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A Calculations for normalized distances22

A.1 Distance density of the nearest neighbors23

Let’s take K − 1 points in the unit D-sphere randomly, and dimensionality24

for the calibration hypercubes. The diagonal (dashed) is thewe chose one with25

r distance from the center. This situation simulates a K-neighborhood, with26

normalized distances of K− 1 points from the center. The next formula tells us27

the probability that a selected point at r was the kth from the center.28

P (k|r,K,D) =

(
K − 2

k − 1

)
rD(k−1)(1− rD)K−k−1 (S.1)

here r can take values from the [0, 1] interval.29
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Moreover the probability density that there is a point at r radius is given by30

the following derivation formula:31

p(r|D) = DrD−1 (S.2)

If sampling process is independent, the pdf that a point is on the radius r from32

K − 1 points is the same and independent of sample size:33

p(r|K − 1, D) =

n∑
j=1

1

n

∫
dr1· · ·

∫
dri· · ·

∫
drn︸ ︷︷ ︸

i 6=j

p(r1, r2, . . . rj = r, . . . rn|D)

=

n∑
j=1

1

n

∫ ∫
· · ·
∫

︸ ︷︷ ︸
n−1

n∏
i=1

Dri
D−1 dri︸︷︷︸

i6=j

=
1

n

n∑
j=1

Drj
D−1 = DrD−1

(S.3)

This is the prior pdf of distance, we assume uniform density in the n-sphere.34

This prior can be any density, we chose this specific form with respect to the35

maximum entropy principle and also for practical reasons.36

From the previous two formulas, we can write up the joint mixed probability37

function:38

p(k, r|K − 1, D) = D

(
K − 2

k − 1

)
rDk−1(1− rD)n−k (S.4)

Also:39

p(k|K − 1, D) =
1

K − 1
(S.5)

Using Bayes theorem, we derive the distance distribution of the kth neighbor:40

p(r|k,K − 1, D) =
P (k|r,K − 1, D)p(r|K − 1, D)

p(k|K − 1, D)
(S.6)

= (K − 1)D

(
K − 2

k − 1

)
rDk−1(1− rD)K−k−1 (S.7)

=
D

B(k,K − k)
rDk−1(1− rD)K−k−1 (S.8)

Where B is the beta function.41
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A.2 Maximum Likelihood estimation of intrinsic dimen-42

sion43

Given a dataset, we can use the Maximum Likelihood principle to estimate44

intrinsic dimensionality by using Eq. S.8. The dataset is K−1 randomly sampled45

points inside a d-dimensional sphere. But first we have to express the likelihood46

function:47

L(D|X) = p(r1, ..., rK−1|D) (S.9)

This expression can be factorized into a chain because p(rk|rk+1, rk+2, ..., rK−1) =48

p(rk|rk+1) which is a Markov property of neighbor distances.49

L(D|X) = p(r1, ..., rK−1|D) =

K−1∏
1

p(rk|rk+1, D) (S.10)

where rK = 1.50

p(rk|rk+1, D) = kD

(
rk
rk+1

)kD−1
1

rk+1
(S.11)

So if we substitute back into the previous expression:51

L(D|X) = p(r1, ..., rn|D) =

K−1∏
1

p(rk|rk+1, d)

= (K − 1)!DK−1 r
D−1
1

rD2

r2D−1
2

r2D
3

r3D−1
3

r3D
4

. . .
r

(K−1)D−1
K−1

r
(K−1)D
K

= (K − 1)!DK−1

(
K−1∏

1

rk

)D−1

(S.12)

The log likelihood:52

logL(D|X) =

(
K−1∑

1

log k

)
+ (K − 1) logD + (D − 1)

K−1∑
1

log rk (S.13)

We seek for extrema of the likelihood function:53

∂ logL(D|X)

∂D

!
= 0

K − 1

D
+

K−1∑
1

log rk
!
= 0

(S.14)
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dML =
K − 1

−
∑K−1

1 log rk
(S.15)

This latter formula is basically equivalent to the local Levina-Bickel ML54

intrinsic dimension estimator if rk = Rk
RK

.55

B Derivation of the pdf of the FSA estimator56

The starting point of our derivation is the posterior density of r, computed in57

Section 1:58

p(r|k,K − 1, D) =
D

B(k,K − k)
rDk−1(1− rD)K−k−1 (S.16)

We fill in K = 2k to the previous expression:59

p(r|k, 2k − 1, D) =
D

B(k, k)
rDk−1(1− rD)k−1 (S.17)

The pdf of local dimension estimates δ can be expressed from the pdf of60

distances r with a simple intergal transform (change of variables):61

p (r|k, 2k − 1, D) dr = q (δ) dδ (S.18)

so62

q (δ) = p (r|k, 2k − 1, D)

∣∣∣∣drdδ

∣∣∣∣ (S.19)

To compute the above expression, we first express r as a function of δ, then63

we compute the derivative. Afterwards we put the things together.64

δ = − log 2

log r
=⇒ r = exp

(
− log 2

δ

)
=⇒ dr

dδ
= exp

(
− log 2

δ

)
log 2

δ2
(S.20)

And finally, we put together these parts to get the pdf of the FSA estimator:65

q(δ|k,D) =
D

B(k, k)
e(−

log 2
δ (Dk−1))

(
1− e(−

log 2
δ D)

)k−1

e(−
log 2
δ ) log 2

δ2
=

=
D log (2)

B(k, k)

