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1. Introduction

The problem of determining the likelihood of existence of a link between two nodes
in a network is called link prediction. Such prediction is made possible thanks to the
existence of a topological structure in most real life networks. In other words, the
topologies of networked systems such as the World Wide Web, the Internet, metabolic
networks and human society are far from random, which implies that partial observations
of these networks can be used to infer information about undiscovered interactions.

Significant research efforts have been invested into the development of link predic-
tion algorithms, and some researchers have made the implementation of their methods
available to the research community. However, these implementations are often written
in different languages and use different modalities of interaction with the user, which
hinders their effective use. LinkPred is a high performance parallel and distributed
link prediction library that includes the implementation of the major link prediction
algorithms available in the literature by development from scratch and wrapping or trans-
lating existing implementations. The library offers a unified interface that facilitates the
use and comparison of link prediction algorithms by researchers as well as practitioners.

1.1 Design principles
LinkPred is designed with the following guiding principles:

• Ease of use: LinkPred borrows heavily from the STL design and aims at offering
an elegant and powerful interface. C++ users with minimum experience using
STL will find the interface of LinkPred to be very familiar. Furthermore, the use
of templates allows for greater flexibility when using LinkPred and allows for its
integration within a variety of contexts.

• Extensibility: LinkPred was not only designed for practitioners of link prediction,
but also fo researchers in the field. The library is designed in a way that allows
developers of new link prediction algorithms to easily integrate their code into
the library and take advantage of the existing functionalities such network data
structures and performance evaluation algorithms.
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• Efficiency: the data structures used and implemented in LinkPred are all chosen
and designed to achieve the best possible performance. Additionally, most code
in LinkPred is parallelized using OpenMp, which allows to take advantage of
shared memory architectures. Furthermore, a significant portion of the predictors
support distributed processing using MPI allowing the library to handle very large
networks (hundreds of thousands to millions of nodes).

1.2 Functionalities
LinkPred provides the following functionalities:

• Basic data structures to efficiently store and access network data.
• Basic graph algorithms such graph traversal, shortest path algorithms, and graph

embedding methods.
• Implementation of several topological similarity index predictors, for example:

common neighbors, Adamic-Adard index and Jackard index among other predic-
tors (a full list is available in the library documentation).

• Implementation of several state-of-the-art link predictors, such as SBM, HRG,
FBM and KAB (a full list is available in the library documentation).

• Implementation of several link prediction algorithms based on graph embedding
techniques.

• Test data generation from ground truth networks.
• Performance evaluation functionalities.

1.3 Requirements
The following softwares are used by LinkPred:

• A C++14 compliant compiler (required). Note that strict compliance with the
standard C++14 is enforced during compilation and that C+11 compliance is not
enough to build the library.

• The GNU Scientific Library (GSL) (required). LinkPred was tested with the
version 2.1, but earlier versions might work as well.

• OpenMP (optional, default on): LinkPred works with OpenMP 3.0 or higher as it
uses loop parallelization for STL iterators.

R Unfortunately, Visual C++ only supports OpenMp 2.0. LinkPred can still
be compiled by disabling OpenMP, bu parallelism cannot be used when
compiling with Visual C++.

• MPI (optional, default on): To take advantage of distributed architectures, several
predictors as well as performance evaluation routines can run distributively using
MPI. Although optional, it is strongly recommended.

• mlpack (optional, default on): contains machine learning related classes used in
graph embedding prediction methods.

• Intel Math Kernel Library (MKL) (optional, default off): LinkPred was tested
with the version 2016, but earlier versions might work as well. The MKL library
is used by some prediction algorithms that incorporate linear algebra calculations.
This library is nonetheless optional, since LinkPred offers replacements of the
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required methods. The replacement code is, however, a naive one and may result
in significant loss of performance in the said algorithms.

1.4 Installation
LinkPred is distributed as source code that can be used to build the library using CMake.
In the default setting, the building process is as follows:

1. Create a build directory in the root of the LinkPred directory:

$ mkdir build

2. Configure the library:

$ cd build

$ cmake ../

R Build options can be set by editing the file CMakeLists.txt or through the
user interface if GUI CMake is used.

R Building the Python and Java bindings requires a recent version of CMake.
If you do not need these bindings and intend to only work with C++, you
may ignore the warning messages generated by CMake. If you intend to use
Python and Java bindings, you should upgrade CMake to at least 3.12.

3. Build the library:

$ make

4. Build documentation (optional): this step requires Doxygen and generates docu-
mentation in HTML and Latex:

$ make doc

5. If you want to install the library:

$ make install

To install the library system-wide, you may need root privilege:

$ sudo make install

If you prefer a local install instead (which is usually the case when working
on institution-wide HPC clusters/supercomputers), you need to set the install
directory in the configuration step (Step 2 above):

$ cmake -DCMAKE_INSTALL_PREFIX=YOUR_PATH ../

The examples directory contains sample code that can be used as a start point for
using the library.

1.5 Sample Programs
The following example shows how to use the Common Neighbors link predictor to
predict links in a network that is loaded from file. The network file must have the
following format (one edge per line):
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1 2

2 4

2 8

2 14

3 2

3 4

3 8

3 9

Here, we consider two scenarios: In the first one, we would like to compute the score for
all non-existing links, whereas in the second we want to find out the k top links (those
more likely to be missing).

To compute the score of all non-existing links, proceed as follows. In a file named
cne.cpp, type the following code1:

Listing 1.1: code/introduction/cne.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

a u t o net = UNetwork <>::read("Infectious.edges");

UCNEPredictor <> predictor(net);

predictor.init();

predictor.learn ();

std::cout << "#Start\tEnd\tScore\n";

f o r ( a u t o it=net ->nonEdgesBegin ();it!=net ->nonEdgesEnd ();++it){

a u t o i = net ->getLabel(net ->start(*it));

a u t o j = net ->getLabel(net ->end(*it));

d o u b l e sc = predictor.score(*it);

std::cout << i << "\t" << j << "\t" << sc << std::endl;

}

r e t u r n 0;

}

R In this code, the predictor is instantiated with default template parameters. You
may use non-default parameters if needed.

Compile your code. For example, if you compiled LinkPred with MPI an OpenMP
enabled:
$ mpiCC cne.cpp -o cne -fopenmp -lLinkPred

R If you face any dialect-related complaints from the compiler, you may need to
add the option: -std=c++14. Also, depending on the LinkPred functionalities used
in your code, you may need to additionally link against the MKL library (using
-lmkl_rt) and/or gsl (using -lgsl -lgslcblas).

If you built LinkPred without MPI and OpenMP, compile as follows:

1This code is available in the examples directory.
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$ g++ cne.cpp -o cne -lLinkPred

Run your code:
$ ./cne

R Make sure that the library is located in the load path. Under Linux, you may
need to set the environment variable LD_LIBRARY_PATH. In the case of a default
system-wide install, LinkPred will be installed to the default directory, which
is already in the load path. You may, however, need to refresh the ld cache by
running:

$ sudo ldconfig

To get the top k links, type the following code2 in a file named cnetop.cpp:

Listing 1.2: code/introduction/cnetop.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

std:: size_t k = 10;

a u t o net = UNetwork <>::read("Infectious.edges");

UCNEPredictor <> predictor(net);

predictor.init();

predictor.learn ();

std::vector < typename UNetwork <>::Edge > edges(k);

std::vector <double > scores(k);

k = predictor.top(k, edges.begin (), scores.begin());

std::cout << "#Start\tEnd\tScore\n";

f o r (std:: size_t l = 0; l < k; l++) {

a u t o i = net ->getLabel(net ->start(edges[l]));

a u t o j = net ->getLabel(net ->end(edges[l]));

std::cout << i << "\t" << j << "\t" << scores[l] <<std::endl;

}

r e t u r n 0;

}

Compile the code and run it as previously shown.

1.6 Third-party software
LinkPred includes modified and/or translated versions of the following software sources:

• HRG code [7]: we used the implementation available at http://tuvalu.santafe.
edu/~aaronc/hierarchy/hrg_20120527_predictHRG_v1.0.4.zip.

• SBM code [12]: we used the C code provided by the authors at http://seeslab.
info/media/filer_public/eb/ae/ebaee03f-a53a-430f-a4a1-6b713d36e91e/

rgraph-2.0.1.tar.gz.
• FBM code [20]: we translated the Matlab code provided by the authors into C++.

2This code is available in the examples directory.

http://tuvalu.santafe.edu/~aaronc/hierarchy/hrg_20120527_predictHRG_v1.0.4.zip
http://tuvalu.santafe.edu/~aaronc/hierarchy/hrg_20120527_predictHRG_v1.0.4.zip
http://seeslab.info/media/filer_public/eb/ae/ebaee03f-a53a-430f-a4a1-6b713d36e91e/rgraph-2.0.1.tar.gz
http://seeslab.info/media/filer_public/eb/ae/ebaee03f-a53a-430f-a4a1-6b713d36e91e/rgraph-2.0.1.tar.gz
http://seeslab.info/media/filer_public/eb/ae/ebaee03f-a53a-430f-a4a1-6b713d36e91e/rgraph-2.0.1.tar.gz
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• HyperMap (HYP) code [23, 24]: we used the code provided by the authors at
http://www.cut.ac.cy/eecei/staff/f.papadopoulos/?languageId=2.

• CG_DESCENT: a conjugate gradient method with guaranteed descent[13].
• plfit: a C++ implementation of Clauset, Shalizi and Newman [8] method for

fitting power law distributions written by Tamas Nepusz. The code is available at
http://tuvalu.santafe.edu/~aaronc/powerlaws/.

• Implementation of DeepWalk graph embedding algorithm [25] available at https:
//github.com/xgfs/deepwalk-c. An adapted version of the code is included
in LinkPred.

• Implementation of LINE (Large Information Networks Embedding) graph em-
bedding algorithm [29] available at https://github.com/tangjianpku/LINE.
An adapted version of the code is included in LinkPred.

• Implementation of LargeVis graph embedding algorithm [30] available at https:
//github.com/lferry007/LargeVis. An adapted version of the code is in-
cluded in LinkPred.

• Implementation of Node2Vec graph embedding algorithm [11] available at https:
//github.com/xgfs/node2vec-c. An adapted version of the code is included
in LinkPred.

1.7 Documentation

You may learn about LinkPred through:
• This user guide, which contains detailed description of the library components,

code snippets and full working examples.
• The tutorials which are available in the directory tutorials. These contain fully

working examples along with comments and compilation instructions.
• The library reference manual, available in html and PDF format in the directory
doc.

1.8 Data

Two small networks are included with the library and can be used with the example
programs:

• Zakaray’s Karate Club[34] (file: Zakarays_Karate_Club.edges): A social network
that represents friendships between members of a karate club at an American
university. The data was collected in the 1970s by Wayne Zachary and is available
at http://konect.cc/networks/ucidata-zachary.

• Infectious[14] (file: Infectious.edges): Face-to-face interaction between visitors
of the exhibition INFECTIOUS: STAY AWAY in 2009 at the Science Gallery
in Dublin. A link indicates that a face-to-face interaction took place for more
than 20 seconds. The dataset is available at http://konect.cc/networks/
sociopatterns-infectious.

More data can be found in the following public data repositories [3, 18, 19, 26, 28,
35, 36].

http://www.cut.ac.cy/eecei/staff/f.papadopoulos/?languageId=2
http://tuvalu.santafe.edu/~aaronc/powerlaws/
https://github.com/xgfs/deepwalk-c
https://github.com/xgfs/deepwalk-c
https://github.com/tangjianpku/LINE
https://github.com/lferry007/LargeVis
https://github.com/lferry007/LargeVis
https://github.com/xgfs/node2vec-c
https://github.com/xgfs/node2vec-c
http://konect.cc/networks/ucidata-zachary
http://konect.cc/networks/sociopatterns-infectious
http://konect.cc/networks/sociopatterns-infectious
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1.9 Citation
If you use LinkPred in your research, kindly cite the references of the algorithms you
used and cite LinkPred as: Said Kerrache. “LinkPred: A High Performance Library for
Link Prediction in Complex Networks”. In: Submitted (2019).





2. Quick Start

The easiest and fastest way to start using linkPred is by using the classes available
under the namespace LinkPred::Simp (Simp here stands for "simple"). These classes
are very intuitive and can be used with a minimum learning effort. They are ideal for
initial use of the library and exploring its main functionalities. Java and Python bindings
for these classes are also available, facilitating the use of the library by users who are
more comfortable using these languages than C++. This chapter gives several examples
of using this simplified interface in C++, Java, and Python.

R The simplified interface presented in this chapter is a good starting point to learn
about LinkPred . To take full advantage of its performance and capabilities,
however, users should use the programming interface presented in subsequent
chapters.

2.1 C++
The namespace LinkPred::Simp contains the following classes and structures:

• The class Predictor allows computing the scores for an input network using all
link prediction algorithms available in the library.

• The class Evaluator allows for the performance evaluation of link prediction
algorithms.

• The structure EdgeScore is a simple structure used by the class Predictor to
store the score of an edge.

• The structure PerfRes is a simple structure used by the class Evaluator to store
the performance result of link prediction algorithms.

R Classes in the namespace LinkPred::Simp can be imported using:

u s i n g namespace LinkPred ::Simp;

In the examples included in this chapter, we assume that this namespace is imported
and drop the prefix LinkPred::Simp:: from all classes for convenience.
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2.1.1 Predicting links using the class Simp::Predictor

The following code shows how to compute the score of all non-existing links of a
network using Adamic Adar index and print the result:

Listing 2.1: code/simp/predictor1.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred ::Simp;

i n t main() {

// Create a prtedictor object

Predictor p;

// Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

// Predict the score of all non -existing edges using Adamic

Adar index

std::vector <EdgeScore > esv = p.predAllADA ();

// Print the scores

f o r ( a u t o it = esv.begin(); it != esv.end(); ++it) {

std::cout << it ->i << "\t" << it ->j << "\t" << it ->score <<

std::endl;

}

r e t u r n 0;

}

The class Predictor returns the results in an object of type std::vector<EdgeScore> ,
where each entry stores the score for a single edge as follows:

Listing 2.2: code/simp/edgescore.hpp

s t r u c t EdgeScore {

std:: string i; /**< The label of the start node. */

std:: string j; /**< The label of the end node. */

d o u b l e score; /**< The score. */

};

It is also possible to limit the prediction to specific edges which are passed as
parameter as shown in the next code:

Listing 2.3: code/simp/predictor4.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred ::Simp;

i n t main() {

// Create a prtedictor object

Predictor p;

// Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

// Compute the score for the two edges (1, 34) and (26 ,34)

std::vector <EdgeScore > esv = {{"1","34"},{"26","34"}};

p.predADA(esv);

// Print the scores

f o r ( a u t o it = esv.begin(); it != esv.end(); ++it) {

std::cout << it ->i << "\t" << it ->j << "\t" << it ->score <<

std::endl;
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}

r e t u r n 0;

}

The following program shows how to obtain the top k ranked edges:

Listing 2.4: code/simp/predictor2.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred ::Simp;

i n t main() {

i n t k = 10;

// Create a prtedictor object

Predictor p;

// Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

// Predict the top k edges using Adamic Adar index

std::vector <EdgeScore > esv = p.predTopADA(k);

// Print the scores

f o r ( a u t o it = esv.begin(); it != esv.end(); ++it) {

std::cout << it ->i << "\t" << it ->j << "\t" << it ->score <<

std::endl;

}

r e t u r n 0;

}

As you might have guessed from the examples above, the class Predictor provides
three methods for each link prediction algorithm (in what follows, ??? stands for the
name of the predictor):

• The method predAll???() : This method returns the scores of all non-existing
links. Note that for large networks, this method can be memory and CPU-intensive.

• The method pred???(std::vector<EdgeScore> es) : This method computes the
scores of the edges passed as parameter.

• The method predTop???(int k) : Returns the top-k-ranked edges along with their
scores.

R For most topological similarity methods, computing the top-scored edges using the
method predTop??? is much faster and consumes less memory than calculating
the scores of all non-existing link then selecting the links with the highest score.

The parameters of the prediction algorithm -if any- are passed to the methods above
but are all given reasonable default values. For example, the following calls:
a u t o es = p.predAllSBM ();

p.predSBM(es);

a u t o es = p.predTopSBM(k);

all use SBM with the default parameters: the maximum number of iteration is set to
1000 and the seed of the random number generator is set to 0. These can be changed to,
respectively, 10000 and 777 as follows:
a u t o es = p.predAllSBM (10000 , 777);

p.predSBM(es, 10000, 777);

a u t o es = p.predTopSBM(k, 10000 , 777);
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2.1.2 Evaluating performance using the class Simp::Evaluator

The following program shows how to compare the evaluate the performance of multiple
link prediction algorithms using the class Evaluator :

Listing 2.5: code/simp/evaluator1.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred ::Simp;

i n t main() {

i n t nbRuns = 10;

d o u b l e edgeRemRatio = 0.1;

// Create an evaluator object

Evaluator eval;

// Add predictors to be evaluated

eval.addCNE ();

eval.addADA ();

eval.addKAB ();

// Add performance measures

eval.addROC ();

eval.addTPR ();

// Run experiment on the specified network

eval.run("Zakarays_Karate_Club.edges", nbRuns , edgeRemRatio);

r e t u r n 0;

}

The output of this program is as follows:
#ratio ROCADA ROCCNE ROCKAB TPRADA TPRCNE TPRKAB

0.10 0.7737 0.7149 0.8280 0.1250 0.1932 0.1250

0.10 0.6593 0.6333 0.7030 0.1250 0.0000 0.1250

0.10 0.5967 0.5762 0.6095 0.1875 0.1818 0.2500

0.10 0.8464 0.7913 0.9343 0.1875 0.1290 0.3750

0.10 0.8324 0.7785 0.8967 0.1250 0.1750 0.1250

0.10 0.7240 0.6953 0.7547 0.0000 0.2222 0.0000

0.10 0.6753 0.6610 0.7262 0.0000 0.1591 0.1250

0.10 0.6048 0.5792 0.6672 0.0000 0.0000 0.0000

0.10 0.7627 0.7547 0.7808 0.2917 0.3194 0.3750

0.10 0.6442 0.5835 0.6727 0.1250 0.1250 0.1250

Predictors can be added to the evaluation process using the methods add??? . Similar
to the class Predictor , the algorithm parameters are passed to these methods if non-
default values are needed. Performance measures are added in the same way. Three
measures are supported by this class: ROC (area under the ROC curve), PR (area under
the precision-recall curve), and TPR (top precision). More information about these
performance measures can be found in Chapter 7.

In the example above, the performance evaluation is conducted on the network
located in the file "Zakarays_Karate_Club.edges" . This is the ground-truth network
containing all edges. The library will automatically generate test data by randomly
removing the specified ratio of edges passed through the argument edgeRemRatio (in
this case 10%). The removed edges will be used as a test set. This process is repeated
nbRunTimes (in this example, 10 times).

The output above is printed from within the method run . It is also possible to access
the results of each iteration as follows (after calling run ):
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Listing 2.6: code/simp/evaluator2.cpp

// Print the header row

a u t o res = eval.getPerfRes (0);

f o r ( a u t o it = res.begin (); it != res.end(); ++it) {

std::cout << it ->name << "\t" ;

}

std::cout << "\n";

// Print the results of each iteration

f o r ( i n t i = 0; i < nbRuns; i++) {

a u t o res = eval.getPerfRes(i);

f o r ( a u t o it = res.begin (); it != res.end(); ++it) {

std::cout << it ->res << "\t";

}

std::cout << "\n";

}

R Each call to the method run overrides the performance results. Therefore, only
the results from the latest call are available.

The performance results of each iteration are returned as an std::vector<PerfRes> ,
where PerfRes is a simple structure containing two fields: The name of the result, which
a concatenation of the name of the performance measure followed by the name of the
prediction algorithm, and a second field containing the numerical value of the result:

Listing 2.7: code/simp/perfres.hpp

s t r u c t PerfRes {

std:: string name; /**< Concatenation of the name of the

performance mneasure and that of the predictor. */

d o u b l e res; /**< The result. */

};

Instead of automatically generating the test data, it is possible to pass a pre-split net-
work to the method run . This is useful when comparing with algorithms implemented
elsewhere.

Listing 2.8: code/simp/evaluator3.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred ::Simp;

i n t main() {

// Create an evaluator object

Evaluator eval;

// Add predictors to be evaluated

eval.addADA ();

eval.addRAL ();

// Add performance measures

eval.addPR();

eval.addTPR ();

// Run experiment on the specified network
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eval.run("Zakarays_Karate_Club_Train.edges", "

Zakarays_Karate_Club_Test.edges");

r e t u r n 0;

}

The output of this program is as follows:

PRADA PRRAL TPRADA TPRRAL

0.1561 0.1568 0.1250 0.1250

Note that in this setting, only one test run is conducted. To get the results, it also possible
to proceed as follows:

Listing 2.9: code/simp/evaluator4.cpp

a u t o res = eval.getPerfRes (0);

f o r ( a u t o it = res.begin (); it != res.end(); ++it) {

std::cout << it ->name << "\t" ;

}

std::cout << "\n";

f o r ( a u t o it = res.begin (); it != res.end(); ++it) {

std::cout << it ->res << "\t" ;

}

std::cout << "\n";

The class Simp::Evaluator simplifies further the process of comparing the perfor-
mance of new link prediction algorithms to those implemented in LinkPred by providing
a method to generate test data and one that allows to include pre-calculated prediction
results into the evaluation process.

To create test data, the class Simp::Evaluator provides the method:

v o i d genTestData(std:: string c o n s t & fullNetFileName , std:: string

c o n s t &obsEdgesFileName , std:: string c o n s t &remEdgesFileName ,

d o u b l e remRatio = 0.1, b o o l keepConnected = f a l s e , l o n g i n t
seed = 0);

where
• fullNetFileName is the file containing the ground truth network.
• obsEdgesFileName is the file where the remaining (non-removed) edges are writ-

ten. This file will contain the observed network ( the training set).
• remEdgesFileName is the file where the removed edges are written. This file will

contain the set of positive examples of the test set.
• remRatio is the ratio of edges that will be removed.
• keepConnected indicates whether to keep the graph connected when removing

edges. Note that keeping the graph connected may be impossible for high edge
removed ratios or if the network is initially disconnected.

• seed is used to initialize the random number generator.
The training set (the observed network composed of the edges stored in obsEdgesFileName )

can be used to train the user’s link predictor. The results of all non-existing links in the
observed network and stored in a text file, which is then added to the evaluation process
using the method:

v o i d addPST(std:: string c o n s t & name = "PST", std:: string

fileName = "pst.txt");
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This method creates a new link prediction algorithm that plays a proxy role on behalf
of the user’s algorithm and uses the pre-stored data to predict links. The parameters
name is the name given to this link predictor, and fileName is where the scores of all
non-existing links are stored. The format of this file is as follows (the first is just a
comment and can be omitted):

#Start End Score

1 31 1.20225

1 10 0.45512

1 28 0.45512

1 29 1.07645

1 33 1.17647

1 17 1.4427

1 34 2.15291

1 26 0.621335

1 25 0.621335

...

The two following programs show how to use these two methods:

Listing 2.10: code/simp/evaluator5.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred ::Simp;

i n t main() {

d o u b l e edgeRemRatio = 0.1;

b o o l keepConnected = f a l s e ;
l o n g i n t seed = 0;

// Create an evaluator object

Evaluator eval;

// Generate test data

eval.genTestData("Zakarays_Karate_Club.edges", "Zakarays_Train.

edges", "Zakarays_Test.edges", edgeRemRatio , keepConnected ,

seed);

r e t u r n 0;

}

After running this code, two files will be generated, Zakarays_Train.edges, which con-
tains the observed network and Zakarays_Test.edges, which contains the removed edges.
Use the edges in Zakarays_Train.edges to train your algorithm, then compute the scores
of all edges that are not observed (not only the removed edges!) and store them in a file
named pst.txt. Now, you can use these predictions to compare the performance of your
algorithm against ADA and RAL for example.

