
Supplemental Material
FoBSim: An extensible open-source simulation tool
for integrated Fog-Blockchain systems

Hamza Baniata and Attila Kertesz

Department of Software Engineering, University of Szeged, Hungary

Corresponding author:
H. Baniata

Email address: baniatah@inf.u-szeged.hu

ABSTRACT

This document provides the Supplemental Material of the paper titled: FoBSim: An extensible open-source
simulation tool for integrated Fog-Blockchain systems.

1 APPENDICES
1.1 Figures

Figure 1. The Genesis block, with all its attributes, generated to miner nodes

(a) (b)

Figure 2. A sample of FoBSim output. (a) confirming a new block receipt, a new award for mining the
new block (as the required percentage of confirmations was reached), and the updated state of local chain
of the receiver miner (b) Final miner wallets values in a PoA scenario

1



(a) (b)

(c) (d)

Figure 3. Samples of TXs produced by FoBSim entities (a): BC functionality is Identity Management,
(b): BC functionality is Computational Service, (c): BC functionality is Payment, (d): BC functionality is
Data Management

1.2 Tables

Function Description
user input() The BC functionality and BC placement are input by the user. Then this

function initiates temporary files. Currently, there are four functionalities
available, namely Data management, Computational services, Payment, and
Identity management, and two placement options, namely Fog layer and end-
user layer.

initiate network() user inputs additional Id attributes (if applicable). Fogs/end-users are then
constructed, end-users are triggered to create new TXs and send them to fogs.
Fogs receive TXs and wait for trigger.

initiate miners() Miners are constructed and relevant temporary files to the BC construction are
initiated.

connect miners() Miners are connected in a P2P fashion and the network is confirmed to be one
giant component.

give miners
authorization()

Allows the authorization of some miner nodes to mint new blocks in case the
CA is PoA.

inform miners
of users wallets()

Informs miners about the initial values of end-user wallets.

initiate genesis
block()

A new block is built whose previous hash value = 0, block no = 0, and TXs are
the addresses of miners. Then, Fogs are triggered to send TXs in their buffers
to mempool.

miners trigger() Triggers miners to get TXs from memPool and start minting new blocks.

Table 1. Functions in the main.py module

2/4



Function Description
Class: User Initiated with the attributes: addressParent, addressSelf, tasks, iden-

tity added attributes, and wallet
create tasks() if the BC function was Data Management, a TX is a randomly generated number

coupled with the end-user address. if the BC function was Computational
Services, a TX is a randomly chosen Elementary arithmetic operation (i.e. +,
-, *, /) coupled with two randomly generated numbers. The produced random
computational tasks is coupled with the addresses of end-users. Once a miner
solves a computational task, result is appended to the TX, and saved on chain.
If BC function is Payment, a TX is a randomly generated amount of coins (up to
the amount in the end-user’s wallet), coupled with a randomly chosen end-user
and the end-user’s self address. Validation and confirmation is conducted by
the receiver miner. If BC functionality is Identity Management, a TX is the
address of the end-user, coupled with any added ID attributes by the user. Table
7 of the appendices declares the four formats of TXs in FoBSim, while Figure
3 of the appendices present screenshots of TXs generated by FoBSim entities.

add attributes() A function that allows the user to add additional ID attributes to end-user
devices.

send tasks() each user simply sends its tasks to the fog node it is connected with. Note
that in FoBSim multiple end-users can connect to one fog node, while each
end-user is connected to only one fog node. However, this can be re-configured
according to the simulation scenario.

Table 2. The Class and Functions in the end user.py module

Function Description
Class: Fog initiated with the attributes: address, tasks, and list of connected users.
receive tasks() receives the TXs from end-users and saves them in its buffer ”self.tasks”
send tasks to BC() sends all TXs in its buffer to the memPool modul

Table 3. The Class and Functions in the Fog.py module

Function Description
generate new
block()

outputs a list of TXs, a block number, a nonce value, a generator-id, the hash of
the previous Block, the timestamp of the generation, and the self hash.

hashing function() uses the Secure Hash Algorithm (SHA256) to generate the hash of the encoded
nonce, TXs, generator-id, and previous hash.

report a
successful block
addition()

records the votes sent by miners to indicate a successful majority confirmation
of a named block.

fork analysis() A method that, when called, counts the number of different chain versions in
the BC network.

stake() used when the PoS algorithm is chosen, where random amounts of coins are
taken from each miner’s wallet, and staked in the BC. This contributes later to
the BC system choosing (randomly) the miner that will mint the next Block,
biased by a tendency to choose miners with higher staked coins.

award winning
miners()

reads the voting record of winning miners and adds the winning award to their
wallets.

Table 4. Functions in the Blockchain.py module

3/4



Function Description
Class: Miner Initiated with Address, Top block (for saving the last confirmed block), a

Boolean isAuthorized attribute (for declaring whether this miner is authorized
to mint new Blocks in a PoA scenario), a next pos block from variable to mem-
orize the address of the next block generator, a set of neighbors, transmission
delay, and a boolean gossiping variable.

build block() constructs valid blocks according to the chosen BC functionality and CA.
receive new block() receives new blocks from neighbours, and adds them to its local chain if it was

new and valid. When the new block is successfully added, it is forwarded to
neighbours, otherwise it is discarded.

Validate
transactions()

Accepts new Blocks coming from other miners, validates them according to the
BC functionality and the used CA, and adds valid Blocks to the local chain.

add() performs and reports a successful Block addition
gossip() investigates the longest chain in the BC network and, accordingly, updates the

local chain according to majority consensus

Table 5. The Class and Functions in the miner.py module

Function Description
choose consensus() allows the user to choose one of the available CAs in FoBSim.
PoW mining() provides miners with the method to search for the puzzle solution in PoW based

scenarios.
PoW block
is valid()

returns either True or False according to the correctness of puzzle solution. If
one of the TXs were invalid, the whole Block is rejected.

PoA block
is valid()

checks the validity of Blocks generated when the PoA CA is chosen. Addition-
ally to the checks performed in the PoW block is valid(), this method checks
if the miner who minted the block is authorized to do so. If False returned, all
TXs within the block are sent back to memPool.

Table 6. Functions in the consensus.py module

BC functionality TX Format
Data Management [random number]
Computational Services [end-user ID, random computational task, Result, Miner]
Payment [Amount to be paid, Sender address (parent), Sender address (self),

Receiver address (parent), Receiver address (self)]
Identity [end-user address(parent), end-user address(self), Any user added

ID attributes]

Table 7. Types and formats of TXs in FoBSim

4/4


