
 1

Towards Efficient Verifiable Multi-Keyword Search 2

over Encrypted Data based on Blockchain 3

 4

Wan Shan Xu1,2, Jian Biao Zhang1,2, Yi Lin Yuan1,2, Xiao Wang3, Yan Hui Liu1,2, Muhammad 5

Irfan Khalid1,2 6
 7
1 Faculty of Information Technology, Beijing University of Technology, Beijing, China 8
2 Beijing Key Laboratory of Trusted Computing, Beijing, China 9
3 Department of Information Science and Technology, Tianjin University of Finance and 10

Economics, Tianjin, China 11

 12

Corresponding Author: 13

Jian Biao Zhang1,2 14

100 Pingyuan Park, Beijing, 100124, China 15

Email address: zjb@bjut.edu.cn 16

 17

Abstract 18

Searchable symmetric encryption (SSE) provides an effective way to search encrypted data stored 19

on untrusted servers. As we all known, the server is not trusted, so it is indispensable to verify the 20

results returned by it. However, the existing SSE schemes either lack fairness in the verification 21

of search results, or do not support the verification of multiple keywords. To address this, we 22

design a multi-keyword verifiable searchable symmetric encryption scheme based on blockchain, 23

which provides an efficient multi-keyword search and fair verification of search results. We utilize 24

bitmap to build search index in order to improve search efficiency, and use blockchain to ensure 25

fair verification of search results. The bitmap and hash function are combined to realize lightweight 26

multi-keyword search result verification, compared with the existing verification schemes using 27

public key cryptography primitives, our scheme reduces the verification time and improves the 28

verification efficiency. In addition, our scheme supports the dynamic update of files and realizes 29

the forward security in update. Finally, formal security analysis proves that our scheme is secure 30

against Chosen-Keyword Attacks (CKA), experimental analysis demonstrations that our scheme 31

is efficient and viable in practice. 32

 33

Introduction 34

With the development of artificial intelligence, Internet of things, Internet of vehicles and other 35

emerging technologies, more and more enterprises and individuals outsource local data to the 36

cloud, thereby reducing storage and management overhead. However, security and privacy 37

concerns still hinder the deployment of cloud storage system. Although data encryption can 38

eradicate such concerns to some extent, it becomes difficultfor users to search over the data. 39

Searchable symmetric encryption (SSE) provides an efficient mechanism to solve this, which 40

enables users to search encrypted data efficiently without decryption. Since SSE was first proposed 41

by Song (Song, Wagner & Perrig, 2000), how to perform efficient and versatile search on 42

encrypted data has always been an important research direction. The existing SSE schemes mainly 43

use linked lists and vectors to build indexes, the cloud server needs to traverse the whole list or 44

vector to search for matching results during a query, which incurs high search overhead. In addition 45

to efficient search, dynamic updates are also very important in SSE. (Zhang, Katz & Papamanthou, 2016) 46

has shown that adversaries can infer the critical information through the file injection attacks 47

during the dynamic update of the SSE, while the forward-secure SSE can avoid this. Therefore, 48

the forward security of the scheme must be fully considered when designing the SSE scheme. 49

 Verifiability of the search results is another important research issue for SSE. Since The cloud 50

server is untrusted, which may returns incorrect or incomplete results due to system failures or 51

cost savings, so, it is necessary to verify the search results. In 2012, (Qi & Gong, 2012) proposed 52

the concept of verifiable SSE (VSSE) and constructed a verifiable SSE scheme based on word tree. 53

Following this work, a great many VSSE schemes are proposed (Kurosawa & Ohtaki, 2012; Zhu, Liu 54

& Wang, 2016; Liu et.al 2017; Zhang et.al 2019;Chen et.al 2021). In these schemes, the verification is 55

mainly performed by users, but the user may forge verification results to save costs, so the 56

reliability of the verification cannot be guaranteed. To address this, some researchers(Hu et.al 2018; 57

