
Supplemental Methods section:

Read Trimming

Trimmomatic (Bolger, Lohse and Usadel 2014) was used to filter and trim demultiplexed 
sequences (ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 
SLIDINGWINDOW:4:15 MINLEN:100). A minimum average read quality score of 15 was 
required for inclusion while the sliding window cuts any read at the point where the median 
quality score over a 4 nucleotide window is less than 15. 

Read-pairing and de-noising

For conserved site reads we used a tandem pairing process as QIIME2 uses an implementation
of vsearch for read pair joining (‘vsearch join-pairs’) which has a lower criteria of a minimum of 
10 base-pairs of overlap. To extend vsearch with accurate read-pair joining below this cut-off we
used a custom script (jantar.py) that would attempt to combine read-pairs that had failed to 
combined with vsearch. In order to be combined a read pair must have a “perfect” (starting from 
tails of reads, with no mismatches, in the correct orientation) 7bp overlap or 10bp with a single 
mismatch. Reads were denoised using ‘dada2 denoise-single’, default settings using ‘--p-trim-
left 3 and --p-trunc-len 0’.

DADA2 as implemented by QIIME2 was used for read-pairing and denoising of the Impacted 
site data. 

QIIME2

Phylogeny was determined using ‘phylogeny align-to-tree-mafft-fasttree’ with default settings. 
Minimum (48638) and maximum (106724) read depths were determined using 
‘table_dada2.qzv’. Alpha-rarefaction was then calculated using the rooted MAFFT tree and the 
maximum read depth. 

Alpha and Beta diversities were calculated using ‘diversity core-metrics-phylogenetic’ using the 
minimum read depth (‘--p-sampling-depth’) and the rooted MAFFT tree. Alpha-diversity was 
evaluated using the Kruskal-Wallis test, Beta-diversity evaluated using PERMANOVA. Rarefied 
data did not violate Kruskal-Wallis homoscedasticity assumption using Levene’s test, and 
betadisper as implemented in the vegan R package was used to test for PERMANNOVA’s 
multivariate homoscedasticity assumption.

Taxonomy was calculated using ‘feature-classifier classify-sklearn’ and plotted using ‘taxa 
barplot’.

Finally, gneiss was used to calculate the hierarchical correlation-clustering of unnormalized taxa
counts constrained to the levels of Family and greater using ‘gneiss correlation-clustering’. A 
pseudo-count of 1 was used for handling log-transforms. This was plotted using ‘dendrogram-
heatmap’ for the meta-data column ‘Site’.

PICRUSt2



PICRUSt2 was run twice using ‘--stratified’ and ‘--per_sequence_contrib’ options. One run was 
set to limit NSTI thresholds to 0.15, while the other (and data set subsequently used) was ran 
with the default NSTI threshold of 2.0.

Taxonomic abundance analysis

Novembro.py normalizes the ASV read abundances generated by QIIME2 into their 
corresponding taxa. This requires feature-table.tsv and taxonomy.tsv files. While the 
taxonomy.tsv file can be found by unzipping the taxonomy.qza file the feature-table.tsv needs to
be generated using a biom conversion command (eg. ‘biom convert -i feature-table.biom -o 
feature-table.biom.txt --to-tsv’) 

Novembro.py iterates from the lowest to the highest taxonomic level combining ASV read 
abundances into their corresponding taxa. Replicate normalizations are downsampled to match 
the lowest ASV abundant replicate. We use novembro.py to calculate zone specific taxonomic 
enrichment. This is accomplished by first using chi2 to compare the replicates of each zone 
against the others. To be deemed significant a zone must have an greater than a 5% effect size 
and p-value less than, or equal to, 0.05 relative to both other sites. 

Taxa that are found to be significantly enriched are saved to a tab-delimited file along with their 
log10 transformed abundances.

