
Graph Coloring Using the Reduced Quantum Genetic
Algorithm

(Supplementary Information)

Sebastian Mihai Ardelean, Mihai Udrescu

1 Additional experimental results

1

1

2

0

3

(a)

1

2

0

3

(b)

1 2 3 4
Number of Grover Iterations

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
um

be
r o

f s
ol

ut
io

ns

Number of Valid Solutions
Number of Best Solutions

(c)

Figure S1: Panel a) shows the Erdős-Rényi graph generated with edge probability 0.4 and 4 nodes,
which we used for the coloring problem. Panel b) shows the same graph colored with the solution
found by our algorithm. Nodes 1, 2, and 3 have the same color and node 0 is colored differently.
The best result for this graph uses only 2 colors.The chromatic number for this graph is 2 and the
algorithm, even if it is configured to use 3 colors, it determined that the best solution for coloring
the graph is by using only 2 colors, thus determining both the coloring and the chromatic number.
Panel c) depicts the experimental results; in each iteration the algorithm found only best solutions.

0 1

3 2

(a)

0 1

3 2

(b)

1 2 3 4
Number of Grover Iterations

1

2

3

4

5

N
um

be
r o

f s
ol

ut
io

ns

Number of Valid Solutions
Number of Best Solutions

(c)

Figure S2: Panel a) shows an Erdős-Rényi graph generated with an edge probability of 0.4 and
4 nodes, which we used for coloring problem. Panel b) shows the same graph colored with the
solution found by the algorithm. The result for this graph uses only 2 colors, so that nodes 1 and 2
share one color while nodes 0 and 3 are colored using the second one. The chromatic number for
this graph is 2 and the algorithm, even if it is configured to use 3 colors, it determined that the best
solution for coloring the graph is by using only 2 colors, thus determining both the coloring and
the chromatic number. Panel c) depicts the experimental results, in each iteration, the algorithm
found only best solutions with a maximum of 5 solutions found after 4 iterations.

2

2

0

3

1

(a)

2

0

3

1

(b)

1 2 3 4
Number of Grover Iterations

3.0

3.5

4.0

4.5

5.0

N
um

be
r o

f s
ol

ut
io

ns

Number of Valid Solutions
Number of Best Solutions

(c)

Figure S3: Panel a) shows the Erdős-Rényi graph generated with edge probability 0.4 and 4 nodes,
which we used for the coloring problem. Panel b) shows the same graph colored with the solution
found by our algorithm. The result for this graph uses only 2 colors: nodes 0, 1 and 2 have the
same color and node 3 is colored differently. The chromatic number for this graph is 2 and the
algorithm, even if it is configured to use 3 colors, it determined that the best solution for coloring
the graph is by using only 2 colors, thus determining both the coloring and the chromatic number.
Panel c) presents the experimental results; in each iteration the algorithm found only best solutions,
with a maximum of 5 solutions found in iterations 1 and 4.

3

0 1

3 2

(a)

0 1

3 2

(b)

1 2 3 4
Number of Grover Iterations

0

1

2

3

4

5

N
um

be
r o

f s
ol

ut
io

ns
Number of Valid Solutions
Number of Best Solutions

(c)

Figure S4: Panel a) shows an Erdős-Rényi graph generated with edge probability 0.4 and 4 nodes,
which we used for the coloring problem. Panel b) shows the same graph colored with the solution
found by our algorithm. The result for this graph uses only 2 colors, so that nodes 1 and 3 are
colored using first color and nodes 0 and 2 are colored using the second one. The chromatic number
for this graph is 2 and the algorithm, even if it is configured to use 3 colors, it determined that the
best solution for coloring the graph is by using only 2 colors, thus determining both the coloring
and the chromatic number. Panel c) depicts the experimental results; after 1 Grover iteration the
algorithm produced 5 valid solutions from which 2 are best solutions.

