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S.1 Analytical relationship between NHT and IT approachesS-1

Murtaugh (2014) and Aho et al. (2017) used the Log-likelihood ratio tests (LRT) to identify a mathematicalS-2

relationship between p-values and Akaike weights. This demonstration is valid under the assumptions ofS-3

LRT, namely that (i) the sample size is large enough to allow the distribution of deviances (minus twiceS-4

likelihood ratios) under the null hypothesis to be approximated to a Chi-square distribution and (ii) theS-5

simpler model to be compared is a particular case of the more complex one (nested models). If theseS-6

assumptions are met, the power of simple designs that can be translated into a single LRT is Aho et al.S-7

(2017)’s:S-8

β = 1−Pχ2(x,k = 1,λ = E2) (S-1)

where Pχ2 is the cumulative non-central distribution of chi-square values (x), with k = 1 degreesS-9

of freedom and noncentrality parameter λ equal to the square of effect size (E2). For NHT, x = 1.962
S-10

and for IT x = 2. The left panel of Fig. S-1 shows the power of t-test predicted by equation S-1 forS-11

NHT and IT as a function of effect size for the t-test (equation 1 in the main text). As expected, theS-12

LRT approximation of t-test power matches the corresponding simulations. One can generalize thisS-13

approximation for combinations of LRT tests. For instance, our linear regression simulation tested theS-14

effect of two putative independent variables (X1 and X2, see below), where only one of these variablesS-15

affects the response Y . In this design, the LRT approximation for the power is:S-16

β = [1−Pχ2(x,k = 1,λ = E2)]×Pχ2(x,k = 1,λ = 0) (S-2)

which is the product of the probabilities of rightfull conclusions for LRT tests for X1 and X2. TheS-17

same rationale can be applied to any design that can be translated in a series of LRT’s.S-18

Edwards (1972) and Royall (2000) show many other instances of mathematical correspondenceS-19

between inferences based on the Null Hypothesis Testing (NHT) and Information Theoretical (IT)S-20

approaches that do not rely on LRT. Here we show a simple example taken from Edwards (1972) toS-21

illustrate that the inferences done with both approaches tend to match as sample size increases, as foundS-22

by Murtaugh (2014). Nevertheless, the convergence rates may differ, and thus for small to moderateS-23

sample sizes IT and NHT can lead to different inferences.S-24

For many NHT standard tests, a correspondent “support test” can be defined as the degree of supportS-25

the data provides for two alternative models (Edwards, 1972). The simplest case is a t-test for the nullS-26

hypothesis that the sample comes from a Gaussian distribution with the mean fixed at a particular value.S-27

An alternative model is that the true mean of the distribution equals its maximum likelihood estimateS-28

(MLE), which is the sample mean. In both cases the standard deviation is set to its MLE, which isS-29

estimated from the sample. From an IT perspective the additional support that the alternative model hasS-30

compared to the null model is the log-likelihood ratio. The minimum change in support required to rejectS-31

the null model and choose the alternative model is a cutoff value of the log-likelihood ratio that can beS-32

expressed as function of t-statistic as:S-33

| tc | =
√

(n−1)(e2L/n−1) (S-3)

where n is the sample size, L is the cutoff likelihood ratio and tc is the critical t-value (Edwards, 1972).S-34

The right panel of Fig. S-1 shows the value of tc calculated from equation S-3 and from the t-distributionS-35

as a function of sample size. Both tests statistics converge to the value of two as sample size increases, asS-36

expected with a Gaussian model. This convergence is slower for the t-test, which thus is more conservativeS-37

in rejecting the null model under small sample sizes. The conclusions of the two tests are the sameS-38

for sample sizes larger than 30, when the Gaussian distribution becomes a good approximation of theS-39

distribution of the t-statistics.S-40

The geometry of the relationship between p-value and supportS-41

Figure S-2 shows the geometry behind the proof by Edwards (1972) that the p-value and log-likelihoodS-42

ratios are monotonically related in the t-test, as in many other standard significance tests. The t-distributionS-43
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Figure S-1. Left panel: power (proportion of rightfull conclusions when the alternative hypotesis is
true) in a t-test design, according to our simulations and the likelihood ratio test (LRT) approximation by
Aho et al. (2017) for NHT (red) and IT (blue). Lines show the power predicted by the approximation and
points are the proportions of simulations that ensued rightfull conclusions, as in Figure 1. Right panel:
the critical value of the t-statistic and its IT correspondent as a function of sample size. In both cases the
critical value tc is the threshold value to reject the null hypothesis in a one-sample t-test design. The red
line shows the critical value calculated from the t-distribution for a significance level of α = 0.05. The
blue line shows the critical value calculated from equation S-3 for a cutoff log-likelihood ratio of two.
After Edwards (1972).

is a model for the t-statistic calculated from samples taken from the same Gaussian distribution. However,S-44

there are an infinite number of t-distributions for samples taken from Gaussian distributions that differ inS-45

some amount in their means. Among those alternatives will be the one that is best supported by the data.S-46

The lower the p-value of t under the null hypothesis, the higher the probability that the alternative, bestS-47

supported t-distribution, assigns to this same value.S-48

S.2 Adjusted IT criteria for uniformative models: effect on power, M-errors and S-errorsS-49

