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Abstract 18 

Searchable symmetric encryption (SSE) provides an effective way to search encrypted data stored 19 

on untrusted servers. As we all known, the server is not trusted, so it is indispensable to verify the 20 

results returned by it. However, the existing SSE schemes either lack fairness in the verification 21 

of search results, or do not support the verification of multiple keywords. To address this, we 22 

design a multi-keyword verifiable searchable symmetric encryption scheme based on blockchain, 23 

which provides an efficient multi-keyword search and fair verification of search results. We utilize 24 

bitmap to build search index in order to improve search efficiency, and use blockchain to ensure 25 

fair verification of search results. The bitmap and hash function are combined to realize lightweight 26 

multi-keyword search result verification, compared with the existing verification schemes using 27 

public key cryptography primitives, our scheme reduces the verification time and improves the 28 

verification efficiency. In addition, our scheme supports the dynamic update of files and realizes 29 

the forward security in update. Finally, formal security analysis proves that our scheme is secure 30 

against Chosen-Keyword Attacks (CKA), experimental analysis demonstrations that our scheme 31 

is efficient and viable in practice. 32 

 33 

Introduction 34 

With the development of artificial intelligence, Internet of things, Internet of vehicles and other 35 

emerging technologies, more and more enterprises and individuals outsource local data to the 36 

cloud, thereby reducing storage and management overhead. However, security and privacy 37 

concerns still hinder the deployment of cloud storage system. Although data encryption can 38 

eradicate such concerns to some extent, it becomes difficultfor users to search over the data.  39 



Searchable symmetric encryption (SSE) provides an efficient mechanism to solve this, which 40 

enables users to search encrypted data efficiently without decryption. Since SSE was first proposed 41 

by Song (Song, Wagner & Perrig, 2000), how to perform efficient and versatile search  on 42 

encrypted data has always been an important research direction. The existing SSE schemes mainly 43 

use linked lists and vectors to build indexes, the cloud server needs to traverse the whole list or 44 

vector to search for matching results during a query, which incurs high search overhead. In addition 45 

to efficient search, dynamic updates are also very important in SSE. (Zhang, Katz & Papamanthou, 2016) 46 

has shown that adversaries can infer the critical information through the file injection attacks 47 

during the dynamic update of the SSE, while the forward-secure SSE can avoid this. Therefore, 48 

the forward security of the scheme must be fully considered when designing the SSE scheme. 49 

 Verifiability of the search results is another important research issue for SSE.  Since The cloud 50 

server is untrusted, which may returns incorrect or incomplete results  due to system failures or 51 

cost savings, so, it is necessary to verify the search results. In 2012, (Qi & Gong, 2012) proposed 52 

the concept of verifiable SSE (VSSE) and constructed a verifiable SSE scheme based on word tree. 53 

Following this work, a great many VSSE schemes are proposed (Kurosawa & Ohtaki, 2012; Zhu, Liu 54 

& Wang, 2016; Liu et.al 2017; Zhang et.al 2019;Chen et.al 2021). In these schemes, the verification is 55 

mainly performed by users, but the user may forge verification results to save costs, so the 56 

reliability of the verification cannot be guaranteed. To address this, some researchers(Hu et.al 2018; 57 

Li et.al 2019; Guo, Zhang & Jia , 2020) introduce blockchain into SSE to verify search results, 58 

which guarantees the fairness and reliability of the verification. Although blockchain achieves fair 59 

verification of search results, but the existing schemes are only for a single keyword, and there is 60 

little research on fair verification for multi-keywords. 61 

In this paper, we introduce a verifiable multi-keyword SSE scheme based on blockchain, which 62 

can perform efficient multi-keyword search, ensures the fairness of verification, and supports the 63 

dynamic update of files. To our knowledge, this is the first scheme to verify the search results of 64 

multi-keywords fairly. In general, the contributions of this paper are summarized as follows: 65 

• Our scheme realizes efficient multi-keyword search and verification of search results, at the 66 

same time, our scheme supports dynamic update of files and achieves forward security. 67 