Li et.al 2019; Guo, Zhang & Jia , 2020) introduce blockchain into SSE to verify search results, 58

which guarantees the fairness and reliability of the verification. Although blockchain achieves fair 59

verification of search results, but the existing schemes are only for a single keyword, and there is 60

little research on fair verification for multi-keywords. 61

In this paper, we introduce a verifiable multi-keyword SSE scheme based on blockchain, which 62

can perform efficient multi-keyword search, ensures the fairness of verification, and supports the 63

dynamic update of files. To our knowledge, this is the first scheme to verify the search results of 64

multi-keywords fairly. In general, the contributions of this paper are summarized as follows: 65

• Our scheme realizes efficient multi-keyword search and verification of search results, at the 66

same time, our scheme supports dynamic update of files and achieves forward security. 67

• Our scheme utilizes blockchain to verify the search results, ensuring the reliability and fairness 68

of the verification results. Combining bitmap index and hash function, we realize lightweight 69

multi-keyword verification to improve verification efficiency. 70

• We formally prove that our scheme is adaptively secure against CKA, and we conduct a series 71

of experiments to evaluate the performance of our scheme. 72

 73

Related Works 74

Searchable Symmetric Encryption 75

Since SSE was proposed, a number of works have been done to improve search efficiency, rich 76

expression and advanced security. The first SSE scheme (Song, Wagner & Perrig, 2000) enables 77

users to search keywords through full-text scanning, search time increases linearly with the size of 78

files, which is impractical and inefficient. To improve efficient, Curtmola et.al (2006) proposed an 79

inverted index SSE, which achieves sub-linear search time, and gives a definition of SSE security, 80

but this scheme does not support dynamic operations. Wang, Cao & Ren (2010) expanded the 81

scheme of Curtmola et.al (2006) to support dynamic operations, and proved that the scheme was 82

adaptively secure against chosen-keyword attacks (CKA2-secure). For the schemes that support 83

dynamic operation, forward security is critically crucial. The research of Cash et.al (2013) and 84

Zhang, Katz & Papamanthou (2016) indicated that in the SSE scheme without forward security, the 85

adversary can recover most of the sensitive information in ciphertext at a small cost, their research 86

shows the importance of forward security. 87

 Multi-keyword search is a crucial means to improve search efficiency. In single-keyword search 88

scheme (Song, Wagner & Perrig,2000; Curtmola et.al, 2006; Wang, Cao & Ren, 2010), the server returns 89

some irrelevant results, while the multi-keyword search (Cash et.al, 2013; Lai et.al, 2018; Xu et.al, 90

2019;Liang et.al 2020;Liang et.al 2021) gains higher search accuracy and more accurate results. 91

To further improve search efficiency, Abdelraheem et.al (2016) proposed an SSE scheme on 92

encrypted bitmap indexes to support multi-keyword search, but requires two rounds of interactions 93

with the cloud server. Zuo et.al (2019) proposed a secure SSE scheme based on bitmap index 94

which supports dynamic operations with forward and backward security, but this scheme lacks the 95

verification of the results. 96

 97

Verifiable Searchable Symmetric Encryption 98

In SSE, it is necessary to verify the results since the server is untrusted. Qi & Gong (2012) proposed 99

the concept of verifiable searchable symmetric encryption (VSSE) and constructed a VSSE 100

scheme based on word tree. Along this direction, some other VSSE schemes (Kurosawa & Ohtaki, 101

2012; Zhu, Liu & Wang ,2016; Liu et.al ,2017,Miao et.al 2021) are proposed. These schemes are 102

the verification of single keyword search results, Azraoui et.al (2015) combined polynomial-based 103

accumulators and Merkle trees to achieve conjunctive keyword verification. Wan & Deng (2018) 104

used homomorphic MAC to verify the results of multi-keyword search. Li et.al (2021) utilized 105

bitmap index to gain high efficiency of multi-keyword search, and verified the results by RSA 106

accumulator. Ge et.al (2021) and Liu et.al (2021) proposed their verifiable schemes in the Internet 107

of things. These schemes verify the results of multi-keyword search by public key cryptography 108

primitives, which is computationally expensive and inefficient. What is more, these multi-keyword 109

search verifiable schemes mainly focus on verifying the returned files are valid and whether the 110