4

2

0

3

1

4

(a)

2

0

3

1

4

(b)

1 2 3 4
Number of Grover Iterations

0

1

2

3

4

5

6

N
um

be
r o

f s
ol

ut
io

ns

Number of Valid Solutions
Number of Best Solutions

(c)

Figure S5: Panel a) shows an Erdős-Rényi graph generated with edge probability 0.4 and 5 nodes,
which we used for the coloring problem. Panel b) shows the same graph colored with the solution
found by our algorithm. The solution for this graph uses 2 colors, so that nodes 0 and 3 are colored
using the first color, and nodes 1, 2 and 4 are colored using the second one. The chromatic number
for this graph is 2 and the algorithm, even if it is configured to use 3 colors, it determined that the
best solution for coloring the graph is by using only 2 colors, thus determining both the coloring
and the chromatic number. Panel c) depicts the experimental results: after 3 iterations the algorithm
produced 6 valid solutions from which 2 are best solutions.

5

0 1

3 2

4

(a)

0 1

3 2

4

(b)

1 2 3 4
Number of Grover Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

be
r o

f s
ol

ut
io

ns

Number of Valid Solutions
Number of Best Solutions

(c)

Figure S6: Panel a) shows an Erdős-Rényi graph generated with edge probability 0.4 and 5 nodes,
which we used for the coloring problem. Panel b) shows the same graph colored with the solution
found by our algorithm. The solution for this graph uses 2 colors, so that nodes 0, 3 and 4 are
colored using the first color and nodes 1 and 2 are colored using the second one. The chromatic
number for this graph is 2 and the algorithm, even if it is configured to use 3 colors, it determined
that the best solution for coloring the graph is by using only 2 colors, thus determining both the
coloring and the chromatic number. Panel c) depicts the experimental results; after 4 iterations the
algorithm produced 3 valid solutions from which 2 are best solutions.

24

1

3

0

(a)

24

1

3

0

(b)

1 2 3 4
Number of Grover Iterations

1

2

3

4

5

6

7

N
um

be
r o

f s
ol

ut
io

ns

Number of Valid Solutions
Number of Best Solutions

(c)

Figure S7: Panel a) shows an Erdős-Rényi graph generated with edge probability 0.4 and 5 nodes,
which we used for the coloring problem. Panel b) shows the same graph colored with the solution
found by our algorithm. The solution for this graph uses 3 colors, so that nodes 3 and 2 are colored
using the first color; nodes 1 and 4 are colored using the second color; node 0 is colored using the
third color. Panel c) depicts the experimental results: after 4 iterations, the algorithm produced 7
valid solutions from which 2 are best solutions.

6

0 1

3 2

4

(a)

0 1

3 2

4

(b)

1 2 3 4
Number of Grover Iterations

0

1

2

3

4

5

6

N
um

be
r o

f s
ol

ut
io

ns

Number of Valid Solutions
Number of Best Solutions

(c)

Figure S8: Panel a) shows an Erdős-Rényi graph generated with edge probability 0.4 and 5 nodes,
which we used for the coloring problem. Panel b) shows the same graph colored with the solution
found by our algorithm. The solution for this graph uses 3 colors, so that nodes 0, 1 and 3 are
colored using the same color and nodes 2 and 4 are colored using different colors. Panel c) depicts
the experimental results: after 2 iterations, the algorithm produced 6 valid solutions from which 2
are best solutions.

7

2 Graph coloring example
In this section, we present an example of how the Reduced Quantum Genetic Algorithm is applied
to a typical genetic search problem.

Problem: Considering the graph in Figure S9 and a number of 3 colors, find a way of coloring
the nodes such that no two adjacent nodes are colored with the same color.

Solution: In a classical genetic approach, we start by generating a population with each chro-
mosome encoding 4 genes, each gene representing a color. In the quantum version, the chromo-
some encoding requires 8 qubits. Each color is represented with 2 qubits, thus we will consider
the combination 11 as an invalid color. The chromosome will encode valid and invalid colors as
superposed basis states, a chromosome that contains at least one invalid color is considered an
invalid solution, as presented in Table 1.