• Our scheme utilizes blockchain to verify the search results, ensuring the reliability and fairness 68 

of the verification results. Combining bitmap index and hash function, we realize lightweight 69 

multi-keyword verification to improve verification efficiency. 70 

• We formally prove that our scheme is adaptively secure against CKA, and we conduct a series 71 

of experiments to evaluate the performance of our scheme.  72 

 73 

Related Works 74 

Searchable Symmetric Encryption 75 

Since SSE was proposed, a number of works have been done to improve search efficiency, rich 76 

expression and advanced security. The first SSE scheme (Song, Wagner & Perrig, 2000) enables 77 

users to search keywords through full-text scanning, search time increases linearly with the size of 78 

files, which is impractical and inefficient. To improve efficient, Curtmola et.al (2006) proposed an 79 



inverted index SSE, which achieves sub-linear search time, and gives a definition of SSE security, 80 

but this scheme does not support dynamic operations. Wang, Cao & Ren (2010) expanded the 81 

scheme of Curtmola et.al (2006) to support dynamic operations, and proved that the scheme was 82 

adaptively secure against chosen-keyword attacks (CKA2-secure). For the schemes that support 83 

dynamic operation, forward security is critically crucial. The research of Cash et.al (2013) and 84 

Zhang, Katz & Papamanthou (2016) indicated that in the SSE scheme without forward security, the 85 

adversary can recover most of the sensitive information in ciphertext at a small cost, their research 86 

shows the importance of forward security. 87 

    Multi-keyword search is a crucial means to improve search efficiency. In single-keyword search 88 

scheme (Song, Wagner & Perrig,2000; Curtmola et.al, 2006; Wang, Cao & Ren, 2010), the server returns 89 

some irrelevant results, while the multi-keyword search (Cash et.al, 2013; Lai et.al, 2018; Xu et.al, 90 

2019;Liang et.al 2020;Liang et.al 2021) gains higher search accuracy and more accurate results. 91 

To further improve search efficiency, Abdelraheem et.al (2016) proposed an SSE scheme on 92 

encrypted bitmap indexes to support multi-keyword search, but requires two rounds of interactions 93 

with the cloud server. Zuo et.al (2019) proposed a secure SSE scheme based on bitmap index 94 

which supports dynamic operations with forward and backward security, but this scheme lacks the 95 

verification of the results. 96 

 97 

Verifiable Searchable Symmetric Encryption 98 

In SSE, it is necessary to verify the results since the server is untrusted. Qi & Gong (2012) proposed 99 

the concept of verifiable searchable symmetric encryption (VSSE) and constructed a VSSE 100 

scheme based on word tree. Along this direction, some other VSSE schemes (Kurosawa & Ohtaki, 101 

2012; Zhu, Liu & Wang ,2016; Liu et.al ,2017,Miao et.al 2021) are proposed. These schemes are 102 

the verification of single keyword search results, Azraoui et.al (2015) combined polynomial-based 103 

accumulators and Merkle trees to achieve conjunctive keyword verification. Wan & Deng (2018) 104 

used homomorphic MAC to verify the results of multi-keyword search. Li et.al (2021) utilized 105 

bitmap index to gain high efficiency of multi-keyword search, and verified the results by RSA 106 

accumulator. Ge et.al (2021) and Liu et.al (2021) proposed their verifiable schemes in the Internet 107 

of things. These schemes verify the results of multi-keyword search by public key cryptography 108 

primitives, which is computationally expensive and inefficient. What is more, these multi-keyword 109 

search verifiable schemes mainly focus on verifying the returned files are valid and whether the 110 

files really contains the query keywords, but they didn’t ensure all files containing the query 111 

keywords are returned. 112 

 113 

Verifiable Searchable Symmetric Encryption Based on Blockchain 114 

In the existing SSE schemes, the verification of search results is performed by users. However, 115 

users may forge verification results for economic benefits, which damages the fairness of 116 

verification. To solve this, a flexible and feasible method is to adopt blockchain to verify search 117 

results, which uses the non-repudiable property of the blockchain to ensure the reliability and 118 

fairness of verification. Hu et.al (2018) built a distributed, verifiable and fair ciphertext retrieval 119 



scheme based on blockchain. Li et.al (2019) proposed a verifiable scheme combined blockchain 120 

and SSE, which can verify the results automatically and reduce the calculation of users. Guo, 121 

Zhang & Jia (2020) used the blockchain to realize the public authentication of search results, and 122 

ensures forward security of dynamic update. Although these schemes realize the fair verification 123 

of search results, but they are mainly for single keyword search, whereas there is little research on 124 

the fair verification of multi-keyword. Comparison results with existing schemes are shown in 125 

Table 1. 126 

 127 

Preliminaries 128 

Bitmap 129 

To improve search efficiency, we use the bitmap (Spiegler & Maayan, 1985) to build inverted index. 130 

