
APPENDIX691

Supplemental information in support of our mathematical modeling approach is provided as follows. We692

first expand upon the alignment between continuous and discrete random walk models, then provide the693

justification for treatment of PF starting supply as a log-normal distribution (Fig. S1), and finally provide694

ANM simulation results as histograms for further consideration.695

DISCRETE AND CONTINUOUS RANDOM WALK MODELS696

We now show the equivalence of the discrete random walk in (1) and the continuous random walk in (2)697

for small steps Dt and Dx. The discrete random walk in (1) can be written as698

X((n+1)Dt) = X(nDt)+Dxxn+1, n � 0, (12)

where {xn}n�1 is an independent and identically distributed (iid) sequence of random variables with699

xn =

(
+1 with probability p,
�1 with probability 1� p.

Defining D and V as in (3), the discrete random walk (12) can be written as700

X((n+1)Dt) = X(nDt)�V Dt +
p

2DDt Zn+1, n � 0, (13)

where701

Zn := xn �2p+1, n � 1.

Notice that {Zn}n�1 is an iid sequence with702

E[Zn] = 0, Variance(Zn) = 4p(1� p).

If we take Dx ! 0, Dt ! 0, and p ! 1/2 while keeping D and V in (3) fixed, applying the functional703

central limit theorem (Billingsley, 1995) to (13) yields that the discrete random walk {X(nDt)}n�0704

converges in distribution to the continuous random walk {X(t)}t�0 process satisfying the stochastic705

differential equation in (2).706

Reserve exit time t707

Exact probability distribution of t708

For the continuous random walk {X(t)}t�0 satisfying (2), the reserve exit time t is the first time that the709

random walk leaves the interval (0,L). Mathematically, this is denoted by710

t := inf{t > 0 : X(t) /2 (0,L)}. (14)

Define the survival probability,711

S(x, t) := P(t > t |X(0) = x),

where we have conditioned on the initial position of the random walk. The survival probability S(x, t) is712

the unique solution of the following backward Kolmogorov equation (Gardiner, 2009),713

∂
∂ t

S = D
∂ 2

∂x2 S�V
∂
∂x

S, x 2 (0,L), t > 0, (15)

with absorbing Dirichlet boundary conditions, S(0, t) = S(L, t) = 0, and unit initial condition S(x,0) = 1.714

In order to solve for S(x, t), we first define the solution operator for the partial differential equation715

in (23) subject to absorbing boundary conditions in the special case that V = 0 by Ft(q). That is, Ft
716

is a linear operator that takes an initial condition, q(x), and maps it to the solution of (23) with V = 0717

subject to absorbing boundary conditions at time t > 0. It is straightforward to solve for Ft explicitly via718

a standard separation of variables calculation and find719

(Ft(q))(x) =
•

Â
k=1

hfk,qie�nktfk(x), (16)
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where the eigenvalues, {nk}k�1, and orthonormal eigenfunctions, {fk}k�1, are given by720

nk =
Dk2p2

L2 , fk(x) =

r
2
L

sin
⇣kpx

L

⌘
, (17)

and h·, ·i denotes the inner product,721

h f ,gi :=
Z L

0
f (x)g(x)dx.

It follows that722

S(x, t) = e
V
2D xe�

V 2
4D tFt(e

�V
2D z). (18)

To make (18) explicit, we first calculate the inner product723

hfk(x),e
�V
2D xi=

Z L

0
e
�V
2D x

r
2
L

sin
⇣kpx

L

⌘
dx

=
4
p

2pD2k
p

L
⇣

1� (�1)ke
�LV
2D

⌘

4p2D2k2 +L2V 2 , k � 1.

Therefore, (16) and (18) imply724

S(x, t) =
•

Â
k=1

Ake�lkt , (19)

where725

lk :=
Dk2p2

L2 +
V 2

4D

Ak :=
4
p

2pD2k
p

L
⇣

1� (�1)ke
�LV
2D

⌘

4p2D2k2 +L2V 2 e
V
2D x

r
2
L

sin
⇣kpx

L

⌘
, k � 1.

Growth and death probabilities726

In our model, a PF begins to grow if its ISR activity hits the growth threshold at X = 0 and it dies before727

beginning to grow if its ISR activity hits the death threshold at X = L > 0. For the parameter values in (6),728

the vast majority of PFs grow rather than die.729

To study this quantitatively, define730

t0 := {t > 0 : X(t) = 0},
tL := {t > 0 : X(t) = L}.

In words, t0 is the first time the random walk reaches 0, and tL is the first time the random walk reaches731

L. Note that the reserve exit time t in (14) is thus the minimum of t0 and tL. Hence, a PF dies before732

beginning to grow if t0 > tL (i.e. if its ISR activity hits the death threshold at X = L before the growth733

threshold at X = 0).734

Define the probability that a PF dies before beginning to grow,735

u(x) := P(t0 > tL |X(0) = x), (20)

where we have conditioned on the initial ISR activity, X(0) = x. The probability u(x) satisfies Gardiner736

(2009)737

0 = D
d2

dx2 u�V
d
dx

u, x 2 (0,L),

with boundary conditions u(0) = 0 and u(L) = 1. It is straightforward to check that the unique solution to738

this boundary value problem is739

u(x) =
e
�V (L�x)

D � e
�V L

D

1� e
�V L

D
. (21)

Evaluating (21) at the parameter values in (6) yields740

u(x) = 2.05⇥10�6. (22)
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Approximate probability distribution of t741

We have found that the vast majority of PFs hit the growth threshold before the death threshold. This742

suggests that we can approximate the probability distribution of t by ignoring the death threshold. To743

study this case, define the survival probability,744

S0(x, t) := P(t0 > t |X(0) = x).

