
 Explanations to the code submitted with Feature-Based Detection of Automated 

Language-Models: Trying GPT-2, GPT-3 and Grover 

The code accompanying the submission covers all steps necessary to replicate the results discussed in 

the submission, from downloading the different language model datasets and pre-processing, filtering 

and grouping them, over extracting the features and running validation trials to decide on the final 

model architecture, to training and evaluating the feature-based detection models. This document 

tries to serve as a handbook to the code, explaining its structure, the input and output of each stage 

and providing further information where necessary. 

 

Downloading the data 

The data used in this submission consists of language-model samples, generated and published 

by the authors and creators of the corresponding language models. At time of submission, the 

GPT-2 samples were hosted at https://storage.googleapis.com/gpt-2/output-dataset/v1/, the 

GPT-3 samples at https://raw.githubusercontent.com/openai/gpt-

3/master/175b_samples.jsonl and the Grover samples at 

https://storage.googleapis.com/grover-

models/generation_examples/generator=mega~dataset=p0.94.jsonl. 

These addresses would need to be updated in the code should they ever change. In any case, 

private copies of the datasets would be available from the authors. 

Please note: To download the GPT-2 samples, it is necessary to concatenate the exact location 

of the desired file to the base URL provided above. The exact location is provided by replacing 

the placeholders in ‘size.split.jsonl’ with a size from [webtext,small-117M,small-117M-k40,xl-

1542M,xl-1542M-k40] and a split from [train,valid,test]. The test samples for the webtext data 

would thus be available from https://storage.googleapis.com/gpt-2/output-

dataset/v1/webtext.test.jsonl. The download should commence automatically when 

navigation to this URL. The supplementary code does this automatically. 

 

To download the data and store it in the necessary file structure for running the subsequent 

code, the file download.py  needs to be executed. If no further arguments are entered, the 

code defaults to downloading the individual datasets and creates from them the multi-dataset 

and filtered versions that are used in the corresponding experiments. download.py otherwise 

takes 2 arguments, which can be used to control the described additional data preparation 

steps. The first argument takes True or False to control the generation of the multi-datasets, 

and the second argument takes True or False to control the generation of the filtered-versions. 

Extracting the feature 

Once the data is downloaded, the next step consists in extracting the features from it. Because 

of the way they are extracted and later used, both the empath- and Q-features need a pre-

processing step. For the Q-features, an additional difficulty is their definition as corpus-based 

features. For any text, they thus always depend not only on the text itself, but also on the 

corpus the text is located within.  

Therefore, extract_empath.py, extract_Q_raw.py and extract_Q_features.py should be 

executed. 

extract_empath.py takes three mandatory arguments: model, size, split, and proceeds to 

create the empath pre-features accordingly. See the following table for allowed combinations. 
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Model Size Split 

GPT2 small-117M, small-117M-k40, 
xl-1542M, xl-1542M-k40, 
webtext 

train, valid, test 

GPT3 175B, GPT3_webtext train, valid, test 

Grover groverMega, realNews, 
realNews_solo 

train, valid, test 

 

extract_Q_raw.py can be used to either extract the corpus-based Q-features for single- or 

multi-source-datasets. If the first argument entered is single, specification of the model and 

size is needed as second and third arguments. The last mandatory argument is either True or 

False for a filter-dummy, extracting the Q-features either for the filtered- or non-filtered-

corpus. If the first argument entered is multi, then the required arguments are combi and 

source to determine which corpus to extract the Q-features from. See the following table for 

allowed combinations. 

