A combined test for feature selection on sparse metaproteomics data - an alternative to missing value imputation

S. Plancade, M. Berland, M. Blein-Nicolas, O. Langella, A. Bassignani, C. Juste

1 Permutation procedure for the combined test

Preliminary: define the permutation design

According to the study design, the user can provide constraints on the permutations *via* control parameters defined by the function how to be passed to the R function shuffle (permute package). For the *ProteoCardis* datasets, no constraints were considered, but for *Pigs*, classes were permuted while keeping together the samples from the same animal.

Permutation test *p*-values

Let n be the number of biological samples in the dataset, and m the number of proteins. Let $(a_j)_{j=1,...,m}$ be the number of non-missing intensities among the n samples for each protein j = 1, ..., m. After filtering of proteins with less than τ non-missing values, $a_j \in \{\tau, ..., n\}$ for all j. Then, for each $a \in \{\tau, ..., n\}$,

- Let C_a be the set of proteins with a non-missing values.
- For each protein $j \in C_a$, classes are permuted repeatedly according to the chosen permutation design, for repetitions $r = 1, \ldots, \lfloor N^{perm} / \# C_a \rfloor$ with $\lfloor \cdot \rfloor$ the integer part and # the cardinal, and the Fisher combined statistic $S_{i,r}^a$ is computed.
- The vector $(S_{j,r}^a)_{j \in \mathcal{C}_a, r=1,...,\lfloor N^{perm}/\#\mathcal{C}_a \rfloor}$ represents a sample of the distribution of the test statistic under the null hypothesis of no class effect, for proteins with *a* non-missing values.

Then, for each protein j = 1, ..., m, the *p*-value of the combined test is equal to:

$$p_j = \frac{1}{\#\mathcal{C}_{a_j} \times \lfloor N^{perm} / \#\mathcal{C}_{a_j} \rfloor} \sum_{j \in \mathcal{C}_{a_j}} \sum_{r=1}^{\lfloor N^{perm} / \#\mathcal{C}_{a_j} \rfloor} \mathrm{II}_{S_j > S_{j,r}^{a_j}} \tag{s1}$$

with S^{j} the Fisher combined statistics of protein j computed with the true classes.

Resampling based FDR

Resampling-based FDR is computed for 100 permutations. For s = 1, ..., 100,

- Classes are permuted according to the chosen permutation design.
- The Fisher combined statistic $(\widetilde{S}_j^s)_{j=1,\dots,m}$ is computed, using the same permuted classes for all proteins.
- The vector $(p_j^{perm,s})_{j=1,...,m}$ of *p*-values under the complete null assumptions are computed by equation (s1) with S_j replaced by \widetilde{S}_j^s . Note that the distribution under the null assumption does not require to be computed again.

Following the procedure by Reiner et al. (2003), new estimates of the p-values are computed assuming that the marginal distributions under the complete null hypothesis are exchangeable:

$$p_j^{FDR} = \frac{1}{100m+1} \left(\sum_{\ell=1}^m \sum_{s=1}^{100} \mathbb{1}_{p_\ell^{perm,s} \le p_j} + 1 \right)$$

Finally, FDR adjustment (Benjamini and Hochberg, 1995) is applied to $(p_j^{FDR})_{j=1,\dots,m}$.

2 Simulation framework

General procedure

- Protein intensities from the data set *ProteoCardis-cyto* were filtered at threshold 10 (i.e. proteins with less than 10 non-missing values were removed), resulting in 11,433 proteins and 74% of missing values. Then the missing values were imputed by kNN, providing a realistic metaproteomic data set.
- Two classes of size 49 and 50 were randomly sampled among the 99 samples.
- 2000 proteins were randomly selected to be different between the two classes. Two types of difference were considered: (i) Differential intensity, (ii) Differential presence (see details below).
- Two missingness scenarios were considered: (ii) MAR: Missing values were drawn randomly such that the proportion of missing values on the total data set is equal to the proportion in the original data set *Proteocardis-cyto* after filtering at level 10; (ii) MNAR: a hard thresholding was applied, with threshold chosen to have the same proportion of missing values than on *ProteoCardis-cyto* after filtering at level 10.
- For the 2 × 2 scenarios, proteins with less than 20 non-missing values were removed, then the three FSMs SVD-lmm, single-lmm and the combined test were implemented, and the ROC curves were computed. Note that KNN-lmm was not considered since it includes the same imputation method used to generate the data set; Besides, this method has been shown to perform similarly to SVD-lmm.

