
Appendix 2: Kullback-Leibler R2 for members of exponential family 

The following table summarizes the formulas of log-likelihood and Kullback-Leibler divergences, 

supposing that only location parameter () is estimated, the scale parameter is known a priori (if it 

exists).  
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Note that:  

 In the case of binomial distribution: instead of usual parametrization (i.e., n = number of 

trials and p = probability of success) the parameters are n = number of trials, and 𝜇 = 𝑛𝑝 = 

expected number of successes. n is assumed to be known a priori.  

 Parameters of negative binomial distribution are mean () and dispersion (𝜃). Variance is 

𝑉 = 𝜇 +
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𝜃
. Dispersion is known a priori or value estimated by fitting the studied model is 

used. 

 In deduction of KL-divergence of Poisson distribution we used the fact that for models 
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When canonical link is applied the predicted value of intercept-only model (𝜇0) is equal to mean of y 
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for binomial distribution, and  
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for negative binomial distribution. 

In the two-stage models, the expected value of 𝑦𝑖  depends on two parameters: the probability of 

presence (p) and expected value if 𝑦𝑖  is positive (𝜇). In contrast to dispersion or power parameters, 

we cannot assume that the value of p is known a priori; it is always estimated from the data and 

often depends on the independent variables. Therefore, it has to be included in the general form of 

the log-likelihood function: 
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where  𝑓+(𝑦𝑖; 𝜇𝑖) is the density function of the distribution fitted to positive data, and 𝑦𝑖
+ is the 

presence/absence of species 

𝑦𝑖
+ = {

1⁡⁡⁡⁡⁡⁡⁡⁡⁡if⁡𝑦𝑖 > 0
0⁡⁡⁡⁡⁡otherwise

 



Since the likelihood depends on both p and , the definition of R2 given in equation (20) of the main 

text should be replaced by: 

 
𝑅𝐾𝐿

2 = 1 −
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𝑙(𝐩𝐟𝐮𝐥𝐥, 𝛍𝐟𝐮𝐥𝐥; 𝐲) − 𝑙(𝒑𝟎, 𝛍𝟎; 𝐲)
 (2) 

where 𝑙(𝐩𝐟𝐮𝐥𝐥, 𝛍𝐟𝐮𝐥𝐥; 𝐲) and 𝑙(𝒑𝟎, 𝛍𝟎; 𝐲) are log-likelihoods of the full and intercept-only models, 

respectively. Intercept-only models mean that only intercepts are used as predictors in both stages. 

Two-stage models can be fitted as two separate GLMs. Let us denote the likelihood of the 

two fitted models by 𝑙(𝐩; 𝐲) and 𝑙(𝛍; 𝐲). It can be shown that: 

 𝑙(𝐩, 𝛍; 𝐲) = ⁡𝑙(𝐩; 𝐲) + 𝑙(𝛍; 𝐲) (3) 

In a full model, the predicted and observed values are the same, so 𝑙(𝐩𝐟𝐮𝐥𝐥; 𝐲) = 0 and 

𝑙(𝐩𝐟𝐮𝐥𝐥, 𝛍𝐟𝐮𝐥𝐥; 𝐲) = ⁡𝑙(𝛍𝐟𝐮𝐥𝐥; 𝐲).  

Positive abundances can be modeled by beta, zero-truncated Poisson, and zero-truncated 

negative binomial distributions. In the case of a beta distribution, ln 𝑓+(𝑦𝑖; 𝜇𝑖) is the log-likelihood of 

a beta distribution fitted for positive abundances (see Table 1 for formula). In beta regression, the 

formula given in Table 1 can be used for calculating⁡𝑙(𝛍; 𝐲). Since the predicted value of the 

intercept-only model may differ from the mean of observed values, it has to be fitted before 

calculation of 𝑙(𝛍𝟎; 𝐲). 

In the case of zero-truncated Poisson and zero-truncated negative binomial distributions, 

 
𝑓+(𝑦𝑖; 𝜇𝑖) = ⁡

𝑓(𝑦𝑖; 𝜇𝑖)

1 − 𝑓(0; 𝜇𝑖)
 (4) 

where 𝑓(𝑦𝑖; 𝜇𝑖) is the density of Poisson or negative binomial distributions. In truncated distributions, 

the expected value is a nonlinear function of 𝜇: 

 𝐸(𝑦|𝑦 > 0, 𝜇) =
𝜇

1 − 𝑓(0; 𝜇)
 (5) 



where 𝑓(0; 𝜇𝑖) = 𝑒−𝜇 for a zero-truncated Poisson distribution and 𝑓(0; 𝜇𝑖) = (1 + 𝜇 𝜃⁄ )−𝜃 for a zero-

truncated negative binomial distribution. Therefore, for the calculation of 𝑙(𝒑𝟎, 𝛍𝟎; 𝐲), the intercept-

only model should be fitted. If the dispersion parameter (𝜙 or 𝜃 in beta or negative binomial model, 

respectively) is estimated during regression, the estimated value should be used in calculation of the 

log-likelihood for full and intercept-only models.  

 


