
Supporting Information

Figure S.1: Examples of the random graphs (N = 250) used for the analysis: (A) Erdös-Rényi network, (B) Watts-
Strogatz network, (C) Barabási and Albert network, and (D) Klemm and Egúılez network, (E) Delaunay network, and
(F) Voronoi network. The colored subgraph represents the close nodes to a random focal node with high connectivity
and the edge weights (distances) are not to scale for a clearer visualization.
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Table S.1: Node characteristics used for the neighborhood search and their formulations.

Measures of network complexity. To evaluate the complexity of the random Voronoi networks and
random Delaunay networks we use the following measures that capture the random, scale-free, and small-
world features of complex networks: average degree, average path length, weighted clustering coefficient,
proximity ratio, global efficiency, and power law (see Table S.2 for the mathematical formulations of these
characteristics). General measures of connectivity and network topology (for connected graphs) include the
mean degree and the average path length, which refers to the average number of edges within the shortest
path for all pairs of nodes in a network [1]. The weighted clustering coefficient of a node is the ratio of the
node degree and the total number of possible edges for a node in the network [2]. The global version of
this measure is the average of the node weighted clustering coefficients and provides an estimate of small-
world-ness [3]. The proximity ratio is the ratio of the following ratios: (i) the average weighted clustering
coefficient and the average path length and (ii) the average weighted clustering coefficient for a completely
random network of the same size and the average path length for that random network of the same size.
This provides a measure of the small-world-ness of networks, with S = 1 for random networks and S � 1
for small-world networks [4]. Another measure of small-world-ness is average efficiency which is the average
of the inverses of the network’s shortest paths and captures the network’s ability to exchange information
between nodes [5]. If the degree distribution of the nodes follows a power law, then the network is said to
be scale-free, i.e. random with some highly connected nodes [6].



Measures of network complexity
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Table S.2: The measures used to evaluate network complexity.

Delaunay Voronoi

N 500 1000 2000 500 1000 2000
CD 4.708 5.392 5.208 2.840 2.900 2.938
L 9 12 17 21 29 40
C 0.003 0.003 0.003 0.006 0.003 0.003
S 1.005 0.991 0.980 0.845 0.091 0.089
γ 1.667 1.800 3.000 837 1784 1907
EG 0.0724 0.0523 0.0385 0.0328 0.0238 0.0177

Table S.3: The average characteristics of 1000 random Delaunay and Voronoi networks.

Suburban school network Rural school network
Elementary Middle Elementary

SE(1) SE(2) SE(3) SM(1) SM(2) SM(3) RE(1) RE(2) RE(3) RE(4)

N 3952 4222 5149 7750 4895 8059 1727 2160 1539 1996
NC 1772 1807 1077 4614 1198 2210 416 330 363 735
ND 2180 2415 4072 3136 3697 5849 1311 1830 1176 1261
LF 50 96 194 110 43 103 51 95 50 52
CD 2 2 2 2 2 2 2 2 2 2
L 80 133 183 135 72 123 77 88 71 82
γ 1179 1300 1604 2353 1432 2427 761 967 679 891
EG 0.0060 0.0060 0.0045 0.0052 0.0074 0.0056 0.0078 0.0080 0.0104 0.0092

Table S.4: The network characteristics of the street networks around the schools used for the study. The average
weighted clustering coefficient C was not calculated since triplets were uncommon in these networks and neither was
the proximity ratio S since it depends on C.



Parameter Description Values

N Number of nodes 500, 1000, 2000
Erdös-Rényi graphs p connection probability 0.01
Watts-Strogatz graphs pW rewiring probability 0.01

kL initial node degree 10
Barabási and Albert graphs m0 connected network size 10

m degree of new nodes m0
Klemm and Egúılez graphs m0 connected network size 10

pS node selection probability 0.1
p connection probability 0.01

Delaunay random graphs pR edge removal probability 0.1
Voronoi random graphs pR edge removal probability 0.1

Table S.5: The random network parameters and values used for the analysis. Following [6], the degree of new nodes
for the Barabási and Albert graphs were equal to the initial network size (m = m0).



Figure S.2: The termination times for the heuristics applied to the random networks: (a) Erdös-Rényi networks,
(b) Watts-Strogatz networks, (c) Barabási and Albert networks, and (d) Klemm and Egúılez networks, (e) Delaunay
networks, and (f) Voronoi networks. These are average times for 1000 random restarts for optimization applied to
1000 random network of each type and size. The times are scaled by the exhaustive search time and log transformed
for easier interpretation.



