#Codes - Supplementary File with Directories Redacted library(epiR) library(epicalc) setwd((redacted)) use("peerj-62792-Suppl_-_Data_for_PeerJ.csv") #Putting Provinces into Regions region <- ifelse(province=="Bangkok" | province=="Samut Prakan" | province=="Nonthaburi" , "1 - Bangkok Metro", "Unknown") region <- ifelse(province=="Chonburi" | province=="Phra Nakhon Si Ayutthaya" | province=="Nakhon Pathom" , "2 - Central", region) region <- ifelse(province=="Chiang Mai" | province=="Chiang Rai" | province=="Nakhon Sawan" , "3 - North", region) region <- ifelse(province=="Khon Kaen" | province=="Nakhon Ratchasima" | province=="Buriram" | province=="Buriram" | province=="Ubon Ratchathani", "4 - Northeast", region) region <- ifelse(province=="Nakhon Si Thammarat" | province=="Songkhla", "5 - South", region) label.var(region, "") table(province, region) #sampling weight addition pweight <- ifelse(region=="1 - Bangkok Metro", 33747.3, 99999) pweight <- ifelse(region=="2 - Central", 33064.2, pweight) pweight <- ifelse(region=="3 - North", 33843.6, pweight) pweight <- ifelse(region=="4 - Northeast", 33171.1, pweight) pweight <- ifelse(region=="5 - South", 33272.8, pweight) tab1(pweight) label.var(pweight, "Population sampling weights") #TABLE 1 #Sex Female sex_female <- sex-1 tab1(sex_female) #Age summ(age) #Marital status tab1(status) status2 <- ifelse(status==2,1,0) status3 <- ifelse(status==3,1,0) status4 <- ifelse(status==4,1,0) label.var(status2,"") label.var(status3,"") label.var(status4,"") label.var(sex_female,"") label.var(age,"") label.var(status,"") status_cat <- ifelse(status==1, "1 - Single", ifelse(status==2, "2 - Married with child(ren)", ifelse(status==3, "3 - Married, no children", ifelse(status==4, "4 - Widowed / divorced / separated", NA)))) table(status, status_cat) label.var(status_cat,"") #EDUCATION RECODED tab1(edu) edu_recoded <- ifelse(edu<=3, "1 - Junior high or less", ifelse(edu==4 | edu==5, "2 - High school", ifelse(edu==6 | edu==7, "3 - Associates degree", ifelse(edu==8, "4 - Bachelors degree", ifelse(edu==9, "5 - Graduate education",NA))))) tab1(edu_recoded) label.var(edu_recoded,"") edu2 <- ifelse(edu_recoded=="2 - High school",1,0) edu3 <- ifelse(edu_recoded=="3 - Associates degree",1,0) edu4 <- ifelse(edu_recoded=="4 - Bachelors degree",1,0) edu5 <- ifelse(edu_recoded=="5 - Graduate education",1,0) label.var(edu2,"") label.var(edu3,"") label.var(edu4,"") label.var(edu5,"") #Personal monthly income tab1(salary) income_cat <- ifelse(salary==1, "1 - Less than 5k", ifelse(salary==2, "2 - 5k to 10k", ifelse(salary==3, "3 - 10k to 20k", ifelse(salary==4, "4 - 20k to 30k", ifelse(salary==5, "5 - 30k to 40k", ifelse(salary==6, "6 - 40k to 50k", ifelse(salary==7, "7 - More than 50k", NA))))))) tab1(income_cat) label.var(income_cat,"") salary2 <- ifelse(salary==2,1,0); salary2 <- ifelse(salary==999,NA,salary2) salary3 <- ifelse(salary==3,1,0); salary3 <- ifelse(salary==999,NA,salary3) salary4 <- ifelse(salary==4,1,0); salary4 <- ifelse(salary==999,NA,salary4) salary5 <- ifelse(salary==5,1,0); salary5 <- ifelse(salary==999,NA,salary5) salary6 <- ifelse(salary==6,1,0); salary6 <- ifelse(salary==999,NA,salary6) salary7 <- ifelse(salary==7,1,0); salary7 <- ifelse(salary==999,NA,salary7) label.var(salary2,"") label.var(salary3,"") label.var(salary4,"") label.var(salary5,"") label.var(salary6,"") label.var(salary7,"") #EXPOSURE: EMERGENCY FUND AVAILABILITY #Emergency expense #Emergency of 5000 THB - What to do? shortcredit <- q11_1 longcredit <- q11_2 cash <- q11_3 loanbank <- q11_4 borrow <- q11_5 loanshark <- q11_6 sell <- q11_7 pawn <- q11_8 cannot <- q11_9 #Recoding "others" longcredit <- ifelse(q11_10other=="Talk to lenders",1,longcredit) #if anyone said they would work more, we assumed that they would obtain cash (to obtain the most liberal estimate of those with adequate cash reserve) #Note: To "sell things" in this section refers to trading goods for profit rather than selling personal belongings to earn cash, thus is considered as raising cash to pay for the 5000 bahts emergency cash <- ifelse(q11_10other=="Use savings" | q11_10other=="Work - sell things" | q11_10other=="Make more income" | q11_10other=="Make extra income" | q11_10other=="Work more",1,cash) cash <- ifelse(q11_10other=="Ask for advanced payment",1,cash) loanbank <- ifelse(q11_10other=="Village funds",1,loanbank) loanshark <- ifelse(q11_10other=="Take money from rotating savings",1,loanshark) #Remark: "Talking to parents" = borrowing from parents borrow <- ifelse(q11_10other=="Talk to parents",1,borrow) borrow <- ifelse(q11_10other=="Borrow from parents",1,borrow) #Refinancing a car is considered the same as pawning the car pawn <- ifelse(q11_10other=="Refinance car",1,pawn) allothers <- shortcredit + longcredit + loanbank + borrow +loanshark + sell + pawn + cannot tab1(allothers) cashonly <- ifelse(cash==1 & allothers==0, 1 ,0) cashonly <- ifelse(q11_99==1,NA,cashonly) label.var(cashonly, "") tab1(shortcredit) tab1(longcredit) tab1(cash) tab1(loanbank) tab1(borrow) tab1(loanshark) tab1(sell) tab1(pawn) tab1(cannot) label.var(shortcredit,"") label.var(longcredit,"") label.var(cash,"") label.var(loanbank,"") label.var(borrow,"") label.var(loanshark,"") label.var(sell,"") label.var(pawn,"") label.var(cannot,"") #Economic distress - pandemic distress_a1 <- ifelse(q10_1a==9, NA, q10_1a); distress_a1 <- ifelse(distress_a1==1,1,0) distress_a2 <- ifelse(q10_2a==9, NA, q10_2a); distress_a2 <- ifelse(distress_a2==1,1,0) distress_a3 <- ifelse(q10_3a==9, NA, q10_3a); distress_a3 <- ifelse(distress_a3==1,1,0) distress_a4 <- ifelse(q10_4a==9, NA, q10_4a); distress_a4 <- ifelse(distress_a4==1,1,0) distress_a5 <- ifelse(q10_5a==9, NA, q10_5a); distress_a5 <- ifelse(distress_a5==1,1,0) distress_a6 <- ifelse(q10_6a==9, NA, q10_6a); distress_a6 <- ifelse(distress_a6==1,1,0) distress_a7 <- ifelse(q10_7a==9, NA, q10_7a); distress_a7 <- ifelse(distress_a7==1,1,0) distress_a8 <- ifelse(q10_8a==9, NA, q10_8a); distress_a8 <- ifelse(distress_a8==1,1,0) tab1(distress_a1) tab1(distress_a2) tab1(distress_a3) tab1(distress_a4) tab1(distress_a5) tab1(distress_a6) tab1(distress_a7) tab1(distress_a8) #Distress scores and experiencing at least 1 distress since pandemic distress_score <- distress_a1 + distress_a2 + distress_a3 + distress_a4 + distress_a5 + distress_a6 + distress_a7 + distress_a8 tab1(distress_score) econ_distress_pandemic <- ifelse(distress_score==0,0,1) tab1(econ_distress_pandemic) label.var(distress_a1,"") label.var(distress_a2,"") label.var(distress_a3,"") label.var(distress_a4,"") label.var(distress_a5,"") label.var(distress_a6,"") label.var(distress_a7,"") label.var(distress_a8,"") label.var(econ_distress_pandemic,"") #Economic distress in past 30 days #Economic distress - pandemic distress_b1 <- ifelse(q10_1b==9, NA, q10_1b); distress_b1 <- ifelse(distress_b1==1,1,0) distress_b2 <- ifelse(q10_2b==9, NA, q10_2b); distress_b2 <- ifelse(distress_b2==1,1,0) distress_b3 <- ifelse(q10_3b==9, NA, q10_3b); distress_b3 <- ifelse(distress_b3==1,1,0) distress_b4 <- ifelse(q10_4b==9, NA, q10_4b); distress_b4 <- ifelse(distress_b4==1,1,0) distress_b5 <- ifelse(q10_5b==9, NA, q10_5b); distress_b5 <- ifelse(distress_b5==1,1,0) distress_b6 <- ifelse(q10_6b==9, NA, q10_6b); distress_b6 <- ifelse(distress_b6==1,1,0) distress_b7 <- ifelse(q10_7b==9, NA, q10_7b); distress_b7 <- ifelse(distress_b7==1,1,0) distress_b8 <- ifelse(q10_8b==9, NA, q10_8b); distress_b8 <- ifelse(distress_b8==1,1,0) tab1(distress_b1) tab1(distress_b2) tab1(distress_b3) tab1(distress_b4) tab1(distress_b5) tab1(distress_b6) tab1(distress_b7) tab1(distress_b8) #Distress scores and experiencing at least 1 distress since pandemic distress_score <- distress_b1 + distress_b2 + distress_b3 + distress_b4 + distress_b5 + distress_b6 + distress_b7 + distress_b8 tab1(distress_score) econ_distress_30d <- ifelse(distress_score==0,0,1) tab1(econ_distress_30d) label.var(distress_b1,"") label.var(distress_b2,"") label.var(distress_b3,"") label.var(distress_b4,"") label.var(distress_b5,"") label.var(distress_b6,"") label.var(distress_b7,"") label.var(distress_b8,"") label.var(econ_distress_30d,"") #Outcome: Behavioral Health #ANXIETY anxiety_score <- q13gad_1 +q13gad_2 + q13gad_3 + q13gad_4 + q13gad_5 + q13gad_6 + q13gad_7 tab1(anxiety_score) #Cut-off score of 10 points generally recommended for GAD screening anxiety <- ifelse(anxiety_score>=10, 1, 0) tab1(anxiety) label.var(anxiety,"") #DEPRESSION depression_score <- q13phq_1 + q13phq_2 tab1(depression_score) #Cut-off point of 3 or higher is optimal for screening purpose, whereas cut-off point of 2 would enhance sensitivity and 4 would enhance specificity, https://www.chpscc.org › _literature_243927 › The_... depression <- ifelse(depression_score>=3,1,0) tab1(depression) label.var(depression,"") #SLEEP tab1(q17) sleep <- ifelse(q17>=3 & q17<=5, 1, 0) sleep <- ifelse(q17==8, NA, sleep) sleep <- ifelse(q17==9, NA, sleep) tab1(sleep) label.var(sleep,"") #Exercise tab1(q16) exercise <- ifelse(q16==0,0,1) exercise <- ifelse(q16==9,NA,exercise) tab1(exercise) label.var(exercise,"") #gambling gambling <- ifelse(q18==9, NA, q18) tab1(gambling) label.var(gambling,"") #smoking in past 30 days smoking <- ifelse(q15==3 | q15==4, 1, 0) smoking <- ifelse(q15==9, NA, smoking) tab1(smoking) label.var(smoking,"") #DRINKING ever_drinkers <- ifelse(q1==1,1,0) drinkers_12m <- ifelse(q2==1,1,0) table(drinkers_12m, ever_drinkers) drinking_status1 <- ifelse(ever_drinkers==1 & drinkers_12m==1, "3 - Drank in past year", ifelse(ever_drinkers==1 & drinkers_12m==0, "2 - Former drinkers", "1 - Never drinkers")) tab1(drinking_status1) drinking_30d <- ifelse(q7==1 | q7==888,0,1) table(drinking_30d, drinking_status1) drinking_status2 <- ifelse(drinking_30d==1, "4 - Drank in past 30 days", drinking_status1) tabpct(drinking_status2, sex) #Binge in past 12 months #Q5, exclude Q5=9, Recode Q5=888 as 0, Recode 9 as NA binge_12m <- ifelse(q5==2,1,0) binge_12m <- ifelse(q5==9, NA, binge_12m) tab1(binge_12m) label.var(binge_12m,"") #Binge in past 30 days #Q9, exclude Q9=9, Recode Q9=888 as 0, Recode 9 as NA binge_30d <- ifelse(q9==2,1,0) binge_30d <- ifelse(q9==9, NA, binge_30d) tab1(binge_30d) label.var(binge_30d,"") #Four groups, for Table 2 (In reverse order now; cash and no distress = 1, cash and distress=2, no cash and no distress = 3; no cash and distress = 4) groups <- ifelse(econ_distress_30d==0 & cashonly==1, 1, ifelse(econ_distress_30d==1 & cashonly==1, 2, ifelse(econ_distress_30d==0 & cashonly==0, 3, 4))) label.var(groups, "") group1 <- ifelse(econ_distress_30d==0 & cashonly==1, 1, 0) group2 <- ifelse(econ_distress_30d==1 & cashonly==1, 1, 0) group3 <- ifelse(econ_distress_30d==0 & cashonly==0, 1, 0) group4 <- ifelse(econ_distress_30d==1 & cashonly==0, 1, 0) label.var(group1, "") label.var(group2, "") label.var(group3, "") label.var(group4, "") #Creating Function for Calculating Pseudo R-squares R2logit<- function(y,model){ R2<- 1-(model$deviance/model$null.deviance) return(R2) } library(lmtest) library(DescTools) #BreslowDayTest(table1) #Variables for Table 3 #Stratify outcome for only those with emergency reserves - cashonly anxiety_cash <- ifelse(cashonly==1, anxiety, NA) depression_cash <- ifelse(cashonly==1, depression, NA) exercise_cash <- ifelse(cashonly==1, exercise, NA) sleep_cash <- ifelse(cashonly==1, sleep, NA) gambling_cash <- ifelse(cashonly==1, gambling, NA) smoking_cash <- ifelse(cashonly==1, smoking, NA) binge_30d_cash <- ifelse(cashonly==1, binge_30d, NA) label.var(anxiety_cash, "") label.var(depression_cash, "") label.var(exercise_cash, "") label.var(sleep_cash, "") label.var(gambling_cash, "") label.var(smoking_cash, "") label.var(binge_30d_cash, "") #Stratify outcome for only those with no emergency reserves - cashonly anxiety_nocash <- ifelse(cashonly==0, anxiety, NA) depression_nocash <- ifelse(cashonly==0, depression, NA) exercise_nocash <- ifelse(cashonly==0, exercise, NA) sleep_nocash <- ifelse(cashonly==0, sleep, NA) gambling_nocash <- ifelse(cashonly==0, gambling, NA) smoking_nocash <- ifelse(cashonly==0, smoking, NA) binge_30d_nocash <- ifelse(cashonly==0, binge_30d, NA) label.var(anxiety_nocash, "") label.var(depression_nocash, "") label.var(exercise_nocash, "") label.var(sleep_nocash, "") label.var(gambling_nocash, "") label.var(smoking_nocash, "") label.var(binge_30d_nocash, "") #For Table 4 - Alternative definition for having cash reserves cash2 <- ifelse(shortcredit==1 | cash==1, 1, 0) allothers2 <- longcredit + loanbank + borrow +loanshark + sell + pawn + cannot cashonly2 <- ifelse(cash2==1 & allothers2==0, 1 ,0) cashonly2 <- ifelse(q11_99==1,NA,cashonly2) label.var(cashonly2, "") #Four groups, for Table 3 groups2 <- ifelse(econ_distress_30d==1 & cashonly2==0, 4, ifelse(econ_distress_30d==0 & cashonly2==0, 3, ifelse(econ_distress_30d==1 & cashonly2==1, 2, 1))) label.var(groups2, "") group12 <- ifelse(econ_distress_30d==0 & cashonly2==1, 1, 0) group22 <- ifelse(econ_distress_30d==1 & cashonly2==1, 1, 0) group32 <- ifelse(econ_distress_30d==0 & cashonly2==0, 1, 0) group42 <- ifelse(econ_distress_30d==1 & cashonly2==0, 1, 0) label.var(group12, "") label.var(group22, "") label.var(group32, "") label.var(group42, "") #Stratify outcome for only those with emergency reserves - cashonly anxiety_cash2 <- ifelse(cashonly2==1, anxiety, NA) depression_cash2 <- ifelse(cashonly2==1, depression, NA) exercise_cash2 <- ifelse(cashonly2==1, exercise, NA) sleep_cash2 <- ifelse(cashonly2==1, sleep, NA) gambling_cash2 <- ifelse(cashonly2==1, gambling, NA) smoking_cash2 <- ifelse(cashonly2==1, smoking, NA) binge_30d_cash2 <- ifelse(cashonly2==1, binge_30d, NA) label.var(anxiety_cash2, "") label.var(depression_cash2, "") label.var(exercise_cash2, "") label.var(sleep_cash2, "") label.var(gambling_cash2, "") label.var(smoking_cash2, "") label.var(binge_30d_cash2, "") #Stratify outcome for only those with no emergency reserves - cashonly anxiety_nocash2 <- ifelse(cashonly2==0, anxiety, NA) depression_nocash2 <- ifelse(cashonly2==0, depression, NA) exercise_nocash2 <- ifelse(cashonly2==0, exercise, NA) sleep_nocash2 <- ifelse(cashonly2==0, sleep, NA) gambling_nocash2 <- ifelse(cashonly2==0, gambling, NA) smoking_nocash2 <- ifelse(cashonly2==0, smoking, NA) binge_30d_nocash2 <- ifelse(cashonly2==0, binge_30d, NA) label.var(anxiety_nocash2, "") label.var(depression_nocash2, "") label.var(exercise_nocash2, "") label.var(sleep_nocash2, "") label.var(gambling_nocash2, "") label.var(smoking_nocash2, "") label.var(binge_30d_nocash2, "") ##################### # Weighted Analyses # ##################### library(survey) design <- svydesign(id=~id, strata=~region, weights=~pweight, data=.data) #TABLE 1 svymean(~sex_female, design=design, data=.data, na.rm=TRUE) #Age svymean(~age, design=design, data=.data, na.rm=TRUE) #Marital status svymean(~status_cat, design=design, data=.data, na.rm=TRUE) #Education svymean(~edu_recoded, design=design, data=.data, na.rm=TRUE) #Personal monthly income svymean(~income_cat, design=design, data=.data, na.rm=TRUE) #EXPOSURE: EMERGENCY FUND AVAILABILITY svymean(~shortcredit, design=design, data=.data, na.rm=TRUE) svymean(~longcredit, design=design, data=.data, na.rm=TRUE) svymean(~cash, design=design, data=.data, na.rm=TRUE) svymean(~loanbank, design=design, data=.data, na.rm=TRUE) svymean(~borrow, design=design, data=.data, na.rm=TRUE) svymean(~loanshark, design=design, data=.data, na.rm=TRUE) svymean(~sell, design=design, data=.data, na.rm=TRUE) svymean(~pawn, design=design, data=.data, na.rm=TRUE) svymean(~cannot, design=design, data=.data, na.rm=TRUE) svymean(~cashonly, design=design, data=.data, na.rm=TRUE) #Economic distress - pandemic svymean(~distress_a1, design=design, data=.data, na.rm=TRUE) svymean(~distress_a2, design=design, data=.data, na.rm=TRUE) svymean(~distress_a3, design=design, data=.data, na.rm=TRUE) svymean(~distress_a4, design=design, data=.data, na.rm=TRUE) svymean(~distress_a5, design=design, data=.data, na.rm=TRUE) svymean(~distress_a6, design=design, data=.data, na.rm=TRUE) svymean(~distress_a7, design=design, data=.data, na.rm=TRUE) svymean(~distress_a8, design=design, data=.data, na.rm=TRUE) svymean(~econ_distress_pandemic, design=design, data=.data, na.rm=TRUE) #Economic distress in past 30 days svymean(~distress_b1, design=design, data=.data, na.rm=TRUE) svymean(~distress_b2, design=design, data=.data, na.rm=TRUE) svymean(~distress_b3, design=design, data=.data, na.rm=TRUE) svymean(~distress_b4, design=design, data=.data, na.rm=TRUE) svymean(~distress_b5, design=design, data=.data, na.rm=TRUE) svymean(~distress_b6, design=design, data=.data, na.rm=TRUE) svymean(~distress_b7, design=design, data=.data, na.rm=TRUE) svymean(~distress_b8, design=design, data=.data, na.rm=TRUE) svymean(~econ_distress_30d, design=design, data=.data, na.rm=TRUE) #Outcome: Behavioral Health #ANXIETY svymean(~anxiety, design=design, data=.data, na.rm=TRUE) #DEPRESSION svymean(~depression, design=design, data=.data, na.rm=TRUE) #SLEEP svymean(~sleep, design=design, data=.data, na.rm=TRUE) #Exercise svymean(~exercise, design=design, data=.data, na.rm=TRUE) #gambling svymean(~gambling, design=design, data=.data, na.rm=TRUE) #smoking in past 30 days svymean(~smoking, design=design, data=.data, na.rm=TRUE) #DRINKING #Binge in past 12 months svymean(~binge_12m, design=design, data=.data, na.rm=TRUE) #Binge in past 30 days svymean(~binge_30d, design=design, data=.data, na.rm=TRUE) ##################### # Additional Analyses 20220210 # ##################### #TABLE 2 #Descriptives svyby(~anxiety, ~econ_distress_30d, design=design, svymean, na.rm=TRUE) svyby(~depression, ~econ_distress_30d, design=design, svymean, na.rm=TRUE) svyby(~exercise, ~econ_distress_30d, design=design, svymean, na.rm=TRUE) svyby(~sleep, ~econ_distress_30d, design=design, svymean, na.rm=TRUE) svyby(~gambling, ~econ_distress_30d, design=design, svymean, na.rm=TRUE) svyby(~smoking, ~econ_distress_30d, design=design, svymean, na.rm=TRUE) svyby(~binge_30d, ~econ_distress_30d, design=design, svymean, na.rm=TRUE) #Odds ratios #Anxiety model1<-(svyglm(anxiety ~ econ_distress_30d, family=binomial, design = design)) model1a<-(svyglm(anxiety ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design)) summary(model1) summary(model1a) round(R2logit(anxiety, model1a), digits=3) model1a <- glm(anxiety ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1a) #Depression model1<-svyglm(depression ~ econ_distress_30d, family=binomial, design = design) model1a<-svyglm(depression ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1) summary(model1a) round(R2logit(depression, model1a), digits=3) model1a <- glm(depression ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1a) #Exercise model1 <- svyglm(exercise ~ econ_distress_30d, family=binomial, design = design) model1a <-svyglm(exercise ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1) summary(model1a) round(R2logit(exercise, model1a), digits=3) model1a <- glm(exercise ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1a) #Sleep model1 <- svyglm(sleep ~ econ_distress_30d, family=binomial, design = design) model1a <- svyglm(sleep ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1) summary(model1a) round(R2logit(sleep, model1a), digits=3) model1a <- glm(sleep ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1a) #cannot display, use the following "Log-likelihood" value as proxy logistic.display(model1a) #Gambling (unadj, adj, p-for-trend, multiplicative interaction model1 <- svyglm(gambling ~ econ_distress_30d, family=binomial, design = design) model1a <- svyglm(gambling ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1) summary(model1a) round(R2logit(gambling, model1a), digits=3) model1a <- glm(gambling ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1a) #cannot display, use the following "Log-likelihood" value as proxy logistic.display(model1a) #Smoking model1<- svyglm(smoking ~ econ_distress_30d, family=binomial, design = design) model1<- svyglm(smoking ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1) summary(model1a) round(R2logit(smoking, model1a), digits=3) model1a <- glm(smoking ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1a) #Drinking model1<- svyglm(binge_30d ~ econ_distress_30d, family=binomial, design = design) model1a<- svyglm(binge_30d ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1) summary(model1a) round(R2logit(binge_30d, model1a), digits=3) model1a <- glm(binge_30d ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1a) ########################################### #TABLE 3 #Odds ratios #multivariate logistic regression #Anxiety (Adj OR for cash avail, pseudo R2, log-rank test; Adj OR for cash unavail, pseudo R2, log-rank test; p-for-trend; Breslow-Day test) model1a <- svyglm(anxiety_cash ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(anxiety_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(anxiety_cash, model1b), digits=3) model1c <- glm(anxiety_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(anxiety_nocash ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(anxiety_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(anxiety_nocash, model2b), digits=3) model2c <- glm(anxiety_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(anxiety, econ_distress_30d, cashonly) BreslowDayTest(table1) #Depression model1a <- svyglm(depression_cash ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(depression_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(depression_cash, model1b), digits=3) model1c <- glm(depression_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(depression_nocash ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(depression_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(depression_nocash, model2b), digits=3) model2c <- glm(depression_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(depression, econ_distress_30d, cashonly) BreslowDayTest(table1) #Exercise model1a <- svyglm(exercise_cash ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(exercise_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(exercise_cash, model1b), digits=3) model1c <- glm(exercise_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(exercise_nocash ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(exercise_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(exercise_nocash, model2b), digits=3) model2c <- glm(exercise_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(exercise, econ_distress_30d, cashonly) BreslowDayTest(table1) #Sleep model1a <- svyglm(sleep_cash ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(sleep_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(sleep_cash, model1b), digits=3) model1c <- glm(sleep_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(sleep_nocash ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(sleep_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(sleep_nocash, model2b), digits=3) model2c <- glm(sleep_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(sleep, econ_distress_30d, cashonly) BreslowDayTest(table1) #Gambling (unadj, adj, p-for-trend, multiplicative interaction model1a <- svyglm(gambling_cash ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(gambling_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(gambling_cash, model1b), digits=3) model1c <- glm(gambling_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(gambling_nocash ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(gambling_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(gambling_nocash, model2b), digits=3) model2c <- glm(gambling_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(gambling, econ_distress_30d, cashonly) BreslowDayTest(table1) #Smoking model1a <- svyglm(smoking_cash ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(smoking_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(smoking_cash, model1b), digits=3) model1c <- glm(smoking_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(smoking_nocash ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(smoking_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(smoking_nocash, model2b), digits=3) model2c <- glm(smoking_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(smoking, econ_distress_30d, cashonly) BreslowDayTest(table1) #Binge-Drinking in past 30 days model1a <- svyglm(binge_30d_cash ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(binge_30d_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(binge_30d_cash, model1b), digits=3) model1c <- glm(binge_30d_cash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(binge_30d_nocash ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(binge_30d_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(binge_30d_nocash, model2b), digits=3) model2c <- glm(binge_30d_nocash ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(binge_30d, econ_distress_30d, cashonly) BreslowDayTest(table1) #P-for-trends summary(model1<-(svyglm(anxiety ~ groups + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(depression ~ groups + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(exercise ~ groups + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(sleep ~ groups + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(gambling ~ groups + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(smoking ~ groups + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(binge_30d ~ groups + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) ################################### # Additional Analyses # # Additive Interaction Assessment # ################################### library(epiR) model1 <- glm(anxiety ~ econ_distress_30d + cashonly + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model2 <- glm(depression ~ econ_distress_30d + cashonly + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model3 <- glm(exercise ~ econ_distress_30d + cashonly + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model4 <- glm(sleep ~ econ_distress_30d + cashonly + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model5 <- glm(gambling ~ econ_distress_30d + cashonly + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model6 <- glm(smoking ~ econ_distress_30d + cashonly + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model7 <- glm(binge_30d ~ econ_distress_30d + cashonly + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) #Model 1 epi.interaction(model = model1, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.4623021, -1.732407, 0.8078031), digits=2) #Model 2 epi.interaction(model = model2, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.1784303, -0.9599094, 0.6030488), digits=2) #Model 3 epi.interaction(model = model3, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.2258106, -0.9669922, 0.515371), digits=2) #Model 4 epi.interaction(model = model4, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(0.3668917, -0.2048254, 0.9386087), digits=2) #Model 5 epi.interaction(model = model5, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.09236883, -0.4633308, 0.2785931), digits=2) #Model 6 epi.interaction(model = model6, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.2262895, -1.051579, 0.5990004), digits=2) #Model 7 