Bitmap uses a binary string to store a set of information, which can effectively save storage space, 131 

and it has been widely used in the field of ciphertext retrieval. In our scheme, each keyword iw  132 

corresponds to a bitmap, which contains bits, is the number of files in the system, if the i − th 133 

document contains iw  the value of  in position i  is 1, otherwise 0. For example, there are four 134 

files ( 1f , 2f , 3f , 4f ) and two keywords ( 1w , 2w ), in Fig.1, 1w  is contained in 1f  and 3f , 2w is 135 

contained in 2f  and 3f , the bitmap of 1w  and 2w  are 1010 and 0110. If we want to search files 136 

that contains both 1w  and 2w , we need to do AND operation on the two bitmaps, i.e.137 

1010 0110=0010 ,that indicates that 3f  contains both 1w  and 2w . 138 

 139 

Blockchain 140 

Blockchain is a distributed database, which is widely used in emerging cryptocurrencies to store 141 

transaction information such as bitcoin. The blockchain has the features of decentralization, 142 

transparency and unforgeability. There is no central server in the blockchain, all nodes participate 143 

in the operation and generate the calculation results, the information stored on the blockchain can 144 

be seen by all nodes in the network. All nodes of the blockchain share the same data record, under 145 

the action of the consensus mechanism, a single node cannot modify the data stored on the chain. 146 

The above characteristics of blockchain make it suitable to be a trusted third party for fair 147 

verification. 148 

 149 

Method 150 

System Model 151 

The system model of our scheme is shown in Fig.2, there are four entities in the system: data owner, 152 

cloud server, data user, blockchain. For the files F  in the system, data owner extracts all keywords 153 

and generates a keyword set W . Data owner encrypts files  to a database T , builds an encrypted 154 

index T  and a checklist B , T and T  are sent to cloud server, T and B  are sent to blockchain. 155 

When a data user joins the system, it sends an authentication request to the data owner, obtains 156 



keys and system parameters. During a query, the data user generates search token 
,i QTK  according 157 

to the keywords to be queried with the help of keys and system parameters, and then sends it to 158 

cloud server and blockchain, respectively. Cloud server provides storage services for index T  159 

and T . In addition, the cloud server performs ciphertext retrieval according to the search token 160 

,i QTK , and sends the matched results to blockchain for verification.  161 

To verify the search results of multiple keywords, the blockchain performs two steps:  1) 162 

benchmark. On receiving 
,i QTK , the blockchain performs multi-keyword search on the index T  163 

to get the identifiers ID  of files that meets the query, then gets the corresponding hash values  164 

of files from the checklist B  according ID , and computes the benchmark Acc  using  ; 2) 165 

verification. After receiving the results returned by cloud server, the blockchain computes the hash 166 

values ' of results and computes the verification value 'Acc  ,  then the blockchain compares 167 

Acc  and 'Acc  to generate the proof.  The proof and search results are sent to data user, the 168 

verification is completed. 169 

 170 

Threat Model 171 

Like other verifiable SSE schemes (Soleimanian & Khazaei, 2019), we assume that the cloud server 172 

is malicious, which may return an incorrect or incomplete search result for selfish reasons, such as 173 

saving bandwidth or storage space. In addition, we assume that the data user is also untrusted, 174 

since it may forge the verification results for economic benefits. The data owner and blockchain 175 

are trusted, they execute the protocols in the system honestly. 176 

 177 

Algorithm Definitions 178 

Our scheme includes eight polynomial time algorithms, {Keygen,Setup,ClientAuth=179 

TokenGen,Search,Verify,UpdateToken,Update}, and the details are as follows: 180 

• (1 )K KeyGen , takes system parameter  as input, and outputs system keys K . 181 

• (T,T ,B) ( , )KSetup W,F , takes system keys K , the keyword set W  and the set of files 182 

F  as input, outputs a database of encrypted files T , an encrypted index T  and a checklist B . 183 

• 1( , ) ( )iK  ClientAuth , takes the attribute i  of user as input, outputs secret key 1K and 184 

the keyword status  . 185 

• , 1( ,W)i QTK KTokenGen , takes secret key 1K , a set of keywords to query 1 2W { , ,...,w w=186 