files really contains the query keywords, but they didn’t ensure all files containing the query 111

keywords are returned. 112

 113

Verifiable Searchable Symmetric Encryption Based on Blockchain 114

In the existing SSE schemes, the verification of search results is performed by users. However, 115

users may forge verification results for economic benefits, which damages the fairness of 116

verification. To solve this, a flexible and feasible method is to adopt blockchain to verify search 117

results, which uses the non-repudiable property of the blockchain to ensure the reliability and 118

fairness of verification. Hu et.al (2018) built a distributed, verifiable and fair ciphertext retrieval 119

scheme based on blockchain. Li et.al (2019) proposed a verifiable scheme combined blockchain 120

and SSE, which can verify the results automatically and reduce the calculation of users. Guo, 121

Zhang & Jia (2020) used the blockchain to realize the public authentication of search results, and 122

ensures forward security of dynamic update. Although these schemes realize the fair verification 123

of search results, but they are mainly for single keyword search, whereas there is little research on 124

the fair verification of multi-keyword. Comparison results with existing schemes are shown in 125

Table 1. 126

 127

Preliminaries 128

Bitmap 129

To improve search efficiency, we use the bitmap (Spiegler & Maayan, 1985) to build inverted index. 130

Bitmap uses a binary string to store a set of information, which can effectively save storage space, 131

and it has been widely used in the field of ciphertext retrieval. In our scheme, each keyword iw 132

corresponds to a bitmap, which contains bits, is the number of files in the system, if the i − th 133

document contains iw the value of in position i is 1, otherwise 0. For example, there are four 134

files (1f , 2f , 3f , 4f) and two keywords (1w , 2w), in Fig.1, 1w is contained in 1f and 3f , 2w is 135

contained in 2f and 3f , the bitmap of 1w and 2w are 1010 and 0110. If we want to search files 136

that contains both 1w and 2w , we need to do AND operation on the two bitmaps, i.e.137

1010 0110=0010 ,that indicates that 3f contains both 1w and 2w . 138

 139

Blockchain 140

Blockchain is a distributed database, which is widely used in emerging cryptocurrencies to store 141

transaction information such as bitcoin. The blockchain has the features of decentralization, 142

transparency and unforgeability. There is no central server in the blockchain, all nodes participate 143

in the operation and generate the calculation results, the information stored on the blockchain can 144

be seen by all nodes in the network. All nodes of the blockchain share the same data record, under 145

the action of the consensus mechanism, a single node cannot modify the data stored on the chain. 146

The above characteristics of blockchain make it suitable to be a trusted third party for fair 147

verification. 148

 149

Method 150

System Model 151

The system model of our scheme is shown in Fig.2, there are four entities in the system: data owner, 152

cloud server, data user, blockchain. For the files F in the system, data owner extracts all keywords 153

and generates a keyword set W . Data owner encrypts files to a database T , builds an encrypted 154

index T and a checklist B , T and T are sent to cloud server, T and B are sent to blockchain. 155

When a data user joins the system, it sends an authentication request to the data owner, obtains 156

keys and system parameters. During a query, the data user generates search token
,i QTK according 157

to the keywords to be queried with the help of keys and system parameters, and then sends it to 158

cloud server and blockchain, respectively. Cloud server provides storage services for index T 159

and T . In addition, the cloud server performs ciphertext retrieval according to the search token 160

,i QTK , and sends the matched results to blockchain for verification. 161

To verify the search results of multiple keywords, the blockchain performs two steps: 1) 162

benchmark. On receiving
,i QTK , the blockchain performs multi-keyword search on the index T 163

to get the identifiers ID of files that meets the query, then gets the corresponding hash values 164

of files from the checklist B according ID , and computes the benchmark Acc using ; 2) 165

verification. After receiving the results returned by cloud server, the blockchain computes the hash 166

values ' of results and computes the verification value 'Acc , then the blockchain compares 167