epi.interaction(model = model7, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.03932383, -1.565475, 1.486828), digits=2) #################################### #Multiplicative interaction terms model2 <- svyglm(anxiety ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2) summary(model1<-(svyglm(depression ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(exercise ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(sleep ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(gambling ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(smoking ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(binge_30d ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) ######################################## # TABLE 4 # ######################################## #Odds ratios #multivariate logistic regression #Anxiety (Adj OR for cash avail, pseudo R2, log-rank test; Adj OR for cash unavail, pseudo R2, log-rank test; p-for-trend; Breslow-Day test) model1a <- svyglm(anxiety_cash2 ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(anxiety_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(anxiety_cash2, model1b), digits=3) model1c <- glm(anxiety_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(anxiety_nocash2 ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(anxiety_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(anxiety_nocash2, model2b), digits=3) model2c <- glm(anxiety_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(anxiety, econ_distress_30d, cashonly2) BreslowDayTest(table1) #Depression model1a <- svyglm(depression_cash2 ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(depression_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(depression_cash2, model1b), digits=3) model1c <- glm(depression_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(depression_nocash2 ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(depression_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(depression_nocash2, model2b), digits=3) model2c <- glm(depression_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(depression, econ_distress_30d, cashonly2) BreslowDayTest(table1) #Exercise model1a <- svyglm(exercise_cash2 ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(exercise_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(exercise_cash2, model1b), digits=3) model1c <- glm(exercise_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(exercise_nocash2 ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(exercise_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(exercise_nocash2, model2b), digits=3) model2c <- glm(exercise_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(exercise, econ_distress_30d, cashonly2) BreslowDayTest(table1) #Sleep model1a <- svyglm(sleep_cash2 ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(sleep_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(sleep_cash2, model1b), digits=3) model1c <- glm(sleep_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(sleep_nocash2 ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(sleep_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(sleep_nocash2, model2b), digits=3) model2c <- glm(sleep_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(sleep, econ_distress_30d, cashonly2) BreslowDayTest(table1) #Gambling (unadj, adj, p-for-trend, multiplicative interaction model1a <- svyglm(gambling_cash2 ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(gambling_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(gambling_cash2, model1b), digits=3) model1c <- glm(gambling_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(gambling_nocash2 ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(gambling_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(gambling_nocash2, model2b), digits=3) model2c <- glm(gambling_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(gambling, econ_distress_30d, cashonly2) BreslowDayTest(table1) #Smoking model1a <- svyglm(smoking_cash2 ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(smoking_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(smoking_cash2, model1b), digits=3) model1c <- glm(smoking_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(smoking_nocash2 ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(smoking_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(smoking_nocash2, model2b), digits=3) model2c <- glm(smoking_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(smoking, econ_distress_30d, cashonly2) BreslowDayTest(table1) #Binge-Drinking in past 30 days