Listing 2.11: code/simp/evaluator6.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred ::Simp;

i n t main() {

Evaluator eval;

eval.addADA ();

// Load scores from pst.txt

eval.addPST("PST", "pst.txt");
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eval.addRAL ();

eval.addPR();

eval.addTPR ();

eval.run("Zakarays_Train.edges", "Zakarays_Test.edges");

r e t u r n 0;

}

The output of this code is as follows:

PRADA PRPST PRRAL TPRADA TPRPST TPRRAL

0.0510 0.0918 0.0391 0.1250 0.2500 0.1250

2.2 Java Bindings
The Java bindings to LinkPred are generated using SWIG (ww.swig.org), which wraps
C/C++ code using Java proxy classes. Building the Java bindings requires a Java
compiler and uses JNI to interface with the C++ code. Upon successful building, the
library LinkPredJava will be generated (named libLinkPredJava.so in Linux). This
library will be loaded when running your program, and for that, it must be accessible to
the Java virtual machine.

R In Linux, you can make the library accessible to the JVM by including its path in
the environment variable LD_LIBRARY_PATH. If LinkPred is installed in the default
location, this can be accomplished using the following command:

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH :/usr/

local/lib

The Java proxy classes needed to interface with the library can be found in source form
and JAR form (LinkPredJava.jar) in the source directory of LinkPred in /bindings/Java.
These classes (either in source or as JAR) must be included in the class path during
compilation and at run-time. Assuming that your code is in the class Example and that
the file LinkPredJava.jar is in the same directory as Example.java, you can compile and
run your code using:

$ javac -cp .:./ LinkPredJava.jar Example.java

$ java -cp .:./ LinkPredJava.jar Example

2.2.1 Predicting links using the class Predictor

The following code shows how to compute the score of all non-existing links of a
network using Adamic Adar index and print the result:

Listing 2.12: code/simp/Predictor1.java

p u b l i c c l a s s Predictor1 {

s t a t i c {

// Load the library

System.loadLibrary("LinkPredJava");

}

p u b l i c s t a t i c v o i d main(String [] args) {
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// Create a prtedictor object

Predictor p = new Predictor ();

// Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

// Predict the score of all non -exisitng edges using Adamic

Adar index

EdgeScoreVec esv = p.predAllADA ();

// Print the scores

f o r ( i n t i = 0; i < esv.size(); i++) {

EdgeScore es = esv.get(i);

System.out.println(es.getI() + "\t" + es.getJ() + "\t" + es

.getScore ());

}

}

}

The class Predictor returns the results in an object of type EdgeScoreVec (a SWIG
proxy for std::vector<EdgeScore> ), where each entry stores the score of an edge in the
class EdgeScore which has the following member accessors:

Listing 2.13: code/simp/EdgeScore.java

p u b l i c c l a s s EdgeScore {

...

p u b l i c String getI() // Get the label of the start node

p u b l i c String getJ() // Get the label of the end node

p u b l i c d o u b l e getScore () // Get the score

p u b l i c String setI(String i) // Set the label of the start node

p u b l i c String setJ(String j) // Set the label of the end node

p u b l i c d o u b l e setScore( d o u b l e score) // Set the score

}

It is also possible to limit the prediction to specific edges which are passed as
parameter as shown in the next code:

Listing 2.14: code/simp/Predictor4.java

p u b l i c c l a s s Predictor4 {

s t a t i c {

// Load the library

System.loadLibrary("LinkPredJava");

}

p u b l i c s t a t i c v o i d main(String [] args) {

// Create a predictor object

Predictor p = new Predictor ();

// Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

// Compute the score for the two edges (1, 34) and (26 ,34)

EdgeScoreVec esv = new EdgeScoreVec ();

EdgeScore es;

es = new EdgeScore ();

es.setI("1");

es.setJ("34");

esv.add(es);

es = new EdgeScore ();

es.setI("26");
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es.setJ("34");

esv.add(es);

p.predKAB(esv);

// Print the scores

f o r ( i n t i = 0; i < esv.size(); i++) {

es = esv.get(i);

System.out.println(es.getI() + "\t" + es.getJ() + "\t" + es

.getScore ());

}

}

}

The following program shows how to obtain the top k ranked edges:

Listing 2.15: code/simp/Predictor2.java

p u b l i c c l a s s Predictor2 {

s t a t i c {

// Load the library

System.loadLibrary("LinkPredJava");

}

p u b l i c s t a t i c v o i d main(String [] args) {

i n t k = 10;

// Create a prtedictor object

Predictor p = new Predictor ();

// Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

// Predict the top k edges using Adamic Adar index

EdgeScoreVec esv = p.predTopADA(k);

// Print the scores

f o r ( i n t i = 0; i < esv.size(); i++) {

EdgeScore es = esv.get(i);

System.out.println(es.getI() + "\t" + es.getJ() + "\t" + es

.getScore ());

}

}

}

As you might have guessed from the examples above, the class Predictor provides
three methods for each link prediction algorithm (in what follows, ??? stands for the
name of the predictor):

• The method predAll???() : This method returns the scores of all non-existing
links. Note that for large networks, this method can be memory and CPU-intensive.

• The method pred???(EdgeScoreVec esv) : This method computes the scores of
the edges passed as parameter.

• The method predTop???(int k) : Returns the top-k-ranked edges along with their
scores.

R For most topological similarity methods, computing the top-scored edges using the
method predTop??? is much faster and consumes less memory than calculating
the scores of all non-existing link then selecting the links with the highest score.

The parameters of the prediction algorithm -if any- are passed to the methods above
but are all given reasonable default values. For example, the following calls:
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EdgeScoreVec esv = p.predAllSBM ();

p.predSBM(esv);

EdgeScoreVec esv = p.predTopSBM(k);

all use SBM with the default parameters: the maximum number of iteration is set to
1000 and the seed of the random number generator is set to 0. These can be changed to,
respectively, 10000 and 777 as follows:

EdgeScoreVec esv = p.predAllSBM (10000 , 777);

p.predSBM(esv , 10000, 777);

EdgeScoreVec esv = p.predTopSBM(k, 10000 , 777);

2.2.2 Evaluating performance using the class Evaluator

The following program shows how to compare the evaluate the performance of multiple
link prediction algorithms using the class Evaluator :

Listing 2.16: code/simp/Evaluator1.java

p u b l i c c l a s s Evaluator1 {

s t a t i c {

// Load the library

System.loadLibrary("LinkPredJava");

}

p u b l i c s t a t i c v o i d main(String [] args) {

i n t nbRuns = 10;

d o u b l e edgeRemRatio = 0.1;

// Create an evaluator object

Evaluator eval = new Evaluator ();

// Add predictors to be evaluated

eval.addCNE ();

eval.addADA ();

eval.addKAB ();

// Add performance measures

eval.addROC ();

eval.addTPR ();

// Run experiment on the specified network

eval.run("Zakarays_Karate_Club.edges", nbRuns , edgeRemRatio);

}

}

The output of this program is as follows:

#ratio ROCADA ROCCNE ROCKAB TPRADA TPRCNE TPRKAB

0.10 0.7737 0.7149 0.8280 0.1250 0.1932 0.1250

0.10 0.6593 0.6333 0.7030 0.1250 0.0000 0.1250

0.10 0.5967 0.5762 0.6095 0.1875 0.1818 0.2500

0.10 0.8464 0.7913 0.9343 0.1875 0.1290 0.3750

0.10 0.8324 0.7785 0.8967 0.1250 0.1750 0.1250

0.10 0.7240 0.6953 0.7547 0.0000 0.2222 0.0000

0.10 0.6753 0.6610 0.7262 0.0000 0.1591 0.1250

0.10 0.6048 0.5792 0.6672 0.0000 0.0000 0.0000

0.10 0.7627 0.7547 0.7808 0.2917 0.3194 0.3750

0.10 0.6442 0.5835 0.6727 0.1250 0.1250 0.1250
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Predictors can be added to the evaluation process using the methods add??? . Similar
to the class Predictor , the algorithm parameters are passed to these methods if non-
default values are needed. Performance measures are added in the same way. Three
measures are supported by this class: ROC (area under the ROC curve), PR (area under
the precision-recall curve), and TPR (top precision). More information about these
performance measures can be found in Chapter 7.

In the example above, the performance evaluation is conducted on the network
located in the file "Zakarays_Karate_Club.edges" . This is the ground-truth network
containing all edges. The library will automatically generate test data by randomly
removing the specified ratio of edges passed through the argument edgeRemRatio (in
this case 10%). The removed edges will be used as a test set. This process is repeated
nbRunTimes (in this example, 10 times).

The output above is printed from within the method run . It is also possible to access
the results of each iteration as follows (after calling run ):

Listing 2.17: code/simp/Evaluator2.java

// Print the header row

PerfResVec res = eval.getPerfRes (0);

f o r ( i n t j = 0; j < res.size(); j++) {

System.out.print(res.get(j).getName () + "\t") ;

}

System.out.println ();

// Print the results of each iteration

f o r ( i n t i = 0; i < nbRuns; i++) {

res = eval.getPerfRes(i);

f o r ( i n t j = 0; j < res.size(); j++) {

System.out.printf("%.4f\t", res.get(j).getRes ()) ;

}

System.out.println ();

}

R Each call to the method run overrides the performance results. Therefore, only
the results from the latest call are available.

The performance results of each iteration are returned as an object of type PerfResVec

(a SWIG proxy for std::vector<PerfRes> ), where PerfRes is a simple class containing
two fields: The name of the result, which a concatenation of the name of the performance
measure followed by the name of the prediction algorithm, and a second field containing
the numerical value of the result:

Listing 2.18: code/simp/PerfRes.java

p u b l i c c l a s s PerfRes {

...

p u b l i c String getName () // Get the name of the performance

result

p u b l i c d o u b l e getRes () // Get the value of the performance

result

p u b l i c v o i d setName(String value) // Set the name of the

performance result
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p u b l i c v o i d setRes( d o u b l e value) // Set the value of the

performance result

}

Instead of automatically generating the test data, it is possible to pass a pre-split net-
work to the method run . This is useful when comparing with algorithms implemented
elsewhere.

Listing 2.19: code/simp/Evaluator3.java

p u b l i c c l a s s Evaluator3 {

s t a t i c {

// Load the library

System.loadLibrary("LinkPredJava");

}

p u b l i c s t a t i c v o i d main(String [] args) {

// Create an evaluator object

Evaluator eval = new Evaluator ();

// Add predictors to be evaluated

eval.addCNE ();

eval.addADA ();

eval.addKAB ();

// Add performance measures

eval.addROC ();

eval.addTPR ();

// Run experiment on the specified network

eval.run("Zakarays_Karate_Club_Train.edges", "

Zakarays_Karate_Club_Test.edges");

}

}

The output of this program is as follows:

PRADA PRRAL TPRADA TPRRAL

0.1561 0.1568 0.1250 0.1250

Note that in this setting, only one test run is conducted. To get the results, it also possible
to proceed as follows:

Listing 2.20: code/simp/Evaluator4.java

PerfResVec res = eval.getPerfRes (0);

f o r ( i n t j = 0; j < res.size(); j++) {

System.out.print(res.get(j).getName () + "\t") ;

}

System.out.println ();

f o r ( i n t j = 0; j < res.size(); j++) {

System.out.printf("%.4f\t", res.get(j).getRes ()) ;

}

System.out.println ();

The class Evaluator simplifies further the process of comparing the performance of
new link prediction algorithms to those implemented in LinkPred by providing a method
to generate test data and one that allows to include pre-calculated prediction results into
the evaluation process.

To create test data, the class Simp::Evaluator provides the method:
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v o i d genTestData(String fullNetFileName , String obsEdgesFileName ,

String remEdgesFileName , d o u b l e remRatio , b o o l e a n
keepConnected , i n t seed);

where
• fullNetFileName is the file containing the ground truth network.
• obsEdgesFileName is the file where the remaining (non-removed) edges are writ-

ten. This file will contain the observed network ( the training set).
• remEdgesFileName is the file where the removed edges are written. This file will

contain the set of positive examples of the test set.
• remRatio is the ratio of edges that will be removed.
• keepConnected indicates whether to keep the graph connected when removing

edges. Note that keeping the graph connected may be impossible for high edge
removed ratios or if the network is initially disconnected.

• seed is used to initialize the random number generator.
The training set (the observed network composed of the edges stored in obsEdgesFileName )

can be used to train the user’s link predictor. The results of all non-existing links in the
observed network and stored in a text file, which is then added to the evaluation process
using the method:

v o i d addPST(String name , String fileName);

This method creates a new link prediction algorithm that plays a proxy role on behalf
of the user’s algorithm and uses the pre-stored data to predict links. The parameters
name is the name given to this link predictor, and fileName is where the scores of all
non-existing links are stored. The format of this file is as follows (the first is just a
comment and can be omitted):

#Start End Score

1 31 1.20225

1 10 0.45512

1 28 0.45512

1 29 1.07645

1 33 1.17647

1 17 1.4427

1 34 2.15291

1 26 0.621335

1 25 0.621335

...

The two following programs show how to use these two methods:

Listing 2.21: code/simp/Evaluator5.java

p u b l i c c l a s s Evaluator5 {

s t a t i c {

System.loadLibrary("LinkPredJava"); // Load the library

}

p u b l i c s t a t i c v o i d main(String [] args) {

d o u b l e edgeRemRatio = 0.1;

b o o l e a n keepConnected = f a l s e ;
i n t seed = 0;

Evaluator eval = new Evaluator ();



2.3 Python Bindings 29

eval.genTestData("Zakarays_Karate_Club.edges", "

Zakarays_Train.edges", "Zakarays_Test.edges", edgeRemRatio

, keepConnected , seed);

}

}

After running this code, two files will be generated, Zakarays_Train.edges, which con-
tains the observed network and Zakarays_Test.edges, which contains the removed edges.
Use the edges in Zakarays_Train.edges to train your algorithm, then compute the scores
of all edges that are not observed (not only the removed edges!) and store them in a file
named pst.txt. Now, you can use these predictions to compare the performance of your
algorithm against ADA and RAL for example.

Listing 2.22: code/simp/Evaluator6.java

p u b l i c c l a s s Evaluator6 {

s t a t i c {

System.loadLibrary("LinkPredJava"); // Load the library

}

p u b l i c s t a t i c v o i d main(String [] args) {

Evaluator eval = new Evaluator ();

eval.addADA ();

// Load scores from pst.txt

eval.addPST("PST", "pst.txt");

eval.addRAL ();

eval.addPR();

eval.addTPR ();

eval.run("Zakarays_Train.edges", "Zakarays_Test.edges");

}

}

The output of this code is as follows:
PRADA PRPST PRRAL TPRADA TPRPST TPRRAL

0.0510 0.0918 0.0391 0.1250 0.2500 0.1250

2.3 Python Bindings
The Python bindings to LinkPred are generated using SWIG (ww.swig.org), which
wraps C/C++ code using Python proxy classes. Upon successful building, the library
_LinkPredPython will be generated (named _LinkPredPython.so in Linux). This library
will be loaded when running your program, and for that, it must be accessible to Python.

R In Linux, you can make the library accessible to the Python by including its path
in the environment variable PYTHONPATH. If LinkPred is installed in the default
location, this can be accomplished using the following command:

$ export PYTHONPATH=$PYTHONPATH :/usr/local/lib

The Python module LinkPredPython containing the proxy classes needed to interface
with LinkPred is located in /bindings/Python. Python programs that use LinkPred

must import this module, which must therefore be in the Python module search path (for
instance, in the same directory as your code).
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2.3.1 Predicting links using the class Predictor

The following code shows how to compute the score of all non-existing links of a
network using Adamic Adar index and print the result:

Listing 2.23: code/simp/predictor1.py

# Import the module

import LinkPredPython as lpp

# Create a predictor object

p = lpp.Predictor ();

# Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

# Predict the score of all non -exisitng edges using Adamic Adar

index

esv = p.predAllADA ();

# Print the scores

f o r es i n esv:

p r i n t (es.i + "\t" + es.j + "\t" + "{:.4f}". format (es.score));

The class Predictor returns the results in an object of type EdgeScoreVec (a SWIG
proxy for std::vector<EdgeScore> ), where each entry stores the score of an edge in the
class EdgeScore :

Listing 2.24: code/simp/edgescore.py

c l a s s EdgeScore:

i = ""; # The label of the start node.

j = ""; # The label of the end node.

score = 0; # The score.

It is also possible to limit the prediction to specific edges which are passed as
parameter as shown in the next code:

Listing 2.25: code/simp/predictor4.py

# Import the module

import LinkPredPython as lpp

# Create a prtedictor object

p = lpp.Predictor ();

# Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

# Compute the score for the two edges (1, 34) and (26 ,34)

esv = lpp.EdgeScoreVec ();

es = lpp.EdgeScore ();

es.i = "1";

es.j = "34";

esv.push_back(es);

es.i = "26";

es.j = "34";

esv.push_back(es);

p.predKAB(esv);

# Print the scores

f o r es i n esv:

p r i n t (es.i + "\t" + es.j + "\t" + "{:.4f}". format (es.score));

The following program shows how to obtain the top k ranked edges:
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Listing 2.26: code/simp/predictor2.py

# Import the module

import LinkPredPython as lpp

k = 10;

# Create a predictor object

p = lpp.Predictor ();

# Load network from file

p.loadnet("Zakarays_Karate_Club.edges");

# Predict the top k edges using Adamic Adar index

esv = p.predTopADA(k);

# Print the scores

f o r es i n esv:

p r i n t (es.i + "\t" + es.j + "\t" + "{:.4f}". format (es.score));

As you might have guessed from the examples above, the class Predictor provides
three methods for each link prediction algorithm (in what follows, ??? stands for the
name of the predictor):

• The method predAll???() : This method returns the scores of all non-existing
links. Note that for large networks, this method can be memory and CPU-intensive.

• The method pred???(EdgeScoreVec esv) : This method computes the scores of
the edges passed as parameter.

• The method predTop???(int k) : Returns the top-k-ranked edges along with their
scores.

R For most topological similarity methods, computing the top-scored edges using the
method predTop??? is much faster and consumes less memory than calculating
the scores of all non-existing link then selecting the links with the highest score.

The parameters of the prediction algorithm -if any- are passed to the methods above
but are all given reasonable default values. For example, the following calls:
esv = p.predAllSBM ();

p.predSBM(esv);

esv = p.predTopSBM(k);

all use SBM with the default parameters: the maximum number of iteration is set to
1000 and the seed of the random number generator is set to 0. These can be changed to,
respectively, 10000 and 777 as follows:
esv = p.predAllSBM (10000 , 777);

p.predSBM(esv , 10000, 777);

esv = p.predTopSBM(k, 10000 , 777);

2.3.2 Evaluating performance using the class Evaluator

The following program shows how to compare the evaluate the performance of multiple
link prediction algorithms using the class Evaluator :

Listing 2.27: code/simp/evaluator1.py

# Import the module

import LinkPredPython as lpp
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nbRuns = 10;

edgeRemRatio = 0.1;

# Create an evaluator object

ev = lpp.Evaluator ();

# Add predictors to be evaluated

ev.addCNE ();

ev.addADA ();

ev.addKAB ();

# Add performance measures

ev.addROC ();

ev.addTPR ();

# Run experiment on the specified network

ev.run("Zakarays_Karate_Club.edges", nbRuns , edgeRemRatio);

The output of this program is as follows:

#ratio ROCADA ROCCNE ROCKAB TPRADA TPRCNE TPRKAB

0.10 0.7737 0.7149 0.8280 0.1250 0.1932 0.1250

0.10 0.6593 0.6333 0.7030 0.1250 0.0000 0.1250

0.10 0.5967 0.5762 0.6095 0.1875 0.1818 0.2500

0.10 0.8464 0.7913 0.9343 0.1875 0.1290 0.3750

0.10 0.8324 0.7785 0.8967 0.1250 0.1750 0.1250

0.10 0.7240 0.6953 0.7547 0.0000 0.2222 0.0000

0.10 0.6753 0.6610 0.7262 0.0000 0.1591 0.1250

0.10 0.6048 0.5792 0.6672 0.0000 0.0000 0.0000

0.10 0.7627 0.7547 0.7808 0.2917 0.3194 0.3750

0.10 0.6442 0.5835 0.6727 0.1250 0.1250 0.1250

Predictors can be added to the evaluation process using the methods add??? . Similar
to the class Predictor , the algorithm parameters are passed to these methods if non-
default values are needed. Performance measures are added in the same way. Three
measures are supported by this class: ROC (area under the ROC curve), PR (area under
the precision-recall curve), and TPR (top precision). More information about these
performance measures can be found in Chapter 7.

In the example above, the performance evaluation is conducted on the network
located in the file "Zakarays_Karate_Club.edges" . This is the ground-truth network
containing all edges. The library will automatically generate test data by randomly
removing the specified ratio of edges passed through the argument edgeRemRatio (in
this case 10%). The removed edges will be used as a test set. This process is repeated
nbRunTimes (in this example, 10 times).

The output above is printed from within the method run . It is also possible to access
the results of each iteration as follows (after calling run ):

Listing 2.28: code/simp/evaluator2.py

import sys # For printing

# Print the header row

res = ev.getPerfRes (0);

f o r r i n res:

sys.stdout.write(r.name + "\t");

sys.stdout.write("\n");

# Print the results of each iteration

f o r i i n range (nbRuns):
res = ev.getPerfRes(i);
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f o r r i n res:

sys.stdout.write("{:.4f}". format (r.res) + "\t");

sys.stdout.write("\n");

R Each call to the method run overrides the performance results. Therefore, only
the results from the latest call are available.

The performance results of each iteration are returned as an object of type PerfResVec

(a SWIG proxy for std::vector<PerfRes> ), where PerfRes is a simple class containing
two fields: The name of the result, which a concatenation of the name of the performance
measure followed by the name of the prediction algorithm, and a second field containing
the numerical value of the result:

Listing 2.29: code/simp/perfres.py

c l a s s PerfRes:

name = ""; # Concatenation of the name of the performance

mneasure and that of the predictor.

res = 0; # The result.

Instead of automatically generating the test data, it is possible to pass a pre-split net-
work to the method run . This is useful when comparing with algorithms implemented
elsewhere.

Listing 2.30: code/simp/evaluator3.py

# Import the module

import LinkPredPython as lpp

# Create an evaluator object

ev = lpp.Evaluator ();

# Add predictors to be evaluated

ev.addCNE ();

ev.addADA ();

ev.addKAB ();

# Add performance measures

ev.addROC ();

ev.addTPR ();

ev.run("Zakarays_Karate_Club_Train.edges", "

Zakarays_Karate_Club_Test.edges");

The output of this program is as follows:
PRADA PRRAL TPRADA TPRRAL

0.1561 0.1568 0.1250 0.1250

Note that in this setting, only one test run is conducted. To get the results, it also possible
to proceed as follows:

Listing 2.31: code/simp/evaluator4.py

import sys # For printing

res = ev.getPerfRes (0);

f o r r i n res:

sys.stdout.write(r.name + "\t");
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sys.stdout.write("\n");

f o r r i n res:

sys.stdout.write("{:.4f}". format (r.res) + "\t");

sys.stdout.write("\n");

The class Evaluator simplifies further the process of comparing the performance of
new link prediction algorithms to those implemented in LinkPred by providing a method
to generate test data and one that allows to include pre-calculated prediction results into
the evaluation process.

To create test data, the class Simp::Evaluator provides the method:

genTestData(self , fullNetFileName , obsEdgesFileName ,

remEdgesFileName , remRatio =0.1, keepConnected=False , seed =0)

where
• fullNetFileName is the file containing the ground truth network.
• obsEdgesFileName is the file where the remaining (non-removed) edges are writ-

ten. This file will contain the observed network ( the training set).
• remEdgesFileName is the file where the removed edges are written. This file will

contain the set of positive examples of the test set.
• remRatio is the ratio of edges that will be removed.
• keepConnected indicates whether to keep the graph connected when removing

edges. Note that keeping the graph connected may be impossible for high edge
removed ratios or if the network is initially disconnected.

• seed is used to initialize the random number generator.
The training set (the observed network composed of the edges stored in obsEdgesFileName )

can be used to train the user’s link predictor. The results of all non-existing links in the
observed network and stored in a text file, which is then added to the evaluation process
using the method:
addPST(name , fileName);

This method creates a new link prediction algorithm that plays a proxy role on behalf
of the user’s algorithm and uses the pre-stored data to predict links. The parameters
name is the name given to this link predictor, and fileName is where the scores of all
non-existing links are stored. The format of this file is as follows (the first is just a
comment and can be omitted):
#Start End Score

1 31 1.20225

1 10 0.45512

1 28 0.45512

1 29 1.07645

1 33 1.17647

1 17 1.4427

1 34 2.15291

1 26 0.621335

1 25 0.621335

...

