Supporting Information

Figure S.1: Examples of the random graphs ($N = 250$) used for the analysis: (A) Erdös-Rényi network, (B) Watts-Strogatz network, (C) Barabási and Albert network, and (D) Klemm and Eguílez network, (E) Delaunay network, and (F) Voronoi network. The colored subgraph represents the close nodes to a random focal node with high connectivity and the edge weights (distances) are not to scale for a clearer visualization.

	Local search selection criteria						
Nodal characteristics	distance from focal node d(i, F)	degree centrality $C_i^D = \sum_i A(i, j)$					
	closeness centrality	betweenness centrality					
	$C_i^C = 1/\sum_i d(i,j)$	$C_i^B = \sum_{j \neq i \neq k} \frac{\sigma_{jk}(i)}{\sigma_{ik}}$					
	eigenvector centrality	pagerank centrality					
	$C_i^E = \frac{1}{\lambda} \sum_j A(i,j) x_j$	$C_i^P = \alpha_P \sum_j A(i,j) \frac{x_j}{\sum_i A(i, j)} + \frac{1 - \alpha_P}{N}$					
	weighted clustering coefficient						
	$c_i^w = \frac{1}{(C_i^D - 1) \sum_j a_{ij} w_{ij}} \sum_{j,h} \frac{(w_{ij} + w_{ih})}{2} a_{ij} a_{ih} a_{jh}$						
Clusters	hierarchical clusters network-constrained clusters network modularity						

Table S.1: Node characteristics used for the neighborhood search and their formulations.

Measures of network complexity. To evaluate the complexity of the random Voronoi networks and random Delaunay networks we use the following measures that capture the random, scale-free, and smallworld features of complex networks: average degree, average path length, weighted clustering coefficient, proximity ratio, global efficiency, and power law (see Table [S.2](#page-2-0) for the mathematical formulations of these characteristics). General measures of connectivity and network topology (for connected graphs) include the mean degree and the average path length, which refers to the average number of edges within the shortest path for all pairs of nodes in a network [\[1\]](#page-12-0). The weighted clustering coefficient of a node is the ratio of the node degree and the total number of possible edges for a node in the network [\[2\]](#page-12-1). The global version of this measure is the average of the node weighted clustering coefficients and provides an estimate of smallworld-ness [\[3\]](#page-12-2). The proximity ratio is the ratio of the following ratios: (i) the average weighted clustering coefficient and the average path length and (ii) the average weighted clustering coefficient for a completely random network of the same size and the average path length for that random network of the same size. This provides a measure of the small-world-ness of networks, with $S = 1$ for random networks and $S \gg 1$ for small-world networks [\[4\]](#page-12-3). Another measure of small-world-ness is average efficiency which is the average of the inverses of the network's shortest paths and captures the network's ability to exchange information between nodes [\[5\]](#page-12-4). If the degree distribution of the nodes follows a power law, then the network is said to be scale-free, i.e. random with some highly connected nodes [\[6\]](#page-12-5).

 \overline{a}

Table S.2: The measures used to evaluate network complexity.

		Delaunay			Voronoi	
\overline{N}	500	1000	2000	500	1000	2000
$\overline{C_D}$	4.708	5.392	5.208	2.840	2.900	2.938
L	9	12	17	21	29	40
\overline{C}	0.003	0.003	0.003	0.006	0.003	0.003
$\,$ S	1.005	0.991	0.980	0.845	0.091	0.089
γ	1.667	1.800	3.000	837	1784	1907
$E_G\,$	0.0724	0.0523	0.0385	0.0328	0.0238	0.0177

Table S.3: The average characteristics of 1000 random Delaunay and Voronoi networks.

	Suburban school network					Rural school network				
	Elementary			Middle		Elementary				
	SE(1)	SE(2)	SE(3)	SM(1)	SM(2)	SM(3)	RE(1)	RE(2)	RE(3)	RE(4)
N	3952	4222	5149	7750	4895	8059	1727	2160	1539	1996
N_C	1772	1807	1077	4614	1198	2210	416	330	363	735
N_D	2180	2415	4072	3136	3697	5849	1311	1830	1176	1261
L_{F}	50	96	194	110	43	103	51	95	50	52
$\overline{C_D}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	2	$\overline{2}$	$\overline{2}$
L	80	133	183	135	72	123	77	88	71	82
\sim	1179	1300	1604	2353	1432	2427	761	967	679	891
$E_G\,$	0.0060	0.0060	0.0045	0.0052	0.0074	0.0056	0.0078	0.0080	0.0104	0.0092

Table S.4: The network characteristics of the street networks around the schools used for the study. The average weighted clustering coefficient \overline{C} was not calculated since triplets were uncommon in these networks and neither was the proximity ratio S since it depends on C .

