
Algorithm 1: function Z(T,B), T = T (G), for G ∈ sDH(2)

Input: T (G) is assumed rooted, B is a component of T (G)
Output: the pair [ζ(B̄), ζB̄(m)]

1 Let {B1, B2, . . . , Bk} the children of B connected to B by edges (mi,m
′
i),

i = 1, . . . , k, where mi ∈ B
2 Let m the marked vertex connecting B to its parent in T , if it exists.
3 Let a = b = c = d = e = f = 〈0, 0〉
4 a = max{ζ(u, v) | (u, v) is a stretch-pair of B}
5 b = max{first(Z(T,Bi)) | i = 1, . . . , k}
6 c = max{ζB(mi) + second(Z(T,Bi)) | i = 1, . . . , k}
7 d = max{ζ(mi,mj) + second(Z(T,Bi)) +

second(Z(T,Bj)) | (mi,mj) is a stretch-pair of B}
8 if m exists then
9 e = ζB(m)

10 f = max{ζ(m,mi) + second(Z(T,Bi)) | (m,mi) is a stretch-pair of B}
11 return [max{a, b, c, d}, max{e, f}]

Algorithm 2: computing s(G)

Input: a graph G with any component B of D(G) such that s(B) < 2
Output: s(G)

1 compute D(G) and T (G)
2 choose a component B of D(G) as a root of T (G)
3 return σ(first(Z(T (G), B)))

1