The two following programs show how to use these two methods:

Listing 2.32: code/simp/evaluator5.py

# Import the library
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import LinkPredPython as lpp

edgeRemRatio = 0.1;

keepConnected = False;

seed = 0;

# Create an evaluator object

ev = lpp.Evaluator ();

ev.genTestData("Zakarays_Karate_Club.edges", "Zakarays_Train.

edges", "Zakarays_Test.edges", edgeRemRatio , keepConnected ,

seed);

After running this code, two files will be generated, Zakarays_Train.edges, which con-
tains the observed network and Zakarays_Test.edges, which contains the removed edges.
Use the edges in Zakarays_Train.edges to train your algorithm, then compute the scores
of all edges that are not observed (not only the removed edges!) and store them in a file
named pst.txt. Now, you can use these predictions to compare the performance of your
algorithm against ADA and RAL for example.

Listing 2.33: code/simp/evaluator6.py

# Import the library

import LinkPredPython as lpp

# Create an evuator object

ev = lpp.Evaluator ();

ev.addADA ();

# Load scores from pst.txt

ev.addPST("PST", "pst.txt");

ev.addRAL ();

ev.addPR();

ev.addTPR ();

ev.run("Zakarays_Train.edges", "Zakarays_Test.edges");

The output of this code is as follows:
PRADA PRPST PRRAL TPRADA TPRPST TPRRAL

0.0510 0.0918 0.0391 0.1250 0.2500 0.1250





3. Core Components

This chapter is concerned with the basic building blocks of LinkPred. Some of these
components, for instance the network data structures, are essential for an optimal use
of the library. Other components can be very useful for building new efficient link
prediction algorithms. For a first reading, we invite the reader to study Section 3.1 and
come back for the remaining sections at a later time or when necessary.

R Core classes are grouped under the namespace Core , and can be imported using:

u s i n g namespace LinkPred;

In the examples included in this chapter, we assume that this namespace is imported
and drop the prefix LinkPred:: from all classes for convenience.

3.1 The undirected network data structure
At the heart of LinkPred lies the class UNetwork , which represents an undirected network.
This is a data structure designed to efficiently represent immutable graphs (graphs that
once created are not modified). It offers efficient access to nodes, edges and non-existing
edges as well.

Add nodes Add edges Assemble Use

Figure 3.1: Example network.

The life cycle of a network has two distinct phases:
• Pre-assembly: In this phase, it is possible to add nodes and edges to the network.

It is also possible to access nodes and translate external labels to internal IDs and
vice versa. However, most functionalities related to accessing edges are not yet
available. As a result, the network at this stage is practically unusable. To be able
to use the network, it is first necessary to assemble it.
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• Post-assembly: Once assembled, no new nodes or edges can be added (or re-
moved) to the network. The network is now fully functional and can be passed as
argument to any method that requires so.

R Attempting to add new nodes or edges after assembling the network produces an
exception. On the other hand, due to performance considerations, no such checks
are made in methods that prerequire assembly. Therefore, using a network before
assembling it may result in unspecified behavior.

3.1.1 Building the network
To build a network, we first create an empty network, named for instance net , by calling
the default constructor:

UNetwork <> net;

Most classes in LinkPred manipulate networks through smart pointers for efficient
memory management. To create a shared pointer to a UNetwork object:

a u t o net = std:: make_shared <UNetwork <>>();

Notice that the class UNetwork is a class template, which is here instantiated with the
default template arguments. In this default setting, the labels are of type std::string ,
whereas internal IDs are of type unsigned int , but UNetwork can be instantiated with a
number of other data types if wanted. For instance, the labels can be of type unsigned int ,
which may reduce storage size in some situations.

Adding nodes is achieved by calling the method addNode , which takes as parameter
the node label and returns an std::pair containing, respectively, the node ID and a
Boolean which is set to true if the node is newly inserted, false if the node already exists.
The nodes IDs are guaranteed to be contiguous in 0, . . . ,n−1, where n is the number of
nodes. Inserting a node that already exists has no effect.

a u t o res = net.addNode(label);

a u t o id = res.first; // This the node ID

b o o l inserted = res.second; // Was the node inserted or did it

already exist?

The method addEdge is used to create an edge between two nodes specified by their
IDs (not their labels):

net.addEdge(i, j);

A possible and shorter way to create edges without the need for adding nodes beforehand
or storing externally their IDs is as follows1:

net.addEdge(net.addNode(labelI).first , net.addNode(labelJ).first)

;

1Notice that the ID assigned to a node depends on the order in which this node is added to the network.
Therefore, depending on the order in which function arguments are processed (which is implementation-
dependent), the nodes may be assigned different internal IDs when using this code. This, however, has no
effect whatsoever on the results.
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Loops are not allowed, and attempting to add one results in an exception. Adding the
same edge more than one time, including the case where both an edge (i, j) and its
inverse ( j, i) are inserted, has no effect.

The last step in building the network is to assemble it:

net.assemble ();

The method assemble initializes the internal data structures and makes the network
ready to be used.

The class UNetwork offers also a static method that reads the network data from file:

std:: string fileName = "Infectious.edges";

a u t o net = UNetwork <>::read(fileName);

The file must be in text format with each line specifying an edge. No comments are
allowed in the file. An example input file is the following:

1 2

1 3

2 4

3 5

2 6

� Example 3.1 Consider the network shown in Figure 3.2.

1

2

3

4

5

6

7

8

Figure 3.2: Example network.

The code below shows how to build this network:

Listing 3.1: code/core/NetworkBuild1.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t n = 8;

UNetwork < u n s i g n e d i n t > net; // Labels are of type unsigned int

std::cout << "Label\tID\tNew?" << std::endl;

f o r ( i n t i = 1; i <= n; i++) {

a u t o res = net.addNode(i);

std::cout << i << "\t" << res.first << "\t" << res.second <<

std::endl;

}

f o r ( i n t i = 1; i <= n; i++) {

net.addEdge(net.getID(i), net.getID(i % n + 1));
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net.addEdge(net.getID(i), net.getID((i + 1) % n + 1));

}

net.assemble ();

std::cout << "Printing network:" << std::endl;

net.print ();

r e t u r n 0;

}

This is the output of this code:

Label ID New?

1 0 1

2 1 1

3 2 1

4 3 1

5 4 1

6 5 1

7 6 1

8 7 1

Printing network:

1 2

1 3

1 7

1 8

2 3

2 4

2 8

3 4

3 5

4 5

4 6

5 6

5 7

6 7

6 8

7 8

The following is another version of the code that builds the same network:

Listing 3.2: code/core/NetworkBuild2.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t n = 8;

UNetwork < u n s i g n e d i n t > net;

f o r ( i n t i = 1; i <= n; i++) {

net.addEdge(net.addNode(i).first , net.addNode(i % n + 1).

first);

net.addEdge(net.addNode(i).first , net.addNode ((i + 1) % n +

1).first);

}

net.assemble ();

std::cout << "Printing network:" << std::endl;

net.print ();

r e t u r n 0;
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}

�

3.1.2 Accessing nodes
Nodes can be accessed through iterators provided by nodesBegin() and nodesEnd() .
The order of iteration is that of internal IDs, which is also the order of insertion. For
convenience, the iterator points to a pair, the first element of which is the internal ID,
whereas the second is the external label.

std::cout << "ID\tLabel" << std::endl;

f o r ( a u t o it = net.nodesBegin (); it != net.nodesEnd (); ++it) {

std::cout << it ->first << "\t" << it ->second << std::endl;

}

Alternatively, one can iterate over labels (in increasing order) in a similar way using the
iterators labelsBegin() and labelsEnd() :

std::cout << "Label\tID" << std::endl;

f o r ( a u t o it = net.labelsBegin (); it != net.labelsEnd (); ++it) {

std::cout << it ->first << "\t" << it ->second << std::endl;

}

It is also possible to translate labels to IDs and vice versa using getID(label) and
getLabel(id) respectively.

Oftentimes, one would want to iterate over a random sample of nodes instead of the
whole set. This can be easily done using the two methods:

RndNodeIt rndNodesBegin( d o u b l e ratio , l o n g i n t seed) c o n s t
RndNodeIt rndNodesEnd () c o n s t

The method rndNodesBegin takes two parameters: the ratio of nodes contained in the
sample (must be in [0,1]) and a seed for the random number generator. For example, the
following for loop iterates over about half the nodes and skips the other half. The nodes
are accessed in increasing order of their IDs:

d o u b l e ratio = 0.5;

l o n g i n t seed = 777;

std::cout << "ID\tLabel" << std::endl;

f o r ( a u t o it = net.rndNodesBegin(ratio , seed); it != net.

rndNodesEnd (); ++it) {

std::cout << it ->first << "\t" << it ->second << std::endl;

}

R Notice that ratio specifies the probability that a node gets selected. Because of
the random nature of the selection process, the actual number of nodes selected
may be different from ratio ×n.

The methods above can be used to access nodes data even before the networks is
assembled. After assembling the network, more functionalities become available. For
instance, it is possible to access nodes degrees:
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std::cout << "ID\tDegree" << std::endl;

f o r ( a u t o it = net.nodesDegBegin (); it != net.nodesDegEnd (); ++it

) {

std::cout << it ->first << "\t" << it ->second << std::endl;

}

The iterator returned by nodesDegBegin() points to a pair where the first element is the
node ID and the second element is its degree. It is also possible to obtain the degree of a
given node using getDeg(id) :

std::cout << "ID\tDegree" << std::endl;

f o r ( a u t o it = net.nodesBegin (); it != net.nodesEnd (); ++it) {

std::cout << it ->first << "\t" << net.getDeg(it->first) << std::

endl;

}

3.1.3 Accessing edges
Information on edges can only be accessed after assembling the network. One way to
access edges is to iterate over all edges in the network. This can be done using the
method edgesBegin() and edgesEnd() . Obtaining the start and end nodes of an edge is
accomplished by means of the two static methods start and end :

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.edgesBegin (); it != net.edgesEnd (); ++it) {

std::cout << net.start (*it) << "\t" << net.end(*it) << std::endl;

}

As it is the case with nodes, it is possible to access a random sample of edges:

d o u b l e ratio = 0.5;

l o n g i n t seed = 777;

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.rndEdgesBegin(ratio , seed); it != net.

rndEdgesEnd (); ++it) {

std::cout << net.start (*it) << "\t" << net.end(*it) << std::endl;

}

LinkPred offers the possibility to iterate over negative links in the same way one
iterates over positive edges. This can be done using the method nonEdgesBegin() and
nonEdgesEnd() :

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.nonEdgesBegin (); it != net.nonEdgesEnd (); ++it

) {

std::cout << net.start (*it) << "\t" << net.end(*it) << std::endl;

}

It is also possible to iterate over a randomly selected sample of negative links:

d o u b l e ratio = 0.5;

l o n g i n t seed = 777;

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.rndNonEdgesBegin(ratio , seed); it != net.

rndNonEdgesEnd (); ++it) {

std::cout << net.start (*it) << "\t" << net.end(*it) << std::endl;

}
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R Negative edges are not stored in memory for obvious performance reasons. As a
result, instead of O(1) in the case of positive edges iterators, the incrementation
operator ( ++ ) for negative links iterators has a higher running time, which depends
on the network density.

The neighbors of a given node can be accessed by means of the two methods
neighbBegin(id) and net.neighbEnd(id) :

u n s i g n e d i n t i = 0;

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.neighbBegin(i); it != net.neighbEnd(i); ++it)

{

std::cout << net.start (*it) << "\t" << net.end(*it) << std::endl;

}

Notice that the iterator points to the edges adjacent to the node and not directly to its
neighbors. The neighbors are always located at the end of these edges, whereas the node
passed to neighbBegin is stored as the starting node.

� Example 3.2 Consider the network shown in Figure 3.3.

1

2

3

4

5

6

7

8

Figure 3.3: Example network.

The following code iterates over the neighbors of all nodes and a random sample of
negative links:

Listing 3.3: code/core/EdgeItExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t n = 8;

UNetwork < u n s i g n e d i n t > net;

f o r ( i n t i = 1; i <= n; i++) {

net.addEdge(net.addNode(i).first , net.addNode(i % n + 1).

first);

}

net.assemble ();

std::cout << "Positive links:" << std::endl;

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.nodesDegBegin (); it != net.nodesDegEnd (); ++

it) {
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f o r ( a u t o nit = net.neighbBegin(it->first); nit != net.

neighbEnd(it->first); ++nit) {

std::cout << net.getLabel(net.start (*nit)) << "\t" << net.

getLabel(net.end(*nit)) << std::endl;

}

}

std::cout << "Random negative links:" << std::endl;

d o u b l e ratio = 0.2;

l o n g i n t seed = 777;

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.rndNonEdgesBegin(ratio , seed); it != net.

rndNonEdgesEnd (); ++it) {

std::cout << net.getLabel(net.start (*it)) << "\t" << net.

getLabel(net.end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:

Positive links:

Start End

2 1

2 3

1 2

1 8

3 2

3 4

4 3

4 5

5 4

5 6

6 5

6 7

7 6

7 8

8 1

8 7

Random negative links:

Start End

2 4

1 3

3 7

3 8

4 8

�

3.2 The directed network data structure
To represent directed networks, LinkPred offers the class DNetwork , which offers a very
similar interface to UNetwork .

� Example 3.3 For example, the code below shows how to create the directed network
shown in Figure 3.4 and iterate over the neighbors of all nodes as well as a random
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sample of negative links:

1

2

3

4

5

6

7

8

Figure 3.4: Example of a directed network.

Listing 3.4: code/core/DEdgeItExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t n = 8;

DNetwork < u n s i g n e d i n t > net;

f o r ( i n t i = 1; i <= n; i++) {

net.addEdge(net.addNode(i).first , net.addNode(i % n + 1).

first);

}

net.assemble ();

std::cout << "Positive links:" << std::endl;

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.nodesDegBegin (); it != net.nodesDegEnd (); ++

it) {

f o r ( a u t o nit = net.neighbBegin(it->first); nit != net.

neighbEnd(it->first); ++nit) {

std::cout << net.getLabel(net.start (*nit)) << "\t" << net.

getLabel(net.end(*nit)) << std::endl;

}

}

std::cout << "Random negative links:" << std::endl;

d o u b l e ratio = 0.2;

l o n g i n t seed = 777;

std::cout << "Start\tEnd" << std::endl;

f o r ( a u t o it = net.rndNonEdgesBegin(ratio , seed); it != net.

rndNonEdgesEnd (); ++it) {

std::cout << net.getLabel(net.start (*it)) << "\t" << net.

getLabel(net.end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:

Positive links:
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Start End

2 3

1 2

3 4

4 5

5 6

6 7

7 8

8 1

Random negative links:

Start End

2 1

2 8

3 2

3 1

3 7

5 2

5 8

7 6

8 2

�

3.3 Maps
Maps are a useful way to associate data to nodes or edges. Two types of maps are
available in LinkPred: node maps (class NodeMap ) and edge maps (class EdgeMap ), both
member of UNetwork and DNetwork . The first assigns data to the nodes of the network,
whereas the latter maps data to edges.

Creating a node map is achieved by calling the method createNodeMap on the
network object. This is a template method with the mapped data type as the only
template argument. For example, to create a node map with data type double over the
network net :

a u t o nodeMap = net. t e m p l a t e createNodeMap <double >();

To obtain a smart pointer ( std::shared_ptr ) to a node map, the method createNodeMapSP

must be called instead:

a u t o nodeMapSP = net. t e m p l a t e createNodeMapSP <double >();

Creating an edge map can be done in a similar way:

a u t o edgeMap = net. t e m p l a t e createEdgeMap <double >();

a u t o edgeMapSP = net. t e m p l a t e createEdgeMapSP <double >();

Both NodeMap and EdgeMap offer the same interface, which in fact is similar to
std::map . This includes the operator [] , the methods at , begin , end , cbegin and
cend . From the performance point of view, NodeMap offers constant time access to
mapped values, whereas EdgeMap requires logarithmic time access (O(logm), m being
the number of edges).

� Example 3.4 The following code shows how to create and use node and edge maps:
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Listing 3.5: code/core/MapExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t n = 8;

UNetwork < u n s i g n e d i n t > net;

f o r ( i n t i = 1; i <= n; i++) {

net.addEdge(net.addNode(i).first , net.addNode(i % n + 1).

first);

net.addEdge(net.addNode(i).first , net.addNode ((i + 1) % n +

1).first);

}

net.assemble ();

i n t i = 0;

a u t o nodeMap = net. t e m p l a t e createNodeMap <double >();

f o r ( a u t o it = net.nodesBegin (); it != net.nodesEnd (); ++it) {

nodeMap[it ->first] = i++ / 2.0;

}

std::cout << "ID\tValue" << std::endl;

f o r ( a u t o it = net.nodesBegin (); it != net.nodesEnd (); ++it) {

std::cout << it ->second << "\t" << nodeMap.at(it->first) <<

std::endl;

}

i = 0;

a u t o edgeMap = net. t e m p l a t e createEdgeMap <double >();

f o r ( a u t o it = net.edgesBegin (); it != net.edgesEnd (); ++it) {

edgeMap [*it] = i++ / 2.0;

}

std::cout << "Start\tEnd\tValue" << std::endl;

f o r ( a u t o it = net.edgesBegin (); it != net.edgesEnd (); ++it) {

std::cout << net.getLabel(net.start (*it)) << "\t" << net.

getLabel(net.end(*it)) << "\t" << edgeMap.at(*it) << std::

endl;

}

r e t u r n 0;

}

The following is the output of this code:
ID Value

2 0

1 0.5

3 1

4 1.5

5 2

6 2.5

7 3

8 3.5

Start End Value

2 1 0

2 3 0.5
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2 4 1

2 8 1.5

1 3 2

1 7 2.5

1 8 3

3 4 3.5

3 5 4

4 5 4.5

4 6 5

5 6 5.5

5 7 6

6 7 6.5

6 8 7

7 8 7.5

�

3.3.1 Sparse maps
If a node map is sparse, that is, has non-default values only on a small subset of the
elements, it is better to use sparse node and edge maps. To create a sparse node map:
a u t o nodeSMap = net. t e m p l a t e createNodeSMap <double >(0.0);

Notice that the methods takes as input one parameter that specifies the default value of
the map (in this case, it is 0.0). Hence, in this example any node which is not explicitly
assigned a value is assumed to have the default value 0.0. To obtain a smart pointer
( std::shared_ptr ) to a sparse node map, the method createNodeSMapSP must be called
instead:
a u t o nodeSMapSP = net. t e m p l a t e createNodeSMapSP <double >(0.0);

Sparse maps use O(log(k)) space and time to sore and access data, where k is the
number of elements explicitly assigned elements (having non-default value).

R Any element that is explicitly assigned, even with the default value, is stored in
memory. Hence, you should avoid explicit assignment with the default value as it
unnecessarily increases the size of the map.

� Example 3.5 The following code shows how to create and use a sparse node map:

Listing 3.6: code/core/SMapExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t n = 8;

UNetwork < u n s i g n e d i n t > net;

f o r ( i n t i = 1; i <= n; i++) {

net.addEdge(net.addNode(i).first , net.addNode(i % n + 1).

first);

net.addEdge(net.addNode(i).first , net.addNode ((i + 1) % n +

1).first);

}
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net.assemble ();

a u t o nodeSMap = net. t e m p l a t e createNodeSMap <double >( -1.0);

nodeSMap [2] = 2.0;

nodeSMap [3] = 3.0;

std::cout << "ID\tValue" << std::endl;

f o r ( a u t o it = net.nodesBegin (); it != net.nodesEnd (); ++it) {

std::cout << it ->second << "\t" << nodeSMap.at(it->first) <<

std::endl;

}

r e t u r n 0;

}

The following is the output of this code:
ID Value

2 -1

1 -1

3 2

4 3

5 -1

6 -1

7 -1

8 -1

�





4. Graph Algorithms

4.1 Graph traversal
LinkPred provides two classes for graph traversal: BFS , for Breadth First traversal, and
DFS for Depth First traversal. They both inherit from the abstract class GraphTraversal ,

which declares one virtual method traverse . It takes as parameter the source node,
from where the traversal starts, and a reference to a NodeProcessor object which is in
charge of processing nodes sequentially as they are visited.

Listing 4.1: code/graphalg/GraphTraversal.hpp

/**

* Abstract graph traversal.

*/

t e m p l a t e < typename Network = UNetwork <>, typename NodeProcessor =

Collector <Network >> c l a s s GraphTraversal {

p r o t e c t e d :

std:: shared_ptr <Network c o n s t > net;

p u b l i c :
GraphTraversal(std::shared_ptr <Network c o n s t > net) : net(net) {

}

...

/**

* Traverse the graph.

* @param srcNode The source node.

* @param processor The node processor.

*/

v i r t u a l v o i d traverse( typename Network :: NodeID srcNode ,

NodeProcessor & processor) = 0;

};

The class NodeProcessor is a template argument of GraphTraversal and is required
to implement the method bool process(typename Network::NodeID const & i) , which
processes node i and returns true if the traversal must continue, false otherwise. Notice,
however, that independently of the return value of process , only the nodes in the same
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connected component as the source node are visited by BFS and DFS .
The library offers two useful implementations of NodeProcessor : Counter , which

simply counts the visited nodes, and Collector , which collects the visited nodes’ IDs
into a queue in the order of their visit. Collector is the default value for the template
argument NodeProcessor . The two classes Counter and Collector are shown below.

Listing 4.2: code/graphalg/Counter.hpp

/**

* A class that counts nodes during traversal.

*/

t e m p l a t e < typename Network = Core::UNetwork <>> c l a s s Counter {

p r o t e c t e d :

std:: size_t count = 0;

p u b l i c :
...

/**

* Node processing.

*/

b o o l process( typename Network :: NodeIdType c o n s t & i) {

count ++;

r e t u r n t r u e ;
}

/**

* @return The nodes count.

*/

std:: size_t getCount () c o n s t {

r e t u r n count;

}

/**

* Reset the nodes count to 0.

*/

v o i d resetCount () {

count = 0;

}

};

Listing 4.3: code/graphalg/Collector.hpp

/**

* A class that collects nodes during traversal.

*/

t e m p l a t e < typename Network = Core::UNetwork <>> c l a s s Collector {

p r o t e c t e d :

std::queue < typename Network :: NodeIdType > visited;

p u b l i c :
...

/**

* Node processing.

*/

b o o l process( typename Network :: NodeIdType c o n s t & i) {

visited.push(i);
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r e t u r n t r u e ;
}

/**

* @return The visited nodes.

*/

c o n s t std::queue < typename Network :: NodeIdType >& getVisited ()

c o n s t {

r e t u r n visited;

}

};

� Example 4.1 Consider the network shown in Figure 4.1.

1

2

3

4

5

6 8

7

Figure 4.1: Example network.

The code below shows how to traverse this graph using BFS and DFS classes. For
BFS, we collect the nodes, whereas for DFS we only count them.