We start with the initial state

|ψ⟩1 =
1
16

255

∑
u=0

|u⟩i ⊗|0⟩i

=
1
16


|00000000⟩ + |00000001⟩

+ |00000010⟩ + |00000011⟩
+ . . .
+ |00010000⟩ + |00010001⟩
+ |11111110⟩ + |11111111⟩

⊗|000000000⟩ .
(1)

In Table 1 we present the chromosome encoding on 8-qubit classical values in superposition with
valid and invalid flags.

We apply the fitness function defined in Section Implementation over the individual registers
|u⟩i obtaining the state presented in (2).

20

1 3

Figure S9: Randomly generated Erdős-Rényi graph with an edge probability of 0.7.

8

N0 N1 N2 N3 Validity

00 00 00 00 Valid
00 00 00 01 Valid
00 00 00 10 Valid
00 00 00 11 Invalid
...

...
...

...
...

11 11 11 10 Invalid
11 11 11 11 Invalid

Table 1: Chromosome binary configurations with valid and invalid flags.

|ψ⟩2 = |u⟩i ⊗| f itnessu⟩i =
1

16



|00000000⟩ ⊗|100000000⟩
+ |00000001⟩ ⊗|100000010⟩
+ |00000010⟩ ⊗|100000010⟩
+ |00000011⟩ ⊗|011111111⟩
+ . . .
+ |00010000⟩ ⊗|100000010⟩
+ |00010001⟩ ⊗|100000100⟩
+ . . .
+ |11111110⟩ ⊗|011111111⟩
+ |11111111⟩ ⊗|011111111⟩


(2)

All least significant 8 bits of the fitness values represent two’s complement numbers and the 9th bit
represents the validity of the individual, 0 indicates an invalid individual, while 1 indicates a valid
one.

The next step is to apply the oracle over the fitness register. We count the number of edges
in graph—in this example is 4—and apply the oracle implemented as in Figure 4. In Equation
(3) |ψ⟩1

3 is the pair register state after subtracting the number of edges from the fitness value and
applying phase-shift. The pair register state after applying the Oracle is presented in Equation (4).

|ψ⟩1
3 = |u⟩i ⊗| f itnessu⟩i =

1
16



|00000000⟩ ⊗|111111100⟩
+ |00000001⟩ ⊗|111111110⟩
+ |00000010⟩ ⊗|111111110⟩
+ |00000011⟩ ⊗|011111011⟩
+ . . .
+ |00010000⟩ ⊗|111111110⟩
− |00010001⟩ ⊗|100000000⟩
+ . . .
+ |11111110⟩ ⊗|011111011⟩
+ |11111111⟩ ⊗|011111011⟩


(3)

9

|ψ⟩2
3 = |u⟩i ⊗| f itnessu⟩i =

1
16



|00000000⟩ ⊗|100000000⟩
+ |00000001⟩ ⊗|100000010⟩
+ |00000010⟩ ⊗|100000010⟩
+ |00000011⟩ ⊗|011111111⟩
+ . . .
+ |00010000⟩ ⊗|100000010⟩
− |00010001⟩ ⊗|100000100⟩
+ . . .
+ |11111110⟩ ⊗|011111111⟩
+ |11111111⟩ ⊗|011111111⟩


(4)

We apply the diffuser operation over the fitness register from |ψ⟩2
3 and we get the state |ψ⟩4

as presented in Equation (5), with amplitudes α0,α1,α2,α3, . . . ,α16,α19,α20, . . . ,α255 ≈ 0 and
|α17|2 + |α18|2 = 1.

