainEst or DiTASiC, and consequently did not allowed accurate estimations in
terms of number of strains in the mixtures nor in terms of abundances.

Mixture Method 0104:H4 TAI39 K-12 Sakai SEI5 Santai RM8426
Expected 50 33.33 16.67 0 0 0 0
StrainFLAIR 44.66 35.05 20.29 0 0 0 0
StrainEst 48.64 32.97 18.39 0 0 0 0

with K-12 | DiTASiC 50.27 33.38 16.35 0 0 0 0
Kraken2 32.8 51.19 15.85 0.04 0.07 0.03 0.02
KrakenUniq 38.27 26.14 15.28 5.08 5.08 5.08 5.08

(0.99) (0.50) (0.93) (0.0017) (0.0017) (0.0017) (0.0014)
Expected 50 33.33 16.67* 0 0 0 0
StrainFLAIR 50.47 38.64 10.89 0 0 0 0
StrainEst 56.65 36.71 0 0 0 0 6.64

with BL21 | DiTASiC 53.34 34.72 8.52 0.66 0.03 1.06 1.67
Kraken2 34.53 54.03 7.68 0.91 0.98 0.91 0.96
KrakenUniq 27.9 19.24 11.12 10.1 10.42 10.28 10.94

(0.99) (0.50) (0.34) (0.02) (0.02) (0.03) (0.04)

Table S5. Reference strains relative abundances expected and computed by St rainFLAIR or
other tools for each simulated experiment. BL21-DE3 being similar at 98.9% to K-12 strain, we
expect that reads from BL21-DE3 will map this strain, hence its expected value is followed by an asterisk,
as it corresponds to BL21-DE3 strain abundance and not K-12. For KrakenUni g, additionally to the
relative abundances computed from the average number of times each unique k-mer has been seen, the
coverage value of the k-mers of the clade in the database was added in parenthesis. Best results are shown
in bold.

REFERENCES

Paten, B., Eizenga, J. M., Rosen, Y. M., Novak, A. M., Garrison, E., and Hickey, G. (2018). Superbubbles,
Ultrabubbles, and Cacti. In Journal of Computational Biology, volume 25, pages 649-663. Mary Ann
Liebert Inc.

9/9