Listing 4.4: code/graphalg/TraversalExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

a u t o net = UNetwork <>::read("net -traversal.edges");

// BFS

BFS <> bfs(net);

Collector <> col;

bfs.traverse(net ->getID("1"), col);

a u t o visited = col.getVisited ();

std::cout << "BFS:" << std::endl;

w h i l e (! visited.empty()) {

a u t o i = visited.front ();

visited.pop();

std::cout << net ->getLabel(i) << std::endl;

}

// DFS

DFS <UNetwork <>, Counter <>> dfs(net);

Counter <> counter;

dfs.traverse(net ->getID("1"), counter);

std::cout << "DFS visited " << counter.getCount () << " nodes"

<< std::endl;
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r e t u r n 0;

}

Here is the output of this code:

BFS:

1

2

3

4

8

5

6

7

DFS visited 8 nodes

�

4.2 Shortest paths
The LinkPred library contains an implementation of Dijkstra’s algorithm for solving the
shortest path problem1. To use it, it is first necessary to define a length (or weight) map
that specifies the length associated with every edge in the graph. A length map is simply
a map over the set of edges which can take integer as well as double values. It can there-
fore be created using the template methods createEdgeMap() and createEdgeMapSP()

defined in the class UNetwork (see Section 3.3). The method createEdgeMap returns an
EdgeMap object, whereas createEdgeMapSP returns a smart pointer ( std::shared_ptr )

to an EdgeMap object. For example, in order to create a length map taking double values,
one can proceed as follows:

Listing 4.5: code/graphalg/CreateLengthMap.cpp

a u t o length = net -> t e m p l a t e getEdgeMapSP <double >();

f o r ( a u t o it = net ->edgesBegin (); it != net ->edgesEnd (); ++it) {

(* length)[*it] = 1;

}

The next step is to create a Dijkstra object and register the length map:

Listing 4.6: code/graphalg/RegisterLengthMap.cpp

Dijkstra <> dijkstra(net);

a u t o lengthMapId = dijkstra.registerLengthMap(length);

The identifier lengthMapId is used to uniquely identify the registered length map. It is
possible to register multiple length maps with the same Dijkstra object, and once there
is no more need for a given length map, it can be unregistered as follows:

Listing 4.7: code/graphalg/UnregisterLengthMap.cpp

dijkstra.unregisterLengthMap(lengthMapId);

1The current implementation uses a binary heap instead of a Fibonacci heap. Consequently, the
performance of the implementation is O(nm+n2 log2 m) instead of O(nm+n2 logm).
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The class Dijkstra offers two methods for computing distances:
1. getShortestPath : This method computes and returns the shortest path between

two nodes and its length:

Listing 4.8: code/graphalg/ShortestPathExample.cpp

a u t o res = dijkstra.getShortestPath(i, j, lengthMapId);

a u t o path = res.first; // This is the shortest path

a u t o dist = res.second; // This is its length

2. getDist : Computes the distance between a source node and all other nodes. The
returned value is a node map, where each node is mapped to a pair containing
the distance from the source node and the number of edges in the corresponding
shortest path:

Listing 4.9: code/graphalg/DistExample.cpp

a u t o distMap = dijkstra.getDist(i, lengthMapId);

a u t o res = distMap ->at(j);

d o u b l e dist = res.first; // Distance between i and j

std:: size_t nbHops = res.second; // Number of hops along the

shortest path

Both methods run Dijkstra’s algorithm, except that getShortestPath stops once the
destination node is reached, whereas getDist continues until all reachable nodes are
visited. The distance and number of hops assigned to disconnected couples are passed
as the last two arguments of these two methods. By default, they are assigned the values
std::numeric_limits<double>::infinity() and std::numeric_limits<std::size_t>::max()

respectively.

� Example 4.2 Consider the network shown in Figure 4.2.

1

2

2

3

3

1

4 2

5

312

6

3

1

7

82

Figure 4.2: Example network with an associated length map.

In the following code, we first compute the shortest path from 1 to 6, then compute
the shortest path distances from 1 to all other nodes.

Listing 4.10: code/graphalg/ShortestPathFullExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;
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i n t main() {

a u t o net = UNetwork <>::read("net -sp.edges");

a u t o length = net -> t e m p l a t e createEdgeMapSP <double >();

i n t i = 1;

f o r ( a u t o it = net ->edgesBegin (); it != net ->edgesEnd (); ++it ,

i++) {

(* length)[*it] = (13 * i) % 3 + 1;

}

Dijkstra <> dijkstra(net);

a u t o lengthMapId = dijkstra.registerLengthMap(length);

{

a u t o res = dijkstra.getShortestPath(net ->getID("1"), net ->

getID("6"), lengthMapId);

a u t o path = res.first;

a u t o dist = res.second;

std::cout << "Path: ";

f o r ( a u t o it = path ->begin(); it != path ->end(); ++it) {

std::cout << net ->getLabel (*it) << " ";

}

std::cout << "\ndist: " << dist << std::endl;

}

{

a u t o distMap = dijkstra.getDist(net ->getID("1"), lengthMapId)

;

std::cout << "dist: " << std::endl;

f o r ( a u t o it = net ->nodesBegin (); it != net ->nodesEnd (); ++it

) {

a u t o res = distMap ->at(it ->first);

std::cout << it ->second << " : " << res.first << ", " <<

res.second << std::endl;

}

}

r e t u r n 0;

}

Here is the output of this code:
Path: 1 2 4 6

dist: 5

dist:

1 : 0, 0

2 : 2, 1

3 : 3, 1

4 : 4, 2

5 : 4, 2

6 : 5, 3

7 : inf, 18446744073709551615

8 : inf, 18446744073709551615

�

4.2.1 Memory management
Computing shortest-path distances in large networks require not only considerable time
but also significant space resources. Consequently, efficient management of mem-
ory is necessary to render the task feasible in such situations. The abstract class
NetDistCalculator provides an interface for an additional layer over the class Dijkstra
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which facilitates its use and can serve to manage memory usage. A NetDistCalculator

object is associated with a single length map and provides two methods for computing
distances:

• getDist(i, j) : Computes and returns the distance between the two nodes i and
j. The return value is an std::pair , with the first element being the distance,
whereas the second is the number of hops in the shortest path joining the two
nodes.

• getDist(i) : Computes and returns a node map containing the distances from
node i to all other nodes in the network.

LinkPred includes two implementations of NetDistCalculator : ESPDistCalculator

(exact shortest path distance calculator) and ASPDistCalculator (approximate shortest
path distance calculator). In what follows, a description of the former is given, whereas
the latter implementation is presented in the next section (4.2.2).

The class ESPDistCalculator implements the interface NetDistCalculator and
returned the exact shortest path distances as computed by Dijkstra . Additionally, it
caches the computed results for better performance. The constructor of ESPDistCalculator

takes three parameters: a Dijkstra object, a length map and a third parameter of type
CacheLevel , which is an enumeration of the available caching strategies:

• NoCache : The results computed by Dijkstra are discarded immediately after the
call to the method has ended. This minimizes memory consumption, but is very
inefficient from the time perspective. This strategy should only be used when
memory is scarce and the couples for which the distance is to be computed are
few in number and have a few or no nodes in common.

• NodeCache : In this strategy, the distances from a single node to all other nodes
(a distance node map) are kept in cache and replaced in case of a cache miss.
Moderate memory use is incurred from using this scheme, and if the couples
between which the distances to be computed are grouped according to their
starting or ending node, time requirements are optimal in the sens that no results
are wasted. Therefore, this strategy should be used with large network with the
precaution of ordering couples as explained.

• NetworkCache : In this scheme, any computed distance map is kept in cache, which
results in maximum memory consumption and minimal computation time. This
should be with small to average-size networks.

� Example 4.3 In the following code, we compute the distance between all couples in
the network of Figure 4.2.

Listing 4.11: code/graphalg/NetDistCalculatorExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

a u t o net = UNetwork <>::read("net -sp.edges");

a u t o length = net -> t e m p l a t e createEdgeMapSP <double >();

i n t i = 1;

f o r ( a u t o it = net ->edgesBegin (); it != net ->edgesEnd (); ++it ,

i++) {
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(* length)[*it] = (13 * i) % 3 + 1;

}

Dijkstra <> dijkstra(net);

ESPDistCalculator <> calc(dijkstra , length , NetworkCache);

std::cout << "Src\tDst\tDist" << std::endl;

f o r ( a u t o sit = net ->nodesBegin (); sit != net ->nodesEnd (); ++

sit) {

f o r ( a u t o dit = sit + 1; dit != net ->nodesEnd (); ++dit) {

std::cout << sit ->second << "\t" << dit ->second << "\t" <<

calc.getDist(sit ->first , dit ->first).first << std::endl;

}

}

r e t u r n 0;

}

The output of this code is as follows:

Src Dst Dist

1 2 2

1 3 3

1 4 4

1 5 4

1 6 5

1 7 inf

1 8 inf

2 3 1

2 4 2

2 5 2

2 6 3

2 7 inf

2 8 inf

3 4 3

3 5 1

3 6 2

3 7 inf

3 8 inf

4 5 2

4 6 3

4 7 inf

4 8 inf

5 6 1

5 7 inf

5 8 inf

6 7 inf

6 8 inf

7 8 2

�

4.2.2 Approximate shortest path distances
Computing exact distances in very large networks can be time consuming, and resorting
to approximations may be necessary. ASPDistCalculator is an implementation of
NetDistCalculator that computes approximate shortest path distances of exact ones.

The approximation works as follows. A set L of nodes called landmarks is selected,
and the distance from each landmark to all other nodes is pre-computed and stored in
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memory. The distance between any two nodes i, j is then approximated by:

di j ' min
k∈L

[dik +dk j]. (4.1)

The landmarks are passed to ASPDistCalculator object using the method setLandmarks .
Of course, by increasing the number of landmarks, more precision can be obtained, be it
though at a higher computational and memory cost. The choice of the landmarks is left
to the user.

� Example 4.4 In the following code, we compute the approximate distances between
all couples in the network of Figure 4.2 using 30% of nodes as landmarks.

Listing 4.12: code/graphalg/ASPDistCalculatorExample.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

a u t o net = UNetwork <>::read("net -sp.edges");

a u t o length = net -> t e m p l a t e createEdgeMapSP <double >();

i n t i = 1;

f o r ( a u t o it = net ->edgesBegin (); it != net ->edgesEnd (); ++it ,

i++) {

(* length)[*it] = (13 * i) % 3 + 1;

}

Dijkstra <> dijkstra(net);

ASPDistCalculator <> calc(dijkstra , length);

d o u b l e landmarkRatio = 0.3;

l o n g i n t seed = 777;

std::vector < typename UNetwork <>::NodeID > landmarks;

std::cout << "Landmarks:" << std::endl;

f o r ( a u t o it = net ->rndNodesBegin(landmarkRatio , seed); it !=

net ->rndNodesEnd (); ++it) {

landmarks.push_back(it ->first);

std::cout << it ->second << std::endl;

}

calc.setLandmarks(landmarks.begin(), landmarks.end());

std::cout << "Src\tDst\tDist" << std::endl;

f o r ( a u t o sit = net ->nodesBegin (); sit != net ->nodesEnd (); ++

sit) {

f o r ( a u t o dit = sit + 1; dit != net ->nodesEnd (); ++dit) {

std::cout << sit ->second << "\t" << dit ->second << "\t" <<

calc.getDist(sit ->first , dit ->first).first << std::endl;

}

}

r e t u r n 0;

}

The output of this code is as follows:
Landmarks:

1

4

Src Dst Dist

1 2 2
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1 3 3

1 4 4

1 5 4

1 6 5

1 7 inf

1 8 inf

2 3 5

2 4 2

2 5 4

2 6 5

2 7 inf

2 8 inf

3 4 3

3 5 5

3 6 6

3 7 inf

3 8 inf

4 5 2

4 6 3

4 7 inf

4 8 inf

5 6 5

5 7 inf

5 8 inf

6 7 inf

6 8 inf

7 8 inf

�

4.3 Graph embedding
Graph embedding consists in transforming the graph’s nodes and edges into elements
of a low-dimensional vector space while preserving, as much as possible, its structural
properties [10]. It is a problem with important applications in various fields, including
link prediction [2, 10, 15], product recommendation [17], data visualization [22, 30],
and node classification [5, 31]. Several approaches for graph embedding have been
proposed in the literature. These include methods based on matrix decomposition, such
as locally linear embedding [27], Laplacian eigenmaps [4], and matrix factorization [17]
(also referred to as graph factorization in [1, 10]); methods based on random walks, such
as DeepWalk [25], LINE [29] and Node2Vec [11]; and deep learning-based methods [6,
32].

LinkPred contains the implementation of the following graph embedding techniques:
1. DeepWalk [25]: This algorithm is implemented in the class DeepWlak based on

the code available at https://github.com/xgfs/deepwalk-c.
2. Hidden Metric Space Model (HMSM) [2]: This algorithm is implemented in

the class HMSM .
3. LargeVis [30]: This algorithm is implemented in the class LargeVis based on

the code available at https://github.com/lferry007/LargeVis.
4. Laplacian Eigenmaps (LEM) [4]: This algorithm is implemented in the class

LEM (this encoder requires compilation with Armadillo library, that the option

https://github.com/xgfs/deepwalk-c
https://github.com/lferry007/LargeVis
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LINKPRED_WITH_ARMADILLO must be on).
5. Large Information Networks Embedding (LINE) [29]: This algorithm is im-

plemented in the class LINE based on the code available at https://github.
com/tangjianpku/LINE.

6. Locally Linear Embedding (LLE) [27]: This algorithm is implemented in the
class LLE (this encoder requires compilation with Armadillo library, that the
option LINKPRED_WITH_ARMADILLO must be on).

7. Matrix Factorization [17]: This algorithm is implemented in the class MatFact .
8. Node2Vec [11]: This algorithm is implemented in the class LargeVis based on

the code available at https://github.com/xgfs/node2vec-c.

4.3.1 The Encoder interface
To provide a uniform interface, all encoders inherits from the abstract class Encoder :

Listing 4.13: code/graphalg/encoder.hpp

t e m p l a t e <...> c l a s s Encoder {

p u b l i c :
// Return the dimension of the embedding.

i n t getDim () c o n s t ;
// Set the dimension of the embedding.

v o i d setDim( i n t dim);

// Initialize encoder.

v i r t u a l v o i d init() = 0;

// Encode the network.

v i r t u a l v o i d encode () = 0;

// Return the code of given node.

Vec getNodeCode(NodeID c o n s t &i);

// Return the code of an edge.

Vec getEdgeCode(Edge c o n s t &e);

// Return the dimension of the edge emebedding.

v i r t u a l i n t getEdgeCodeDim () c o n s t ;
...

};

First, the method init is called to initialize the internal data structures of the encoder.
Once the encoder is initialized, the method encode can be called to perform the em-
bedding. This step typically involves solving an optimization problem, which can be
computationally intensive both in terms of memory and CPU usage, especially for very
large networks. The dimension of the embedding space can be queried and set using
getDim and setDim respectively.

The node embedding or the node code, which is the vector of coordinates assigned
to the node, can be obtained by calling the method getNodeCode . The edge code
is by default the concatenation of the two nodes’ codes and can be obtained using
getEdgeCode . Hence, in the default case, the edge code dimension is double that of a

node. Classes that implement the Encoder may change this default behavior if necessary.
The user can query the dimension of the edge code using the method getEdgeCodeDim .

4.3.2 Examples
This is an example of using Node2Vec to embed a network:

https://github.com/tangjianpku/LINE
https://github.com/tangjianpku/LINE
https://github.com/xgfs/node2vec-c
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Listing 4.14: code/graphalg/node2vec.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

l o n g i n t seed = 777;

// Read the network

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

// Create a Node2Vec encoder

Node2Vec <> encoder(net , seed);

// Set the dimension to 5

encoder.setDim (5);

// Initialize the encoder

encoder.init();

// Embed the network

encoder.encode ();

// Print the code of every node

std::cout << std:: fixed << std:: setprecision (3);

f o r (std:: size_t i = 0; i < net ->getNbNodes (); i++) {

a u t o v = encoder.getNodeCode(i);

std::cout << net ->getLabel(i) << " :\t";

f o r ( i n t j = 0; j < v.size(); j++) {

std::cout << v[j] << "\t";

}

std::cout << std::endl;

}

r e t u r n 0;

}

The following is a partial listing of the output of this program:.
1 : -0.424 -0.168 0.691 -1.523 -0.522

2 : 0.397 0.280 1.195 -1.148 0.161

3 : 0.191 -0.240 0.158 -1.099 0.835

4 : 0.118 -0.307 1.007 -1.339 0.243

5 : -0.602 0.699 0.568 -1.668 -0.789

6 : -0.847 1.162 0.490 -1.547 -1.016

7 : -0.875 1.185 0.562 -1.605 -0.881

...

This is an example of using HMSM to embed a network:

Listing 4.15: code/graphalg/hmsm.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

l o n g i n t seed = 777;

// Read the network

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

// Create a HMSM encoder

HMSM <> encoder(net , seed);

// Set the dimension to 3
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encoder.setDim (3);

// Initialize the encoder

encoder.init();

// Embed the network

encoder.encode ();

// Print the code of every node

std::cout << std:: fixed << std:: setprecision (3);

f o r (std:: size_t i = 0; i < net ->getNbNodes (); i++) {

a u t o v = encoder.getNodeCode(i);

std::cout << net ->getLabel(i) << " :\t";

f o r ( i n t j = 0; j < v.size(); j++) {

std::cout << v[j] << "\t";

}

std::cout << std::endl;

}

r e t u r n 0;

}

The following is a partial listing of the output of this program:.
1 : 16.000 9.550 -8.157

2 : 9.000 19.015 -7.989

3 : 10.000 20.929 -7.757

4 : 6.000 19.985 -8.358

5 : 3.000 0.388 -13.094

6 : 4.000 -3.115 -15.756

7 : 4.000 -3.144 -16.056

...
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Classifiers
All binary classifiers in LinkPred implements the interface Classifier , which provides
two important methods: the method learn which trains the classifier on a training set,
and the method predict which predicts the output for a given input:

Listing 5.1: code/ml/classifier.hpp

t e m p l a t e <...> c l a s s Classifier {

/**

* Learn from data.

* @param trInBegin Iterator to the first example features (

input).

* @param trInEnd Iterator to one -past -the -last example

features (input).

* @param trOutBegin Iterator to the first example class (

output).

* @param trOutEnd Iterator to one -past -the -last example class

(output).

*/

v i r t u a l v o i d learn(InRndIt trInBegin , InRndIt trInEnd , OutRndIt

trOutBegin , OutRndIt trOutEnd) = 0;

/**

* Predict.

* @param inBegin Iterator to the first instance features (

input).

* @param inEnd Iterator to one -past -the -last instance features

(input).

* @param scoresBegin Iterator to the first location where to

store prediction scores. Memory must be pre -allocated.

*/

v i r t u a l v o i d predict(InRndIt inBegin , InRndIt inEnd , ScoreRndIt

scoresBegin) = 0;

/**
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* @return The name of the classifier.

*/

c o n s t std:: string& getName () c o n s t {

r e t u r n name;

}

/**

* Set the name of the classifier.

* @param name The new name of the classifier.

*/

v o i d setName( c o n s t std:: string &name) {

t h i s ->name = name;

}

};

The following code shows an example of using the logistic regression classifier
included with LinkPred.

R The class LogisticRegresser is the only classifier "native" to LinkPred. The
other classifiers inherit from mlpack classes and therefore require that LinkPred
is compiled with mlpack (that is, the option LINKPRED_WITH_MLPACK is set to true,
which is the default setting).

Listing 5.2: code/ml/logisticregresser.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

// Training data

std::vector <Vec > trnIn;

trnIn.push_back ({ 0.912145 , 0.709983 , 0.226475 });

trnIn.push_back ({ 0.934958 , 0.123857 , 0.802411 });

trnIn.push_back ({ 0.039990 , 0.781305 , 0.560989 });

trnIn.push_back ({ 0.322438 , 0.241671 , 0.637029 });

trnIn.push_back ({ 0.895175 , 0.726442 , 0.406118 });

trnIn.push_back ({ 0.140349 , 0.068158 , 0.488275 });

trnIn.push_back ({ 0.474313 , 0.968052 , 0.370530 });

trnIn.push_back ({ 0.437717 , 0.953002 , 0.371601 });

trnIn.push_back ({ 0.655664 , 0.527321 , 0.712499 });

trnIn.push_back ({ 0.123821 , 0.552098 , 0.846477 });

std::vector < bool > trnOut = { 0, 1, 0, 1, 0, 1, 0, 0, 1, 0 };

// Create a logistic regression classifier with rergularization

coefficient lambda = 0.001 and seed = 777

LogisticRegresser <> classifier (0.001 , 777);

// Train the classifier

classifier.learn(trnIn.begin(), trnIn.end(), trnOut.begin (),

trnOut.end());

// Test data

std::vector <Vec > tstIn;

tstIn.push_back ({ 0.85568 , 0.36109 , 0.86532 });

tstIn.push_back ({ 0.13094 , 0.61792 , 0.80714 });

tstIn.push_back ({ 0.61693 , 0.47719 , 0.67608 });

tstIn.push_back ({ 0.47321 , 0.57101 , 0.10932 });
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tstIn.push_back ({ 0.73278 , 0.19042 , 0.70569 });

std::vector < bool > tstOut = { 1, 0, 1, 0, 1 };

// Predict output for test set

std::vector <double > pred(tstIn.size());

classifier.predict(tstIn.begin (), tstIn.end(), pred.begin ());

// Print results

std::cout << "Predicted\tActual" << std::endl;

f o r ( i n t j = 0; j < 5; j++) {

std::cout << pred[j] << "\t" << tstOut[j] << std::endl;

}

r e t u r n 0;

}

This is the output of for this code:
Predicted Actual

0.997813 1

0.058436 0

0.821603 1

0.00838614 0

0.998843 1

The general pattern for using a classifier is as follows:
std::vector <Vec > trnIn; // Training input

std::vector < bool > trnOut; // Training output

std::vector <Vec > tstIn; // Test input

// Fill or load data

...

// Train the classifier

classifier.learn(trnIn.begin(), trnIn.end(), trnOut.begin (),

trnOut.end());

// Predict output for test set

std::vector <double > pred(tstIn.size());

classifier.predict(tstIn.begin (), tstIn.end(), pred.begin ());

LinkPred contains the implementation of the following classifiers:
• Logistic regression: This classifier is implemented by the class LogisticRegresser

and has two parameters, the regularization coefficient lambda and a seed for the
random number generator. These two parameters are passed to the constructor of
the class.

// Create a logistic regression classifier with

rergularization coefficient lambda = 0.001 and seed =

777

LogisticRegresser <> classifier (0.001 , 777);

• Feed-forward neural network (requires mlpack): This classifier is imple-
mented in the class FFN , which inherits from mlpack::ann::FFN<> . The methods
of the latter can be used to design the architecture of the network (see mlpack doc-
umentation). Alternatively, LinkPred provides the method setAutoArch(int dim) ,
which allows to create a default architecture with an input layer of size dim . The
default architectures consists of a pipeline of blocks, each containing a linear layer
( mlpack::ann::Linear<> ) followed by a sigmoid layer ( mlpack::ann::SigmoidLayer<> ).
The last block consists of a linear layer followed by a log softmax layer (ml-
pack::ann::LogSoftMax<>). The layers’ dimension is divided by two at each
block until it reaches two at the output layer.
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// Create a feed -forward network and set its architecture

autoimatically

FFN <> classifier;

classifier.setAutoArch(dim);

• Linear SVM (requires mlpack): This classifier is implemented in the class
LinearSVM , which inherits from the class mlpack::svm::LinearSVM<> . All param-

eters of this classifier can be set using the methods of the latter class (see mlpack
documentation).

// Create a linear SVM architecture

LinearSVM <> classifier;

• Naive Bayes classifier (requires mlpack): This classifier is implemented in the
class NaiveBayes , which inherits from the mlpack class mlpack::naive_bayes::NaiveBayesClassifier .

// Create a naive Bayes classifier

NaiveBayes <> classifier;

• Random classifier: This classifier is implemented in the class RndClassifier

and mainly serves for debugging purposes.
// Create a random classifier with seed = 777

RndClassifier <> classifier (777);

Similarity measures
All similarity measures in LinkPred inherits from the abstract class SimMeasure , which
defines the following interface:

Listing 5.3: code/ml/simmeasure.hpp

c l a s s SimMeasure {

p r o t e c t e d :

std:: string name; /**< The name of the similarity measure. */

p u b l i c :
/**

* Compute the similarity between two vectors.

* @param x First vector.

* @param y Second vector. Must be of the same dimension as x.

* @return The similarity between x and y.