|ψ⟩4 = |u⟩i ⊗| f itnessu⟩i =
1

16



α0 |00000000⟩ ⊗|100000000⟩
+ α1 |00000001⟩ ⊗|100000010⟩
+ α2 |00000010⟩ ⊗|100000010⟩
+ α3 |00000011⟩ ⊗|011111111⟩
+ . . .
+ α16 |00010000⟩ ⊗|100000010⟩
− α17 |00010001⟩ ⊗|100000100⟩
+ . . .
+ α254 |11111110⟩ ⊗|011111111⟩
+ α255 |11111111⟩ ⊗|011111111⟩


(5)

Having the highest fitness value, if we measure the individual register of |ψ⟩4 we obtain the corre-
sponding individual (or one of the corresponding individuals, if there are more solutions). We get,
with a high probability, one of the following basis states: |00010001⟩ , |00010010⟩. Assuming that
|00010001⟩ is measured, we update the max value with the corresponding fitness value, and repeat
the steps above until the max is not improved.

Suppose that, after applying Grover iterations, we measure |00010010⟩ in individual register
of |ψ⟩m−1, then in fitness register we will have |100000100⟩. Since max value is not improved, we
have the solution for our problem.

10

3 Circuit implementation

Listing 1: Quantum registers initialization
ind_qreg = QuantumRegister(ind_qreg_size,

"ireg")
fit_qreg = QuantumRegister(fit_qreg_size + 1

, "freg")
carry_qreg = QuantumRegister(carry_size,

"carryreg")
oracle = QuantumRegister(oracle_ws_size,

"oreg")
pos_no_of_edges = QuantumRegister(fit_qreg_size,"pedgesreg")
creg = ClassicalRegister(ind_qreg_size,"reg")
qc = QuantumCircuit(ind_qreg,

fit_qreg,
carry_qreg,
oracle_ws,
neg_no_of_edges,
pos_no_of_edges,
creg)

qc.h(ind_qreg)
qc.h(oracle_ws)

In Listing 1 we present the initialization step of the algorithm. In this step the quantum registers
are initialized, the circuit is created and the individual quantum register and the oracle qubit are
put in superposition. The individual quantum register contains the color combinations for solving
the graph coloring and fitness quantum register is used for storing the fitness value. The carry
quantum register is used in the oracle for performing the subtraction and addition. The quantum
register named in Listing 1 as pos no of edges stores the number of edges in the graph and is
used in the oracle. This value is used along with the fitness value to perform the subtraction and
addition.

Listing 2: Appending U f it Sub-circuit
qc.append(ufit_instr,

[ind_qreg[q] for q in range(0,ind_qreg_size)]+
[fit_qreg[q] for q in range(0,fit_qreg_size+1)]

)

Listing 2 shows the append of U f it subcircuit to the circuit with individual and fitness quantum
registers as inputs. The implementation of U f it subcircuit is presented in Algorithm 2.

Listing 3: Appending Oracle Sub-circuit
qc.append(oracle_instr,

[pos_no_of_edges_qreg[q] for q in range(0,fit_qreg_size)]
+[fit_qreg[q] for q in range(0,fit_qreg_size)]
+[oracle[0],carry_qreg[0],carry_qreg[1]]

)

The oracle subcircuit implementation is presented in Algorithm 3 while the subcircuit usage is
presented in Listing 3. As it can be observed, pos no of edges, fitness and oracle quantum registers

11

are used as an input to the subcircuit. In Listing 4 the appending of Grover diffuser subcircuit is
presented. The implementation for this subcircuit is provided in Figure 6 and is applied to the
fitness quantum register, valid and oracle qubits.

Listing 4: Appending Grover Diffuser Sub-circuit
qc.append(grover_iter_inst,

[fit_qreg[q] for q in range(0,fit_qreg_size+1)]
+[oracle[0]])

The full code of our project is available on Github https://github.com/sebastianardelean/
graphcoloringusingrqga.

Acronyms
RQGA Reduced Quantum Genetic Algorithm. 8

References

12

https://github.com/sebastianardelean/graphcoloringusingrqga
https://github.com/sebastianardelean/graphcoloringusingrqga

	Additional experimental results
	Graph coloring example
	Circuit implementation

