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Supplementary Figure 1: The multi-panel figure contains the mean number of overlap coefficient (top three panels)) and c-index (bottom three panels)) among 200 replications by the number of selected features for the simulation study 3 with band structure based on PH model. The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A larger mean number of overlap coefficient indicates highly similarity with a ground truth set of predictors, and a larger c-index indicates better prediction accuracy. Note that the underlying survival model has 15 true predictors.
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Supplementary Figure 2: The violin chart of minimum of model size (MMS) measure among 200 replications for the simulation study 3 with band structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A smaller MMS value indicates the higher accuracy of feature screening.
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Supplementary Figure 3: The average of Jaccard index among 200 replications for the simulation study 3 with band structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. 
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Supplementary Figure 4: The multi-panel figure contains the mean number of overlap coefficient (top three panels)) and c-index (bottom three panels)) among 200 replications by the number of selected features for the simulation study 3 with hub structure based on PH model. The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A larger mean number of overlap coefficient indicates highly similarity with a ground truth set of predictors, and a larger c-index indicates better prediction accuracy. Note that the underlying survival model has 15 true predictors.
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Supplementary Figure 5: The violin chart of minimum of model size (MMS) measure among 200 replications for the simulation study 3 with hub structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A smaller MMS value indicates the higher accuracy of feature screening.
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Supplementary Figure 6: The average of Jaccard index among 200 replications for the simulation study 3 with hub structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. 
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Supplementary Figure 7: The multi-panel figure contains the mean number of overlap coefficient (top three panels)) and c-index (bottom three panels)) among 200 replications by the number of selected features for the simulation study 3 with cluster structure based on PH model. The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A larger mean number of overlap coefficient indicates highly similarity with a ground truth set of predictors, and a larger c-index indicates better prediction accuracy. Note that the underlying survival model has 15 true predictors.
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Supplementary Figure 8: The violin chart of minimum of model size (MMS) measure among 200 replications for the simulation study 3 with cluster structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A smaller MMS value indicates the higher accuracy of feature screening.
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Supplementary Figure 9: The average of Jaccard index among 200 replications for the simulation study 3 with cluster structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. 
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Supplementary Figure 10: The multi-panel figure contains the mean number of overlap coefficient (top three panels)) and c-index (bottom three panels)) among 200 replications by the number of selected features for the simulation study 3 with scale-free structure based on PH model. The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A larger mean number of overlap coefficient indicates highly similarity with a ground truth set of predictors, and a larger c-index indicates better prediction accuracy. Note that the underlying survival model has 15 true predictors.
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Supplementary Figure 11: The violin chart of minimum of model size (MMS) measure among 200 replications for the simulation study 3 with scale-free structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. A smaller MMS value indicates the higher accuracy of feature screening.
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Supplementary Figure 12: The average of Jaccard index among 200 replications for the simulation study 3 with scale-free structure based on PH model.
The left, medium, and right plots are based on censoring rates of 30%, 50%, and 70%, respectively. 
[bookmark: _GoBack]The Cancer Genome Atlas head and neck squamous cell carcinoma (HNSCC) data
The TCGA HNSCC RNA-Seq expression data which were collected using the IlluminaHiseq RNAseq V2 platform, together with the phenotype data containing the survival time and censoring status data, can be downloaded from the R package ‘GEInter’.
Data are available on 484 subjects. The response is overall survival, which is subject to right censoring. The censoring rate is about 58%. A total of 18,409 gene expression measurements are available. As the number of disease-associated biomarkers is not expected to be large, we conduct prescreening using marginal Cox models, which can also improve stability. The top 2,000 genes with the smallest p-values are selected for downstream analysis. We take five random splits of the whole data into 387:97 training/test sets of the data to evaluate the performance of all methods for survival prediction in the TCGA HNSCC data. 
We apply eight screening methods, “PL”, “SIS”, “FAST”, “RCDCS”, “CRCDCS”, “CINDEX” “IPCW-tau”, “IPCW-tau (NPN-MB)”, to the TCGA HNSCC data. After grid search from the top 10 to the top 300 ranked genes, the best overall prediction performance of all methods is attained by using the top 170 genes, so the top-ranked 170 predictors are selected as the candidate covariates for each method, and the Cox’s regression model with the candidate covariates and the MCP penalty is applied to the training data to establish the final prediction model. Besides, the MCP-penalized Cox model with the top 2,000 genes selected by the univariate Cox’s test is applied to the training data to build the prediction model. We also take the published biomarker genes (GIMAP6, SELL, TIFAB, KCNA3, CCR4) related to HNSCC (Ran et al., 2021) as a survival prediction model to make comparisons.
The prediction accuracy performances for different methods are evaluated and the numerical results are provided in Table S1 that reports the median of the survival prediction results among five folds. We can see that the proposed IPCW-tau (NPN-MB) method outperforms the alternative methods for survival prediction in the TCGA HNSCC test data.
In addition, we apply the proposed IPCW-tau (NPN-MB) method for whole data to identify several important biomarker genes and estimate the correspondence parameters by penalized Cox’s regression model with the MCP penalty. Please see Table S2 for the list of selected associated predictors. We identify nine genes and find the four genes (PITPNM3, MXD4, ABCB1, BATF) that have been shown to be related to HNSCC in the literatures (Aravind et al., 2021, Wu et al., 2019, da Silva et al., 2021, Duz et al., 2021, Wang et al., 2020, and Wen et al., 2015).