*/

v i r t u a l d o u b l e sim(Vec c o n s t & x, Vec c o n s t & y) = 0;

c o n s t std:: string& getName () c o n s t {

r e t u r n name;

}

v o i d setName( c o n s t std:: string &name) {

t h i s ->name = name;

}

};

The library contains the most commonly used similarity measures:
• Cosine similarity: is implemented in the class CosineSim and returns the cosine

of the degree between the two input vectors x and y, that is:

∑
d
i=1 xiyi√

∑
d
i=1 x2

i

√
∑

d
i=1 y2

i

. (5.1)
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• Dot product similarity: is implemented in the class DotProd and simply returns
the dot product of the two input vectors x and y, that is:

d

∑
i=1

xiyi. (5.2)

• L2 similarity: is implemented in the class L2Sim and returns the negative of the
L2 (Euclidean) distance between x and y, that is:

−

√√√√ d

∑
i=1

(xi− yi)
2. (5.3)

• L1 similarity: is implemented in the class L1Sim and returns the negative of the
L1 (Manhattan) distance between x and y, that is:

−
d

∑
i=1
|xi− yi| . (5.4)

• Lp similarity: is implemented in the class LPSim and returns the negative of the
Lp (p is passed as parameter to the constructor) distance between x and y, that is:

−

(
d

∑
i=1
|xi− yi|p

)1
p
. (5.5)

• Pearson similarity: is implemented in the class Pearson and returns the Pearson
correlation coefficient between the two input vectors x and y, that is:

∑
d
i=1 (xi− x̄)(yi− ȳ)√

∑
d
i=1 (xi− x̄)2

∑
d
i=1 (yi− ȳ)2

. (5.6)

The following code shows how to use these classes to compute the similarity between
two vectors:

Listing 5.4: code/ml/simmeasures.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

Vec x = {1, 0, 1};

Vec y = {-1, 1, 2};

CosineSim csm;

std::cout << "CosineSim: " << csm.sim(x, y) << std::endl;

DotProd dp;
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std::cout << "DotProd: " << dp.sim(x, y) << std::endl;

L1Sim l1;

std::cout << "L1Sim: " << l1.sim(x, y) << std::endl;

L2Sim l2;

std::cout << "L2Sim: " << l2.sim(x, y) << std::endl;

LPSim l3(3);

std::cout << "L3Sim: " << l3.sim(x, y) << std::endl;

Pearson prs;

std::cout << "Pearson: " << prs.sim(x, y) << std::endl;

r e t u r n 0;

}

This out the output of the code above:
CosineSim: 0.288675

DotProd: 1

L1Sim: -4

L2Sim: -2.44949

L3Sim: -1.81712

Pearson: -0.188982



6. Predictors

In this chapter, we cover the link prediction algorithms available in LinkPred. The
library offers a unified interface for all link prediction algorithms which simplifies the
use and comparison of different prediction methods. This interface is presented first in
this chapter. The two subsequent sections present the available prediction algorithms
for undirected networks and directed networks respectively. We end the chapter with an
explanation on how to implement your own link prediction algorithm so that it can be
used with LinkPred classes.

R Predictor classes are grouped under the namespace Predictors , and can be
imported using:

In the examples included in this chapter, we assume that this namespace is imported
and drop the prefix LinkPred:: from all classes for convenience.

6.1 The predictor interface
All link predictors for undirected networks must inherit from the abstract class ULPredictor

shown below. It declares three important virtual methods that must be implemented by
the derivative classes:

• The method void init() : This method is used to initialize the state of the pre-
dictor, including any internal data structures. Depending on the predictor, this
method may be left empty if no such initialization is required.

• The method void learn() : In algorithms that require learning, it is in this method
that the model is built. The learning is separated from prediction, because usually
the model is independent from the set of edges to be predicted. Notice that even if
the algorithm does not require any learning, this method must still be implemented
(it can be left empty).

• The method double score(Edge const & e) : returns the score for the edge e

(usually a negative edge).
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In addition to these three basic methods, ULPredictor declares the following three
methods:

• The method void predict(EdgeRndIt begin, EdgeRndIt end, ScoreRndIt scores) :
In this method, the edges to be predicted are passed to the predictor in the form
of a range ( begin , end ) in addition to a third parameter ( scores ) to which the
scores are written. All iterators must allow random access, and the memory for
storing the scores must already be allocated.

• The method std::pair<NonEdgeIt, NonEdgeIt> predictNeg(

ScoreRndIt scores) predicts the score for all negative (non-existing) links in the
network. The scores are written into the random output iterator scores . The
method returns a pair of iterators begin and end to the range of non-existing links
predicted by the method.

• The method std::size_t top(std::size_t k, EdgeRndOutIt eit, ScoreRndIt sit)

finds the k negative edges with the top score. The edges are written to the output
iterator eit , whereas the scores are written to sit . The scores are written in
the same order as the edges. The method returns the number of negative edges
inserted. It is the minimum between k and the number of negative edges in the
network. Ties are broken randomly.

The class ULPredictor offers default implementations for the methods top , predict

and predictNeg . Sub-classes may use these implementations or redefine them to achieve
better performance.

Listing 6.1: code/predictors/ulpredictor.hpp

t e m p l a t e <...> c l a s s ULPredictor {

v i r t u a l v o i d init() = 0;

v i r t u a l v o i d learn () = 0;

v i r t u a l d o u b l e score(EdgeType c o n s t & e);

v i r t u a l v o i d predict(EdgesRandomIteratorT begin ,

EdgesRandomIteratorT end , ScoresRandomIteratorT scores);

v i r t u a l std::pair < typename Network :: NonEdgeIterator , typename
Network :: NonEdgeIterator > predictNeg(ScoresRandomIteratorT

scores);

v i r t u a l std:: size_t top(std:: size_t k,

EdgesRandomOutputIteratorT eit , ScoresRandomIteratorT sit);

};

The abstract class DLPredictor plays the same role as ULPredictor but for link
predictors in directed networks. It offers the same interface as the latter but with different
default template arguments and methods implementation.

6.2 Link predictors for undirected networks
Most link predictors proposed in the literature apply to undirected networks. In this
section, we present the main prediction algorithms implemented in LinkPred. We divide
these into topological ranking methods and global methods. Topological ranking meth-
ods (or local methods) are fast and can scale to very large networks. On the other hand,
global methods, which although produce good prediction results, are usually limited to
small to medium sized networks because of their high computational requirements.
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6.2.1 Topological-ranking methods

Topological-ranking methods use local topological information to assign scores to edges
[21, 33]. Since they do not require learning, they are in general computationally efficient,
and depending on the type of network, may produce highly precise predictions. A large
number of topological measures have been proposed by researchers, and implementing
all of them can be an arduous task. Nevertheless, LinkPred contains the implementation
of the most important measures found in the literature.
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Figure 6.1: Example network.

1. Adamic-Adar index (ADA): In this method, a couple (i, j) is assigned the score:

si j = ∑
k∈Γi j

1
log(κk)

, (6.1)

where Γi j is the set of nodes adjacent to both i and j (set of common neighbors
of i and j), and κk is the degree of node k. If i and j have no common neighbors,
their score is set to 0. Eq. (6.24) is well defined, because κk 6= 1 (since k is a
common neighbor of i and j, its degree must be at least 2).

� Example 6.1 Consider the network of Figure 6.1. The Adamic-Adar index
score of (3,7) is:

1
log(κ1)

+
1

log(κ4)
=

1
log(4)

+
1

log(2)
≈ 2.1640.

The score of (5,8) is zero, since the two nodes have no common neighbors. �

The Adamic-Adar index method is implemented in the class ADAPredictor .
2. Common neighbors (CNE): In this approach, the score of a couple (i, j) is simply

the number of common neighbors of i and j:

si j = |Γi j|. (6.2)

� Example 6.2 For the network shown in Figure 6.1, the score of (3,7) is 2,
whereas the score of (5,8) is zero, since thy have no common neighbors. �

The common neighbors index method is implemented in the class CNEPredictor .



74 Chapter 6. Predictors

3. Cannistraci resource allocation index (CRA): The score of a couple (i, j) is
given by:

si j = ∑
k∈Γi j

|Γk∩Γi j|
κk

,

where Γk is the set of nodes adjacent to node k.

� Example 6.3 For the network shown in Figure 6.2, the score given by CRA to

(3,7) is
1
5
+

1
3
= 0.53. �

The predictor CRA is implemented by the class CRAPredictor .
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Figure 6.2: Example network.

4. Hub depromoted index (HDI): In this approach, the score of a couple (i, j) is
given by:

si j =
|Γi j|

max(κi,κ j)
. (6.3)

� Example 6.4 For the network shown in Figure 6.1. The score of (1,4) is 0.5,
and so is the score of (4,8). �

The hub depromoted index method is implemented in the class UHDIPredictor .
5. Hub promoted index (HPI): In this approach, the score of a couple (i, j) is given

by:

si j =
|Γi j|

min(κi,κ j)
. (6.4)

� Example 6.5 For the network shown in Figure 6.1, the score of (1,4) is 1, and
so is the score of (4,8). �

The hub promoted index method is implemented in the class UHPIPredictor .
6. Jackard index (JID): In this approach, the score of a couple (i, j) is given by:

si j =
|Γi j|

κi +κ j−|Γi j|
. (6.5)

If i and j have no common neighbors, the score 0 is assigned.
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� Example 6.6 For the network shown in Figure 6.1. The score of (1,4) is 0.5,
and so is the score of (4,8). �

The Jackard index method is implemented in the class UJIDPredictor .
7. Local path index (LCP): This method can be thought of as higher order cor-

rection to common neighbors. Instead of considering only paths of length two
between the two nodes i and j (which is equal to the number of common neigh-
bors), the number of paths of length three, Π3

i j, is also considered:

si j = |Γi j|+ εΠ
3
i j, (6.6)

where ε is an algorithm parameter, which usually takes small values (1e-3 for
instance). It is worth mentioning that the computation of paths of length three
increases the computational complexity of LCP compared to the other topological-
ranking methods.

� Example 6.7 For the network shown in Figure 6.1, and taking ε = 0.001. The
score of (3,7) is 2+0.001×1 = 2.001, and that of (5,8) is 0+0.001×1 = 0.001.
�

The local path index method is implemented in the class ULCPPredictor . The de-
fault value of ε is 1e-3. To read the value ε use the method double getEpsilon()const ,
and to modify it use void setEpsilon(double epsilon) .

8. Leicht-Holme-Newman index (LHN): In this approach, the score of a couple
(i, j) is given by:

si j =
|Γi j|
κiκ j

. (6.7)

� Example 6.8 For the network shown in Figure 6.1. The score of (1,4) is 0.25,
whereas the score of (4,8) is 0.5. �

The Leicht-Holme-Newman index method is implemented in the class ULHNPredictor .
9. Preferential attachment index (PAT): In this approach, the score of a couple

(i, j) is simply given by:

si j = κiκ j. (6.8)

� Example 6.9 For the network shown in Figure 6.1. The score of (1,4) is 8,
whereas the score of (4,8) is 2. �

The preferential attachment index method is implemented in the class UPATPredictor .
10. Resource allocation index (RAL): In this approach, the score of a couple (i, j)

is given by:

si j = ∑
k∈Γi j

1
κk

. (6.9)

� Example 6.10 For the network shown in Figure 6.1. The score of (1,4) is 0.67,
whereas the score of (4,8) is 0.33. �

The resource allocation index method is implemented in the class URALPredictor .



76 Chapter 6. Predictors

11. Salton index (SAI): In this approach, the score of a couple (i, j) is given by:

si j =
|Γi j|√
κiκ j

. (6.10)

� Example 6.11 For the network shown in Figure 6.1. The score of (1,4) is
1/
√

2 = 0.707, and so is the score of (4,8). �

The Salton index method is implemented in the class USAIPredictor .
12. Sorensen index (SOI): In this approach, the score of a couple (i, j) is given by:

si j =
|Γi j|

κi +κ j
. (6.11)

� Example 6.12 For the network shown in Figure 6.1. The score of (1,4) is 0.33,
and so is the score of (4,8). �

The Sorensen index method is implemented in the class USOIPredictor .
13. Sum of degrees index (SUM): A popularity index where the score for couple

(i, j) is simply given by:

si j = κi +κ j. (6.12)

� Example 6.13 For the network shown in Figure 6.1. The score of (1,4) is 6,
whereas the score of (4,8) is 3. �

The sum of degrees index method is implemented in the class USUMPredictor .

� Example 6.14 The following code shows how to compute the scores of all non-
existing links using ADA:

Listing 6.2: code/predictors/ada.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

UADAPredictor <> predictor(net);

predictor.init();

predictor.learn ();

std::cout << "#Start\tEnd\tScore\n";

f o r ( a u t o it = net ->nonEdgesBegin (); it != net ->nonEdgesEnd ();

++it) {

a u t o i = net ->getLabel(net ->start(*it));

a u t o j = net ->getLabel(net ->end(*it));

d o u b l e sc = predictor.score(*it);

std::cout << i << "\t" << j << "\t" << sc << std::endl;

}

r e t u r n 0;

}

�

� Example 6.15 The following code shows how to compute the top k scores using
RAL:
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Listing 6.3: code/predictors/raltop.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t k = 10;

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

URALPredictor <> predictor(net);

predictor.init();

predictor.learn ();

std::vector < typename UNetwork <>::Edge > edges(k);

std::vector <double > scores(k);

k = predictor.top(k, edges.begin (), scores.begin());

std::cout << "#Start\tEnd\tScore\n";

f o r ( i n t i = 0; i < k; i++) {

std::cout << net ->getLabel(net ->start(edges[i])) << "\t" <<

net ->getLabel(net ->end(edges[i])) << "\t" << scores[i] <<

std::endl;

}

r e t u r n 0;

}

�

6.2.2 Global predictors
1. Similarity-popularity algorithm introduced in [16] (KAB):This method as-

sumes that the likelihood of the existence of a link depends on popularity, similar-
ity and local attraction. The algorithm pre-weights the graph with a specific weight
map that factors out non-similarity factors and uses it to find similarity between
non-connected nodes. The result is then used to assign scores to non-existing
edges.
More precisely, the likelihood of a link between two nodes i, j is assumed propor-
tional to:

Ψ(i, j) =
(
πi j +ηi j

)
si j, (6.13)

where si j is the similarity between i and j, πi j is a measure of the popularity of
the two nodes, and ηi j represents the local attraction between them. Given φ :

φ(x) = log(x+1). (6.14)

The popularity term πi j is defined as:

πi j =
φ(κi)+φ(κ j)

2φ(κmax)
, (6.15)

where κi and κ j are the degrees of i and j receptively and κmax the maximum
degree in the network. The local attraction term ηi j depends on the local topology
near the two nodes:

ηi j = 1− ∏
k∈Γi j

φ(κk)

φ(κmax)
, (6.16)
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where Γi j is the set of common neighbors of i and j, and κk is the degree of node
k. The similarity term si j is defined as follows:

si j =
1

1+di j
. (6.17)

Every edge (i, j) ∈ E is assigned the length ω(i, j) given by:

ω(i, j) =
2πi j

1+ηi j
, (6.18)

Using this weight map, shortest path distance is used to compute the dissimilarity
between non-adjacent. The latter can be used to assign a score ψi j = Ψ(i, j) to
any negative link (i, j).
This predictor is implemented in the class UKABPredictor and has two parame-
ters. The first parameter is the horizon limit, an integer that limits computation
when computing shortest paths: any two nodes separated by more nodes than
the horizon limit are considered disconnected. The horizon limit can be set
and get using setHorizLim(int h) and int getHorizLim()const respectively. The
second parameter is the cache strategy used to store the shortest path distances.
This can be read set using the method CacheLevel getCacheLevel()const and
void setCacheLevel(CacheLevel cacheLevel) respectively (see Section 4.2.2 for

more details).
2. Hierarchical Random Graph (HRG) [7] is a probabilistic model where a hi-

erarchical structure consisting of a binary tree is used to predict connection
probabilities. The leaves of the binary tree represent the nodes of the network,
whereas internal nodes correspond to nested clusters. Each cluster is assigned the
probability of a link existing between its children. The probability of two nodes
being connected is then determined by finding their lowest common ancestor.
This algorithm is implemented by the class UHRGPredictor (which is actually
a C++ wrapper around the code provided by the authors). This algorithms re-
quires three parameters: a seed passed to the constructor and used to initialize
the internal random generator, the number of bins which can be accessed and
modified by int getNbBeans()const and void setNbBeans(int nbBeans) , and the
number of samples which can be read and set using int getNbSamples()const and
void setNbSamples(int nbSamples) . The default value for nbBeans is 25 and that

of nbSamples is 10000.
3. Stochastic block model (SBM) [12] is a probabilistic model, where the nodes

are divided into non-overlapping partitions. A matrix Q specifies the partition-
to-partition connection probability, which is the probability that a node from one
partition connects to a node from the other one. SBM can be used to detect
both missing and spurious links. It produces excellent results in general, but
its high computational cost limits its use to small networks. This algorithm is
implemented by the class USBMPredictor (which is actually a C++ wrapper around
the C code provided by the authors). This algorithms requires two parameters: a
seed passed to the constructor and used to initialize the internal random generator,
and the maximum number of iterations. The latter can be read and modified
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by std::size_t getMaxIter()const and void setMaxIter(std::size_t maxIter)

respectively. The default value of maxIter is 10000.
4. Fast blocking model (FBM) [20] uses as greedy search strategy to efficiently par-

tition the network into communities, reducing hence the computation complexity
of the graph partitioning task. The link densities within and between communities
are used to estimate the connection probability between nodes. Despite producing
results that are in general slightly lower than those of SBM, its low computational
requirements make FBM a good choice for average-size networks. FBM is imple-
mented in the class UFBMPredictor (a C++ translation of the Matlab code provided
by the authors). This class requires a single parameter, which is the maximum
number of iterations. It can be read and set using std::size_t getMaxIter()const
and void setMaxIter(std::size_t maxIter) respectively. The default value of
maxIter is 50.

5. HyperMap (HYP) [23, 24]: The Popularity×Similarity Optimization (PSO)
and its variant E-PSO are complex network models that assume the existence
of a hidden hyperbolic space that controls the topology of real networks. The
likelihood of connection between nodes is a trade-off between the similarity of
the nodes and their popularity, and it is the behavior of the connection probability
with respect to nodes popularity that gives the hidden metric space its hyperbolic
geometry. In these models, every is assigned a radial coordinate ri and an angular
coordinate θi. The probability that two nodes i, j connect is then given by:

pi j =
1

1+ e(di j−R)/T
, (6.19)

where R and T are model parameters and di j is the hyperbolic distance between i
and j given by:

di j ≈ ri + r j +
2
ζ

ln(θi j/2), (6.20)

where θi j is angular distance between i and j given by θi j = π−|π−|θi−θ j||.
The parameter ζ =

√
−K with K representing the curvature of the hyperbolic

plane.
The HyperMap algorithm embeds the network according to the E-PSO model by
assuming that ri are equal degree and using the Metropolis-Hastings algorithm to
find the coordinates θi that maximize the local likelihood Li,

Li = ∏
1≤ j≤i

(pi j)
ai j [1− (pi j)]

1−ai j (6.21)

HyperMap is implemented in the class UHYPPredictor (a wrapper around the code
provided by the authors with the additional feature of fitting power law distribution
to estimate the exponent γ as explained below). It receives a random number
generator seed in its constructor. Additionally, it has five parameters required by
the E-PSO model:

(a) m: represents the average number of nodes with which new nodes connect.
It is set to the minimum degree in the network. After calling init , it is pos-
sible to get and set m using double getM()const and void setM(double m)

respectively.
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(b) L: represents the average number of nodes with which old nodes connect
and is set to L = (〈k〉−2m)/2, where 〈k〉 is the average node degree. After
calling init , it is possible to get and set L using double getL()const and
void setL(double L) respectively.

(c) γ: is the exponent of the power-law degree distribution. In our imple-
mentation, it is calculated from the degree distribution of the training set
network using plfit, a C++ implementation of Clauset, Shalizi and New-
man [8] method for fitting power law distributions written by Tamas Ne-
pusz (http://tuvalu.santafe.edu/~aaronc/powerlaws/). After call-
ing init , it is possible to get and set γ using double getGamma()const and
void setGamma(double gamma) respectively.

(d) T : controls the average clustering. It can be read and modified using
double getT()const and void setT(double T) respectively. The default value
is 0.8.

(e) ζ =
√
−K where K is the curvature of the hyperbolic plane. It is set by

default to 1 and can be read and modified using double getZeta()const and
void setZeta(double zeta) .

HyperMap gives good results in Internet networks and networks with similar
properties, but it has a high a computational cost in general.

6. Shortest-path predictor (SHP): This predictor assigns scores to node couples
according to their shortest-path distance:

si j =
1

di j
. (6.22)

It can also assign scores to existing edges:

si j =
1

d̄i j
, (6.23)

where d̄i j is the distance between i and j obtained by first removing the edge (i, j).
The shortest-path predictor is implemented by the class USHPPredictor . The
distances are computed using Dijkstra’s algorithm, which is executed during
the predict method. The distances are therefore not pre-calculated, but rather
computed on-demand according to the set of edges to be predicted. Neverthe-
less, to improve the time performance the distances can be cached. The cache
strategy can be read set using the method CacheLevel getCacheLevel()const and
void setCacheLevel(CacheLevel cacheLevel) respectively (see Section 4.2.2 for

more details).

� Example 6.16 The following code shows how to compute the scores of all non-
existing links using SBM:

Listing 6.4: code/predictors/sbm.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

http://tuvalu.santafe.edu/~aaronc/powerlaws/
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a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

USBMPredictor <> predictor(net , 777);

predictor.init();

predictor.learn ();

std::cout << "#Start\tEnd\tScore\n";

f o r ( a u t o it = net ->nonEdgesBegin (); it != net ->nonEdgesEnd ();

++it) {

a u t o i = net ->getLabel(net ->start(*it));

a u t o j = net ->getLabel(net ->end(*it));

d o u b l e sc = predictor.score(*it);

std::cout << i << "\t" << j << "\t" << sc << std::endl;

}

r e t u r n 0;

}

�

� Example 6.17 The following code shows how to compute the top k scores using
KAB:

Listing 6.5: code/predictors/kabtop.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main() {

i n t k = 10;

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

UKABPredictor <> predictor(net);

predictor.init();

predictor.learn ();

std::vector < typename UNetwork <>::Edge > edges(k);

std::vector <double > scores(k);

k = predictor.top(k, edges.begin (), scores.begin());

std::cout << "#Start\tEnd\tScore\n";

f o r ( i n t i = 0; i < k; i++) {

std::cout << net ->getLabel(net ->start(edges[i])) << "\t" <<

net ->getLabel(net ->end(edges[i])) << "\t" << scores[i] <<

std::endl;

}

r e t u r n 0;

}

�

6.2.3 Network embedding methods
In these methods, the network is first embedded into a low dimensional vector space,
whereby nodes are assigned coordinates in that space while preserving the network’s
structural properties. These coordinates can be used either to compute the similarity
between nodes or as features to train a classifier to discriminate between existing edges
(the positive class) and non-existing edges (the negative class) [10].

LinkPred provides two classes that can be used to build link prediction algorithms
based on graph embedding: the class UECLPredictor , which combines an encoder (a
graph embedding algorithm) and a classifier (Figure 6.3), and the class UESMPredictor ,
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which pairs the encoder with a similarity measure (Figure 6.4).
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Figure 6.3: The class UECLPredictor uses an encoder to embed the graph followed by a
classifier to predict link scores.
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Figure 6.4: The class UESMPredictor uses an encoder to embed the graph followed by a
similarity measure to predict link scores.

The components of these predictors are passed to their constructors:
UECLPredictor <> predictor(net , encoder , classifier , seed);

UESMPredictor <> predictor(net , encoder , simMeasure);

The argument encoder must be a shared pointer to an object of type Encoder , for
example:
a u t o encoder = std:: make_shared <Node2Vec <>>(net , 777);

Section 4.3 gives a detailed presentation about the graph embedding algorithms available
in LinkPred and the interface Encoder .

The following code shows how to create a prediction algorithm that uses Node2Vec
and logistic regression to predict links. As mentioned earlier, since we are predicting
using a classifier, we will use the class UECLPredictor :

Listing 6.6: code/predictors/ecl.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

// Load network

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

// Create the encoder

a u t o encoder = std:: make_shared <Node2Vec <>>(net , 777);

// Create the classifier

a u t o classifier = std:: make_shared <LogisticRegresser <>>(0.001,

888);
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// Create the predictor

UECLPredictor <> predictor(net , encoder , classifier , 999);

// Initialize and train

predictor.init();

predictor.learn ();

// Print the score of all non -existing edges

std::cout << "#Start\tEnd\tScore\n";

f o r ( a u t o it = net ->nonEdgesBegin (); it != net ->nonEdgesEnd ();

++it) {

a u t o i = net ->getLabel(net ->start(*it));

a u t o j = net ->getLabel(net ->end(*it));

d o u b l e sc = predictor.score(*it);

std::cout << i << "\t" << j << "\t" << sc << std::endl;

}

r e t u r n 0;

}

If we want to use a similarity measure instead of a classifier, we use the class
UESMPredictor (here, we are using LINE as encoder):

Listing 6.7: code/predictors/esm.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

// Load network

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

// Create the encoder

a u t o encoder = std:: make_shared <LINE <>>(net , 777);

// Create the similarity measure

a u t o simMeasure = std:: make_shared <CosineSim >();

// Create the predictor

UESMPredictor <> predictor(net , encoder , simMeasure);

// Initialize and train

predictor.init();

predictor.learn ();

// Print the score of all non -existing edges

std::cout << "#Start\tEnd\tScore\n";

f o r ( a u t o it = net ->nonEdgesBegin (); it != net ->nonEdgesEnd ();

++it) {

a u t o i = net ->getLabel(net ->start(*it));

a u t o j = net ->getLabel(net ->end(*it));

d o u b l e sc = predictor.score(*it);

std::cout << i << "\t" << j << "\t" << sc << std::endl;

}

r e t u r n 0;

}

6.2.4 Utility predictors
LinkPred includes a number of link prediction classes that can be useful for debugging
and similar purposes:

• The constant predictor: This is a predictor that assigns a constant score, namely
0, to all links. It is useful for debugging performance measures as its performance



84 Chapter 6. Predictors

on a given test data can be easily calculated theoretically. This algorithm is
implemented in the class UCSTPredictor .

