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S1 Supplementary data and methods
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Figure S1: Syndromic ILI data (A) and virological influenza data (B) in Belgium, Italy, Norway,

and Spain. In A, the red bars represent the numbers of samples positive to any influenza virus and the
grey bars those negative.
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Figure S2: Model-based distribution of the generation time. For our model, the den-
sity function of the generation time is given by [Camacho et al. , 2011, Svensson, 2007]: f(t) =
4�2

�

(���) [te
�2�t + 1

2(���) (e
�2�t � e�2�t)] . The resulting distribution is bell-shaped, with mean ��1 + �

�1

2 =
6.5 days and coefficient of variation 0.58.

S2 Supplementary results

Log-likelihood profiles of �F The log-likelihood profiles for the impact of influenza (parameter �F ) are

plotted in Fig. S3.
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Figure S3: Log-likelihood profiles for impact of influenza (parameter �F ). In each panel, the points
(line ranges) represent the values of the profile log-likelihood (±SE). The curved grey lines represent the
smoothed profiles, calculated using LOESS regression with automatic selection of the span parameter via
the function loess.as in the fANCOVA package (span values: 0.52 in Belgium, 0.82 in Italy, 0.38 in Norway
and in Spain). The horizontal grey is 0.5⇥�2

p=0.95,df=1 = 1.92 units below the maximum log-likelihood. The
y-axis values differ for each panel.

Parameters correlation plot in Spain The correlations between estimated parameters of the base

model in Spain are represented in Fig. S4 (see also Table 2). The correlation plots in other countries were

qualitatively similar and are not showed here.
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Figure S4: Parameters correlation plot in Spain. Represented are the Spearman partial correlation
coefficients from 94 MIF runs of the base model in Spain, all within 5 log-likelihood units of the maximum
log-likelihood (cf. Table 2).

Model with non-linear function mapping the stringency index to the relative reduction in

transmission Although we assumed a simple linear scaling in our base model, it can also be hypothesized

that the reduction of SARS-CoV-2 transmission scales non-linearly with the stringency index. For example,

super-linear scaling for low values of the stringency index may occur if a potentially high-impact intervention

(e.g., lockdown) is implemented early on, such that a modest increase in the stringency index results in
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a marked decrease in SARS-CoV-2 transmission. Conversely, sub-linear scaling may also be plausible if

potentially low-impact interventions (e.g., border closure) are implemented first. To test those hypotheses,

we considered an alternative, non-linear scaling function of the form:

r�(t) = f(b2 ⇥ f�1(min(1, b⇥ si(t)

100
)))

where f(x) = (1+e�x)�1 is the logistic function. Here the extra parameter b2 controls the slope at the origin,

with b2 < 1 representing super-linear scaling at low values of the stringency index, and b2 > 1 super-linear

scaling. For b2 = 1, r�(t) = min(1, b ⇥ si(t)
100 ), such that the base model with linear scaling is nested within

this more general model. The corresponding parameter estimates are presented in Table S1, and further

discussed in the main text.

Quantity Belgium Italy Norway Spain

logL (SE) –384.4 (0.1) –649.2 (0.1) –161.5 (<0.1) –557.4 (0.2)
� logL (P)⇤ 0 (1) 0.3 (0.44) 0.3 (0.44) 1.1 (0.14)

R0
3.1 1.5 1.1 1.3

(1.8, 3.4) (1.1, 1.7) (1.0, 1.2) (1.0, 1.9)

b
0.90 0.67 0.70 0.79

(0.71, 1.21) (0.50, 0.90) (0.65, 0.70) (0.51, 0.95)

b2
1.6 0.6 3.8 0.7

(0.3, 3.1) (0.3, 1.2) NA (0.3, 1.0)

�F

0.7 1.8 1.0 3.0
(0.7, 2.3) (1.7, 1.9) (–0.1, 2.1) (1.5, 5.3)

kD
7⇥ 10�4 0.07 0.15 0.08

(4, 49)⇥10�4 (0.06, 0.09) (0.11, 0.47) (0.06, 0.11)

E1(0)
130 470 540 350

(30, 230) (160, 970) (50, 8200) (70, 490)

Table S1: Point parameter estimates of an extended model with a non-linear scaling function

for the stringency index. ⇤Log-likelihood difference (P-value from a log-likelihood ratio test) with the
base model presented in Table 2. The confidence intervals represent approximate 95% multivariate confidence
intervals, calculated from the 100 MIF runs as the range of parameters within 1

2 ⇥ �p=0.95,df=n✓ units from
the maximum log-likelihood (n✓ = 6: number of parameters estimated).