Zone specific differential KO abundances

First, we generate Monte Carlo samples of each KO distribution of the unstratified metagenome 
predictions (eg. ‘pred_metagenome_unstrat.tsv’) using ALDEx2’s centered log-transformed 
(‘aldex.clr’) module. We then use ALDEx2’s GLM ANOVA test (‘aldex.kw’), taking those KOs 
with an expected p-value (‘glm.ep’) of less than, or equal to, 0.05 to be significant. 

Potential functional abundance analysis

Sigilo.py performs several functions to aid in the visualization and analysis of PICRUSt2 and 
ALDEx2 generated KO data. 

Generate heatmap: KO enrichment heatmaps can be generated using ‘--
generate_heatmap’, this function combines the predicted functional abundances of KOs 
identified by ALDEx2 as significant into their corresponding KEGG Ortholog pathways, performs
a log10 transform and plots them as heatmaps. 

Correlate ASV with Functional Abundance: Using the ‘--asv2fa’ command we first 
combine all ASVs into their corresponding taxa at a given level (for Family, level = 4) and then 
calculate the total functional abundance for those combined ASVs to derive the predicted 
functional abundance of a given taxa. 

Correlate ASV with NSTI: Using the ‘--asv2nsti’ command we first combine all ASVs 
into their corresponding taxa at a given level (for Family, level = 4) and then combine the 
associated NSTI values for those ASVs for each taxa. We can then use these to identify the 
mean, median, and standard deviation of NSTI scores for each given taxa.



Supplemental data section

Variable C1 C2 C3 I1 I2 I3 I/C H p-value
Temperature
(C) 25.00 29.00 29.00 29.70 29.30 29.00 1.06 2.63441 0.10457
Dissolved 
Oxygen (mg/
L) 5.54 5.54 5.54 8.41 8.11 8.11 1.48 4.5 0.03390 *
pH 7.80 7.56 7.50 7.45 7.47 7.47 0.98 3.97059 0.04630 *
Salinity (ppt) 15.10 15.10 15.10 13.30 13.30 13.30 0.88 5 0.02535 *
Organic 
Matter (%) 3.71 3.86 3.80 9.93 9.81 9.90 2.61 3.85714 0.04954 *
Al (mg/L) 92.65 69.59 57.38 36.41 182.2 143.8 1.65 0.42857 0.51269
As (mg/L) 0.10 0.03 0.00 0.00 0.08 0.02 0.10 0.19608 0.65791
Ba (mg/L) 0.42 0.89 0.66 0.36 0.67 0.29 0.67 1.19048 0.27523
Co (mg/L) 0.00 0.04 0.03 0.32 0.14 0.04 0.50 3.13726 0.07652 .
Cr (mg/L) 0.08 0.06 0.02 7.73 0.24 0.19 8.16 3.85714 0.04954 *
Cu (mg/L) 0.00 0.00 0.00 0.13 0.18 0.18 0.16 4.5 0.03390 *
Fe (mg/L) 94.99 82.40 58.98 228.0 206.5 157.3 2.50 3.85714 0.04954 *
Li (mg/L) 0.07 0.05 0.04 0.00 0.10 0.06 0.16 0.04762 0.82726
Mn (mg/L) 0.92 1.17 0.64 5.13 2.31 0.67 2.97 1.19048 0.27523
Ni (mg/L) 0.00 0.00 0.00 5.13 7.83 0.04 4.33 4.35484 0.03690 *
Pb (mg/L) 0.02 0.03 0.01 0.00 0.10 0.34 0.44 0.42857 0.51269
Sn (mg/L) 0.00 0.00 0.00 0.00 0.00 0.09 0.03 1 0.31731
V (mg/L) 0.16 0.17 0.13 0.74 0.43 0.26 1.43 3.857143 0.04954 *
Zn (mg/L) 1.01 0.63 0.57 0.62 0.56 0.42 0.72 2.333333 0.12663

Table 1. Environmental variables. 