}tw , outputs the search token
,TKi Q

. 187 

• 
,( , ) (T,T ,B, )i QR Acc TKSearch , takes search token

,TKi Q
, the encrypted database T  , 188 

encrypted index T  and the checklist B  as input , and outputs the search results R  and the 189 

benchmark Acc  . 190 



• ( , ) ( , )R proof R AccVerify , takes the search results R , and the benchmark Acc  as input, 191 

outputs the verification proof proof and results R . 192 

• ( , ) ( , ', )s b K  UpdateToken F W , takes the set of files to update F , the set of keywords 'W193 

and system keys 1 2 3{ , , }K K K K=  as input, and outputs the update token ( ,s b  ). 194 

• (T ,T ,B ) (T,T ,B, , )s b Update' ' ' , takes encrypted database T , encrypted index T  and 195 

the update token ( ,s b  ) as input, outputs the updated database T' , updated index T '  and the 196 

updated checklist B' . 197 

 198 

Security Definitions 199 

We prove the security of our scheme with the random oracle model, which can be executed by two 200 

probabilistic games Real ( ) and Ideal ( ), , and we have the following definitions: 201 

Definition 1 ： CKA2-security, for the verifiable multi-keyword search scheme202 

={KeyGen,Setup,ClientAuth,TokenGen,Search,Verify,Update} , let 
setup search update={ , , }  be 203 

the leakage function, is the adversary and is the simulator, there are two probabilistic 204 

experiments: 205 

Real ( ) : The challenger runs KeyGen(1 )  to generate secret key 1 2 3{ , , }K K K K= , the 206 

adversary  outputs F  and W . The challenger triggers this experiment to run Setup( , )K W,F , 207 

outputs the index T , T and B , which are sent to .  generates a series of adaptive queries 208 

1 2{ , ,..., }tQ q q q= , for each iq Q , the challenger generates search or update tokens, receives 209 

those tokens and generates a bitb as the output of this experiment. 210 

Ideal ( ), : The adversary  outputs F  and W , the simulator  generates the index T , T211 

and B  through 
Setup

,  receives them.  generates a series of adaptive queries 212 

1 2{ , ,..., }tQ q q q= , for each iq Q , the simulator generates search or update tokens with Search213 

and 
Update

 , receives those tokens and generates a bitb as the output of this experiment. 214 

If for any probabilistic polynomial time (PPT) adversary , there exist an efficient simulator 215 

,  which satisfies that:  216 

,|Pr[Real ( ) 1] Pr[Ideal ( ) 1] ( )negl  = − =   217 

, we say   is − secure against CKA2, where negl  is an negligible function and   is the 218 

security parameter. 219 

 220 

Construction 221 

In this section, we present the construction of our scheme in detail. We take bitmap as index 222 

structure to achieve efficient search over encrypted data, and use blockchain to verify the search 223 



results. The bitmap is utilized to build the inverted index to achieve the optimal search time 224 

( )| |q ,where q is the keywords in search and | |q is the number of q . 225 

   In our scheme, the blockchain is used to fairly verify the search results. In Setup , the data owner 226 

calculates the hash value of files, generates a checklist B  and saves it on the blockchain. During 227 

the verification, the blockchain smart contract computes the hash values of search results returned 228 

by the server and compares them with the existing results to obtain the verification results.  229 

  Specifically, in the single keyword setting, the blockchain stores the corresponding benchmark 230 

directly since the results corresponding to the keywords are determined. However, it’s impossible 231 

in multi-keyword search because the search results are variable, which can only store the 232 

verification value of each file. To ensure the credibility of the search results, the blockchain also 233 

needs to perform multi-keyword search to obtain the search results. Therefore, we save the index 234 

T  on the blockchain. During a query, the blockchain executes multi-keyword search to get the 235 

search results, and read the verification value ihash  of each file in search results to generate the 236 

benchmark Acc , then the blockchain compares Acc  with search results returned by cloud server 237 

to complete the verification. 238 

 239 

Proposed Construction 240 

Our scheme contains eight algorithms ={KeyGen,Setup,ClientAuth,TokenGen,Search,Verify241 

UpdateToken,Update} , let 
*:{0,1} {0,1}mF → ,

*:{0,1} {0,1}nH → be two Pseudo-Random 242 

Functions (PRFs), the constructions of our scheme are as follows. 243 

(1 )K KeyGen : This algorithm is executed by the data owner, given a security parameter 244 

  , this algorithm generates the secret key 1 2 3{ , , }K K K K= , where 1 2 3, , {0,1}K K K 
$