Supplementary Table 1: 
Results (median of prediction accuracy of different methods in the TCGA HNSCC data over 5 random splits of 387:97 training /test sets); all feature screening methods and a published biomarker genes model are applied together with the MCP penalized Cox regression.

	
	PL
	SIS
	FAST
	RCDCS
	CRCDCS
	CINDEX
	IPCW
-tau
	NPN
-MB
	Ordinary
-MCP
	Ran et al.
(2021)

	Deviance
	6.8319 
	0.7690
	6.3660 
	-1.4770 
	0.7243 
	5.8908
	2.0246 
	-3.1675 
	276.269 
	-1.0546 

	c-index
	0.5842 
	0.6083 
	0.5818 
	0.5985 
	0.6130 
	0.5988 
	0.6053
	0.6160 
	0.6215 
	0.5457 

	NOSF
	12 
	10
	13 
	11 
	16 
	13 
	13 
	9
	44 
	1




Supplementary Table 2: 
Selected genes with their correspondence estimate by IPCW-tau (NPN-NB) screening procedure with MCP penalty for the whole TCGA HNSCC data.
	gene
	estimate
	Citation

	ZNF266
	-0.46563237
	

	SEC11A
	0.20228840
	

	PITPNM3
	-0.15584711
	Aravind et al. (2021)

	MXD4
	-0.13870271
	Wu et al. (2019)

	ABCB1
	-0.01950197
	da Silva et al. (2021),
Duz et al. (2021), and
Wang et al. (2020)

	MAST4
	-0.23504445
	

	SERINC3
	0.04911169
	

	BATF
	-0.27027155
	Wen et al. (2015)

	PITPNB
	0.03290633
	










The Cancer Genome Atlas lung adenocarcinoma (LUAD) data
After excluding patients with missing survival time data, our analysis is focused on the subset of the TCGA LUAD data with 505 patients and 20,501 gene expression variables. The censoring rate in the data is about 64%. Due to the number of disease-associated biomarkers is not expected to be large, the top 2,000 genes with the smallest p-values based on marginal Cox’s model are selected for downstream analysis. We take five random splits of the whole data into 404:101 training/test sets of the data to evaluate the performance of all methods for survival prediction in the TCGA LUAD data. 
We apply eight screening methods, “PL”, “SIS”, “FAST”, “RCDCS”, “CRCDCS”, “CINDEX” “IPCW-tau”, “IPCW-tau (NPN-MB)”, to the TCGA LUAD data. After grid search from the top 10 to the top 300 ranked genes, the best overall prediction performance of all methods is attained by using the top 140 genes, so the top-ranked 140 predictors are selected as the candidate covariates for each method, and the Cox’s regression model with the candidate covariates and the MCP penalty is applied to the training data to establish the final prediction model. Besides, the MCP-penalized Cox model with the top 2,000 genes selected by the univariate Cox’s test is applied to the training data to build the prediction model. We also take the published biomarker genes (ALK, BRAF, EGFR, ROS1) related to LUAD (Chen et al., 2021) as a survival prediction model to make comparisons.
The prediction accuracy performances for different methods are evaluated and the numerical results are provided in Table S3 that reports the median of the survival prediction results among five folds. We can see that the proposed IPCW-tau (NPN-MB) method outperforms the alternative methods for survival prediction in the TCGA LUAD test data. 
In addition, we apply the proposed IPCW-tau (NPN-MB) method for whole data to identify several important biomarker genes and estimate the correspondence parameters by penalized Cox’s regression model with the MCP penalty. Please see Table S4 for the list of selected associated predictors. We identify fourteen genes and find the seven genes (EPB41L5, INPP5J, KRT16, MS4A1, MYLIP, PEBP1, SFTPB) that have been shown to be related to LUAD in the literatures (Li et al., 2020, Zhang et al., 2020, Yuanhua et al., 2019, Song et al., 2020, Liu et al., 2021, Li et al., 2020, Zhang et al., 2021, Cao et al., 2021, and Zhang et al., 2019). 








Supplementary Table 3: 
Results (median of prediction accuracy of different methods in the TCGA LUAD data over 5 random splits of 404:101 training /test sets); all feature screening methods and a published biomarker genes model are applied together with the MCP penalized Cox regression.
	