Combi Source 

superGPT2, superGPT_un, superGPT_k, superAll machine, human 

 

After extract_Q_raw.py has been executed, extract_Q_features.py needs to be evoked to 

calculate the actual Q-feature-values for every text from the raw, corpus-based counts 

extracted in the previous step. extract_Q_features.py takes either single or multi  as the first 

argument, depending on what corpus the Q-features should be extracted for. If the first 

argument is single, then 6 more arguments need to be given: model, size, human_text, 

machine_text, split, filtered. model, size, split and filtered determine for which dataset the Q-

features should be extracted. human_text and machine_text always depend on each other, 

and are necessary to specify which corpus is responsible for the samples of human and which 

is for the samples of machine text. Either human_text or  machine_text must thus be 

equivalent to the entered size argument. model == ‘GPT2’, size == ‘small-117M’, human_text 

== ‘webtext’, machine_text == ‘small-117M’ would therefore extract the Q-features for the 

small-117M GPT-2 dataset, using the small-117M texts as machine-samples and webtext as 

human-samples. The allowed pairs of human- and machine-text are summarised in the 

following table. If the first argument is multi, then 3 more arguments need to be given: combi, 

source and split. The same combi and source combinations as stated above are allowed, and 

split must be one out of train, valid and test. 

human_text machine_text 

webtext small-117M, small-117M-k40, xl-1542M, xl-
1542M-k40 

GPT3_webtext 175B 

realNews_solo groverMega 

 

Finally, after all previously mentioned pre-extraction steps have been executed successfully, 

the final feature vectors can be created by executing extract_features.py. The necessary 

arguments are model, size and split, determining the dataset for which the features should be 

extracted. Note that no (corpus-based) Q-features are to be extracted here, for they have been 

extracted previously and are concatenated to the main features extracted in this step as 

needed. All features are now extracted. 



Running the validation trials 

Validation trials have been done in order to determine which model architecture to use for the 

experiments conducted in the submission. Running validation.py recreates these validation 

trials, based on the previously extracted features of the four GPT-2 datasets. 

Running the experiments 

Single datasets classifiers 

The main part of our experiments is based on the evaluation and comparison of the feature-based 

detector’s performance on individual datasets. These results can be replicated using the code in 

train_single.py. The needed arguments are model, human_text, machine_text, filtered and Q. The first 

three arguments determine which machine-generated samples are detected against which samples of 

human text. Note that only the combinations introduced in the section on the extraction of Q-features 

are allowed. filtered and Q are True-False dummies to control whether the filtered versions of the 

datasets shall be used, and whether the corpus-based Q-features are to be included among the 

features used to train and test the classifiers. 

Multi datasets classifiers 

The section of our experiments that tests the performance of the feature-based classifier on datasets 

consisting of generations from different language models can be recreated by executing 

train_multi.py. The two mandatory arguments are combi and Q. Combi determines which mixture of 

individual datasets is to be considered, valid arguments are the same as listed in the table above. Q 

takes True or False as argument and controls whether Q-features are to be included in the features or 

not. 

Feature-Set classifiers 

The section of our experiments that tests the performance of the individual feature-subsets can be 

recreated by executing train_featureSets.py. The three mandatory arguments model, human_text and 

machine_text determine which of the available, individual datasets is to be used for training and 

testing the feature-set classifiers. The allowed combinations are as described above. 

tfidf-baselines 

To recreate the tf-idf baseline results, execute train_tfidf.py. The required arguments are model, size, 

n and save. model and size again determine which dataset to run the experiments for. n is used to set 

the size of the tf-idf vector that is to be used, and depends on the available memory. In the submission, 

n has been set to 100,000.  

Ensemble classifiers 

To recreate the ensemble-results, execture train_ensemble.py. The required arguments are model, 

human_text, machine_text, n, architecture and ensemble. As introduced before, model, human_text 

and machine_text determine which dataset to train and test an ensemble classifier on. n sets the size 

of the tf-idf vector used for the corresponding classifier and has been set to 100,000 during the 

submission’s experiments with the GPT-2 data, due to memory constraints. For GPT-3 and Grover it 

should be set to the largest possible n, 1604 and 8000 respectively. architecture can be set to either 

NN or LR and controls the architecture used for the ensemble classification model. ensemble can be 

set to either super or separate and determines the structure of the ensemble classification model, as 

described in the submission. 