, 1 2,K K  245 

are used to encrypt the bitmap index for each keyword  wi W , 3K  is used to encrypt files fi F  246 

and store the hash value of files. 247 

(T,T ,B) ( , )KSetup W,F : Given a set of files F , a set of keywords W  and the secret keys 248 

K , this algorithm builds an encrypted index T , a checklist B  and a ciphertext database T , as is 249 

shown in Algorithm 1. For each file fi F , iid  is the identifier of fi , the data owner encrypts fi by 250 

calculating 3c Enc( ,f )i iK , and computes the hash value using (c )i ihash H . Then data owner 251 

stores ci  and ihash in T[ ]il  and B[ ]il , respectively. 252 

For each keyword wi W , data owner generates a bitmap
iw
, if 

jid contains keyword iw , 253 

then [ ] 1
iw m = , where

3( || )jm H id K= , and the other positions of 
iw
are all 0’s. The data owner 254 

encrypts 
iw
through

+1( || )
iw w iv H t st  , and store v  in T [ ]wt . At the end of the Setup, 255 

(T ,B)  and (T,T )  are sent and stored on blockchain and cloud server, respectively. 256 



1( , ) ( )iK  ClientAuth : It needs to register to the data owner when a new data user who 257 

wants to query files on the cloud server joins the system. The data user submits attribute i  to the 258 

data owner through this algorithm to obtain the keyword status   and the key 1K . 259 

   , 1( ,W)i QTK KTokenGen : It takes the key 1K  and the set of keywords to query260 

1 2W { , ,..., }tw w w=  as input, output a search token 
,i QTK , as is shown in Algorithm2. For each 261 

keyword Wiw  , the data user computes the position 
iwl of iw  in index T  as ( || )

i iw w il H u st , 262 

where 
1 1( , ( ))

iw iu F K H w , [ ]i ist w . Data user sends 
,i QTK  to cloud server and blockchain, 263 

respectively. 264 

   
,( , ) (T,T ,B, )i QR Acc TKSearch : This algorithm takes search token 

,i QTK , index T  and 265 

ciphertext database T as input, and outputs search results R . On receiving the search token, the 266 

cloud server and blockchain perform the same operations for multi-keyword search. They all  parse 267 

out the position 
iwl of the keyword in the token 

,i QTK , and get the bitmap 
iw

through 268 

( || )
i iw w iv H K l  , T [ ]

iwv l . To achieve multi-keyword search, they compute269 

1 2 ... t=    , the cloud server gets files in T  according to  with regard to [ ]=1i , and 270 

sends them to the blockchain to verify. Similarly, the blockchain gets hash values 271 

1 2{ , ,..., }shash hash hash  of files in B  according to , computes 1 2 ...Acc hash hash=   shash  272 

as the benchmark for verification, and the details are shown in Algorithm 2. 273 

( , ) ( , )R proof R AccVerify : This algorithm takes search results R  and benchmark Acc  as 274 

input,  outputs search results R and proof , and the verify process is shown in Algorithm 3. To 275 

verify the integrity of files, the data owner calculates the hash value of each file through 276 

(c )i ihash H  in the Setup, and adds ihash to the checklist B , then B is sent to the blockchain. 277 

Through algorithm Search , the blockchain gets the search result of multiple keywords, obtains the 278 

hash value of each file in the result from B , and computes the benchmark Acc .To verify the search 279 

results, the blockchain calculates 
W

H of R  and compares it with Acc . 280 

In Algorithm 3, for all ciphertexts ic R , blockchain computes ( )iW W
H H H c  , where 281 

( )iH c  denotes the hash value of ic . Blockchain compares 
W

H  and Acc , if they are equal, the 282 

proof is true, otherwise false. At last, the search results R  and proof are sent to data user. During 283 

the verification, Acc  is calculated through the hash value stored on the blockchain, due to the 284 

unforgeability of  blockchain, thus Acc  is unforgeable. In addition, the verification is completed 285 

by the blockchain, so the proof is also unforgeable, which ensures the fairness of verification. 286 

 287 

( , ) (F, W', )s b K  UpdateToken : The data owner generates an update token through this 288 

algorithm, which takes files F , a keyword set W'  and secret key K as input, and outputs update 289 



token( ,s b  ).For files f Fk  , the data owner encrypts and calculates the hash value of fk  by 290 