2−
Dk
δ

(
1− 2−

D
δ

)k−1

δ2
(S.21)

where B(k, k) = Γ(k)Γ(k)
Γ(2k) is the Euler beta function.66
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C Intuitive derivation for the asymptotic prob-67

ability density of the median68

For an odd sample size one can compute the asymptotic distribution of the69

sample median in an intuitive manner, if the distributions are given.70

Let X be a continuous random variable and q and Q are it’s probability71

density function and probability distribution respectively. Also, let {xi}ni=1 be72

a sample of n = 2l + 1 odd sample-points drawn independently from the q73

density. We would like to derive the probability that the median falls into an74

infinitesimally small interval dx around X = x value. The probability that75

the value of a sample point is smaller than x is given by Q(x). Similarly the76

probability that the value is bigger than x is 1−Q(x). Also, the probability that77

a point exactly falls into a small range around x is given by q(x)dx by definition.78

For the whole sample l = n−1
2 points has to bigger and smaller than x and one79

sample has to be around it, so the probability is given by the following trinomial80

formula for an indepependent identically distributed sample:81

P (x) =
n!

l!l!
Q(x)l [1−Q(x)]

l
q(x) dx (S.22)

where P(x) is the probability that the median is at X = x value. Q(x)l is the82

probability that l points has lower value than x and similarly [1−Q(x)]l is the83

probability of l points has bigger value than x. The n!
l!l! = 1

B(l+1,l+1) multiplier84

is a combinatorial normalizing constant, which can be written alternatively as85

an Euler-beta function with l + 1 as both of it’s argument.86

D Standard error of the median with Stirling87

approximation88

According to Laplace, the probability distribution of the median is approxi-
mately Gaussian, with mean as the median (asymptotically) and with the vari-
ance:

σ2 =
1

4nq(D)2
(S.23)

where n is the samples size and q is the pdf from which the sample was inde-89

pendently generated and D is the median.90

We substitute eq. S.21 into eq. S.23 and by taking the squareroot, we get:

σ =
22k−2B(k, k)D

log (2)
√
n

(S.24)

Using the Stirling approximation for the beta function (k → ∞) we can
simplify the above expression in the function of neighborhood size.

B(k, k) ≈
√

2π kk−0.5 kk−0.5

(2k)2k−0.5
=

√
π 21−2k

√
k

(S.25)
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If we substitute back eq. S.25 into eq. S.24 we get the following approximate
expression for the standard error of median:

σ ≈
√
π

2 log 2

D√
nk

(S.26)

This formula expresses that the standard error of the median is proportional to91

the intrinsic dimension and shrinks with the squareroot of the sample size (n)92

and neighborhood size(k).93

E Supplemental Figures and tables94

STable 1: Used symbols with interpretation.

k - the order of the neighbor (increasing order as the distance from the center rises)
K − 1 - number of points in the neighborhood

R - distance from center
r - normalized distance from center r = R/RK (r ∈ [0, 1])
η - local density-dependent factor, approximately independent of R
D - intrinsic dimensionality of the space where the points are.
δ - local intrinsic dimension estimate
d - global intrinsic dimension estimate
P - Probability, probability mass function

p or q - probability density function (pdf)
q - probability density function of the mFSA estimate estimate
Q - probability distribution of the mFSA estimate estimate
n - sample size
N - number of realizations
B - Euler beta function
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SFig. 1: Calibration procedure for the n = 2500 datasets up to D = 80
(k = 5). The figure shows the calibration procedure on 100 instances of uni-
formly sampled hypercubes. A Dimension estimates in the function of intrinsic
dimensionality for the calibration hypercubes. The diagonal (dashed) is the
ideal value, however the mFSA estimates (blue) show saturation because of fi-
nite sample and edge effects. cmFSA estimates (red) are also shown, with the
mean (yellow) almost aligned with the diagonal. B The relative error (E) in the
function of uncorrected mFSA dimension on semilogarithmic scale. The error-
mFSA pairs (blue) lie on a short stripe for each intrinsic dimension value. The
subplot also shows id-wise average points (yellow) and the polynomial fitting
curve (red). C The error of cmFSA estimates in the function of intrinsic dimen-
sion on the calibration datasets. The mean error (blue line) oscillates around
zero and the 99.7% confidence interval (blue dashed) widens as ID grows. The
rounding switch-points are also shown. D The probability that cmFSA hits the
real ID of data, or misses by one, two or more as a function of ID on the cali-
bration dataset. E The error is approximately gaussian as shown through the
empirical distribution at D = 18 with the fitted gaussian. F Results of normal-
ity test show, that the error do not deviate significantly (alpha = 0.05 dashed
line) from a gaussian error distribution. We applied Bonferroni correction for
multiple comparisons, the blue bars are the p-values.
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SFig. 2: Subsampling and embedding of the CSD signals. A Mean Space-
time separation plot of the CSD recordings, the lines show the contours of the
1% (blue), 25% (orange), and 50% (green) percentiles for the 34 - 16 interictal
and 18 seizures - recordings (thin lines) and their average (thick line, D = 2).
The first local maximum is at around 5 ms (10 time steps), which appoints
the proper subsampling to avoid the effect of temporal correlations during the
dimension estimation. B Intrinsic dimension in the function of the embedding
dimension for the 88 recording-channels (averaged between k = 5− 10, for the
first seizure). Dimension-estimates deviate from the diagonal above D = 3, thus
we chose D = 2∗3+1 = 7 as embedding dimension. C Intrinsic dimension in the
function of neighborhood size for various embedding dimensions (88 channels,
for the first seizure). The dimension estimates are settled at the neighborhood
size between k=10− 20 (dashed blue). The knee because of the autocorrelation
becomes pronounced for D >= 8.
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