• The random predictor: This is a predictor that assigns a random score uniformly
distributed in [0,1). Similar to the constant predictor, the random predictor is
useful for debugging performance measures as its expected performance on a given
test data can also be easily calculated theoretically. This algorithm is implemented
in the class URNDPredictor .

• Predictor with pre-stored scores: This algorithm loads edge scores from a file
and merely serves as a lookup table. It is useful for evaluating the results of link
prediction algorithms implemented outside LinkPred. It is intended to play a
proxy role on behalf of the external algorithm and uses the pre-stored data to
predict links. This algorithm is implemented in the class UPSTPredictor . The
scores are loaded using the method loadEdgeScores . The format of this file is as
follows (the first is just a comment and can be omitted):
#Start End Score

1 31 0.41374

1 10 0.276687

1 28 0.283587

1 29 0.374494

1 33 0.463135

1 17 0.531863

1 34 0.49409

1 26 0.325087

1 25 0.325087

...

� Example 6.18 The following code shows how to use UPSTPredictor :

Listing 6.8: code/predictors/pst.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

a u t o net = UNetwork <>::read("Zakarays_Karate_Club.edges");

// First we compute scores using ADA and store them on file

{

UADAPredictor <> predictor(net);

predictor.init();

predictor.learn ();

std::vector <Utilities ::EdgeScore <std::string >> esv;

f o r ( a u t o it=net ->nonEdgesBegin ();it!=net ->nonEdgesEnd ()

;++it){

a u t o i = net ->getLabel(net ->start(*it));

a u t o j = net ->getLabel(net ->end(*it));

d o u b l e sc = predictor.score(*it);

esv.push_back ({ i, j, sc });

}

Utilities :: writeEdgeScores("pstscores.csv", esv);

}

// We then load the scores into UPSTPredictor

{

UPSTPredictor <> predictor(net);
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predictor.loadEdgeScores("pstscores.csv");

predictor.init();

predictor.learn ();

std::vector <Utilities ::EdgeScore <std::string >> esv;

f o r ( a u t o it = net ->nonEdgesBegin (); it != net ->

nonEdgesEnd (); ++it){

a u t o i = net ->getLabel(net ->start(*it));

a u t o j = net ->getLabel(net ->end(*it));

d o u b l e sc = predictor.score(*it);

std::cout << i << "\t" << j << "\t" << sc << std::endl;

}

}

r e t u r n 0;

}

�

Since UPSTPredictor requires knowing the test set beforehand, it is typically
used with pre-generated data that is loaded from file (see Chapter 7). The typical
workflow for using this predictor is as follows:

1. Generate test data using one of the methods available in NetworkManipulator

(see Chapter 7) or using Simp::Evaluator::genTestData (see Chapter 2).
2. Save the test data to file.
3. Use the training part of the data to train the external algorithm.
4. Compute the scores of all links in the test set and save it to a file.
5. Load the test data from file using the method NetworkManipulator::loadTestData

(see Chapter 7).
6. Load the scores from file using UPSTPredictor::loadEdgeScores .
7. Now, the results from the external algorithms on this test data can be com-

pared against any algorithm implemented in LinkPred.

6.3 Link predictors for directed networks
LinkPred contains the implementations of several link prediction algorithms that work
on directed networks. These are basically adaptations of topological-ranking methods
shown earlier for the undirected case:

1. Directed Adamic-Adar index (DADA): In this method, a couple (i, j) is assigned
the score:

si j = ∑
k∈Γi→ j

1
log(κk)

, (6.24)

where Γi→ j is the set of nodes k such that there exists and edge between i and k
and an edge between k and j. Here, κk is the degree of node k (the sum of out
and in-degrees). If Γi→ j is empty, the score is set to 0. Eq. (6.24) is well defined,
because κk 6= 1. The directed Adamic-Adar index method is implemented in the
class DADAPredictor .

2. Directed common neighbors (DCNE): In this approach, the score of a couple
(i, j) is simply the size of the set Γi→ j. The directed common neighbors index
method is implemented in the class DCNEPredictor .
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3. Directed hub depromoted index (DHDI): In this approach, the score of a couple
(i, j) is given by:

si j =
|Γi→ j|

max(κout
i ,κ in

j )
, (6.25)

where κout
i is the out-degree of i, and κ in

j is the in-degree of j. The hub depromoted
index method is implemented in the class DHDIPredictor .

4. Directed hub promoted index (DHPI): In this approach, the score of a couple
(i, j) is given by:

si j =
|Γi→ j|

min(κout
i ,κ in

j )
, (6.26)

The hub promoted index method is implemented in the class DHDIPredictor .
5. Directed Jackard index (DJID): In this approach, the score of a couple (i, j) is

given by:

si j =
|Γi→ j|

κout
i +κ in

j −|Γi→ j|
. (6.27)

If Γi→ j is empty, the score 0 is assigned. The directed Jackard index method is
implemented in the class DJIDPredictor .

6. Directed local path index (DLCP): This method can be thought of as higher
order correction to directed common neighbors. It assigns the score:

si j = |Γi→ j|+ εΠ
3
i→ j, (6.28)

where Π3
i j stands for the number of directed paths of length three, and ε is an algo-

rithm parameter, which usually takes small values (1e-3 for instance). The directed
local path index method is implemented in the class DLCPPredictor . The default
value of ε is 1e-3. To read the value ε use the method double getEpsilon()const ,
and to modify it use void setEpsilon(double epsilon) .

7. Directed Leicht-Holme-Newman index (DLHN): In this approach, the score of
a couple (i, j) is given by:

si j =
|Γi→ j|
κout

i κ in
j
. (6.29)

The directed Leicht-Holme-Newman index method is implemented in the class
DLHNPredictor .

8. Directed preferential attachment index (DPAT): In this approach, the score of
a couple (i, j) is simply given by:

si j = κ
out
i κ

in
j . (6.30)

The directed preferential attachment index method is implemented in the class
DPATPredictor .
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9. Directed Salton index (DSAI): In this approach, the score of a couple (i, j) is
given by:

si j =
|Γi→ j|√
κout

i κ in
j

. (6.31)

The directed Salton index method is implemented in the class DSAIPredictor .
10. Directed Sorensen index (DSOI): In this approach, the score of a couple (i, j) is

given by:

si j =
|Γi→ j|

κout
i +κ in

j
. (6.32)

The directed Sorensen index method is implemented in the class DSOIPredictor .

6.4 Implementing a new link prediction algorithm
The first step in implementing a new link prediction algorithm is to inherit from
ULPredictor and implement the necessary methods. For a minimal implementation, the

three methods init , learn and score must at least be defined. If you want to achieve
better performance you may want to redefine the three other methods ( top , predict

and predictNeg ).

� Example 6.19 Suppose you want to create a very simple link prediction algorithm
that assigns as score to (i, j) the score κi +κ j, the sum of the degrees of the two nodes1.
In a file named usdpredictor.hpp, write the following code:

Listing 6.9: code/predictors/usdpredictor.hpp

# i f n d e f USDPREDICTOR_HPP_

# d e f i n e USDPREDICTOR_HPP_

# i n c l u d e <linkpred.hpp >

c l a s s USDPredictor: p u b l i c LinkPred :: ULPredictor <> {

u s i n g LinkPred :: ULPredictor <>::net;

u s i n g LinkPred :: ULPredictor <>::name;

p u b l i c :
u s i n g EdgeType = typename LinkPred :: ULPredictor <>:: EdgeType;

USDPredictor(std::shared_ptr <Network c o n s t > net) :

LinkPred :: ULPredictor <>(net) {

name = "USD";

}

v i r t u a l v o i d init();

v i r t u a l v o i d learn ();

v i r t u a l d o u b l e score(EdgeType c o n s t & e);

v i r t u a l ~USDPredictor () = d e f a u l t ;
};

# e n d i f

1LinkPred already contains a sum-of-degree predictor named USUMPredictor .
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R The abstract class ULPredictor is in fact a class template, but in the code above
we are extending it with the default template parameters. Although a bit restrictive,
this approach is the quickest and easiest way to add a new predictor.

In a file named usdpredictor.cpp write the implementation of the abstract methods:

Listing 6.10: code/predictors/usdpredictor.cpp

# i n c l u d e "usdpredictor.hpp"

v o i d USDPredictor ::init() {}

v o i d USDPredictor :: learn () {}

d o u b l e USDPredictor :: score(EdgeType c o n s t & e) {

a u t o i = net ->start(e);

a u t o j = net ->end(e);

r e t u r n net ->getDeg(i) + net ->getDeg(j);

}

Note that this predictor does not require initialization or learning. This predictor is now
ready to be used with LinkPred classes and methods. We can write a code that uses this
predictor to find the top k missing links:

Listing 6.11: code/predictors/usdtop.cpp

# i n c l u d e <linkpred.hpp >

# i n c l u d e "usdpredictor.hpp"

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std:: size_t k = 10;

a u t o net = UNetwork <>::read("Infectious.edges");

USDPredictor predictor(net);

predictor.init();

predictor.learn ();

std::vector < typename UNetwork <>::EdgeType > edges;

edges.resize(k);

std::vector <double > scores;

scores.resize(k);

k = predictor.top(k, edges.begin (), scores.begin());

std::cout << "#Start\tEnd\tScore\n";

f o r (std:: size_t l = 0; l < k; l++) {

a u t o i = net ->getLabel(net ->start(edges[l]));

a u t o j = net ->getLabel(net ->end(edges[l]));

std::cout << i << "\t" << j << "\t" << scores[l] <<std::endl;

}

r e t u r n 0;

}

�



7. Performance Evaluation

Performance evaluation is a crucial phase in the development of new link prediction
algorithms as well as in the study of their effectiveness for a given type or family
of networks. LinkPred offers a set of tools that help streamlining the performance
evaluation procedure. This includes data setup functionalities, which can be used to
create test data, efficient implementations of the most important performance measures
used in link prediction literature, and and helper classes that facilitates the comparative
evaluation of multiple link prediction algorithms using multiple performance measures.

7.1 Data setup
To measure the performance of a link prediction algorithm, it is presented with a distorted
version of a fully known network that serves as ground truth data. The distortions to
which the network is subjected can be categorized into three types1:

1. Removing existing links.
2. Adding new links.
3. A combination of the above.

The task of the link prediction algorithm is to determine the actual status of couples
based on the observed relationships. Notice that traditionally, the role of link prediction
methods has been limited to detecting missing links. As a result, most link prediction
algorithms can only handle distortions of the first kind (link removal). Nevertheless,
LinkPred offers the possibility of performing all three types of distortions. Before
presenting the relevant classes and methods, some terminology is of the order:

• The reference network is the ground truth network used to measure the perfor-
mance of the algorithm. This network is unknown to the algorithm.

• The observed network is the network obtained after distortion and presented to the
algorithm.

• A true positive link is a link that is present in the reference network as well as the
observed network.

1Notice that distortions are limited to edges. No nodes are added or removed from the network
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• A true negative link is a link that is missing from the reference network as well as
the observed network.

• A false positive link is a link that is missing from the reference network but present
in the observed network.

• A false negative link is a link that is present in the reference network but missing
form the observed network.

Notice that depending on the type of distortions applied to the network, some of the
sets defined above (true positive links, true negative links, false positive links and false
negative links) may be empty. For instance, if the network is only modified by removing
existing links, the set of false positive links contains no elements2.

The data used for performance evaluation is stored within a class named TestData .
This class provides a smart pointer to the reference network via getRefNet() , a smart
pointer to the observed network via getObsNet() and the following ranges:

• The set of positive links included in the test set: posBegin() and posEnd() .
• The set of negative links included in the test set: negBegin() and negEnd() .

A TestData object can be created by calling the constructor:

TestData testData(refNet , obsNet , remLinks , addLinks , tpLinks ,

tnLinks , posClass , negClass);

The two last arguments are of the type LinkClass :

enum LinkClass {

TP, /**< True positive link. */

FN, /**< False negative link. */

FP, /**< False positive link. */

TN /**< True negative link. */

};

and are used to specify the set of links used, respectively, as positive instances and
negative instances in the test set. This allows for instance to consider non-existing links
as the positive instances.

It is clear from the constructor’s signature that TestData is intended to be merely a
container to store the test data elements together. To generate the test data, LinkPred
provides the class NetworkManipulator , which contains a set of static methods that can
be used to that end. These methods are explained in detail in the next sections.

7.1.1 Creating test data by removing edges
The first method distorts the network by removing existing links:

createTestDataRem(NetworkCSP refNet , d o u b l e remRatio , b o o l
keepConnected , b o o l aTP , d o u b l e tpRatio , b o o l aTN , d o u b l e
tnRatio , l o n g i n t seed , b o o l preGenerateTPN = t r u e );

The parameters of this method are as follows:
• refNet : A constant shared pointer to the reference network.

2It is important to keep in mind that the class of a link as defined here is determined solely by
specifying the reference and observed networks and is independent of any classification results. Hence, if
a classifier is used on the network, a true negative link may for example be classified as positive and will
therefore constitute a false positive instance. This may render the discussion a bit confusing by times but
is necessary to keep in line with existing conventions.
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• remRatio : Value between 0 and 1 that specifies the percentage of edges to be
removed.

• keepConnected : Specifies whether to keep the network connected. If the reference
network is disconnected or the ratio of edges to be removed is too large to keep
the network connected, an exception is raised.

• aTP : Specifies whether to use all true positive links in the test set.
• tpRatio : Ratio of true positive links to be used in the test set. This parameter is

only relevant when aTP is false.
• aTN : Specifies whether to use all true negative links in the test set.
• tnRatio : Ratio of true negative links to be used in the test set. This parameter is

only relevant when aTN is false.
• seed : The random number generator’s seed.
• preGenerateTPN : Whether to pre-generate true positives and true negatives.

The set of false negative links is used as the set of positive instances in the test set,
whereas the set of true negative links is used as the set of negative instances.

R If the parameter preGenerateTPN is set to false, edges are only generated on-
demand. The class TestData can also stream edges without storing them in
memory. This is particularity useful for very large networks. The streamed edges
are accessed through the following methods of the class TestData :

a u t o posStrmBegin () c o n s t ;
a u t o posStrmEnd () c o n s t ;
a u t o negStrmBegin () c o n s t ;
a u t o negStrmEnd () c o n s t ;

7.1.2 Creating test data by adding edges
The second method distorts the network by adding new links:

createTestDataAdd(NetworkCSP refNet , d o u b l e remRatio , b o o l aTP ,

d o u b l e tpRati , b o o l aTN , d o u b l e tnRatio , l o n g i n t seed , b o o l
preGenerateTPN = t r u e );

The parameters of this method are as follows:
• refNet : A constant shared pointer to the reference network.
• addRatio : Value between 0 and 1 that specifies the percentage of edges to be

added.
• aTP : Specifies whether to use all true positive links in the test set.
• tpRatio : Ratio of true positive links to be used in the test set. This parameter is

only relevant when aTP is false.
• aTN : Specifies whether to use all true negative links in the test set.
• tnRatio : Ratio of true negative links to be used in the test set. This parameter is

only relevant when aTN is false.
• seed : The random number generator’s seed.
• preGenerateTPN : Whether to pre-generate true positives and true negatives.

The set of true positive links is used as the set of positive instances in the test set, whereas
the set of false positive links is used as the set of negative instances.
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7.1.3 Creating test data by adding and removing edges
The last method is more flexible and can be used to create a new network by both adding
and removing links. The method starts first by removing existing links, then proceeds to
add new links:

createTestData(NetworkCSP refNet , d o u b l e remRatio , d o u b l e
addRatio , b o o l keepConnected , b o o l aTP , d o u b l e tpRatio , b o o l
aTN , d o u b l e tnRatio , LinkClass posClass , LinkClass negClass ,

l o n g i n t seed , b o o l preGenerateTPN = t r u e );

The parameters of this method are as follows:
• refNet : A constant shared pointer to the reference network.
• remRatio : Value between 0 and 1 that specifies the percentage of edges to be

removed.
• addRatio : Value between 0 and 1 that specifies the percentage of edges to be

added.
• keepConnected : Specifies whether to keep the network connected. If the reference

network is disconnected or the ratio of edges to be removed is too large to keep
the network connected, an exception is raised.

• aTP : Specifies whether to use all true positive links in the test set.
• tpRatio : Ratio of true positive links to be used in the test set. This parameter is

only relevant when aTP is false.
• aTN : Specifies whether to use all true negative links in the test set.
• tnRatio : Ratio of true negative links to be used in the test set. This parameter is

only relevant when aTN is false.
• posClass : Indicates which links will be considered the positive links.
• negClass : Indicates which links will be considered the negative links.
• seed : The random number generator’s seed.
• preGenerateTPN : Whether to pre-generate true positives and true negatives.

� Example 7.1 Consider the network shown in the right side of Figure 7.1. The
following code creates a distorted version of this network by adding and removing edges.
The resulting network is shown in the right side of Figure 7.1.
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Figure 7.1: Example of network distortion. To the right, the reference network. To the
left, the observed network.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;
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i n t main( i n t argc , char *argv []) {

i n t n = 8;

a u t o net = std:: make_shared <UNetwork <>>();

f o r ( i n t i = 1; i <= n; i++) {

std:: string il = std:: to_string(i);

std:: string jl = std:: to_string(i % n + 1);

net ->addEdge(net ->addNode(il).first , net ->addNode(jl).first);

jl = std:: to_string ((i + 1) % n + 1);

net ->addEdge(net ->addNode(il).first , net ->addNode(jl).first);

}

net ->assemble ();

a u t o testData = NetworkManipulator <>:: createTestData(net , 0.4,

0.3, t rue , t rue , 0, t rue , 0, FN , TN , 777);

std::cout << "Reference network :\n";

testData.getRefNet ()->print ();

std::cout << "Observed network :\n";

testData.getObsNet ()->print ();

std::cout << "Positive links:" << std::endl;

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << net ->getLabel(net ->start(*it)) << "\t" << net ->

getLabel(net ->end(*it)) << std::endl;

}

std::cout << "Negative links:" << std::endl;

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << net ->getLabel(net ->start(*it)) << "\t" << net ->

getLabel(net ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:
Reference network:

2 1

2 3

2 4

2 8

1 3

1 7

1 8

3 4

3 5

4 5

4 6

5 6

5 7

6 7

6 8

7 8

Observed network:

2 1

2 3

2 4

1 6

1 7
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1 8

3 4

4 6

5 6

5 7

5 8

6 8

Positive links:

6 7

7 8

2 8

4 5

3 5

1 3

Negative links:

2 5

2 6

2 7

1 4

1 5

3 6

3 7

3 8

4 7

4 8

�

7.1.4 Loading test data from file
The method loadTestData allows to read test data from file:

loadTestData(std:: string obsEdgesFileName , std:: string

remEdgesFileName , std:: string addEdgesFileName , b o o l aTP ,

d o u b l e tpRatio , b o o l aTN , d o u b l e tnRatio , LinkClass posClass ,

LinkClass negClass , l o n g i n t seed , b o o l preGenerateTPN = t r u e )
;

The parameters of this method are as follows:
• obsEdgesFileName : A file containing the observed edges (edge list format).
• remEdgesFileName : A file containing the removed edges (edge list format). This

is ignored if equal to empty string "".
• addEdgesFileName : A file containing the add edges (edge list format). This is

ignored if equal to empty string "".
• aTP : Specifies whether to use all true positive links in the test set.
• tpRatio : Ratio of true positive links to be used in the test set. This parameter is

only relevant when aTP is false.
• aTN : Specifies whether to use all true negative links in the test set.
• tnRatio : Ratio of true negative links to be used in the test set. This parameter is

only relevant when aTN is false.
• posClass : Indicates which links will be considered the positive links.
• negClass : Indicates which links will be considered the negative links.
• seed : The random number generator’s seed.
• preGenerateTPN : Whether to pre-generate true positives and true negatives.
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� Example 7.2 This example shows how to load test data from file. Consider the test
data shown in Figure 7.2.
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8

7

Figure 7.2: Example of test data to be loaded from file. Left: the observed edges. Middle:
the removed edges. Right: added edges

This data is stored in three files. The file net-obs.edges contains the list of observed
edges:

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8 1

#The following are added (spurious) edges

2 4

4 6

6 8

8 2

The file net-rem.edges contains the list of removed edges:

1 3

3 5

5 7

7 1

The file net-add.edges contains the list of added edges:

2 4

4 6

6 8

8 2

In the following program, we use loadTestData to load this data from file. We will
consider both added and removed edges and use false negative edges (removed edges)
as the positive class and true negative edges as the negative class.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Loading test data ..." << std::endl;
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a u t o testData = NetworkManipulator <>:: loadTestData("net -obs.

edges", "net -rem.edges", "net -add.edges", t rue , 0, t rue , 0,

FN, TN , 777, t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

std::cout << "Negative links in the test set:\n";

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:
Loading test data...

Test data reference network:

1 2

1 8

1 3

1 7

2 3

8 7

3 4

3 5

4 5

5 6

5 7

6 7

Test data observed network:

1 2

1 8

2 8

2 3

2 4

8 6

8 7

3 4

4 5

4 6

5 6

6 7

Positive links in the test set:

1 3

1 7

3 5
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5 7

Negative links in the test set:

1 4

1 5

1 6

2 5

2 6

2 7

8 3

8 4

8 5

3 6

3 7

4 7

In the second program, we use true positive edges (non-added edges) as the positive
class and false positive edges (added edges() as the negative class.
# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Loading test data ..." << std::endl;

a u t o testData = NetworkManipulator <>:: loadTestData("net -obs.

edges", "net -rem.edges", "net -add.edges", t rue , 0, t rue , 0,

TP, FP , 777, t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

std::cout << "Negative links in the test set:\n";

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:
Loading test data...

Test data reference network:

1 2

1 8

1 3

1 7

2 3

8 7

3 4
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3 5

4 5

5 6

5 7

6 7

Test data observed network:

1 2

1 8

2 8

2 3

2 4

8 6

8 7

3 4

4 5

4 6

5 6

6 7

Positive links in the test set:

1 2

1 8

2 3

8 7

3 4

4 5

5 6

6 7

Negative links in the test set:

2 8

2 4

8 6

4 6

In the third program, we consider only removed edges and use false negative edges
(removed edges) as the positive class and true negative edges as the negative class.
# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Loading test data ..." << std::endl;

a u t o testData = NetworkManipulator <>:: loadTestData("net -obs.

edges", "net -rem.edges", "", t rue , 0, t rue , 0, FN , TN , 777,

t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

std::cout << "Negative links in the test set:\n";
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f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:
Loading test data...

Test data reference network:

1 2

1 8

1 3

1 7

2 8

2 3

2 4

8 6

8 7

3 4

3 5

4 5

4 6

5 6

5 7

6 7

Test data observed network:

1 2

1 8

2 8

2 3

2 4

8 6

8 7

3 4

4 5

4 6

5 6

6 7

Positive links in the test set:

1 3

1 7

3 5

5 7

Negative links in the test set:

1 4

1 5

1 6

2 5

2 6

2 7

8 3

8 4

8 5

3 6



100 Chapter 7. Performance Evaluation

3 7

4 7

In the last program, we consider only added edges and use true positive edges (non-
added edges) as the positive class and false positive edges (added edges() as the negative
class.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Loading test data ..." << std::endl;

a u t o testData = NetworkManipulator <>:: loadTestData("net -obs.

edges", "", "net -add.edges", t rue , 0, t rue , 0, TP , FP , 777,

t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

std::cout << "Negative links in the test set:\n";

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:

Loading test data...