3c Enc( ,f )k kK  and (c )k khash H ,respectively. For keywords 1 2W'={ , ,..., }sw w w that 291 

contained in fk , the data owner generates a bitmap 
jw for each W'jw  , and encrypts 

jw with 292 

( || )
j jw wv H l st  , where ( || )

j jw wl H u st , 1 j( , (w ))
jwu F K H , 2 0( , )st F K st .  293 

s(T ,T ,B) (T,T ,B, , )b Update' ' ' : This algorithm takes encrypted database T , index T , 294 

checklist B , update token ( ,s b  ) as input, and outputs updated database T' , updated index 'T  295 

and updated checklist B' .The details are shown in Algorithm 4. 296 

 297 

Forward security 298 

As described above, dynamic update is the foundation function of  an SSE scheme,  and forward 299 

security is an indispensable component of  dynamic update. In Algorithm 4, when updating a file 300 

fi  that contains keyword 
jw , the data owner retrieves the previous state 0st from the local state 301 

store  , and generates a new state st  through 2 0( , )st F K st , where F is a pseudo random 302 

function and 2K is kept in local. To search a keyword 
jw , the data user retrieves the current state 303 

0st  from   ,with 0st  data user generates a token to be sent to the cloud server and blockchain. 304 

Without the key 2K , the server cannot compute the current state st  from a previous state 0st , 305 

therefore it cannot get the current token from a previous, considering that the newly added file fi306 

corresponds to the current token, that means the previous tokens cannot match fi , then forward 307 

security is achieved. 308 

 309 

Security Analysis 310 

In this section, we analysis the security of our scheme. For the scheme {KeyGen,Setup,=311 

ClientAuth,TokenGen,Search,Verify,UpdateToken,Update} with the leakage function 312 

setup search update={ , , } , we prove that our scheme is - secure against CKA2 by proving that  313 

Real ( ) and Ideal ( ),  are computationally indistinguishable. 314 

Theorem 1. Our scheme   is - secure against CKA2, if the encryption algorithm is secure 315 

against chosen-plaintext attacks and the pseudo-random function F and H are secure pseudo-316 

random. 317 

Proof: We use a probabilistic polynomial time simulator  to simulate indexes and a series of 318 

tokens. For a PPT adversary , we prove theorem 1 by the computational indistinguishability 319 

between Real ( )  and Ideal ( ), . In Real ( ) ,  gets indexes ( T , T and B ), searches token 320 

,i QTK  and updates token ( s , b ) by running Setup , TokenGen  and UpdateToken ; in 321 

Ideal ( ), ,  gets indexes ( T ' , T' and B ' ), searches token , 'i QTK and updates token ( 's , 'b ) 322 



by running 
Setup

, Search ,
Update

. We prove that  Real ( )  and Ideal ( ),  are computational 323 

indistinguishable by proving that  ( T , T , B ,
,i QTK , s , b  ) and ( T ' , T' , B ' , , 'i QTK , 's , 'b ) are 324 

indistinguishable. 325 

  Simulating index.  initializes three empty tables: T' , B ' , T ' , which are used to store file 326 

ciphertexts, verification values and bitmaps, respectively.  randomly selects a string f 'i of 327 

length | f |i , and encrypts it through 3c ' Enc( ,f ')i iK , where 3K  is randomly sampled from 328 

{0,1} .  maintains three mappings: H , U and L , H stores ( 3||iid K , 'i ), U stores ( ( ), '
ii wH w u ), 329 

and the mapping L  stores ( '|| , '
i iw i wu st t ) . H , U and L  are used and updated by the generation of 330 

search and update token. computes the hash value ' (c ')i ihash H , c 'i  is stored in T '[ ']il and 331 

'ihash is stored in B'[ ']il .  selects a string 'v of length | |v , and stores it in T '[ ]
iwt v .  332 

    T' , B '  and T '  are simulated by  through the leakage 
Setup

, the difference between ( T ' ,333 

T' , B ' ) and ( T , T , B )  is the generation of ( f 'i , c 'i , 'v ). In ideal environment, ( f 'i , c 'i , 'v ) are 334 

randomly selected, since our encryption algorithm is secure against CKA2 , F  and H are secure 335 

pseudo-random functions, therefore , the probability that the adversary  can distinguish between 336 

the real environment and the ideal environment is negligible. 337 

Simulating search token. For the keyword iw  to query,  gets '
iwu  from the mapping U338 

through calculating ( )iH w , checks whether '
iwu is contained in U , if so returns the 339 

corresponding entity, otherwise randomly picks a '
iwu in {0,1}  and stores ( ( ), '

ii wH w u ) in U . 340 

Similarly, the experiment gets '
iwl  from L  by L[ '|| ]

iw iu st , the search token , 'i QTK ={ '
iwl }. Under 341 

the assumption that F and H are secure pseudo-random functions, the adversary  cannot 342 

distinguish 
,i QTK  and , 'i QTK . 343 

Simulating update token. For file fk to be added, first randomly selects a bit string 'kc  of 344 

length | f |k , and encrypts it through 3c ' Enc( ,f ')k kK . computes the hash value 345 