Acc and 'Acc to generate the proof. The proof and search results are sent to data user, the 168

verification is completed. 169

 170

Threat Model 171

Like other verifiable SSE schemes (Soleimanian & Khazaei, 2019), we assume that the cloud server 172

is malicious, which may return an incorrect or incomplete search result for selfish reasons, such as 173

saving bandwidth or storage space. In addition, we assume that the data user is also untrusted, 174

since it may forge the verification results for economic benefits. The data owner and blockchain 175

are trusted, they execute the protocols in the system honestly. 176

 177

Algorithm Definitions 178

Our scheme includes eight polynomial time algorithms, {Keygen,Setup,ClientAuth=179

TokenGen,Search,Verify,UpdateToken,Update}, and the details are as follows: 180

• (1)K KeyGen , takes system parameter  as input, and outputs system keys K . 181

• (T,T ,B) (,)KSetup W,F , takes system keys K , the keyword set W and the set of files 182

F as input, outputs a database of encrypted files T , an encrypted index T and a checklist B . 183

• 1(,) ()iK  ClientAuth , takes the attribute i of user as input, outputs secret key 1K and 184

the keyword status  . 185

• , 1(,W)i QTK KTokenGen , takes secret key 1K , a set of keywords to query 1 2W { , ,...,w w=186

}tw , outputs the search token
,TKi Q

. 187

•
,(,) (T,T ,B,)i QR Acc TKSearch , takes search token

,TKi Q
, the encrypted database T , 188

encrypted index T and the checklist B as input , and outputs the search results R and the 189

benchmark Acc . 190

• (,) (,)R proof R AccVerify , takes the search results R , and the benchmark Acc as input, 191

outputs the verification proof proof and results R . 192

• (,) (, ',)s b K  UpdateToken F W , takes the set of files to update F , the set of keywords 'W193

and system keys 1 2 3{ , , }K K K K= as input, and outputs the update token (,s b ). 194

• (T ,T ,B) (T,T ,B, ,)s b Update' ' ' , takes encrypted database T , encrypted index T and 195

the update token (,s b ) as input, outputs the updated database T' , updated index T ' and the 196

updated checklist B' . 197

 198

Security Definitions 199

We prove the security of our scheme with the random oracle model, which can be executed by two 200

probabilistic games Real () and Ideal (), , and we have the following definitions: 201

Definition 1 ： CKA2-security, for the verifiable multi-keyword search scheme202

={KeyGen,Setup,ClientAuth,TokenGen,Search,Verify,Update} , let
setup search update={ , , } be 203

the leakage function, is the adversary and is the simulator, there are two probabilistic 204

experiments: 205

Real () : The challenger runs KeyGen(1) to generate secret key 1 2 3{ , , }K K K K= , the 206

adversary outputs F and W . The challenger triggers this experiment to run Setup(,)K W,F , 207

outputs the index T , T and B , which are sent to . generates a series of adaptive queries 208

1 2{ , ,..., }tQ q q q= , for each iq Q , the challenger generates search or update tokens, receives 209

those tokens and generates a bitb as the output of this experiment. 210

Ideal (), : The adversary outputs F and W , the simulator generates the index T , T211

and B through
Setup

, receives them. generates a series of adaptive queries 212

1 2{ , ,..., }tQ q q q= , for each iq Q , the simulator generates search or update tokens with Search213

and
Update

 , receives those tokens and generates a bitb as the output of this experiment. 214

If for any probabilistic polynomial time (PPT) adversary , there exist an efficient simulator 215

, which satisfies that: 216

,|Pr[Real () 1] Pr[Ideal () 1] ()negl  = − =  217

, we say  is − secure against CKA2, where negl is an negligible function and  is the 218

security parameter. 219

 220

Construction 221

In this section, we present the construction of our scheme in detail. We take bitmap as index 222

structure to achieve efficient search over encrypted data, and use blockchain to verify the search 223

results. The bitmap is utilized to build the inverted index to achieve the optimal search time 224

()| |q ,where q is the keywords in search and | |q is the number of q . 225

 In our scheme, the blockchain is used to fairly verify the search results. In Setup , the data owner 226

calculates the hash value of files, generates a checklist B and saves it on the blockchain. During 227

the verification, the blockchain smart contract computes the hash values of search results returned 228

by the server and compares them with the existing results to obtain the verification results. 229

