############################################################################## # Dataset ############################################################################## #Dataset 1 D1 = c(0,0,0,74.4,0,63.3,36.7,0,0,0 ,0,0,0,10.9,0,0,0,0,4.8,0 ,0,0.3,0,0,0,52.9,7.2,30.5,0,0 ,3.6,20.9,1.9,0,0,0,16.4,0,12,2.8 ,10.4,15.1,0,82,31,29.6,0.9,41.8,0,21.7) #Dataset 2 D2 = c(0,56.8,66,0,0,0.8,4,1.6,0,0 ,0,1,0,2.2,2.9,0,0,0,0,0 ,0,0,0,13.6,0,1.9,0,47.3,16.5,47.3 ,0,0,24.4,0,6.2,9.2,33.9,21.5,0,60.1 ,32.3,47.3,1,71.5,0,0) #Dataset 3 D3 = c(3.8,0,38.3,0,0,0,0,0,4.7,0 ,0,19,12.2,0,21.8,0,23.5,0,0,0 ,31.3,0,0,38.8,32.4,0,4.1,0,0.7,0 ,0,0,8.3,0,0,0,0.5,15.3,0,0 ,0.6,0,0,0,0,50.2) #Dataset 4 D4 = c(0,0,0,22.5,0,0,3.5,6,13.2,0 ,51.1,29.9,34.3,0,42.5,0,2.5,0,0,0 ,46.8,0,0,0,0,28.7,0,0,7.3,0 ,0,0,0,16,4.7,11,0,5.2,24.5,61.2 ,61.5,7.4,34,0,102.2,0,0,57.2,0,0,0) #Dataset 5 D5 = c(0.4,0.1,0.3,1.7,3.3,0,0,0,0,0 ,88.6,0,59.2,34.5,0,0,0,0,0,0 ,7.4,0,0,0,121.5,2.8,0,0,0.5,0 ,0,0,0,0,0,0,7.5,0,25.6,2 ,0,0,0,11,0,0,7.7,12.1,38,0 ,55.5,28,30.4,0,48.4,0,6,13,8.3,0 ,0,0,0,0,0.1,0,0,0,11.4,1.6 ,54.5,0,0,0,0,0,38.3,0,0,0 ,0,0,13.6,0,0,0,0,0,31.7,0 ,0,39,13.2,0,0,0,0.5,0,0,0 ,11,0,0,0,0,27.1,0,0,3.9,0 ,0,0,0,7.4,13.4,0,3.2,1.1,0,43 ,0,12.6,40.4,19.2,0,5.8,29.8,0,0,9.1 ,0,0,0,0.5,35,0,0,0,2.7,9.1 ,0,0,0.8,136.2,0.5,21.6,38.5,0,19.5,44.5 ,83.5,0,24.5,0,29,33.2,1.5,0,26.3,20.2 ,61.4,11.8,71,0,29.1,0,0,15.6,0,0,0.9) ############################################################################## # R code to estimate AIC results ############################################################################## library(extraDistr) library(MASS) library(fitdistrplus) library(LaplacesDemon) #Table 4 #Dataset 1 x <- D1[which(D1!=0)] n1 <- length(x) n <- length(D1) n0 <- n-n1 delta <- n0/(n0+n1) fit.norm = fitdistr(x,"normal") fit.lognorm = fitdistr(x,"lognormal") fit.cauchy = fitdistr(x,"cauchy") fit.gamma = fitdistr(x,"gamma",lower = c(0, 0),start = list(scale = 1, shape = 1) ) c(AIC(fit.norm),AIC(fit.lognorm),AIC(fit.cauchy),AIC(fit.gamma)) ############################################################################## #Dataset 2 x <- D2[which(D2!=0)] n1 <- length(x) n <- length(D2) n0 <- n-n1 delta <- n0/(n0+n1) fit.norm = fitdistr(x,"normal") fit.lognorm = fitdistr(x,"lognormal") fit.cauchy = fitdistr(x,"cauchy") fit.gamma = fitdistr(x,"gamma",lower = c(0, 0),start = list(scale = 1, shape = 1) ) c(AIC(fit.norm),AIC(fit.lognorm),AIC(fit.cauchy),AIC(fit.gamma)) ############################################################################## #Dataset 3 x <- D3[which(D3!=0)] n1 <- length(x) n <- length(D3) n0 <- n-n1 delta <- n0/(n0+n1) fit.norm = fitdistr(x,"normal") fit.lognorm = fitdistr(x,"lognormal") fit.cauchy = fitdistr(x,"cauchy") fit.gamma = fitdistr(x,"gamma",lower = c(0, 0),start = list(scale = 1, shape = 1) ) c(AIC(fit.norm),AIC(fit.lognorm),AIC(fit.cauchy),AIC(fit.gamma)) ############################################################################## #Dataset 4 x <- D4[which(D4!=0)] n1 <- length(x) n <- length(D4) n0 <- n-n1 delta <- n0/(n0+n1) fit.norm = fitdistr(x,"normal") fit.lognorm = fitdistr(x,"lognormal") fit.cauchy = fitdistr(x,"cauchy") fit.gamma = fitdistr(x,"gamma",lower = c(0, 0),start = list(scale = 1, shape = 1) ) c(AIC(fit.norm),AIC(fit.lognorm),AIC(fit.cauchy),AIC(fit.gamma)) ############################################################################## #Dataset 5 x <- D5[which(D5!=0)] n1 <- length(x) n <- length(D5) n0 <- n-n1 delta <- n0/(n0+n1) fit.norm = fitdistr(x,"normal") fit.lognorm = fitdistr(x,"lognormal") fit.cauchy = fitdistr(x,"cauchy") fit.gamma = fitdistr(x,"gamma",lower = c(0, 0),start = list(scale = 1, shape = 1) ) c(AIC(fit.norm),AIC(fit.lognorm),AIC(fit.cauchy),AIC(fit.gamma)) ##############################################################################