	PL
	SIS
	FAST
	RCDCS
	CRCDCS
	CINDEX
	IPCW
-tau
	NPN
-MB
	Ordinary-MCP
	Chen et al.
(2021)

	Deviance
	7.7639 
	19.8600
	12.79617
	2.8480 
	3.8522 
	-1.3321 
	-1.2874 
	-3.4570 
	1701.964 
	-0.9546 

	c-index
	0.5873 
	0.6083 
	0.6257
	0.6463 
	0.6400 
	0.6302 
	0.6421 
	0.6527 
	0.5962 
	0.5821 

	NOSF
	14 
	17 
	16 
	18 
	14 
	11 
	16 
	11 
	83 
	1




Supplementary Table 4: 
Selected genes with their correspondence estimate by IPCW-tau (NPN-NB) screening procedure with MCP penalty for the whole TCGA LUAD data.
	gene
	estimate
	Citation

	ADH1B
	0. 1015
	

	C1QTNF6
	0. 3162
	

	CDCP1
	0. 0815
	

	CNIH
	0. 5212
	

	EPB41L5
	-0. 1287
	Li et al. (2020)

	EPS8L3
	0.0087
	

	INPP5J
	-0.1429
	Zhang et al. (2020)

	KRT16
	-0.1192
	Yuanhua et al. (2019)

	MS4A1
	-0.1302
	Song et al. (2020)

	MYLIP
	-0.4459
	Liu et al. (2021), and
Li et al. (2020)

	PEBP1
	-0.4761
	Zhang et al. (2021)

	PLEC
	0.1959
	

	RCBTB2
	-0.3733
	

	SELENBP1
	0.2768
	

	SFTPB
	-0.0878
	Cao et al. (2021), and
Zhang et al. (2019)



The Cancer Genome Atlas breast invasive carcinoma (BRCA) data
After excluding patients with missing survival time data, our analysis is focused on the subset of the TCGA BRCA data with 1,094 patients and 20,501 gene expression variables. The censoring rate in the data is about 86%. Due to the number of disease-associated biomarkers is not expected to be large, the top 2,000 genes with the smallest p-values based on marginal Cox’s model are selected for downstream analysis. We take five random splits of the whole data into 876:218 training/test sets of the data to evaluate the performance of all methods for survival prediction in the TCGA BRCA data. 
We apply eight screening methods, “PL”, “SIS”, “FAST”, “RCDCS”, “CRCDCS”, “CINDEX” “IPCW-tau”, “IPCW-tau (NPN-MB)”, to the TCGA LUAD data. After grid search from the top 10 to the top 300 ranked genes, the best overall prediction performance of all methods is attained by using the top 210 genes, so the top-ranked 210 predictors are selected as the candidate covariates for each method, and the Cox’s regression model with the candidate covariates and the MCP penalty is applied to the training data to establish the final prediction model. Besides, the MCP-penalized Cox model with the top 2,000 genes selected by the univariate Cox’s test is applied to the training data to build the prediction model. We also take the published biomarker genes (TMEM190, TUBA3D, LYVE1, LILBR5, CD209) related to BRCA (Liu et al., 2019) as a survival prediction model to make comparisons.
The prediction accuracy performances for different methods are evaluated and the numerical results are provided in Table S5 that reports the median of the survival prediction results among five folds. We can see that the proposed IPCW-tau (NPN-MB) method outperforms the alternative methods for survival prediction in the TCGA BRCA test data. 
In addition, we apply the proposed IPCW-tau (NPN-MB) method for whole data to identify several important biomarker genes and estimate the correspondence parameters by penalized Cox’s regression model with the MCP penalty. Please see Table S6 for the list of selected associated predictors. We identify ten genes and find the four genes (EDA2R, PCMT1, QPRT, SKP1) that have been shown to be related to BRCA in the literatures (Liu, Kain & Wang, 2012, Kyritsis et al. 2021, Liu et al. 2021, and Tian et al. 2020). 








Supplementary Table 5: 
Results (median of prediction accuracy of different methods in the TCGA BRCA data over 5 random splits of 876:218 training /test sets); all feature screening methods and a published biomarker genes model are applied together with the MCP penalized Cox regression.

	
	PL
	SIS
	FAST
	RCDCS
	CRCDCS
	CINDEX
	IPCW
-tau
	NPN
-MB
	Ordinary
-MCP
	Liu et al.
(2019)

	Deviance
	0.6100 
	 0.5991 
	 0.6847 
	 0.6224 
	 0.6041 
	 0.6361 
	 0.5432 
	 0.6479 
	 0.7192 
	 0.5795 

	c-index
	46.3608 
	 381.8566 
	 18.3825 
	 76.5045 
	 26.1614 
	 53.1598 
	 14.5303 
	 1.7584 
	 2015.243 
	 0.5637 

	NOSF
	28
	 88 
	 22 
	 29 
	 21 
	 28 
	 21 
	 15 
	 78 
	 2




Supplementary Table 6: 
Selected genes with their correspondence estimate by IPCW-tau (NPN-NB) screening procedure with MCP penalty for the whole TCGA BRCA data.
	gene
	estimate
	Citation

	C21orf57
	-0.30371804
	

	EDA2R
	0.09746804
	Liu, Kain & Wang (2012)

	JRKL
	0.45789616
	

	PCMT1
	0.65613403
	Kyritsis et al. (2021)

	QPRT
	0.13559978
	Liu et al. (2021)

	ROPN1L
	-0.25100467
	

	SKP1
	0.70641965
	Tian et al. (2020)

	SPINK8
	0.05213272
	

	TANK
	-0.97414124
	

	ZNF674
	0.20787107
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