 Specifically, in the single keyword setting, the blockchain stores the corresponding benchmark 230

directly since the results corresponding to the keywords are determined. However, it’s impossible 231

in multi-keyword search because the search results are variable, which can only store the 232

verification value of each file. To ensure the credibility of the search results, the blockchain also 233

needs to perform multi-keyword search to obtain the search results. Therefore, we save the index 234

T on the blockchain. During a query, the blockchain executes multi-keyword search to get the 235

search results, and read the verification value ihash of each file in search results to generate the 236

benchmark Acc , then the blockchain compares Acc with search results returned by cloud server 237

to complete the verification. 238

 239

Proposed Construction 240

Our scheme contains eight algorithms ={KeyGen,Setup,ClientAuth,TokenGen,Search,Verify241

UpdateToken,Update} , let
*:{0,1} {0,1}mF → ,

*:{0,1} {0,1}nH → be two Pseudo-Random 242

Functions (PRFs), the constructions of our scheme are as follows. 243

(1)K KeyGen : This algorithm is executed by the data owner, given a security parameter 244

  , this algorithm generates the secret key 1 2 3{ , , }K K K K= , where 1 2 3, , {0,1}K K K 
$

, 1 2,K K 245

are used to encrypt the bitmap index for each keyword wi W , 3K is used to encrypt files fi F 246

and store the hash value of files. 247

(T,T ,B) (,)KSetup W,F : Given a set of files F , a set of keywords W and the secret keys 248

K , this algorithm builds an encrypted index T , a checklist B and a ciphertext database T , as is 249

shown in Algorithm 1. For each file fi F , iid is the identifier of fi , the data owner encrypts fi by 250

calculating 3c Enc(,f)i iK , and computes the hash value using (c)i ihash H . Then data owner 251

stores ci and ihash in T[]il and B[]il , respectively. 252

For each keyword wi W , data owner generates a bitmap
iw
, if

jid contains keyword iw , 253

then [] 1
iw m = , where

3(||)jm H id K= , and the other positions of
iw
are all 0’s. The data owner 254

encrypts
iw
through

+1(||)
iw w iv H t st  , and store v in T []wt . At the end of the Setup, 255

(T ,B) and (T,T) are sent and stored on blockchain and cloud server, respectively. 256

1(,) ()iK  ClientAuth : It needs to register to the data owner when a new data user who 257

wants to query files on the cloud server joins the system. The data user submits attribute i to the 258

data owner through this algorithm to obtain the keyword status  and the key 1K . 259

 , 1(,W)i QTK KTokenGen : It takes the key 1K and the set of keywords to query260

1 2W { , ,..., }tw w w= as input, output a search token
,i QTK , as is shown in Algorithm2. For each 261

keyword Wiw  , the data user computes the position
iwl of iw in index T as (||)

i iw w il H u st , 262

where
1 1(, ())

iw iu F K H w , []i ist w . Data user sends
,i QTK to cloud server and blockchain, 263

respectively. 264

,(,) (T,T ,B,)i QR Acc TKSearch : This algorithm takes search token

,i QTK , index T and 265

ciphertext database T as input, and outputs search results R . On receiving the search token, the 266

cloud server and blockchain perform the same operations for multi-keyword search. They all parse 267

out the position
iwl of the keyword in the token

,i QTK , and get the bitmap
iw

through 268

(||)
i iw w iv H K l  , T []

iwv l . To achieve multi-keyword search, they compute269

1 2 ... t=    , the cloud server gets files in T according to with regard to []=1i , and 270

sends them to the blockchain to verify. Similarly, the blockchain gets hash values 271

1 2{ , ,..., }shash hash hash of files in B according to , computes 1 2 ...Acc hash hash=   shash 272

as the benchmark for verification, and the details are shown in Algorithm 2. 273

(,) (,)R proof R AccVerify : This algorithm takes search results R and benchmark Acc as 274

input, outputs search results R and proof , and the verify process is shown in Algorithm 3. To 275

verify the integrity of files, the data owner calculates the hash value of each file through 276