' (c ')k khash H , c 'k  is stored in T'[ ']kl and 'khash is stored in B'[ ']kl , where 'kl  is obtained 346 

from the mapping H .  maintains a mapping E , which stores ( 0,st st ), if there is no 347 

corresponding entity for st , it randomly picks a st in {0,1}l
, otherwise it returns the corresponding 348 

entity. gets '
iwu and '

iwl  as in search token, selects a string '
j

v of length | |
j

v , and stores it in 349 

T '[ '] '
j jwl v . The update token ( ' {( ',c '), ( ', ')}

j js k k wl l v = ， ' {( ', '), ( ', ')}
j jb k k wl hash l v = ) 350 

and  ( {( ,c ), ( , )}
j js k k wl l v = ， {( , ), ( , )}

j jb k k wl hash l v = ) are indistinguishable for the adversary351 

. 352 



In such a way, ( T , T , B ,
,i QTK , s , b  ) and ( T ' , T' , B ' , , 'i QTK , 's , 'b ) are indistinguishable 353 

for , and it means for a PPT adversary , the probability of distinguishing between Real ( )  354 

and Ideal ( ),  is negligible, so we have: 355 

,|Pr[Real ( ) 1] Pr[Ideal ( ) 1] ( )negl  = − =  . Therefore, our scheme satisfies CKA2-security. 356 

 357 

Performance Evaluation 358 

In this section, we evaluate the performance of our scheme by constructing a series of experiments, 359 

and compare the experimental results with Li et.al (2021) and Guo, Zhang & Jia (2020). Since 360 

Guo, Zhang & Jia (2020) does not support multi-keyword search over encrypted data, we compare 361 

our scheme with Li et.al (2021) which supports multi-keyword search. Besides, we compare our 362 

scheme with Guo, Zhang & Jia (2020) in terms of dynamic operations. 363 

We deploy our experiments on a local machine with an Intel Core i7-8550U CPU of 1.80GHz、364 

8GB RAM. We use HMAC-SHA-256 for the pseudo-random functions F , SHA-256 for the hash 365 

function H . We use AES as the encryption algorithm to encrypt files. We implement the 366 

algorithms in data owner, data user and server using Python and construct the smart contract using 367 

Solidity, and the smart contract is tested in with the Ethereum blockchain using a local simulated 368 

network TestRPC. 369 

  For the dataset, we adopt a real-world dataset, Enron email dataset (William, 2015), which 370 

contains more than 517 thousand documents.  We utilize the Porter Stemmer to extract more than 371 

1.67 million keywords and filter that meaningless keywords, such as “of”, “the”. At last, we build 372 

an inverted index with those keywords to improve the search efficiency of the experiment. 373 

 374 

Evaluation of Setup 375 

In setup phase, data owner encrypts the files, calculates the initial verification values of ciphertexts, 376 

generates the bitmap indexes of keywords, stores them in T , B and T , respectively. 377 

First, we compare the setup time of our scheme with Li et.al (2021) and Guo, Zhang & Jia 378 

(2020), the setup time is related to the number of files in the index and the number of keywords 379 

included in each file. Figure 3 shows the setup time with different number of keywords in each file 380 

while the number of files is fixed at 3137, Fig.4 shows the setup time with different number of 381 

files when the number of keywords in each file is fixed at 20. Both figures show that the setup 382 

time is affected by the number of keywords in each file and the number of files, and the setup time 383 

increases linearly concerning the number of keywords and files. 384 

Furthermore, Fig.3 and Fig.4 illustrate that our scheme is more efficient than Li et.al (2021) and 385 

Guo, Zhang & Jia (2020) under the same condition in setup time. Since Guo, Zhang & Jia (2020) 386 

utilizes the linked list instead of bitmap to build the index, it requires more time than the other 387 

schemes. Our scheme takes less time than Li et.al (2021), the reason is that Li et.al (2021) adopts 388 

