
 Explanations to the code submitted with Feature-Based Detection of Automated

Language-Models: Trying GPT-2, GPT-3 and Grover

The code accompanying the submission covers all steps necessary to replicate the results discussed in

the submission, from downloading the different language model datasets and pre-processing, filtering

and grouping them, over extracting the features and running validation trials to decide on the final

model architecture, to training and evaluating the feature-based detection models. This document

tries to serve as a handbook to the code, explaining its structure, the input and output of each stage

and providing further information where necessary.

Downloading the data

The data used in this submission consists of language-model samples, generated and published

by the authors and creators of the corresponding language models. At time of submission, the

GPT-2 samples were hosted at https://storage.googleapis.com/gpt-2/output-dataset/v1/, the

GPT-3 samples at https://raw.githubusercontent.com/openai/gpt-

3/master/175b_samples.jsonl and the Grover samples at

https://storage.googleapis.com/grover-

models/generation_examples/generator=mega~dataset=p0.94.jsonl.

These addresses would need to be updated in the code should they ever change. In any case,

private copies of the datasets would be available from the authors.

Please note: To download the GPT-2 samples, it is necessary to concatenate the exact location

of the desired file to the base URL provided above. The exact location is provided by replacing

the placeholders in ‘size.split.jsonl’ with a size from [webtext,small-117M,small-117M-k40,xl-

1542M,xl-1542M-k40] and a split from [train,valid,test]. The test samples for the webtext data

would thus be available from https://storage.googleapis.com/gpt-2/output-

dataset/v1/webtext.test.jsonl. The download should commence automatically when

navigation to this URL. The supplementary code does this automatically.

To download the data and store it in the necessary file structure for running the subsequent

code, the file download.py needs to be executed. If no further arguments are entered, the

code defaults to downloading the individual datasets and creates from them the multi-dataset

and filtered versions that are used in the corresponding experiments. download.py otherwise

takes 2 arguments, which can be used to control the described additional data preparation

steps. The first argument takes True or False to control the generation of the multi-datasets,

and the second argument takes True or False to control the generation of the filtered-versions.

Extracting the feature

Once the data is downloaded, the next step consists in extracting the features from it. Because

of the way they are extracted and later used, both the empath- and Q-features need a pre-

processing step. For the Q-features, an additional difficulty is their definition as corpus-based

features. For any text, they thus always depend not only on the text itself, but also on the

corpus the text is located within.

Therefore, extract_empath.py, extract_Q_raw.py and extract_Q_features.py should be

executed.

extract_empath.py takes three mandatory arguments: model, size, split, and proceeds to

create the empath pre-features accordingly. See the following table for allowed combinations.

https://storage.googleapis.com/gpt-2/output-dataset/v1/
https://raw.githubusercontent.com/openai/gpt-3/master/175b_samples.jsonl
https://raw.githubusercontent.com/openai/gpt-3/master/175b_samples.jsonl
https://storage.googleapis.com/grover-models/generation_examples/generator=mega~dataset=p0.94.jsonl
https://storage.googleapis.com/grover-models/generation_examples/generator=mega~dataset=p0.94.jsonl
https://storage.googleapis.com/gpt-2/output-dataset/v1/webtext.test.jsonl
https://storage.googleapis.com/gpt-2/output-dataset/v1/webtext.test.jsonl

Model Size Split

GPT2 small-117M, small-117M-k40,
xl-1542M, xl-1542M-k40,
webtext

train, valid, test

GPT3 175B, GPT3_webtext train, valid, test

Grover groverMega, realNews,
realNews_solo

train, valid, test

extract_Q_raw.py can be used to either extract the corpus-based Q-features for single- or

multi-source-datasets. If the first argument entered is single, specification of the model and

size is needed as second and third arguments. The last mandatory argument is either True or

False for a filter-dummy, extracting the Q-features either for the filtered- or non-filtered-

corpus. If the first argument entered is multi, then the required arguments are combi and

source to determine which corpus to extract the Q-features from. See the following table for

allowed combinations.