Here we show the mean measures of environmental variables associated with the conserved 
(C1, C2, C3) and impacted (I1, I2, I3) sites used in this study as well as the ratio of impacted 
over conserved (I/C). These were tested using Krusakl-Wallis (df=1, H-statistic and p-value).



Environmental 
Variables P1 P2 r2 Pr(>r) Signif.
Temperature (C) 0.91786 -0.39690 0.9461 0.05000 *
Dissolved Oxygen (mg/L) 0.68884 0.72491 0.9012 0.06667 .
pH -0.97386 0.22715 0.9368 0.06944 .
Salinity (ppt) -0.68579 -0.72780 0.9060 0.10000 .
Organic Matter (%) 0.70743 0.70678 0.9077 0.03889 *
Al (mg/L) 0.09020 0.99592 0.1698 0.77083
As (mg/L) -0.87367 0.48651 0.4010 0.49722
Ba (mg/L) 0.39804 -0.91737 0.7379 0.09583 .
Co (mg/L) 0.92968 0.36836 0.3930 0.40000
Cr (mg/L) 0.75205 0.65911 0.2002 0.51667
Cu (mg/L) 0.67743 0.73558 0.8690 0.05000 *
Fe (mg/L) 0.59300 0.80520 0.6798 0.10833
Li (mg/L) -0.84235 0.53893 0.0517 0.86806
Mn (mg/L) 0.87229 0.48898 0.2456 0.52778
Ni (mg/L) 0.77433 0.63278 0.3615 0.57500
Pb (mg/L) 0.62015 0.78448 0.2883 0.44861
Sn (mg/L) 0.52377 0.85186 0.2375 0.50000
V (mg/L) 0.76228 0.64725 0.4700 0.37500
Zn (mg/L) -0.95954 0.28156 0.8378 0.16111

Table 2. PCoA environmental variable vectors and significance.

Here we show the results of PCoA constrained ordination for OTUs for the environmental 
variables from the two sites. 



Figure 1. Sediment sampling strategy 
Here we show the sampling schematic at the conserved site. Originally sampling was performed
in triplicate at three different tidal zones (A, B) [1]. For this study we recombined samples such 
that each conserved site replicate had one sample from each tidal zone (C). 



Figure 2. Schematics representing straight-line distances between sediment sampling 
sites and their respective heavy metal sampling sites.

Here we show the straight-line distances between the sediment sampling sites and their 
respective heavy metal sampling sites [2]. The average distance for the conserved set is 6.98 
km (A) and 1.64 km for the Impacted site (B). In both cases the heavy metal sampling sites 
were selected based on being the closest sites downstream of the sediment sampling sites. 

Figure 3. Taxa overlap between sites. 
Here we show the overlap of taxa constrained to Species level and higher (A.) and Family level 
and higher (B.) Taxa were required to have a minimum of 20 unnormalized reads in at least one
site to be included.



Figure 4. Alpha-rarefaction plot as calculated using QIIME2

Rarefaction curves for Impacted and Conserved sites. For rarefaction we selected Conserved 1 
with 48,600 reads.

Figure 5. Additional alpha-diversity tests

In addition to Shannon’s diversity, both Pielou (A) and Faith (B) were calculated using rarefied 
data and found to be significant using pairwise Kruskal-Wallis. 



Figure 6. Additional beta-diversity tests

Distance measures for Jaccard (A), Unweighted UniFrac (B), and Weighted UniFrac (C). All p-
values were calculated using the pairwise PERMANOVA test on rarefied data. 



Figure 7. Percentage of reads belonging to unassigned ASVs at each taxonomic level.

Here we show the percent total of unnormalized abundance of reads for each ASV unassigned 
at that level. For example, a taxonomic assignment of ‘Bacteria’ would be counted as assigned 
at the Kingdom level but not for the Phylum level. No ASVs or OTUs were filtered from this 
calculation.



Figure 8. Analysis of Cumulative Sum Scaling on Differential Analysis. 