RSA accumulator based on public key encryption to verify multi-keyword search results, 389 



in contrast, our scheme utilizes hash functions to verify search results, which reduces the 390 

computational overhead greatly. 391 

 392 

Evaluation of Search 393 

For the performance of our scheme, we compare the search time of our scheme with Li et.al (2021). 394 

Moreover, to better evaluate the performance of the scheme in multi-keyword search, we perform 395 

two settings in a query: 5 keywords and 10 keywords, respectively. In figures, the suffix of the 396 

icon indicates the number of keywords in a query, i.e., Our scheme_5 indicates the search time 397 

spent in our scheme during a query which contains 5 keywords, Our scheme_10 indicates the 398 

search time spent in our scheme during a query which contains 10 keywords, similarly, Li et.al 399 

(2021)_5 and Li et.al (2021)_10 indicates the search time spent in Li et.al (2021) during a query 400 

which contains 5 keywords and 10 keywords, respectively.  401 

Figure 5 shows the search time with different number of keywords in each file when the number 402 

of files is fixed at 3137, and Fig.6 shows the search time with different number of files when the 403 

number of keywords in each file is fixed at 20. Both figures show that the search time is affected 404 

by the number of keywords in each file and the number of files, and the search time increases sub-405 

linearly with the number of keywords and files. 406 

  From Fig. 5 and Fig. 6, we can see that the more keywords included in a query, the more time 407 

it takes, this is because the more keywords, the search algorithm spends more time to calculate 408 

matched files. Another conclusion can be drawn that our scheme is more efficient than Li et.al 409 

(2021) in search, the reason is that the same as the setup algorithm, Li et.al (2021) takes more time 410 

to calculate the verification values. 411 

 412 

Evaluation of Verify 413 

Here, we evaluate the performance of our scheme in verification, we verify the results of searching 414 

for 5 keywords and 10 keywords respectively, and compares the verification time with Li et.al 415 

(2021),the comparison results are shown in Fig.7 and Fig.8. Figure 7 shows the verification time 416 

with different number of keywords in each file when the number of files is fixed at 3137, and Fig.8 417 

shows the verification time with different number of files when the number of keywords in each 418 

file is fixed at 20. From those two figures, we can see that the verification time is affected by the 419 

number of keywords in each file and the number of files, the verification time increases with the 420 

number of keyword and files. 421 

  Both figures shows that our scheme gains a higher verification efficiency than Li et.al (2021), 422 

the reason is that Li et.al (2021) takes additional time to compute 
fi i iy u=  ,where 423 

f( || )
ii iu F K r= ,

f 3( ,f )
i iK G K= . In addition, the initial verification values in Li et.al (2021) are 424 

stored in untrusted server and the verification is performed by the data user, both the server and 425 

the user may forge the verification results, while in our scheme, the values are stored in blockchain 426 

and the verification is performed by blockchain, cannot be tampered with, hence, our scheme is 427 

more fair and secure in verification. 428 

 429 



Evaluation of Update 430 

Dynamic update is the important function in SSE, so we evaluate the performance of our scheme 431 

in dynamic update by adding a file containing multiple keywords. Figure 9 and Fig.10 show the 432 

performance of our scheme, Li et.al (2021) and Guo, Zhang & Jia (2020) in update time, _5 and 433 

_10 indicate that the update document contains 5 keywords and 10 keywords, respectively. We 434 

observe that the update time increases with the number of files, since the more files, the longer of 435 

the bitmap corresponding to a keyword, then the update algorithm performs more operations when 436 

calculating ( || )
j jw wv H u st  . Moreover, the update time is related to the number of 437 

keywords contained in the update file, since the more keywords the file contains, the more indexes 438 

to update. 439 

 440 

Conclusions 441 

In this paper, we present an efficient verifiable multi-keyword search SSE scheme based on 442 

blockchain, which accomplishes efficient multi-keyword search and verification. In our scheme, 443 

the yardstick of the file is stored on the blockchain, and the verification of the search results is also 444 

completed by the blockchain, thus the fairness and reliability of the verification can be ensured. In 445 

addition, our solution supports the dynamic update of files and guarantees forward security during 446 

the update. Formal security analysis and experimental results show that our scheme is CKA2-447 

security and efficient. Our scheme can be widely used in cloud storage systems such as data 448 

outsourcing, cloud-based IoT (Ge et.al, 2021), medical cloud data (Li et.al, 2020),etc., helping to 449 

achieve efficient multi-keyword searches, and ensuring the integrity and credibility of search 450 

results. 451 

 452 

 453 
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