Combi Source

superGPT2, superGPT_un, superGPT_k, superAll machine, human

After extract_Q_raw.py has been executed, extract_Q_features.py needs to be evoked to

calculate the actual Q-feature-values for every text from the raw, corpus-based counts

extracted in the previous step. extract_Q_features.py takes either single or multi as the first

argument, depending on what corpus the Q-features should be extracted for. If the first

argument is single, then 6 more arguments need to be given: model, size, human_text,

machine_text, split, filtered. model, size, split and filtered determine for which dataset the Q-

features should be extracted. human_text and machine_text always depend on each other,

and are necessary to specify which corpus is responsible for the samples of human and which

is for the samples of machine text. Either human_text or machine_text must thus be

equivalent to the entered size argument. model == ‘GPT2’, size == ‘small-117M’, human_text

== ‘webtext’, machine_text == ‘small-117M’ would therefore extract the Q-features for the

small-117M GPT-2 dataset, using the small-117M texts as machine-samples and webtext as

human-samples. The allowed pairs of human- and machine-text are summarised in the

following table. If the first argument is multi, then 3 more arguments need to be given: combi,

source and split. The same combi and source combinations as stated above are allowed, and

split must be one out of train, valid and test.

human_text machine_text

webtext small-117M, small-117M-k40, xl-1542M, xl-
1542M-k40

GPT3_webtext 175B

realNews_solo groverMega

Finally, after all previously mentioned pre-extraction steps have been executed successfully,

the final feature vectors can be created by executing extract_features.py. The necessary

arguments are model, size and split, determining the dataset for which the features should be

extracted. Note that no (corpus-based) Q-features are to be extracted here, for they have been

extracted previously and are concatenated to the main features extracted in this step as

needed. All features are now extracted.

Running the validation trials

Validation trials have been done in order to determine which model architecture to use for the

experiments conducted in the submission. Running validation.py recreates these validation

trials, based on the previously extracted features of the four GPT-2 datasets.

Running the experiments

Single datasets classifiers

The main part of our experiments is based on the evaluation and comparison of the feature-based

detector’s performance on individual datasets. These results can be replicated using the code in

train_single.py. The needed arguments are model, human_text, machine_text, filtered and Q. The first

three arguments determine which machine-generated samples are detected against which samples of

human text. Note that only the combinations introduced in the section on the extraction of Q-features

are allowed. filtered and Q are True-False dummies to control whether the filtered versions of the

datasets shall be used, and whether the corpus-based Q-features are to be included among the

features used to train and test the classifiers.

Multi datasets classifiers

The section of our experiments that tests the performance of the feature-based classifier on datasets

consisting of generations from different language models can be recreated by executing

train_multi.py. The two mandatory arguments are combi and Q. Combi determines which mixture of

individual datasets is to be considered, valid arguments are the same as listed in the table above. Q

takes True or False as argument and controls whether Q-features are to be included in the features or

not.

Feature-Set classifiers

The section of our experiments that tests the performance of the individual feature-subsets can be

recreated by executing train_featureSets.py. The three mandatory arguments model, human_text and

machine_text determine which of the available, individual datasets is to be used for training and

testing the feature-set classifiers. The allowed combinations are as described above.

tfidf-baselines

To recreate the tf-idf baseline results, execute train_tfidf.py. The required arguments are model, size,

n and save. model and size again determine which dataset to run the experiments for. n is used to set

the size of the tf-idf vector that is to be used, and depends on the available memory. In the submission,

n has been set to 100,000.

Ensemble classifiers

To recreate the ensemble-results, execture train_ensemble.py. The required arguments are model,

human_text, machine_text, n, architecture and ensemble. As introduced before, model, human_text

and machine_text determine which dataset to train and test an ensemble classifier on. n sets the size

of the tf-idf vector used for the corresponding classifier and has been set to 100,000 during the

submission’s experiments with the GPT-2 data, due to memory constraints. For GPT-3 and Grover it

should be set to the largest possible n, 1604 and 8000 respectively. architecture can be set to either

NN or LR and controls the architecture used for the ensemble classification model. ensemble can be

set to either super or separate and determines the structure of the ensemble classification model, as

described in the submission.