Description	Values
Number of nodes	500, 1000, 2000
connection probability	0.01
rewiring probability	0.01
initial node degree	10
connected network size	10
degree of new nodes	m ₀
connected network size	10
node selection probability	0.1
connection probability	0.01
edge removal probability	0.1
edge removal probability	0.1

Table S.5: The random network parameters and values used for the analysis. Following [\[6\]](#page-12-5), the degree of new nodes for the Barabási and Albert graphs were equal to the initial network size $(m = m_0)$.

Figure S.2: The termination times for the heuristics applied to the random networks: (a) Erdös-Rényi networks, (b) Watts-Strogatz networks, (c) Barabási and Albert networks, and (d) Klemm and Eguílez networks, (e) Delaunay networks, and (f) Voronoi networks. These are average times for 1000 random restarts for optimization applied to 1000 random network of each type and size. The times are scaled by the exhaustive search time and log transformed for easier interpretation.

Figure S.3: The cost and benefit deviations for the heuristics applied to the random networks: (a) Erdös-Rényi networks, (b) Watts-Strogatz networks, (c) Barabási and Albert networks, and (d) Klemm and Eguílez networks, (e) Delaunay networks, and (f) Voronoi networks. Each point represents the results for a given method and network size $(N = 500, 1000, 2000)$. The costs and benefits were scaled by the results from the exhaustive search, where a longer connection length is a positive cost deviation and a shorter connection is a negative cost deviation. These are average times for 1000 random restarts for optimization applied to 1000 random network of each type and size.

Algorithm 1

Algorithm 2 Hill climbing

```
randomly select i from N_Drandomly select j from N_CC(i, j) = d(i, j)for k in N_D do
   if d(k, i) + d(i, j) + d(j, F) < D then
       k \in N_C'end if
end for
B(i, j) = |N'_{C}|O^0 = \alpha C(i,j) + \beta B(i,j)t = 1while O^t \neq O^{t-1} do
    N_{i}^{D} = neighbors of i in N_{D}N_j^C = neighbors of j in N_Cfor m in N_i^D do
       for n in N_j^C do
           C(m, n) = d(m, n)for k in N_D do
              if d(k, m) + d(m, n) + d(n, F) < D then
                  k \in N_C'end if
           end for
           B(m, n) = |N_C'|end for
   end for
   O^t = \max_{(m,n)}(\alpha C(m,n) + \beta B(m,n))t = t + 1end while
```
Algorithm 3

Stochastic hill climbing randomly select i from N_D randomly select j from N_C $C(i, j) = d(i, j)$ for k in N_D do if $d(k, i) + d(i, j) + d(j, F) < D$ then $k \in N_C'$ end if end for $B(i, j) = |N'_{C}|$ $O^0 = \alpha C(i,j) + \beta B(i,j)$ $t = 1$ while $O^t \neq O^{t-1}$ do $N_{i}^{D} =$ neighbors of i in N_{D} N_j^C = neighbors of j in N_C for m in N_i^D do for n in N_j^C do $C(m, n) = d(m, n)$ for k in \mathcal{N}_D do if $d(k, m) + d(m, n) + d(n, F) < D$ then $k \in N_C'$ end if end for $B(m, n) = |N_C'|$ end for end for $O^t = \alpha C(i, j) + \beta B(i, j)$ with probability $(i, j) = \frac{\alpha C(i, j) + \beta B(i, j)}{\sum_{(m,n)} (\alpha C(m, n) + \beta B(m, n))}$ $t = t + 1$ end while

