```
Algorithm 1: function \(Z(T, B), T=T(G)\), for \(G \in \operatorname{sDH}(2)\)
    Input: \(T(G)\) is assumed rooted, \(B\) is a component of \(T(G)\)
    Output: the pair \(\left[\zeta(\bar{B}), \zeta_{\bar{B}}(m)\right]\)
    Let \(\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}\) the children of \(B\) connected to \(B\) by edges \(\left(m_{i}, m_{i}^{\prime}\right)\),
    \(i=1, \ldots, k\), where \(m_{i} \in B\)
    Let \(m\) the marked vertex connecting \(B\) to its parent in \(T\), if it exists.
    Let \(a=b=c=d=e=f=\langle 0,0\rangle\)
    \(a=\max \{\zeta(u, v) \mid(u, v)\) is a stretch-pair of \(B\}\)
    \(b=\max \left\{\operatorname{frrst}\left(Z\left(T, B_{i}\right)\right) \mid i=1, \ldots, k\right\}\)
    \(c=\max \left\{\zeta_{B}\left(m_{i}\right)+\operatorname{second}\left(Z\left(T, B_{i}\right)\right) \mid i=1, \ldots, k\right\}\)
    \(d=\max \left\{\zeta\left(m_{i}, m_{j}\right)+\operatorname{second}\left(Z\left(T, B_{i}\right)\right)+\right.\)
        \(\operatorname{second}\left(Z\left(T, B_{j}\right)\right) \mid\left(m_{i}, m_{j}\right)\) is a stretch-pair of \(\left.B\right\}\)
    if \(m\) exists then
        \(e=\zeta_{B}(m)\)
        \(f=\max \left\{\zeta\left(m, m_{i}\right)+\operatorname{second}\left(Z\left(T, B_{i}\right)\right) \mid\left(m, m_{i}\right)\right.\) is a stretch-pair of \(\left.B\right\}\)
    return \([\max \{a, b, c, d\}, \max \{e, f\}]\)
```

```
Algorithm 2: computing \(s(G)\)
    Input: a graph \(G\) with any component \(B\) of \(\mathcal{D}(G)\) such that \(s(B)<2\)
    Output: \(s(G)\)
    compute \(\mathcal{D}(G)\) and \(T(G)\)
    choose a component \(B\) of \(\mathcal{D}(G)\) as a root of \(T(G)\)
    return \(\sigma(\) first \((Z(T(G), B)))\)
```