Figure S.3: The cost and benefit deviations for the heuristics applied to the random networks: (a) Erdös-Rényi
networks, (b) Watts-Strogatz networks, (c) Barabási and Albert networks, and (d) Klemm and Egúılez networks, (e)
Delaunay networks, and (f) Voronoi networks. Each point represents the results for a given method and network size
(N = 500, 1000, 2000). The costs and benefits were scaled by the results from the exhaustive search, where a longer
connection length is a positive cost deviation and a shorter connection is a negative cost deviation. These are average
times for 1000 random restarts for optimization applied to 1000 random network of each type and size.



Algorithm 1
Exhaustive search pseudocode

for i in ND do . Select a distant node.
for j in NC do . Select each close node.

if d(i, j) + d(j, S) < D then . If node will be within the distance.
C(i, j) = d(i, j) . Calculate the cost of the connection, i.e. the length.
for k in ND do . Select each distant node.

if d(k, i) + d(i, j) + d(j, S) < D then . Calculate the distance to the focal node.
k ∈ N ′C . If node is within the distance assign it to the new close set.

end if
end for
B(i, j) = |N ′C | . Calculate the number of new close nodes.

end if
end for

end for



Algorithm 2
Hill climbing

randomly select i from ND
randomly select j from NC
C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then
k ∈ N ′C

end if
end for
B(i, j) = |N ′C |
O0 = αC(i, j) + βB(i, j)
t = 1
while Ot 6= Ot−1 do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then
k ∈ N ′C

end if
end for
B(m,n) = |N ′C |

end for
end for
Ot = max(m,n)(αC(m,n) + βB(m,n))
t = t+ 1

end while



Algorithm 3
Stochastic hill climbing

randomly select i from ND
randomly select j from NC
C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then
k ∈ N ′C

end if
end for
B(i, j) = |N ′C |
O0 = αC(i, j) + βB(i, j)
t = 1
while Ot 6= Ot−1 do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then
k ∈ N ′C

end if
end for
B(m,n) = |N ′C |

end for
end for

Ot = αC(i, j) + βB(i, j) with probability(i, j) =
αC(i, j) + βB(i, j)∑

(m,n)(αC(m,n) + βB(m,n))
t = t+ 1

end while



Algorithm 4
Hill climbing with a variable neighborhood

set nmax
randomly select i from ND
randomly select j from NC
C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then
k ∈ N ′C

end if
end for
B(i, j) = |N ′C |
O0 = αC(i, j) + βB(i, j)
η = 1
t = 1
while η < ηmax do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then
k ∈ N ′C

end if
end for
B(m,n) = |N ′C |

end for
end for
Ot = max(m,n)(αC(m,n) + βB(m,n))
if Ot > Ot−1 then

η = 1
else

η = η + 1
end if
t = t+ 1

end while



Algorithm 5
Simulated annealing

randomly select i from ND
randomly select j from NC
C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then
k ∈ N ′C

end if
end for
B(i, j) = |N ′C |
O0 = αC(i, j) + βB(i, j)
t = 1
while Ot 6= Ot−1 do

ND
i = neighbors of i in ND

NC
j = neighbors of j in NC

for m in ND
i do

for n in NC
j do

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then
k ∈ N ′C

end if
end for
B(m,n) = |N ′C |
O(m,n) = αC(m,n) + βB(m,n)

end for
end for
if max(m,n)O(m,n) > Ot−1 then

Ot = O(m,n)
else

Ot = O(m,n) with probability(m,n) = exp

(
−O

t−1 −O(m,n)

t

)
end if
t = t+ 1

end while



Algorithm 6
Genetic algorithm

µ = mutation rate
s = selection coefficient
P = randomly selected population
Chromosome(i) = (1...1)
Chromosome(j) = (1...1)
for (i, j) in P do

C(i, j) = d(i, j)
for k in ND do

if d(k, i) + d(i, j) + d(j, F ) < D then
k ∈ N ′C

end if
end for
B(i, j) = |N ′C |
O(i, j)0 = αC(i, j) + βB(i, j)

end for
t = 1
while max(i,j)O(i, j)t 6= max(i,j)O(i, j)t−1 do

f(i, j) =
O(i, j)∑
(i,j)O(i, j)

populate P with (i, j) with probability(i, j) =
s ∗ f(i, j) + (1− s)∑

(m,n)(s ∗ f(m,n) + (1− s))
cycle crossover
for k in P do

for ` in chromosome(k) do
if random number ≤ µ then

gene(k, `) = gene(k, `) + 1
end if

end for
end for
for (i, j) in P do

randomly select m from ND
i with probability gene(i,m)/

∑
k gene(i, k)

randomly select n from NC
j with probability gene(j, n)/

∑
k gene(j, k)

C(m,n) = d(m,n)
for k in ND do

if d(k,m) + d(m,n) + d(n, F ) < D then
k ∈ N ′C

end if
end for
B(m,n) = |N ′C |
O(m,n)t = αC(m,n) + βB(m,n)

end for
t = t+ 1

end while
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