Cumulative Sum Scaling (CSS) is a normalization method intended to correct for 
overamplification of sample specific sequences using an adaptive scaling term calculated 
around deviation from the reference sample [3]. 

Applied to our data we find that it significantly alters the distribution of feature scores, increasing
weight of the lower abundance taxa relative to the abundance (A, B). The mean Pearson R^2 of
unnormalized and CSS normalized ASV abundances: 0.503

Comparing performance of the methods in our differential analysis method (novembro.py) we 
find that they do have substantial overlap (~58%) (C). Normalization specific taxa do seem to 
have trends that describe them. The 6 TSS specific taxa have substantially higher unnormalized
read abundance in the conserved site (minimum read count ~400) while also having one 
replicate closer in abundance to the impact replicates (D). As there are several dozen CSS 
specific taxa we randomly selected ten to show here. Of these we see that, with the exception of
Desulfobacteraceae, these taxa are often not observed in the conserved samples and with low 
abundance in the impacted samples (maximum read count ~120) (E).  Desulfobacteraceae, is 
an interesting case where the abundances in both samples are high. While CSS normalization 
increases this difference leading to it to be called significant, TSS decreases this difference 
leading to it being deemed not significant. 

Because of this performance [4] we have decided to use TSS for normalization of our samples. 

 



Figure 9. Differential subcommunity analysis using Gneiss. Gneiss is a hierarchical 
clustering approach that uses balance calculations to extend differential abundance analysis 
beyond species and instead identify niche specific subcommunities [5]. Here (Figure 3), we 
show the gneiss dendrogram, top ten balances, and heat plot of the our taxonomically assigned 
family’s unnormalized read counts.

We find two highly ranked clusters that correspond to enrichment in the Conserved samples 
(blue box, numerator of y0, entirety of y1) and enrichment in the Impacted samples (orange box,
numerator of y2, entirety of y5). 



Figure 10. Overlap between Gneiss clusters and our differential abundance analysis 
method. We find 169 taxa are present in the Conserved site enriched cluster and 204 taxa are 
present in the Impacted site enriched cluster. Of these we find all (17) of our predicted 
Conserved enriched taxa are also present in the Conserved enriched cluster and all but 3 of our
predicted Impact enriched taxa (43) are present in the Impact enriched cluster. Notably, those 
taxa (Bacteroidetes vadinHA17, Calditrichaceae, and Spirochaetaceae, Figure 4) which are 
absent from the Impacted enriched cluster are all taxa which also exhibit substantial 
abundances in the Conserved site, suggesting that they did not sort with this cluster due to that 
reason.  



Figure 11. Results of ANCOMI applied to Family level constrained taxa unnormalized 
abundances.



Analysis of Composition of Microbiomes [6, 7] is a method of identifying taxa that have 
differential abundances between two sites. For normalization it uses a compositional approach 
instead of total-sum scaling (TSS) or distribution based models. While powerful, it assumes that 
the composition between sites is very similar with limited (<25%) differences in composition. As 
the taxa composition between or sites is high, ranging from 52% dissimilarity at the Family level 
to 86% dissimilarity at the species level, it was unclear if ANCOM would perform well given our 
data.

Unfortunately, this proved to be true. As both ANCOM (as implemented in QIIME2) and 
ANCOMII [4], resulted in no taxa being found to be significantly different, including those with 
obvious differences. 

As one example, the Stappiaceae family of Alphaproteobacteria was observed in the following 
samples (unnormalized reads): 
Conserved_rep1: 1744.0
Conserved_rep2: 2378.0
Conserved_rep3: 1781.0
Impacted_rep1: 0.0
Impacted_rep2: 0.0
Impacted_rep3: 31.0

For this taxa, ANCOM only returns a W statistic of 24 for this taxa, far beneath the standard 
significance threshold (0.7*total taxa) of 492.   

Given this performance we did not use ANCOM in our analysis.
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