Test data reference network:

1 2

1 8

2 3

8 7

3 4

4 5

5 6

6 7

Test data observed network:

1 2

1 8

2 8

2 3

2 4

8 6

8 7

3 4
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4 5

4 6

5 6

6 7

Positive links in the test set:

1 2

1 8

2 3

8 7

3 4

4 5

5 6

6 7

Negative links in the test set:

2 8

2 4

8 6

4 6

�

7.1.5 Creating test data from two snapshots of an evolving network
The class NetworkManipulator offers two other methods for generating test data by com-
paring two snapshots of the same network: createTestDataSeq and createTestDataSeqInter .
These methods are useful when evaluating link prediction algorithms’ performance on
evolving networks, where the task is to predict future links. The prediction algorithm is
trained using a snapshot firstNet of the network at a given time, and another snapshot
secondNet taken later is used as a reference network to evaluate its performance. New
nodes can appear in the second snapshot, and existing nodes can disappear, and the
same goes for links. In the method createTestDataSeq , nodes that are not present in
secondNet (the observed network) and edges incident to them are removed from the

reference network. The method createTestDataSeqInter , on the other hand, only keeps
nodes common to both networks.

The signatures of these methods are as follows:

createTestDataSeq(NetworkCSP firstNet , NetworkCSP secondNet , b o o l
aTP , d o u b l e tpRatio , b o o l aTN , d o u b l e tnRatio , LinkClass

posClass , LinkClass negClass , l o n g i n t seed , b o o l
preGenerateTPN = t r u e );

createTestDataSeqInter(NetworkCSP firstNet , NetworkCSP secondNet ,

b o o l aTP , d o u b l e tpRatio , b o o l aTN , d o u b l e tnRatio , LinkClass

posClass , LinkClass negClass , l o n g i n t seed , b o o l
preGenerateTPN = t r u e );

The parameters of this method are as follows:
• firstNet The first network.
• secondNet The second network.
• aTP : Specifies whether to use all true positive links in the test set.
• tpRatio : Ratio of true positive links to be used in the test set. This parameter is

only relevant when aTP is false.
• aTN : Specifies whether to use all true negative links in the test set.
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• tnRatio : Ratio of true negative links to be used in the test set. This parameter is
only relevant when aTN is false.

• posClass : Indicates which links will be considered the positive links.
• negClass : Indicates which links will be considered the negative links.
• seed : The random number generator’s seed.
• preGenerateTPN : Whether to pre-generate true positives and true negatives.

� Example 7.3 Consider the two snapshots of the same evolving network shown in
Figure 7.3.
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Figure 7.3: Two snapshots of the same evolving network. The first snapshot (left) is used
to predict the second snapshot. Note that node 8 disappeared in snapshot 2, whereas
node 9 has appeared.

In the following program, we use createTestDataSeq to generate test data to assess
the performance of the algorithms in predicting links that will appear in the second
snapshot.
# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Reading networks ...\n";

a u t o net1 = UNetwork <>::read("net -seq1.edges");

a u t o net2 = UNetwork <>::read("net -seq2.edges");

std::cout << "First network :\n";

net1 ->print();

std::cout << "Second network :\n";

net2 ->print();

std::cout << "Creating test set. Detecting links that will 

appear: Positive class: FN. Negative class: TN\n";

a u t o testData = NetworkManipulator <>:: createTestDataSeq(net1 ,

net2 , t rue , 0, t rue , 0, FN , TN , 777, t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;
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}

std::cout << "Negative links in the test set:\n";

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:
Reading networks...

First network:

1 2

1 8

2 3

3 4

4 5

5 6

6 7

7 8

Second network:

1 2

1 3

3 4

4 6

4 5

6 7

7 9

Creating test set. Detecting links that will appear: Positive class: FN.

Negative class: TN

Test data reference network:

1 2

1 3

3 4

4 5

4 6

6 7

Test data observed network:

1 2

1 8

2 3

3 4

4 5

5 6

6 7

7 8

Positive links in the test set:

1 3

4 6

Negative links in the test set:

1 4

1 5

1 6

1 7

2 4



104 Chapter 7. Performance Evaluation

2 5

2 6

2 7

2 8

3 5

3 6

3 7

3 8

4 7

4 8

5 7

5 8

6 8

In this second program, we use createTestDataSeq to generate test data to assess
the performance of the algorithms in predicting links that will disappear in the second
snapshot.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Reading networks ...\n";

a u t o net1 = UNetwork <>::read("net -seq1.edges");

a u t o net2 = UNetwork <>::read("net -seq2.edges");

std::cout << "First network :\n";

net1 ->print();

std::cout << "Second network :\n";

net2 ->print();

std::cout << "Creating test set. Detecting links that will 

disappear: Positive class: TP. Negative class: FP\n";

a u t o testData = NetworkManipulator <>:: createTestDataSeq(net1 ,

net2 , t rue , 0, t rue , 0, TP , FP , 777, t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

std::cout << "Negative links in the test set:\n";

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:

Reading networks...
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First network:

1 2

1 8

2 3

3 4

4 5

5 6

6 7

7 8

Second network:

1 2

1 3

3 4

4 6

4 5

6 7

7 9

Creating test set. Detecting links that will disappear: Positive class: TP.

Negative class: FP

Test data reference network:

1 2

1 3

3 4

4 5

4 6

6 7

Test data observed network:

1 2

1 8

2 3

3 4

4 5

5 6

6 7

7 8

Positive links in the test set:

1 2

3 4

4 5

6 7

Negative links in the test set:

1 8

2 3

5 6

7 8

In the third program, we use createTestDataSeqInter to generate test data to assess
the performance of the algorithms in predicting links that will appear in the second
snapshot.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Reading networks ...\n";

a u t o net1 = UNetwork <>::read("net -seq1.edges");
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a u t o net2 = UNetwork <>::read("net -seq2.edges");

std::cout << "First network :\n";

net1 ->print();

std::cout << "Second network :\n";

net2 ->print();

std::cout << "Creating test set. Detecting links that will 

appear: Positive class: FN. Negative class: TN\n";

a u t o testData = NetworkManipulator <>:: createTestDataSeqInter(

net1 , net2 , t rue , 0, t rue , 0, FN , TN , 777, t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

std::cout << "Negative links in the test set:\n";

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:
Reading networks...

First network:

1 2

1 8

2 3

3 4

4 5

5 6

6 7

7 8

Second network:

1 2

1 3

3 4

4 6

4 5

6 7

7 9

Creating test set. Detecting links that will appear: Positive class: FN.

Negative class: TN

Test data reference network:

1 2

1 3

3 4

4 6
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4 5

6 7

Test data observed network:

1 2

2 3

3 4

4 5

6 5

6 7

Positive links in the test set:

1 3

4 6

Negative links in the test set:

1 4

1 6

1 5

1 7

2 4

2 6

2 5

2 7

3 6

3 5

3 7

4 7

5 7

In the last program, we use createTestDataSeqInter to generate test data to assess
the performance of the algorithms in predicting links that will disappear in the second
snapshot.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std::cout << "Reading networks ...\n";

a u t o net1 = UNetwork <>::read("net -seq1.edges");

a u t o net2 = UNetwork <>::read("net -seq2.edges");

std::cout << "First network :\n";

net1 ->print();

std::cout << "Second network :\n";

net2 ->print();

std::cout << "Creating test set. Detecting links that will 

disappear: Positive class: TP. Negative class: FP\n";

a u t o testData = NetworkManipulator <>:: createTestDataSeqInter(

net1 , net2 , t rue , 0, t rue , 0, TP , FP , 777, t r u e );
std::cout << "Test data reference network :\n";

a u t o refNet = testData.getRefNet ();

refNet ->print ();

std::cout << "Test data observed network :\n";

a u t o obsNet = testData.getObsNet ();

obsNet ->print ();

std::cout << "Positive links in the test set:\n";

f o r ( a u t o it = testData.posBegin (); it != testData.posEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<
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refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

std::cout << "Negative links in the test set:\n";

f o r ( a u t o it = testData.negBegin (); it != testData.negEnd (); ++

it) {

std::cout << refNet ->getLabel(refNet ->start(*it)) << "\t" <<

refNet ->getLabel(refNet ->end(*it)) << std::endl;

}

r e t u r n 0;

}

The following is the output of this code:

Reading networks...

First network:

1 2

1 8

2 3

3 4

4 5

5 6

6 7

7 8

Second network:

1 2

1 3

3 4

4 6

4 5

6 7

7 9

Creating test set. Detecting links that will disappear: Positive class: TP.

Negative class: FP

Test data reference network:

1 2

1 3

3 4

4 6

4 5

6 7

Test data observed network:

1 2

2 3

3 4

4 5

6 5

6 7

Positive links in the test set:

1 2

3 4

4 5

6 7

Negative links in the test set:

2 3

5 6

�
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7.2 Prediction results
For performance purposes and to avoid redundant computations, link prediction results
are stored in an object of the class PredResults . The constructor of this class takes
int two parameters a TestData object and an std::shared_ptr to a link predictor. The
most important methods provided by this class are:

• bool isPosComputed()const : Check whether the positive links scores have been
computed.

• void compPosScores() : Compute the scores of positive links. The method per-
forms the computation only once.

• bool isNegComputed()const : Check whether the negative links scores have been
computed.

• void compNegScores() : Compute the scores of negative links. The method per-
forms the computation only once.

• SortStatus getNegSortStatus()const : Return the sort status of negative links
scores. The type SortStatus is an enumeration containing the following values:
enum SortStatus {

None , /**< Not sorted. */

Inc , /**< Sorted in increasing order. */

Dec /**< Sorted in decreasing order. */

};

• void sortNeg(SortStatus negSortStatus) : Sort the negative links scores accord-
ing to the specified sorting direction. The method only sorts the scores if necessary.

• SortStatus getPosSortStatus()const : Return the sort status of positive links
scores.

• void sortPos(SortStatus posSortStatus) : Sort the positive links scores accord-
ing to the specified sorting direction. The method only sorts the scores if necessary.

7.3 Performance measures
All performance measures in LinkPred inherit from the abstract class PerfMeasure .
Every performance should be uniquely identified by its name, which can be passed as
parameter to the constructor. The most important method in the class PerfMeasure is
eval which evaluates the value of the performance measure given an object predResult

(see Section 7.1). The results of the performance measure are written to an object of type
PerfResults passed as the second parameter of the method. The class PerfResults is
defined as std::map<std::string, double> . This allows the possibility of associating
several result values with a single performance measure.

An important class of performance measures are performance curves such as the
receiver operating characteristic (ROC) curve and the precision-recall (PR) curve.
These are represented by the abstract class PerfCurve , which inherits from the class
PerfMeasure . The class PerfCurve defines a new virtual method:
v i r t u a l std::vector <std::pair <double , double >> getCurve(std::

shared_ptr <PredResultsT >& predResults) = 0;

which returns the performance curve in the form of an std::vector of points. Each data
point is represented by an std::pair , where the first element is the x coordinate, whereas
the second element is the corresponding y coordinate. Although not mandatory, the
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area under the curve, computed using numerical integration, is the typical performance
value associated with a performance curve, and its is that value which is returned by the
method eval .

LinkPred includes the implementation of number of performance measures, includ-
ing the most important performance curves (ROC and PR) and a generic (parameterized)
curve class. These performance measures are presented in the rest of this section.

7.3.1 Receiver operating characteristic curve (ROC)

One of the most important performance measure used in the field of link prediction is
the receiver operating (ROC) curve, in which the true positive rate (recall) is plotted
against the false positive rate. The ROC curve can be computed using the class ROC .
The following code show how to calculate the ROC curve and the associate area under
the curve. Notice that the two operations are independent of each other, and if the AUC
is the only result required, it is enough (and computationally better) to call the method
eval . An example ROC curve obtained using this code is plotted in Figure 7.4.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std:: string netFileName(argv [1]);

a u t o fullNet = UNetwork <>::read(netFileName , f a l s e , t r u e );
a u t o testData = NetworkManipulator <>:: createTestData(fullNet ,

0.3, 0, t rue , t rue , 0, t rue , 0, FN , TN , 777);

testData.lock();

a u t o predictor = std:: make_shared <UHRGPredictor <>>(testData.

getObsNet (), 333);

predictor ->init();

predictor ->learn ();

a u t o predResults = std:: make_shared <PredResults <>>(testData ,

predictor);

a u t o roc = std:: make_shared <ROC <>>("ROC");

a u t o curve = roc ->getCurve(predResults);

std::cout << "#x\ty\n";

f o r (std:: size_t i = 0; i < curve.size(); i++) {

std::cout << curve[i].first << "\t" << curve[i]. second << std

::endl;

}

PerfResults res;

roc ->eval(predResults , res);

std::cout << "#ROCAUC: " << res.at(roc ->getName ()) << std::endl

;

r e t u r n 0;

}
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Figure 7.4: Example ROC curve. The area under the curve (shown in gray) is the value
associated with this performance curve.

The default behavior of the ROC performance measure is to compute the positive
and negative edge scores and then compute the area under the curve. This may lead to
memory issues with large graphs. To compute the ROCAUC without storing both types
of scores, the class ROC offers a method that streams scores without storing them. To
enable this method, call setStrmEnabled(bool) on the ROC object. To specify which
scores to steam use the method setStrmNeg(bool) . By default the negative scores are
streamed, while the positive scores are stored. Passing false to setStrmNeg switches
this.

� Example 7.4 This is an example of using the streaming method with ROC .

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std:: string netFileName(argv [1]);

a u t o refNet = UNetwork <>::read(netFileName);

a u t o testData = NetworkManipulator <>:: createTestData(refNet ,

0.1, 0, f a l s e , t rue , 0, t rue , 0, FN , TN , 777, f a l s e );
testData.lock();

a u t o predictor = std:: make_shared <UADAPredictor <>>(testData.

getObsNet ());

predictor ->init();

predictor ->learn ();

a u t o predResults = std:: make_shared <PredResults <>>(testData ,

predictor);

a u t o roc = std:: make_shared <ROC <>>("ROC");

roc ->setStrmEnabled( t r u e );
PerfResults res;

roc ->eval(predResults , res);

std::cout << "#ROCAUC (streaming): " << res.at(roc ->getName ())

<< std::endl;

r e t u r n 0;
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}

�

In addition to consuming little memory, the streaming method supports distributed
processing (in addition to shared memory parallelism), which makes it suitable for large
networks (see Chapter 8).

7.3.2 Precision-recall curve
The precision-recall (PR) curve is also a widely used measure of performance of link
prediction algorithms. In this curve, the precision is plotted as a function of the recall.
The PR curve can be computed using the class PR . The area under the PR curve can be
computed using two integration methods:

• The trapezoidal rule which assumes a linear interpolation between the PR points.
• Nonlinear interpolation as proposed by Jesse Davis and Mark Goadrich [9].

The second method is more accurate, as linear integration tends to overestimate the
area under the curve [9]. Furthermore, the implementation of Davis-Goadrich non-
linear interpolation in LinkPred ensures little to no additional cost compared to the
trapezoidal method. Nevertheless, the user can choose the integration method using the
method void setInterpolMethod(InterpolMethod interpolMethod) . The active integra-
tion method can be queried using InterpolMethod getInterpolMethod()const . The type
InterpolMethod is a public enumeration of the class PR with two possible values:

enum InterpolMethod {

LIN , /**< Linear interpolation (Trapezoidal rule). */

DGI /**< Davis -Goadrich nonlinear interpolation. */

};

By default, the integration method used is DGI .
The following code shows how to calculate the PR curve and the associate area under

the curve. Notice that the two operations are independent of each other, and if the AUC
is the only result required, it is enough to call the method eval . An example PR curve
obtained using this code is plotted in Figure 7.5.
# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std:: string netFileName(argv [1]);

a u t o fullNet = UNetwork <>::read(netFileName , f a l s e , t r u e );
a u t o testData = NetworkManipulator <>:: createTestData(fullNet ,

0.3, 0, t rue , t rue , 0, t rue , 0, FN , TN , 777);

testData.lock();

a u t o predictor = std:: make_shared <UHRGPredictor <>>(testData.

getObsNet (), 333);

predictor ->init();

predictor ->learn ();

a u t o predResults = std:: make_shared <PredResults <>>(testData ,

predictor);

a u t o pr = std:: make_shared <PR <>>("PR");

a u t o curve = pr ->getCurve(predResults);

std::cout << "#x\ty\n";

f o r (std:: size_t i = 0; i < curve.size(); i++) {
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std::cout << curve[i].first << "\t" << curve[i]. second << std

::endl;

}

PerfResults res;

pr->eval(predResults , res);

std::cout << "#PRAUC: " << res.at(pr->getName ()) << std::endl;

r e t u r n 0;

}
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Figure 7.5: Example PR curve. The area under the curve (shown in gray) is the value
associated with this performance curve.

7.3.3 General performance curves
LinkPred offers the possibility of calculating general performance curves using the class
GCurve . A performance curve is in general defined by giving the x and y coordinates
functions. These are passed as parameters -in the form of lambdas- to the constructor
of the class GCurve . The associated performance value is the area under the curve
computed using the trapezoidal rule (linear interpolation). For example, the ROC curve
can be defined as:

GCurve <> cur(fpr , rec , "ROC");

The two first parameters of the constructors are lambdas having the signature:

d o u b l e (std:: size_t tp, std:: size_t fn, std:: size_t tn , std::

size_t fp , std:: size_t P, std:: size_t N)

where:
• tp : Number of true positives.
• fn : Number of false negatives.
• tn : Number of true negatives.
• fp : Number of false positives.
• P : Number of positives. Notice that: P = tp + fn .
• N : Number of negatives. Here also: Notice that: N = tn + fp .
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LinkPred contains the definition of several useful lambdas that can be used to define
performance curves. These are defined in the name space PerfLambda :

• Recall ( rec ):

t p
P
. (7.1)

• False positive rate ( fpr ):

f p
N

. (7.2)

• Precision ( pre ):

t p
t p+ f p

. (7.3)

• False negative rate ( fnr ):

f n
P
. (7.4)

• True negative rate ( tnr ):

tn
N
. (7.5)

• False omission rate ( fmr ):

f n
tn+ f n

. (7.6)

• Accuracy ( acc ):

t p+ t p
P+N

. (7.7)

• False discovery rate ( fdr ):

f p
t p+ f p

. (7.8)

• Negative predictive value ( npv ):

tn
tn+ f n

. (7.9)

Notice that some of these functions may be undefined for certain boundary values of
the threshold, and therefore particular care must be taken when using them with GCurve .
In particular, the curve, and consequently the area under it, may become undefined in
some cases. For instance, it is possible to define the PR curve using GCurve in the same
way we previously defined the ROC curve:
GCurve <> pr(rec , pre , "PR");
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However, there are two important reasons to avoid such practice. First, as explained
before, the area under the curve may be undefined in some cases. Second, the class PR

offers a more accurate method for calculating the area under the curve (Davis-Goadrich
interpolation) than the method used by GCurve (trapezoidal rule).

The following code shows how to calculate the ROC curve with negatives replacing
positives (we denote this curve by NROC) and the associated area under the curve. This
can be achieved by using GCurve with fnr (false negative rate) as the x-coordinates
and tnr (true negative rate) as the y-coordinates. An example NROC curve obtained
using this code is plotted in Figure 7.6.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std:: string netFileName(argv [1]);

a u t o fullNet = UNetwork <>::read(netFileName , f a l s e , t r u e );
a u t o testData = NetworkManipulator <>:: createTestData(fullNet ,

0.3, 0, t rue , t rue , 0, t rue , 0, FN , TN , 777);

testData.lock();

a u t o predictor = std:: make_shared <UHRGPredictor <>>(testData.

getObsNet (), 333);

predictor ->init();

predictor ->learn ();

a u t o predResults = std:: make_shared <PredResults <>>(testData ,

predictor);

a u t o nroc = std:: make_shared <GCurve <>>(PerfLambda ::fnr ,

PerfLambda ::tnr , "NROC");

a u t o curve = nroc ->getCurve(predResults);

std::cout << "#x\ty\n";

f o r (std:: size_t i = 0; i < curve.size(); i++) {

std::cout << curve[i].first << "\t" << curve[i]. second << std

::endl;

}

PerfResults res;

nroc ->eval(predResults , res);

std::cout << "#NROCAUC: " << res.at(nroc ->getName ()) << std::

endl;

r e t u r n 0;

}
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Figure 7.6: Example ROC curve with negative instances replacing positive ones. The
area under the curve (shown in gray) is the value associated with this performance curve.

7.3.4 Top precision
The top precision measure is defined as the ratio of true positives within the top l scored
edges, l > 0 being a parameter of the measure (usually l is set to the number of links
removed from the network). Top precision is implemented by the class TPR , and since
it is not a curve measure, this class inherits directly from PerfMeasure . The class
TPR offers two approaches for computing top-precision. The first approach requires
computing the score of all negative links, whereas the second approach calls the method
top of the predictor. The first approach is in general more precise than the second one
but may require more memory and time. The reason behind this is that it is possible to
write efficient implementations of the method top (finding top scored edges) for most
prediction algorithms. Indeed for most link predictors computing top scored edges does
not require generating true negative links nor computing their scores. As a result, the
second approach is the performance measure of choice for very large networks. Note that
if ROC or PR are requested, it is better to use the first approach, since the computation
of these two performance measures require the computation of the scores of all negative
links anyways. To toggle between the two approaches simply call setUseTopMethod .

R The implementation of the method top in link predictors may be biased based
on node IDs. This may skew the results when computing top-precision. To obtain
unbiased results over multiple runs, it is advised to reshuffle the node IDs from run
to run. This can be done by simply calling the method shuffle on the reference
network between runs.

The following code shows how to use the class TPR using the first approach.
# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {
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std:: string netFileName(argv [1]);

a u t o fullNet = UNetwork <>::read(netFileName , f a l s e , t r u e );
a u t o testData = NetworkManipulator <>:: createTestData(fullNet ,

0.3, 0, t rue , t rue , 0, t rue , 0, FN , TN , 777);

testData.lock();

a u t o predictor = std:: make_shared <UHRGPredictor <>>(testData.

getObsNet (), 333);

predictor ->init();

predictor ->learn ();

a u t o predResults = std:: make_shared <PredResults <>>(testData ,

predictor);

a u t o tpr = std:: make_shared <TPR <>>(testData.getNbPos (), "TPR");

PerfResults res;

tpr ->eval(predResults , res);

std::cout << "TPR: " << res.at(tpr ->getName ()) << std::endl;

r e t u r n 0;

}

In the next code, we compute top-precision using the method top :

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std:: string netFileName(argv [1]);

a u t o fullNet = UNetwork <>::read(netFileName , f a l s e , t r u e );
a u t o testData = NetworkManipulator <>:: createTestData(fullNet ,

0.3, 0, t rue , t rue , 0, t rue , 0, FN , TN , 777);

testData.lock();

a u t o predictor = std:: make_shared <URALPredictor <>>(testData.

getObsNet ());

predictor ->init();

predictor ->learn ();

a u t o predResults = std:: make_shared <PredResults <>>(testData ,

predictor);

a u t o tpr = std:: make_shared <TPR <>>(testData.getNbPos (),"TPRT");

tpr ->setUseTopMethod( t r u e );
PerfResults res;

tpr ->eval(predResults , res);

std::cout << "TPRT: " << res.at(tpr ->getName ()) << std::endl;

r e t u r n 0;

}

7.4 Performance evaluation classes
LinkPred offers two helper classes that simplify the task of evaluating and comparing
the performance of link prediction algorithms: PerfEvaluator and PerfEvalExp .

7.4.1 The class PerfEvalExp

The class PerfEvalExp allows to evaluate the performance of several link predictors
based on several performance measures. The experimental setting in PerfEvalExp

consists in removing a certain ratio of existing links from a reference network and
presenting the algorithms with the obtained network (the observed networks). The
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performance measures specified by the user are then applied to assess the predictive
power of the algorithms. The parameters of the experiment are passed to PerfEvalExp

as an instance of the struct named PerfEvalExpDesc . These include the reference
network, the number of iterations, the range of removal ratios (defined as ratioStart ,
ratioEnd and ratioStep ), the ratio of false negative links and true negative links used
in the test set, etc.

t e m p l a t e < typename Network=UNetwork <>> s t r u c t PerfeEvalExpDescp{

...

std:: shared_ptr <Network > refNet;

std:: size_t nbTestRuns = 1;

d o u b l e ratioStart = 0.1;

d o u b l e ratioEnd = 0.1;

d o u b l e ratioStep = 0.1;

b o o l keepConnected = f a l s e ;
d o u b l e fnRatio = 1;

d o u b l e tnRatio = 1;

b o o l timingEnabled = f a l s e ;
l o n g i n t seed = 0;

std:: ostream* out = &std::cout;

};

PerfEvalExp requires also a callback object to create link predictors and performance
measures. This object must implement the interface PEFactory , which contains two
methods one for creating link predictors getPredictors and the other for creating
performance measures getPerfMeasures :

t e m p l a t e <...> c l a s s PEFactory {

p u b l i c :
v i r t u a l std::vector <std::shared_ptr <LPredictorT >> getPredictors

(std::shared_ptr <Network c o n s t > obsNet) = 0;

v i r t u a l std::vector <std::shared_ptr <PerfMeasureT >>

getPerfMeasures(TestDataT c o n s t & testData) = 0;

};

� Example 7.5 The following code shows how to use PerfEvalExp to compare three
link prediction methods (ADA, JID and RAL) using top-precision (calling the top

method). The experiment is repeated ten times and the default ratio of removed edges is
used (0.1).