model1a <- svyglm(binge_30d_cash2 ~ econ_distress_30d, family=binomial, design = design) summary(model1a) model1b <- svyglm(binge_30d_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model1b) round(R2logit(binge_30d_cash2, model1b), digits=3) model1c <- glm(binge_30d_cash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model1c) #Cannot display, try alternative logistic.display(model1c) model2a <- svyglm(binge_30d_nocash2 ~ econ_distress_30d, family=binomial, design = design) summary(model2a) model2b <- svyglm(binge_30d_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2b) round(R2logit(binge_30d_nocash2, model2b), digits=3) model2c <- glm(binge_30d_nocash2 ~ econ_distress_30d + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) lrtest(model2c) #Cannot display, try alternative logistic.display(model2c) #Breslow-Day-Test table1 <- table(binge_30d, econ_distress_30d, cashonly2) BreslowDayTest(table1) #P-for-trends summary(model1<-(svyglm(anxiety ~ groups2 + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(depression ~ groups2 + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(exercise ~ groups2 + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(sleep ~ groups2 + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(gambling ~ groups2 + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(smoking ~ groups2 + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(binge_30d ~ groups2 + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) ################################### # Additional Analyses # # Additive Interaction Assessment # ################################### library(epiR) model1 <- glm(anxiety ~ econ_distress_30d + cashonly2 + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model2 <- glm(depression ~ econ_distress_30d + cashonly2 + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model3 <- glm(exercise ~ econ_distress_30d + cashonly2 + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model4 <- glm(sleep ~ econ_distress_30d + cashonly2 + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model5 <- glm(gambling ~ econ_distress_30d + cashonly2 + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model6 <- glm(smoking ~ econ_distress_30d + cashonly2 + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) model7 <- glm(binge_30d ~ econ_distress_30d + cashonly2 + econ_distress_30d:cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, data=.data) #Model 1 epi.interaction(model = model1, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.4497719, -1.684594, 0.7850502), digits=2) #Model 2 epi.interaction(model = model2, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.279808, -1.1038, 0.5441838), digits=2) #Model 3 epi.interaction(model = model3, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.2716586, -1.01966, 0.4763424), digits=2) #Model 4 epi.interaction(model = model4, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(0.3405522, -0.2547934, 0.9358978), digits=2) #Model 5 epi.interaction(model = model5, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.05879851, -0.4280099, 0.3104129), digits=2) #Model 6 epi.interaction(model = model6, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c(-0.3393988, -1.208191, 0.5293936), digits=2) #Model 7 epi.interaction(model = model7, param = "product", coef = c(2,3,19),type = "RERI", conf.level = 0.95) round(c( -0.005366949, -1.47784, 1.467107), digits=2) #################################### #Multiplicative interaction terms model2 <- svyglm(anxiety ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design) summary(model2) summary(model1<-(svyglm(depression ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(exercise ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(sleep ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(gambling ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(smoking ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) summary(model1<-(svyglm(binge_30d ~ econ_distress_30d + cashonly + econ_distress_30d*cashonly + sex + age + status2 + status3 + status4 + edu2 + edu3 + edu4 + edu5 + salary2 + salary3 + salary4 + salary5 + salary6 + salary7, family=binomial, design = design))) #Calculating Cronbach's Alpha in R library(epicalc) library(ltm) setwd((redacted)) use("peerj-62792-Suppl_-_Data_for_PeerJ.csv") #Calculation Cronbach's Alpha for the ANXIETY screening questionnaire (GAD-7) gad_7 <- data.frame(q13gad_1, q13gad_2, q13gad_3, q13gad_4, q13gad_5, q13gad_6, q13gad_7) cronbach.alpha(gad_7, CI=TRUE) #0.85; 95% CI = 0.83, 0.87)