
Appendix A - supplementing:
Quality assuring the quality assurance tool:
Applying safety-critical concepts to test framework
development
Jonathan Thörn1, Per Erik Strandberg1,2, Daniel Sundmark2, and Wasif
Afzal2

1Westermo Network Technologies AB, Västerås, Sweden
2Mälardalen University, Västerås, Sweden

A CASE-SPECIFIC DEFINITION OF DONE PROPOSAL
This appendix contains the proposed case-specific Definition of Done (DoD) for the three fundamental
phases of planning1, development and testing. Each DoD lists activities to be completed before transition
to the following phase. Each DoD only acts as a gate in the development, but does not prescribe when
activities are to be performed. Thus, flexibility in development is to some extent maintained.

The DoD for each phase acts as a gate, listing activities to be completed before a task may transition
to the next phase. Based on both the related work and the presented candidates, we propose an agile
process augmented with influences from safety-critical development. The defined phases and activities in
the Definition of Done can be seen as a process controlling document, rather than as guidelines only. With
the verification link between the planning phase and the test phase, we argue for a sequence of mini-v:s –
a V-augmented agile development in three phases as illustrated in Figure 1.

A.1 Suggested Supporting Documentation
The focus group identified a need for supporting documentation. Thus, identified activities listed in the
DoDs may refer to one or more of the following supporting documents: (1) Guidelines for branching in
source code version-control systems, (2) Guidelines for writing and documenting requirements, (3) Devel-
opment guidelines, (4) Coding style, (5) Development checklist, (6) Guidelines for documentation, as
well as (7) Guidelines for conducting peer-reviews.

A.2 Planning Phase Definition of Done
The suggested activities to be completed during the planning phase, before transitioning to the development
phase, are:

P1 Branch(es) created. Branching is done at an early stage to enable documentation of requirements
during planning, and to isolate it from the stable framework branch.

P2 Proposed change(s) clarified as “top-level” requirements. The proposed changes may come from
the Westermo Operating System (WeOS) teams during their planning phase, identified as new or altered
functionalities in the framework, or come from within the test team. Here a requirement means a statement
describing a functionality that is expected by the system based on the proposed change.

P3 Important framework interaction sequences identified. The purpose of this activity is to describe
expected functionality at lower levels, enabling requirement decomposition and allocation, and to ease
identification of possible errors and abnormal operating conditions in later risk analysis. The interactions
should be based on the expected functionality.

P4 Third party functionalities identified and suitable libraries and tools selected. To avoid the use of
too many tools (e.g. packet generators), using a tool already in successful use, could be tried before adding
a new tool. If a new tool/library is needed, its history should be reviewed and the basis for selection
documented.

1The DoD of the planning phase could be seen as largely overlapping with the agile construct of Definition of Ready, i.e. they
define how well requirements have to be specified before development can begin.



Verification

Validation

Planning

Dev.

Test

DoD
Do
D

Validation
Test Suite

Proposed
change(s)

Do
D

Figure 1. A suggested mini V-model controlled by DoDs.

P5 Preliminary risk and impact analysis performed and documented. Utilize the interaction sequences
of P3 to identify possible errors and their effects, including internal errors in the framework as well as
errors caused by abnormal operating conditions.

P6 Lower level requirements elicited and allocated to framework components. Break down re-
quirements into smaller workable and testable units. Allocate these to framework components (e.g.
modules/tools/tool-chains), according to identified interaction sequences. Also, requirements derived
from the risk analysis should be allocated to suitable components.

P7 Development impediments identified and mitigated. Identify factors that may block or delay the
development, and find mitigation strategies.

A.3 Development Phase Definition of Done
The suggested activities to be completed during the development phase, before transitioning to the test
phase are defined in the provided list below.

D1 Complete implementation according to requirements and development guidelines. Avoidance of
faults being introduced by misconceptions, defining e.g. conventions, error handling, and other practises.
These could be combined with development checklists to reduce the effort for later reviews.

D2 Static code analysis only giving “low level” remarks. Linting2 and/or other static analysis tools,
e.g. Coverity3, should be set up to the development branch to enable continuous correction during
development.

D3 Unit tests written. To test fine-grain logic, unit tests of developed components should be written
and refined before, during and after the implementation is performed.

D4 Tests written to verify compliance with requirements. In parallel to the implementation, tests to
verify compliance with requirements should be developed.

D5 Behaviour, instructions and constraints defined in documentation. Proper documentation of system
behaviour, usage instructions and system constraints to be ensured.

D6 Peer-reviews completed and documented. Definition of methods for peer review, which should
include examination of the implementation, tests and documentation.

D7 Issues found by peer-reviews corrected. After correction, this should be verified with the reviewer.

A.4 Test Phase Definition of Done
The suggested activities to be completed during the test phase, before transitioning to the tool validation
test-suite and subsequent merge of the new functionality with the maintained stable solution, are defined
in the provided list below.

T1 Unit tests performed. Verify low level behavior by running the newly developed unit tests (this
may be an iterative process, see DoD D3).

T2 Unit-integration tested. Test the integration of units as a group, as well as the data transfer between
components.

2Linting is brought up in Section 5.2.2.
3https://scan.coverity.com

2/3

https://scan.coverity.com


T3 Requirement-based tests performed. These tests verify the expected functionality of the framework
as described by the requirements.

T4 Fault injection tests performed. Fault-injection can be used in two ways, for two purposes. (i)
Forced errors in components/sub-tools of the tool-chain can verify the error detection or prevention
measures in other parts of the system (e.g. monitoring services, sanity checks, etc.). (ii) Faults could also
be introduced in the WeOS code, and when running test cases for WeOS, we expect the framework to
detect the problems (test cases should fail).

T5 All detected issues managed. After correction, applicable tests should be repeated for verification
of sufficient correction.

T6 Risk and impact analysis documentation completed. The documentation should be revisited
and completed. If necessary, a new analysis can be conducted to validate sufficiency of implemented
measures.

3/3


	Case-Specific Definition of Done Proposal
	Suggested Supporting Documentation
	Planning Phase Definition of Done
	Development Phase Definition of Done
	Test Phase Definition of Done