The survival probability S0(x, t) is the unique solution of the following backward Kolmogorov equa-745

tion, (Gardiner, 2009)746

∂
∂ t

S0 = D
∂ 2

∂x2 S0 �V
∂
∂x

S0, x > 0, t > 0,

S0 = 0, x = 0,
S0 = 1, t = 0.

(23)

A straightforward calculus exercise verifies that747

S0(x, t) =
1
2


1+ erf

⇣x�Vtp
4Dt

⌘
� eV x/D

⇣
1� erf

⇣x+Vtp
4Dt

⌘⌘�

satisfies (23). Equation (7) then follows from (4) upon setting x = 1.748

For the values of V and D in (6) with x = 1 and L � 2, the solution S(x, t) is well-approximated by749

S0(x, t). Again, the basic reason is that for these parameter values, it is very unlikely for a PF to hit the750

death threshold at L before the growth threshold at 0. To make this precise, observe that751

P(t0 > t) = P(t0 > t,tL > t0)+P(t0 > t,t0 > tL)

 P(t0 > t,tL > t)+P(t0 > tL)

= P(t > t)+P(t0 > tL).

Therefore,752

0  P(t0 > t)�P(t > t) P(t0 > tL). (24)

By definition of S and S0, the bound (24) implies753

0  S0(x, t)�S(x, t) u(x), (25)

where u(x) is the probability in (20). Evaluating u(x) at the parameter values in (6) as in (22), we obtain754

0  S0(x, t)�S(x, t) 2.05⇥10�6.

Starting supply distribution755

We model the distribution of the starting supply N across a population of women as a log-normal756

distribution as in (8)-(9). The parameters µ and s in (8) are the respective mean and standard deviation757

of the natural logarithm of the 30 PF counts in Wallace and Kelsey (2010) taken from women who were758

at least 6 months gestation and at most one month post birth. In Figure S1a, we plot the histogram of759

these 30 PF counts (blue bars), which is well-approximated by the probability density function of the760

log-normal distribution in (9) with µ and s in (8) (dashed black curve). In Figure S1b, we plot the761

corresponding empirical cumulative distribution function for these 30 PF counts (solid blue curve) and762

the cumulative distribution function of the log-normal distribution in (8)-(9) (dashed black curve). The763

Kolmogorov-Smirnov distance between these two distributions in Figure S1b (i.e. the maximum absolute764

difference) is only 0.1, which has a corresponding p-value of 0.88 for the null hypothesis that these 30 PF765

counts are indeed sampled from the log-normal distribution in (8)-(9).766

For starting supply, we chose to consider women who were within a few months of birth since only 15767

PF counts in Wallace and Kelsey (2010) were from women at birth. However, considering only these 15768

PF counts at birth would have little effect on our results, and would only change the values µ = 12.686,769

s = 0.497 in (8) to µ = 12.801, s = 0.490.770
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SUPPLEMENTAL FIGURES771

Supplemental information in support of our mathematical modeling approach is provided as follows. First,772

we show how PF starting supply was determined according to the distribution of PF numbers around the773

time of birth produced by Wallace and Kelsey (2010) (Fig. S1).774

775

Appendix 1, Figure S1. Starting supply distribution. In panel a, we plot a histogram of the 30 PF counts
for women near birth reported by Wallace and Kelsey (2010) (blue bars), which is well-approximated by
the log-normal distribution in (8)-(9) (dashed black curve). In panel b, we provide a cumulative
distribution function plot of observed PF counts (blue solid line) versus the log-normal distribution
(dashed black curve).776
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ANM histograms in Fig. S2 correspond to data shown in Figures 1 and 2, with model conditions777

indicated by Figure panel.778

779

Appendix 1, Figure S2. ANM histograms generated from RW output when drift was set as specified in
”Drift Parameters” column. As shown, an ANM distribution centered around a median age of
approximately 51 (red vertical line) can be produced in each case, with few simulated subjects reaching
menopause before 40 years and after 60 years. Time-Variant drift indicated by the asterisk (*) was
applied by modifying drift conditions and also applying a single step drift acceleration in year 38 of
simulation time. This was used to interrogate the possibility that PF loss accelerates during reproductive
aging. Note that here, the ANM distribution generated when Subject-Variable drift is applied (middle
panel) is broader than that seen for homogenous drift (top panel) given otherwise identical model
conditions. Application of Time-Variant drift resulted again in a narrower ANM distribution, and
prevented simulated subjects from reaching the ANM threshold after age 62 (blue vertical line).780
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