Algorithm 4

Hill climbing with a variable neighborhood set n_{max} randomly select i from N_D randomly select j from $N_{\mathbb{C}}$ $C(i, j) = d(i, j)$ for k in N_D do if $d(k, i) + d(i, j) + d(j, F) < D$ then $k \in N_C'$ end if end for $B(i, j) = |N_C'|$ $O^0 = \alpha C(i,j) + \beta B(i,j)$ $\eta = 1$ $t = 1$ while $\eta < \eta_{max}$ do $N_{i_{\dots}}^D$ = neighbors of *i* in N_D N_j^C = neighbors of j in N_C for m in N_i^D do for n in N_j^C do $C(m, n) = d(m, n)$ for k in N_D do if $d(k, m) + d(m, n) + d(n, F) < D$ then $k \in N_C'$ end if end for $B(m, n) = |N_C'|$ end for end for $O^t = max_(m,n)(\alpha C(m,n) + \beta B(m,n))$ if $O^t > O^{t-1}$ then $\eta=1$ else $\eta = \eta + 1$ end if $t = t + 1$ end while

Algorithm 5

Simulated annealing randomly select i from N_D randomly select j from N_C $C(i, j) = d(i, j)$ for k in N_D do if $d(k, i) + d(i, j) + d(j, F) < D$ then $k \in N_C'$ end if end for $B(i, j) = |N'_{C}|$ $O^0 = \alpha C(i,j) + \beta B(i,j)$ $t = 1$ while $O^t \neq O^{t-1}$ do $N_{i}^{D} =$ neighbors of i in N_{D} N_j^C = neighbors of j in N_C for m in N_i^D do for n in N_j^C do $C(m, n) = d(m, n)$ for k in \mathcal{N}_D do if $d(k, m) + d(m, n) + d(n, F) < D$ then $k \in N_C'$ end if end for $B(m, n) = |N_C'|$ $O(m, n) = \alpha C(m, n) + \beta B(m, n)$ end for end for if $\max_{(m,n)} O(m,n) > O^{t-1}$ then $O^t = O(m, n)$ else $O^t = O(m, n)$ with probability $(m, n) = \exp \left(-\frac{O^{t-1} - O(m, n)}{I}\right)$ t \setminus end if $t = t + 1$ end while

Algorithm 6

Genetic algorithm

 $\mu =$ mutation rate $s =$ selection coefficient $P =$ randomly selected population $\text{Chromosome}(i) = (1...1)$ $Chromosome(j) = (1...1)$ for (i, j) in P do $C(i, j) = d(i, j)$ for k in N_D do if $d(k, i) + d(i, j) + d(j, F) < D$ then $k \in N_C'$ end if end for $B(i, j) = |N'_{C}|$ $O(i, j)^0 = \alpha \overline{C(i, j)} + \beta B(i, j)$ end for $t = 1$ while $\max_{(i,j)} O(i,j)^t \neq \max_{(i,j)} O(i,j)^{t-1}$ do $f(i, j) = \frac{O(i, j)}{\sum_{(i, j)} O(i, j)}$ populate P with (i, j) with probability $(i, j) = \frac{s * f(i, j) + (1 - s)}{\sum_{(m,n)} (s * f(m, n) + (1 - s))}$ cycle crossover for k in P do for ℓ in chromosome(k) do if random number $\leq \mu$ then $\text{gene}(k, \ell) = \text{gene}(k, \ell) + 1$ end if end for end for for (i, j) in P do randomly select m from $N_{\underline{i}}^D$ with probability $\text{gene}(i, m) / \sum_k \text{gene}(i, k)$ randomly select *n* from N_j^C with probability gene $(j, n) / \sum_k \text{gene}(j, k)$ $C(m, n) = d(m, n)$ for k in N_D do if $d(k, m) + d(m, n) + d(n, F) < D$ then $k \in N_C'$ end if end for $B(m, n) = |N_C'|$ $O(m,n)^t = \alpha \tilde{C}(m,n) + \beta B(m,n)$ end for $t = t + 1$ end while

References

- [1] Albert, R. & Barabási, A. Statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002).
- [2] Luce, R. & Perry, A. A method of matrix analysis of group structure. Psychometrika 14, 95–116 (1949).
- [3] Watts, D. J. & Strogatz, S. H. Collective dynamics of "small-world" networks. Nature 393, 440–442 (1998).
- [4] Walsh, T. Search in a small world. In Dean, T. (ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence (Morgan Kaufmann, 1999).
- [5] Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Physical Review Letters 87 (2001).
- [6] Barabási, A. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).