Generate difference between groups

• Differential intensity. For each of the 2000 proteins, the quantity $FC_j/2$ was added to the intensities of samples from one class and substracted to the intensities of samples from the other class. The fold change FC_j was tuned so that the corresponding *p*-value of a t-test was approximately equal to $\alpha = 10^{-3}$, according to the standard deviation σ_j of the intensities of each protein. More precisely, for a fold-change FC_j , the t-test statistic is equal to

$$S = \frac{FC_j}{\sqrt{\sigma_j^2/50 + \sigma_j^2/49}} \simeq \frac{5FC_j}{\sigma}$$

Thus, setting the *p*-value to α is equivalent to:

$$1 - F_{st}(S, df = 97) = \alpha \quad \Rightarrow \quad FC_j \simeq \frac{\sigma}{5}G_{st}(1 - \alpha, df = 97)$$

where F_{st} and G_{st} denote the cumulative distribution function and the quantile function of the student distribution.

• Differential presence. For each of the 2000 proteins, each intensity was set to NA with probability τ in one class and $1 - \tau$ in the other class. The parameter τ was tuned such that the *p*-value of the Fisher exact test for the average table:

	Present	Absent
Class 1	$\lfloor 50\tau \rfloor$	$50 - \lfloor 50 \tau \rfloor$
Class2	$49 - \lfloor 49\tau \rfloor$	$\lfloor 49\tau \rfloor$

was equal to $\alpha = 10^{-3}$, where $\lfloor \cdot \rfloor$ denotes the integer part.

3 Supplementary figures and tables

Figure S1: Statistical characteristics of the three data sets *ProteoCardis-cyt*, *Proteocardis-env*, *Pigs*. Top: frequencies of the number of non-missing values for all proteins after filtering (threshold 20 for *Proteo-Cardis*, and 10 for *Pigs*). Bottom: number of selected variables with the resampling FDR procedure with 100 resampling repetitions, with various values of the FDR threshold values.

Figure S2: Analysis of replicates - envelope fraction Left: log10-transformed average intensities of nonmissing observations, as a function of the number of missing values, for all proteins and for each biological sample. Right: Estimate of the probability that a protein is missing in a technical replicate as a function of the average of its non-missing values.

ProteoCardis-env

Figure S3: Pairwise agreement between *p*-values of FSMs for *Proteocardis-env*. A: Pearson correlation between log of *p*-values and Kendall correlation between *p*-values. B: Proportion of common features among the top N (N = 30, 100, 200) for each pair of FSMs, as a table and a heatmap.

Figure S4: Scatterplots between log10-transformed *p*-values of pairs of FSMs for *Proteocardisenv.* Row 1: combined test and imputation-based FSMs. Row 2: Generalised mixed model (logistic) on missingness and imputation-based FSMs; proteins with less than 2 non-missing values are not displayed. Row 3: Linear mixed model on observed values and imputation-based FSMs. For each pair of testing procedure, the red rectangle corresponds to proteins with $p > 5.10^{-2}$ with the first procedure and with $p < 5.10^{-4}$ for the second procedure; conversely, the blue rectangle corresponds to proteins with $p < 5.10^{-4}$ with the first procedure and with $p > 5.10^{-2}$ for the second procedure.

Figure S5: **Sparsity for proteins which are discordant** between the combined test and KNN-lmm (first row) or SVD-lmm (second row), on *Pigs.* Column 1: scatterplot of log10-transformed *p*-values of pairs of FSMs; the red rectangle corresponds to proteins with $p > 5.10^{-2}$ with the first procedure and with $p < 5.10^{-4}$ for the second procedure; conversely, the blue rectangle corresponds to proteins with $p < 5.10^{-2}$ with the first procedure and with $p < 5.10^{-4}$ with the first procedure and with $p > 5.10^{-2}$ for the second procedure. Column 2 (resp. 3): Histogram of the number of observed values by protein, for all proteins in the blue (resp. red) rectangle.