Model with unexplained trend in transmission rate To assess the robustness of our results to

potential confounding bias, we considered an extended model that included an exponential trend in the

transmission rate:

�(t) = R0�(1� r�(t))�F (t)e
⌧t

where the trend parameter ⌧ was estimated from the data, in addition to the other parameters. The

corresponding parameter estimates are presented in Table S2 and discussed in the main text.
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Quantity Belgium Italy Norway Spain

logL (SE) –381.2 (<0.1) –649.5 (0.3) –161.4 (<0.1) –558.1(0.2)
� logL (P)⇤ 3.2 (0.01) 0.0 (1) 0.4 (0.37) 0.4 (0.37)

R0
1.2 1.7 1.1 1.1

(1.0, 5.0) (1.1, 4.2) (1.0, 9.3) (1.0, 2.0)

b
0.92 0.60 0.90 0.75

(0.90, 1.06) (0.50, 0.79) (0.50, 1.15) (0.53, 0.91)

⌧ (⇥10�3 day�1) 8 –3 8 3
(–3, 9) (–8, 2) (–18, 9) (–4, 6)

�F

3.6 1.2 1.5 3.3
(0.2, 4.4) (0.5, 2.2) (–0.5, 3.1) (1.4, 4.2)

kD
4⇥ 10�4 0.08 0.16 0.08

(2, 63)⇥10�4 (0.06, 0.10) (0.11, 0.49) (0.06, 0.11)

E1(0)
75 440 370 270

(10, 130) (50, 540) (50, 9150) (90, 730)

Table S2: Parameter estimates of an extended model with a trend in transmission. ⇤Log-likelihood
difference (P-value from a log-likelihood ratio test) with the base model presented in Table 2. The confidence
intervals represent approximate 95% multivariate confidence intervals, calculated from the 100 MIF runs as
the range of parameters within 1

2 ⇥ �p=0.95,df=n✓ units from the maximum log-likelihood (n✓ = 6: number
of parameters estimated).

Additional sensitivity analyses To verify the robustness of our results, we conducted a number of

additional sensitivity analyses. Specifically, we modified the value of 3 fixed model parameters (infection

fatality ratio, average onset-to-death time, and average generation time) and we repeated the estimations as

before. As shown in Table S3, the estimate of the impact of influenza on SARS-CoV-2 transmission remained

consistently above 0 for all scenarios tested. The table also reports the estimates of the model with no impact

of influenza on SARS-CoV-2 transmission (�F = 0).

 