The t-test and correlation designs can be translated into two alternative models, which correspond to theS-50

null and alternative hypotheses in the NHT approach, as we detailed in the Methods section. Nevertheless,S-51

to translate ANOVA and linear regression designs to the IT approach we must fit more than one alternativeS-52

model. For instance, in our linear regression example with two putative predictor variables, four additiveS-53

models are possible:S-54

• E[Y ] = a0S-55

• E[Y ] = a0 +a1X1S-56

• E[Y ] = a0 +a2X2S-57

• E[Y ] = a0 +a1X1 +a2X2S-58

The first model corresponds to the null hypothesis of no effect and the second model correspondsS-59

to the correct alternative hypothesis that only predictor X1 has an effect on the expected value of theS-60

response variable (E[Y ]). The fourth model also has the effect of X2, which we set to zero in the simulatedS-61

data. Random sampling variation will give this model an estimated value of the effect close to zero inS-62

each simulated fit. In this case the fourth model is equivalent to the correct model plus an uninformativeS-63

parameter a2. Nevertheless, the small estimated value of a2 can sufficiently improve the fit to the observedS-64

data to make the AIC of this model with an uninformative parameter lower than the true model. TheS-65
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Figure S-2. The relationship between the p-value and the likelihood ratio in a t-test. The curve in grey is
the standard t-distribution, which gives the probability density of a given t-value under the null hypothesis
of no difference among population means. The curve in black is a non-central t-distribution, which gives
the probability density of t-values under an alternative hypothesis that the population means differ to
some amount. Points a and b are values of the t-statistic for two hypothetical testing situations. The areas
below the curves are the p-values for t = a (black + light grey area) and t = b (only black area) under the
null hypothesis. For each value of t, the likelihood ratio is the ratio between the probability density given
by the two distributions (La = H1(a)/H0(a); Lb = H1(b)/H0(b) ). The comparison of situations a and
b shows that the lower the p-value the higher the likelihood ratio H1/H0, and thus the stronger the support
of H1 over H0. Akaike evidence weights w are proportional to likelihood ratios, and in such simple
designs such as t-test w will increase monotonically as the p-value decreases. After Edwards (1972).

probability of this misleading selection converges to a value larger than zero as sample size increasesS-66

(Geweke and Meese, 1981; Teräsvirta and Mellin, 1986), which means that AIC is not asymptoticallyS-67

consistent (although AIC is asymptotically efficient, see Aho et al., 2014, for a full discussion). ThisS-68

problem arises when the true model is surely among the competing ones and the purpose of modelS-69

selection is to pick it (Aho et al., 2014), as is the case in simple significance test designs like those weS-70

simulated. To circumvent this problem we used the additional parsimony criterion proposed by ArnoldS-71

(2010): to select the model with fewer parameters which was among the models with ∆AIC < 2.S-72

The figures below replicates the comparisons of power, S-errors and M-errors between NHT andS-73

IT approaches shown in figures 1 – 3 but also with the IT criterion without the parsimony correctionS-74

described above. We also included the results for a simulation of the linear regression design with aS-75

correlation of 0.5 between the uninformative predictor (X2) and the true predictor (X1).S-76

The power of the unadjusted IT criterion converges to the value 0.84 as effect size increases (Fig.S-77

S-3), because the probability of the selection of the model with an additional uninformative parameterS-78

converged to 0.16 in our simulations. This finding is in line with the theoretical upper bound of powerS-79
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of the AIC model selection for two nested models (Teräsvirta and Mellin, 1986), as is the case for ourS-80

simulations of ANOVA and linear regression. These results also support the proposition of Arnold (2010)S-81

that the power of AIC is bounded to 5/6 when there is a model with a ’spurious variable’.S-82
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Figure S-3. The power of null hypothesis tests (NHT, red) and information-based model selection with
and without the parsimony adjusting for uninformative parameters (green and blue, respectively. See Aho
et al., 2014, and the text above), as a function of effect size, for ANOVA and linear regression designs.
Each point is the proportion of the 10,000 simulations of a test instance from which the effect was
detected. Each test instance used a different combination of effect size, standard deviation of the values,
and sample size. Linear regression with collinearity was simulated with a correlation of 0.5 between the
two predictor variables.
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Figure S-4. The mean type-M error (exaggeration rate) of null hypothesis tests (NHT, red) and
information-based model selection with and without the parsimony adjusting for uninformative
parameters (IT, green and blue, see Aho et al., 2014, and the text above), as a function of effect size, for
ANOVA and linear regression designs. Each point represents the simulations of a test instance from
which an effect was detected. Each test instance used a different combination of effect size, standard
deviation of the values and sample size and was simulated 10,000 times. The M-error is the absolute ratio
between the effect size estimated and the true effect size (Gelman and Carlin, 2014), which was estimated
from the mean of this ratio for each test instance. Linear regression with collinearity was simulated with a
correlation of 0.5 between the two predictor variables.

S.3 R codes for the simulationsS-83

Functions in R to perform the simulations with any combination of parameters, the R scripts of theS-84

simulations, and the resulting simulated data used in this paper are available at https://github.S-85

com/piklprado/NHTxIT.S-86
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Figure S-5. The mean type-S error of null hypothesis tests (NHT, red) and information-based model
selection with and without the parsimony adjusting for uniformative parameters (IT, green and blue, see
Aho et al., 2014, and the text above), as a function of effect size, for ANOVA and linear regression
designs. Each point represents the simulations of a test instance from which an effect was detected. Each
test instance used a different combination of effect size, standard deviation of the values and sample size
and was simulated 10,000 times. The S-error is the probability of detecting an effect of an opposite sign
of the true effect (Gelman and Carlin, 2014). For each test instance we estimated S-errors from the
proportion of simulations that detected an effect of the opposite sign. Linear regression with collinearity
was simulated with a correlation of 0.5 between the two predictor variables.
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