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

# i n c l u d e <vector >

# i n c l u d e <memory >

u s i n g namespace LinkPred;

c l a s s Factory: p u b l i c PEFactory <> {

p u b l i c :
v i r t u a l std::vector <std::shared_ptr <ULPredictor <>>>

getPredictors(std:: shared_ptr <UNetwork <> c o n s t > obsNet) {

std::vector <std::shared_ptr <ULPredictor <>>> prs;

prs.push_back(std:: make_shared <UADAPredictor <>>(obsNet));

prs.push_back(std:: make_shared <UJIDPredictor <>>(obsNet));

prs.push_back(std:: make_shared <URALPredictor <>>(obsNet));

r e t u r n prs;

}



7.4 Performance evaluation classes 119

v i r t u a l std::vector <std::shared_ptr <PerfMeasure <>>>

getPerfMeasures(TestData <> c o n s t & testData) {

std::vector <std::shared_ptr <PerfMeasure <>>> pms;

a u t o tpr = std:: make_shared <TPR <>>(testData.getNbPos (), "TPRT

");

tpr ->setUseTopMethod( t r u e );
pms.push_back(tpr);

r e t u r n pms;

}

v i r t u a l ~Factory () = d e f a u l t ;
};

i n t main( i n t argc , char *argv []) {

PerfeEvalExpDescp <> ped;

ped.refNet = UNetwork <>::read("Infectious.edges");

ped.nbTestRuns = 10;

ped.seed = 777;

a u t o factory = std:: make_shared <Factory >();

PerfEvalExp <> exp(ped , factory);

exp.run();

r e t u r n 0;

}

The output of this code is as follows:

# n: 410 m: 2765

#ratio TPRTADA TPRTJID TPRTRAL

0.10 0.3225 0.3225 0.3297

0.10 0.3225 0.3696 0.3514

0.10 0.3370 0.3406 0.3406

0.10 0.3188 0.3406 0.3297

0.10 0.3007 0.3623 0.3297

0.10 0.3188 0.3406 0.3442

0.10 0.3406 0.3370 0.3551

0.10 0.3116 0.3225 0.3442

0.10 0.3841 0.3696 0.3949

0.10 0.3406 0.3478 0.3696

#Time: 688.532 ms

�

Enabling timing in PerfEvalExp (by setting timingEnabled to true), results in three
time measures being calculated:

• ITN (Init Time Nano): The time spent in the method init in nanoseconds.
• LTN (Learn Time Nano): The time spent in the method learn in nanoseconds.
• PTN (Predict Time Nano): The time spent in the method predict in nanoseconds.

Since different predictors split the processing differently between the three methods,
time comparison should be based on the sum of the three methods rather than that of a
single one.

� Example 7.6 The following code shows how to use PerfEvalExp to compare the
time performance of two algorithms ADA and HRG (note that no learning performance
measures are used). The experiment is repeated ten times and the default ratio of
removed edges is used (0.1).

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >
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# i n c l u d e <vector >

# i n c l u d e <memory >

u s i n g namespace LinkPred;

c l a s s Factory: p u b l i c PEFactory <> {

p u b l i c :
v i r t u a l std::vector <std::shared_ptr <ULPredictor <>>>

getPredictors(std:: shared_ptr <UNetwork <> c o n s t > obsNet) {

std::vector <std::shared_ptr <ULPredictor <>>> prs;

prs.push_back(std:: make_shared <UADAPredictor <>>(obsNet));

prs.push_back(std:: make_shared <UHRGPredictor <>>(obsNet , 333))

;

r e t u r n prs;

}

v i r t u a l std::vector <std::shared_ptr <PerfMeasure <>>>

getPerfMeasures(TestData <> c o n s t & testData) {

std::vector <std::shared_ptr <PerfMeasure <>>> pms;

r e t u r n pms;

}

v i r t u a l ~Factory () = d e f a u l t ;
};

i n t main( i n t argc , char *argv []) {

PerfeEvalExpDescp <> ped;

ped.refNet = UNetwork <>::read("Zakarays_Karate_Club.edges");

ped.nbTestRuns = 10;

ped.seed = 777;

ped.timingEnabled = t r u e ;
a u t o factory = std:: make_shared <Factory >();

PerfEvalExp <> exp(ped , factory);

exp.run();

r e t u r n 0;

}

The output of this code is as follows:
# n: 34 m: 78

#ratio ITNADA ITNHRG LTNADA LTNHRG PTNADA PTNHRG TTNADA TTNHRG

0.10 344 608972 145 2242406166 32789 16438 33278

2243031576

0.10 309 137817 74 1528222331 9713 22062 10096

1528382210

0.10 305 139456 78 1505922677 8470 16297 8853

1506078430

0.10 315 181203 77 2240478339 8308 21287 8700

2240680829

0.10 465 142991 80 1861618290 9255 17122 9800

1861778403

0.10 293 141502 76 1623068910 9964 19323 10333

1623229735

0.10 319 145763 80 1628975047 10742 27264 11141

1629148074

0.10 298 146415 78 1974976422 9563 18218 9939

1975141055

0.10 287 142000 80 1729851112 9260 15397 9627

1730008509

0.10 290 146339 78 2402748124 9593 15082 9961

2402909545

#Time: 18745.5 ms
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�

R The time spent in computing the performance measures is not computed as it is
not part of the link prediction task.

R Enabling timing causes automatically the computation of scores for all links in
the test set. If you add a performance measure that does not require these scores
but rather calls directly the link predictor methods (such as top-precision with
the option useTopMethod enabled), then the time spent in these methods is not
measured.

7.4.2 The class PerfEvaluator

The class PerfEvaluator offers more flexibility than PerfEvalExp , since it takes the
object TestData as input. However, PerfEvaluator performs a single iteration compar-
ison, and it is up to he user to repeat the experiment. To use the class PerfEvaluator ,
we proceed as follows:

1. First, the TestData object is passed as parameter to the constructor:
PerfEvaluator <> perf(testData);

2. Add the link predictors:
perf.addPredictor(std:: make_shared <ADAPredictor <>>(testData

.getObsNet ()));

perf.addPredictor(std:: make_shared <CNEPredictor <>>(testData

.getObsNet ()));

3. Add the performance measures:
perf.addPerfMeasure(std:: make_shared <ROC <>>());

perf.addPerfMeasure(std:: make_shared <PR <>>());

Notice that this step can be exchanged or interleaved with the previous one.
4. Run the evaluation (the predictors are initialized by the performance evaluator):

perf.eval();

The evaluator can be set to take time measurements by enabling timing before
running the method eval :

perf.setTimeEnabled( t r u e ); // Enable timing. Timing is

disabled by default.

perf.eval();

Three time measures are calculated by PerfEval :
• ITN (Init Time Nano): The time spent in the method init in nanoseconds.
• LTN (Learn Time Nano): The time spent in the method learn in nanosec-

onds.
• PTN (Predict Time Nano): The time spent in the method predict in nanosec-

onds.
Since different predictors split the processing differently between the three meth-
ods, time comparison should be based on the sum of the three methods rather than
that of a single one.
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5. Finally, retrieve the performance values. The class PerfEval provides a range
for retrieving results: resultsBegin() and resultsEnd() . The provided iterator
points to a pair the first element of which is the name of the performance mea-
sure (of type std::string ), and the second element is the value of the measure
(of type double ). Since there are several predictors, the name of the perfor-
mance measures results reported is the concatenation of the performance name
( measure->getName() ) and the predictor’s name ( predictor->getName() ).

The following code shows how to use PerfEval to evaluate the performance of two
link predictors using two measures.
# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

std:: string netFileName(argv [1]);

l o n g i n t seed = std::atol(argv [2]);

std:: size_t nbTests = std::atol(argv [3]);

RandomGen rng(seed);

a u t o fullNet = UNetwork <>::read(netFileName , f a l s e , t r u e );
f o r (std:: size_t i = 0; i < nbTests; i++) {

a u t o testData = NetworkManipulator <>:: createTestData(fullNet ,

0.1, 0, t rue , t rue , 0, t rue , 0, FN , TN , rng.getInt ());

testData.lock();

PerfEvaluator <> perf(testData);

perf.addPredictor(std:: make_shared <UADAPredictor <>>(testData.

getObsNet ()));

perf.addPredictor(std:: make_shared <UCNEPredictor <>>(testData.

getObsNet ()));

perf.addPerfMeasure(std:: make_shared <ROC <>>());

perf.addPerfMeasure(std:: make_shared <PR <>>());

perf.eval();

i f (i == 0) {

std::cout << "#";

f o r ( a u t o it = perf.resultsBegin (); it != perf.resultsEnd ()

; ++it) {

std::cout << it ->first << "\t";

}

std::cout << std::endl;

}

f o r ( a u t o it = perf.resultsBegin (); it != perf.resultsEnd ();

++it) {

std::cout << std:: setprecision (4) << it->second << "\t";

}

std::cout << std::endl;

}

r e t u r n 0;

}

This is an example output of this code:
#ADAPR ADAROC CNEPR CNEROC

0.8064 0.9694 0.8036 0.9637
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0.7427 0.9878 0.6466 0.9704

0.8079 0.9687 0.7557 0.9573

0.7892 0.991 0.7871 0.9839

0.8453 0.9703 0.8122 0.9677

0.729 0.8982 0.6902 0.8964

0.7356 0.9768 0.6272 0.9557

0.8014 0.9641 0.7294 0.9504

0.7796 0.9614 0.7378 0.9624

0.6416 0.9348 0.5392 0.9221





8. Parallelism, Templates and Library
Extension

This chapter deals with time performance issues and how to harness the power of
LinkPred on parallel/distributed machines. This may become a necessity when dealing
with large data as predicting links in large networks can be time and memory consuming
even for the most efficient of algorithms. We will also discuss template arguments of
LinkPred classes and how to add new instantiations to the library. Finally, we will show
how to extend the library with new prediction algorithms.

8.1 Parallelism
LinkPred offers two types of parallelism, shared memory parallelism using OpenMP,
and distributed parallelism via MPI. These two types of parallelism can be used in
conjunction or separately, or completely disabled at compilation time.

8.1.1 Shared memory parallelism
Most LinkPred classes support shared memory parallelism using OpenMP for the com-
putationally intensive parts of their code. Enabling parallelism can result in significant
improvement in running time. However, depending on the algorithms implemented in
the methods under consideration, parallelism may result in different degrees of speedup.
For example, Figure 8.1 shows the running time speed up obtained using parallel execu-
tion of four link predictors on the Yeast network. Once can see that different algorithms
exhibit different speed ups depending on the details of the prediction procedure.

Instead of a using a ”global switch” to enable and disable parallelism, LinkPred
offers a fine grain control of parallelism at the object level. This allows more flexibility
to handle different use scenarios. To turn on parallelism for a predictor, we need to call
the method setParallel . Notice that by default parallelism is turned off in all classes.

predictor ->setParallel( t r u e );

The same applies for performance measures:

measure ->setParallel( t r u e );



126 Chapter 8. Parallelism, Templates and Library Extension

There are other classes in LinkPred that support parallelism, and they can all be set to
run their code in parallel using the method setParallel .

In general, and especially in the case where several classes are set to run parallel
code, it is important to allow for nested parallelism:

omp_set_nested (1);

This should typically be done at the start of the main function, or at least before running
the LinkPred code.
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Figure 8.1: Runtime speed up of several link predictors on the Yeast network.

Choosing the level at which parallelism should be activated is important to achieve
the best possible performance. In what follows, we present a number of scenarios that
LinkPred users may face and the suggested parallelization strategies.

1. Running a single predictor on a single network: in this case, parallelism should
activated at the predictor level as it is the only to take advantage of the parallel
execution capability.

2. Evaluating a single link predictor: In general, performance evaluation involves
running the link predictor multiple times with different training and test sets.
Enabling parallelism at the predictor can lead to some improvement (depending
on the type of the predictor). A better strategy, however, would be to parallelize
the execution at the outer level, that is executing the predictor with different test
data in parallel.

3. Evaluating the performance of several link predictors: This is similar to the previ-
ous case, except that we can run the predictors in parallel. This can be beneficial if
the predictors have comparable runtime, but if there is a large discrepancy between
runtimes it is better to prallelize at the predictor level or over test runs.

The following code how to compute the scores for all negative links fo a network
using CNE predictor in parallel.

# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

# i n c l u d e <algorithm >

u s i n g namespace LinkPred;
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i n t main( i n t argc , char *argv []) {

omp_set_nested (1); // enable nested parallelism

a u t o net = UNetwork <>::read("Infectious.edges");

UCNEPredictor <> predictor(net);

predictor.setParallel( t r u e );
predictor.init();

predictor.learn ();

std::vector <double > scores;

scores.resize(net ->getNbNonEdges ());

a u t o its = predictor.predictNeg(scores.begin());

std::cout << "#Start\tEnd\tScore\n";

std:: size_t i = 0;

f o r ( a u t o it = its.first; it != its.second; ++it , i++) {

std::cout << net ->getLabel(net ->start(*it)) << "\t"<< net ->

getLabel(net ->end(*it)) << "\t" << scores[i] << std::endl;

}

r e t u r n 0;

}

The following is an extract of this code’s output:

#Start End Score

100 10 0

100 11 0

100 113 7

100 12 0

100 13 0

100 14 0

100 15 0

100 16 0

100 107 10

100 23 0

...

8.1.2 Distributed parallelism
Distributed parallelism is implemented in LinkPred using MPI (Message Passing In-
terface) unless this deactivated during compilation time (the corresponding flag is
LINKPRED_WITH_MPI). Several (but not all) link predictors offer distributed implemen-
tations of the methods predictNeg and top . Note, however, that the network data
structure is not distributed, and consequently, each processor must have access to the
whole network data either by reading it from file or otherwise.

The ROC performance measure supports distributed processing when using the
streaming method, and the same applies to TPR (top-precision) when using the top

method. In both cases, the result of the performance measure is only available at
processor 0. The default methods in ROC and TPR as well as the PR class dot not
support distributed parallelism.

Similarly to shared memory parallelism, distributed processing is controlled at the
object level. To activate/deactivate distributed processing for a given predictor just set
the attributed distributed . For example:

predictor ->setDistributed( t r u e );

The following code shows how to find the top k edges distributively.
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# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

MPI_Init (&argc , &argv);

std:: size_t k = 10;

a u t o net = UNetwork <>::read("Infectious.edges");

URALPredictor <> predictor(net);

predictor.setComm(MPI_COMM_WORLD); // Optional when using the

default communicator MPI_COMM_WORLD

predictor.setDistributed( t r u e );
predictor.init();

predictor.learn ();

std::vector < typename UNetwork <>::Edge > edges;

edges.resize(k);

std::vector <double > scores;

scores.resize(k);

k = predictor.top(k, edges.begin (), scores.begin());

i n t procID;

MPI_Comm_rank(MPI_COMM_WORLD , &procID);

i f (procID == 0) {

std::cout << "#Start\tEnd\tScore\n";

}

f o r (std:: size_t i = 0; i < k; i++) {

std::cout << net ->getLabel(net ->start(edges[i])) << "\t"

<< net ->getLabel(net ->end(edges[i])) << "\t" << scores[i]

<< std::endl;

}

MPI_Finalize ();

r e t u r n 0;

}

If you compile this code into the executable ratop, for example, the program can be run
as follows:

mpirun -n 4 ./ raltop

This is an example output of this code:

#Start End Score

169 178 0.912642

144 142 0.886008

51 39 0.985052

265 297 0.811915

300 295 0.806431

197 237 0.836456

257 299 0.864928

257 294 0.887479

261 292 0.973033

389 367 0.965622

R In this example, you may need to set OMP_NUM_THREADS to 1, because we are not
using shared memory parallelism. On Linux, this can be achieved by running the
command export OMP_NUM_THREADS=1.
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The following shows how to compute the area under the ROC in a distributed way:
# i n c l u d e <linkpred.hpp >

# i n c l u d e <iostream >

u s i n g namespace LinkPred;

i n t main( i n t argc , char *argv []) {

MPI_Init (&argc , &argv);

i n t procID = 0;

MPI_Comm_rank(MPI_COMM_WORLD , &procID);

std:: string netFileName(argv [1]);

a u t o refNet = UNetwork <>::read(netFileName);

a u t o testData = NetworkManipulator <>:: createTestData(refNet ,

0.1, 0, f a l s e , t rue , 0, t rue , 0, FN , TN , 777, f a l s e );
testData.lock();

a u t o predictor = std:: make_shared <UADAPredictor <>>(testData.

getObsNet ());

predictor ->init();

predictor ->learn ();

a u t o predResults = std:: make_shared <PredResults <>>(testData ,

predictor);

a u t o roc = std:: make_shared <ROC <>>("ROC");

roc ->setComm(MPI_COMM_WORLD); // Optional when using the

default communicator MPI_COMM_WORLD

roc ->setParallel( t r u e );
roc ->setDistributed( t r u e );
roc ->setStrmEnabled( t r u e );
PerfResults res;

roc ->eval(predResults , res);

i f (procID == 0) {

std::cout << "#ROCAUC (streaming): " << res.at(roc ->getName ()

) << std::endl;

}

MPI_Finalize ();

r e t u r n 0;

}

If you compile this code into the executable rocstrmdist, for example, the program can
be run as follows:
mpirun -n 4 ./ rocstrmdist AS_Internet.edges

This is an example output of this code:
#ROCAUC (streaming): 0.8466

8.2 Templates
LinkPred is mainly a pre-instantiated template library, a design choice that offers fast
compilation while keeping the library extensible and customizable. The default templates
arguments used in the pre-instantiated classes are chosen to give the best performance
possible, but it is often the case that classes are instantiated with arguments other then
the default ones. For example, the class UNetwork is instantiated with std::string as
the default type for nodes labels, and it is also instantiated with unsigned int . The latter
is a more restrictive option but may be useful for saving memory, especially that most
network datasets have integer node IDs.
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R You can find the list of pre-instantiated classes in the file include/instantiations
.hpp.

The class templates instantiations found in instantiations.hpp can be readily used.
If you want to instantiate a class with a template argument other than those already
available, you have to edit the file instantiations.hpp.

� Example 8.1 If you want to instantiate the class UNetwork with short int , locate the
following section in instantiations.hpp:

# i f d e f UNETWORK_CPP

t e m p l a t e c l a s s UNetwork <>;

t e m p l a t e c l a s s UNetwork < u n s i g n e d i n t >;
# e n d i f

and change it to (stay within the ifdef ):

# i f d e f UNETWORK_CPP

t e m p l a t e c l a s s UNetwork <>;

t e m p l a t e c l a s s UNetwork < u n s i g n e d i n t >;
t e m p l a t e c l a s s UNetwork < s h o r t i n t >;
# e n d i f

You need than to recompile the library to use the new instantiation. �

R Note that adding a new instantiation may require to add other new instantiations
in classes that use it. For example, if you want to use the new instantiation
UNetwork<short int> with the CNE predictor, you need to add a new instantiation

of the class UCNEPredictor as follows:

# i f d e f UCNEPREDICTOR_CPP

t e m p l a t e c l a s s UCNEPredictor <>;

t e m p l a t e c l a s s UCNEPredictor <UNetwork <>, typename
UNetwork <>::NonEdgeIt >;

t e m p l a t e c l a s s UCNEPredictor <UNetwork < s h o r t i n t >,
typename UNetwork < s h o r t i n t >:: NonEdgeIt >; // new

instantiation

# e n d i f

8.3 Extending LinkPred
The practice followed in LinkPred is to define clear and easy interfaces for its compo-
nents and use these interfaces to connect these components. This makes integrating
new implementations of these interfaces easy and seamless. In this section, we will
demonstrate through an example how to extend LinkPred with new link prediction
algorithm. We will use the same example presented at the end of Chapter 6, but this time
we will added it to the library. Suppose you want to create a very simple link prediction
algorithm that assigns as score to (i, j) the score κi +κ j, the sum of the degrees of the
two nodes1. To add this predictor to the library proceed as follows:

1LinkPred already contains a sum-of-degree predictor named USUMPredictor .
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1. In the source directory of LinkPred, create the file include/linkpred/predictors/

undirected/usdpredictor.hpp, and write the following code:

Listing 8.1: code/parallel/usdpredictor.hpp

# i f n d e f USDPREDICTOR_HPP_

# d e f i n e USDPREDICTOR_HPP_

# i n c l u d e <linkpred/predictors/undirected/ulpredictor.hpp >

namespace LinkPred {

t e m p l a t e < typename Network = UNetwork <>, typename EdgeRndIt =

typename std::vector < typename Network ::Edge >::

const_iterator , typename ScoreRndIt = typename std::vector

<double >:: iterator , typename EdgeRndOutIt = typename std::

vector < typename Network ::Edge >:: iterator > c l a s s
USDPredictor: p u b l i c ULPredictor <Network , EdgeRndIt ,

ScoreRndIt , EdgeRndOutIt > {

u s i n g ULPredictor <Network , EdgeRndIt , ScoreRndIt ,

EdgeRndOutIt >::net; /**< The network. */

u s i n g ULPredictor <Network , EdgeRndIt , ScoreRndIt ,

EdgeRndOutIt >:: name; /**< The name of the predictor. */

p u b l i c :
USDPredictor(std::shared_ptr <Network c o n s t > net) :

ULPredictor <Network , EdgeRndIt , ScoreRndIt , EdgeRndOutIt

>(net) {

name = "SD";

}

v i r t u a l v o i d init(){}

v i r t u a l v o i d learn (){}

v i r t u a l d o u b l e score( typename Network ::Edge c o n s t & e);

v i r t u a l ~USDPredictor () = d e f a u l t ;
};

} /* namespace LinkPred */

# e n d i f /* USDPREDICTOR_HPP_ */

R This predictor does not require any initialization or learning, hence the
empty implementations of the two methods init and learn .

2. In the file src/predictors/undirected/usdpredictor.cpp write the implementation
of the abstract method score :

Listing 8.2: code/parallel/usdpredictor.cpp

# i n c l u d e <linkpred/predictors/undirected/usdpredictor.hpp >

namespace LinkPred {

t e m p l a t e < typename Network , typename EdgeRndIt , typename
ScoreRndIt , typename EdgeRndOutIt > d o u b l e USDPredictor <

Network , EdgeRndIt , ScoreRndIt , EdgeRndOutIt >:: score(

typename Network ::Edge c o n s t & e) {

a u t o srcNode = Network :: start(e);

a u t o endNode = Network ::end(e);

r e t u r n net ->getDeg(srcNode) + net ->getDeg(endNode);

}

# d e f i n e USDPREDICTOR_CPP

# i n c l u d e "linkpred/instantiations.hpp"
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# undef USDPREDICTOR_CPP

} /* namespace LinkPred */

3. Add the predictor to the header file: include/linkpred/predictors/undirected/

undirected.hpp. To do this, locate the line:
# d e f i n e UNDIRECTED_HPP_

then add after it the following:
# i n c l u d e "linkpred/predictors/undirected/usdpredictor.hpp"

4. In the file include/linkpred/instantiations.hpp add the following:
# i f d e f USDPREDICTOR_CPP

t e m p l a t e c l a s s USDPredictor <>;

t e m p l a t e c l a s s USDPredictor <UNetwork <>, typename UNetwork <>::

NonEdgeIt >;

# e n d i f

5. In the top CMakeLists.txt, locate the line:
src/predictors/undirected/uadapredictor.cpp

below it or above it add the following line:
src/predictors/undirected/usdpredictor.cpp

6. Finally, recompile LinkPred (see Chapter 1). The new predictor is now part of
linkPred and can be used as any other built-in predictor.
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