Model Belgium Italy Norway Spain 

 log L  
(SE) 𝑅0 𝑏1 𝛽𝐹 log L  

(SE) 𝑅0 𝑏1 𝛽𝐹 log L  
(SE) 𝑅0 𝑏 𝛽𝐹 log L  

(SE) 𝑅0 𝑏 𝛽𝐹 

Base model –384.4  
(<0.1) 3.4 1.03 0.8 –649.5 

(0.1) 1.2 0.53 1.8 –161.8 
(<0.1) 2.2 1.05 1.0 –558.5 

(0.2) 1.4 0.75 2.4 

𝛽𝐹 = 0 –398.2 
(0.1) 5.2 1.09 0 –769.7 

(<0.1) 3.4 0.88 0 –164.3 
(<0.1) 2.4 1.03 0 –577.4 

(0.1) 3.1 1.00 0 

𝐸(𝑇𝑔) = 5 days –385.6 
(0.1) 2.7 0.93 0.5 –650.5 

(0.1) 1.3 0.50 1.0 –162.3 
(<0.1) 1.7 0.87 0.6 –557.6 

(0.2) 1.3 0.63 1.5 

𝐸(𝑇𝑔) = 7.5 days –383.5 
(<0.1) 3.5 1.06 1.1 –649.5 

(0.1) 1.2 0.58 2.3 –161.7 
(<0.1) 2.1 1.05 1.3 –558.3 

(0.3) 1.2 0.75 4.0 

𝜇 = 0.005 –384.6 
(0.1) 3.7 1.03 0.6 –649.2 

(0.1) 1.3 0.53 1.6 –161.4 
(<0.1) 2.1 1.02 0.9 –558.9 

(0.1) 1.2 0.66 3.0 

𝜅−1 = 13 days –392.7 
(0.1) 2.1 0.91 3.4 –642.5 

(0.1) 1.2 0.50 2.3 –162.7 
(<0.1) 1.4 0.80 1.9 –536.8 

(0.7) 1.2 0.62 4.5 

Table S3: Sensitivity analyses.

Model fit to data summary statistics To evaluate the model fit in more detail, we examined the model–

data agreement on a number of statistics that summarized important aspects of the mortality data—that is,

probes [Wood, 2010, King et al. , 2016]). Specifically, we considered the following probes:
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• Peak time (in days relative to the start of the study period).

• Peak daily number of deaths.

• Total number of deaths.

• Epidemic growth exponent. According to a previous study [Maier & Brockmann, 2020], we assumed

that, until the peak time, the daily number of deaths grew algebraically, i.e., D(t) / t↵. We then

estimated the growth exponent ↵ using a log-log linear regression model.

The observed and simulated probe values are plotted in Fig. S5 and discussed in the main text.
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Growth rate, Belgium Growth rate, Italy Growth rate, Norway Growth rate, Spain

Peak time, Belgium Peak time, Italy Peak time, Norway Peak time, Spain

Total deaths, Belgium Total deaths, Italy Total deaths, Norway Total deaths, Spain

Peak deaths, Belgium Peak deaths, Italy Peak deaths, Norway Peak deaths, Spain
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Figure S5: Model–data comparison on probes. In each panel, the vertical blue line indicates the
observed value of the probe. The x- and y-axis values differ for each panel.

Probability of detecting an influenza–SARS-CoV-2 co-infection To calculate the probability of

detecting a co-infection with influenza then SARS-CoV-2, we ran a simulation study. Assuming that in-

fluenza infection occurred first, we first generated a sample of influenza incubation periods from a log-

Normal distribution with median 1.4 days and dispersion 1.51, based on the results of a previous re-

view [Lessler et al. , 2009]. We then generated a sample of detection periods, assuming that influenza could

be shed (and therefore detected) up to 4–5 days after symptom onset [Carrat et al. , 2008]. Second, we gen-
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erated a sample of SARS-CoV-2 infection times, uniformly between the time of infection and the end time of

detectability of influenza. Finally, we generated a sample of SARS-CoV-2 incubation periods (from a Gamma

distribution with mean 5.7 days [Khalili et al. , 2020] and coefficient of variation 0.86 [Flaxman et al. , 2020])

and of SARS-CoV-2 detection start times, assuming that SARS-CoV-2 could be detected from 2 to 4 days

before symptom onset [Tindale et al. , 2020]. In each simulation, we calculated the probability of detecting

a co-detection as the fraction of the sample for which the maximal detection time of influenza exceeded the

minimal detection time of SARS-CoV-2. The results are presented in Table S4 and discussed in the main

text.

Detection time of

influenza after

symptom onset

Detection time of

SARS-CoV-2 before

symptom onset

Probability of

co-detection

4 days 2 days 0.52
4 days 4 days 0.67
5 days 2 days 0.55
5 days 4 days 0.70

Table S4: Probability of detecting a co-infection with influenza and SARS-CoV-2. The results
are based on sample size of 105; replicate simulations gave identical results, such that the estimates may be
considered exact.
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