	Proteocardis-cyto			Proteocardis-env		Pigs			
	top30	top100	top200	top30	top100	top200	top200	top500	top1000
Combined	0.60	0.69	0.69	0.63	0.68	0.76	0.17	0.17	0.25
KNN-lmm	0.67	0.63	0.68	0.70	0.76	0.82	0.57	0.57	0.57
SVD-lmm	0.70	0.65	0.69	0.67	0.74	0.80	0.28	0.31	0.34
Single-lmm	0.60	0.68	0.72	0.60	0.69	0.78	0.60	0.57	0.54

Table S1: **Proportion of selected variables with less than half observed intensities**, among the top N variables (between 20 and 50 non-missing values for *Proteocardis* data sets, and between 10 and 36 for *Pigs*).

Figure S6: Pairwise agreement between *p*-values from the four FSMs, for filtering threshold of 20, 30, 40 and 50 for *Proteocardis-cyto*. Each row correspond to a criterion; row 1: Pearson correlation between log-transformed *p*-values; rows 2 to 4: proportion of common variables among the top *N* variables with N = 30, 100, 200. Each column correspond to a threshold value.

Figure S7: Pairwise agreement between *p*-values from the four FSMs, for filtering threshold of 20, 30, 40 and 50 for *Proteocardis-env*. Each row correspond to a criterion; row 1: Pearson correlation between log-transformed *p*-values; rows 2 to 4: proportion of common variables among the top *N* variables with N = 30, 100, 200. Each column correspond to a threshold value.

Figure S8: Pairwise agreement between *p*-values from the four FSMs, for filtering threshold of **20 and 30 for** *Pigs*. Each row correspond to a criterion; row 1: Pearson correlation between log-transformed *p*-values; rows 2 to 4: proportion of common variables among the top *N* variables with N = 200, 500, 1000. Each column correspond to a threshold value.

Figure S9: **Single value imputation.** Distribution of observed log-transformed intensities (blue) and imputed value (red) with single value imputation.

		FS combined test	FS KNN-lmm	FS SVD-lmm	FS single-lmm	FS hurdle test
Top 30	RF	0.771(0.021)	0.758(0.025)	0.719(0.017)	0.748(0.022)	0.767(0.017)
	SVM	0.748(0.025)	0.616(0)	0.668(0.0032)	0.734(0.0096)	0.774(0.013)
Top 100	RF	0.769 (0.024)	0.761(0.013)	0.736(0.015)	0.741(0.017)	0.756(0.008)
	SVM	0.772(0.012)	0.73(0.022)	0.707(0)	0.741(0.013)	0.708(0.0032)
Top 200	RF	0.738(0.015)	0.737(0.017)	0.735(0.0093)	0.733(0.013)	0.744(0.015)
	SVM	0.744(0.012)	0.701(0.019)	0.681(0.019)	0.699(0.0064)	0.678(0.0032)

Table S2: **Prediction accuracy** for two classification procedures on *Proteocardis-env*. The selection of the top N variables (N = 30, 100, 200) was followed by SVM or RF. Accuracy was computed in a 10-fold cross validation loop, repeated 10 times. Each cell provides the average accuracy (standard deviation of accuracy) computed over the 10 repetitions of the cross-validation. Bold numbers correspond to the highest accuracy among the four FSMs

Figure S10: Log10-transformed p-values as a function of sparsity. The x-axis corresponds to the number of missing values among the 99 samples for *ProteoCardis* data sets, and among the 72 samples for *Pigs*.

Figure S11: Replicability of variable selection on independent subsets. Pearson correlation between log-transformed p-values, Kendall correlation between p-values and proportion of common variables among the top N for 100 splitting of samples into two subsets. Dataset: *Proteocardis-env*.

Figure S12: Replicability of variable selection on independent subsets for the hurdle test and the combined test. Boxplot of the Cohen's kappa (left), the log-transformed *p*-value of Fisher test (center) and the statistic of the χ^2 contingency table test (right), for selection of the top N features, performed on 100 splitting of the samples into two subsets. Black and red boxlots correspond to feature selection with the combined and the hurdle test respectively. Dataset: *ProteoCardis-env*

References

- Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), **57**(1), 289–300.
- Reiner, A., Yekutieli, D., and Benjamini, Y. (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics, **19**(3), 368–375.