(c)i ihash H in the Setup, and adds ihash to the checklist B , then B is sent to the blockchain. 277

Through algorithm Search , the blockchain gets the search result of multiple keywords, obtains the 278

hash value of each file in the result from B , and computes the benchmark Acc .To verify the search 279

results, the blockchain calculates
W

H of R and compares it with Acc . 280

In Algorithm 3, for all ciphertexts ic R , blockchain computes ()iW W
H H H c  , where 281

()iH c denotes the hash value of ic . Blockchain compares
W

H and Acc , if they are equal, the 282

proof is true, otherwise false. At last, the search results R and proof are sent to data user. During 283

the verification, Acc is calculated through the hash value stored on the blockchain, due to the 284

unforgeability of blockchain, thus Acc is unforgeable. In addition, the verification is completed 285

by the blockchain, so the proof is also unforgeable, which ensures the fairness of verification. 286

 287

(,) (F, W',)s b K  UpdateToken : The data owner generates an update token through this 288

algorithm, which takes files F , a keyword set W' and secret key K as input, and outputs update 289

token(,s b ).For files f Fk  , the data owner encrypts and calculates the hash value of fk by 290

3c Enc(,f)k kK and (c)k khash H ,respectively. For keywords 1 2W'={ , ,..., }sw w w that 291

contained in fk , the data owner generates a bitmap
jw for each W'jw  , and encrypts

jw with 292

(||)
j jw wv H l st  , where (||)

j jw wl H u st , 1 j(, (w))
jwu F K H , 2 0(,)st F K st . 293

s(T ,T ,B) (T,T ,B, ,)b Update' ' ' : This algorithm takes encrypted database T , index T , 294

checklist B , update token (,s b ) as input, and outputs updated database T' , updated index 'T 295

and updated checklist B' .The details are shown in Algorithm 4. 296

 297

Forward security 298

As described above, dynamic update is the foundation function of an SSE scheme, and forward 299

security is an indispensable component of dynamic update. In Algorithm 4, when updating a file 300

fi that contains keyword
jw , the data owner retrieves the previous state 0st from the local state 301

store  , and generates a new state st through 2 0(,)st F K st , where F is a pseudo random 302

function and 2K is kept in local. To search a keyword
jw , the data user retrieves the current state 303

0st from  ,with 0st data user generates a token to be sent to the cloud server and blockchain. 304

Without the key 2K , the server cannot compute the current state st from a previous state 0st , 305

therefore it cannot get the current token from a previous, considering that the newly added file fi306

corresponds to the current token, that means the previous tokens cannot match fi , then forward 307

security is achieved. 308

 309

Security Analysis 310

In this section, we analysis the security of our scheme. For the scheme {KeyGen,Setup,=311

ClientAuth,TokenGen,Search,Verify,UpdateToken,Update} with the leakage function 312

setup search update={ , , } , we prove that our scheme is - secure against CKA2 by proving that 313

Real () and Ideal (), are computationally indistinguishable. 314

Theorem 1. Our scheme  is - secure against CKA2, if the encryption algorithm is secure 315

against chosen-plaintext attacks and the pseudo-random function F and H are secure pseudo-316

random. 317

Proof: We use a probabilistic polynomial time simulator to simulate indexes and a series of 318

tokens. For a PPT adversary , we prove theorem 1 by the computational indistinguishability 319

between Real () and Ideal (), . In Real () , gets indexes (T , T and B), searches token 320

,i QTK and updates token (s , b) by running Setup , TokenGen and UpdateToken ; in 321

Ideal (), , gets indexes (T ' , T' and B '), searches token , 'i QTK and updates token ('s , 'b) 322

by running
Setup

, Search ,
Update

. We prove that Real () and Ideal (), are computational 323

indistinguishable by proving that (T , T , B ,
,i QTK , s , b) and (T ' , T' , B ' , , 'i QTK , 's , 'b) are 324

indistinguishable. 325

 Simulating index. initializes three empty tables: T' , B ' , T ' , which are used to store file 326

ciphertexts, verification values and bitmaps, respectively. randomly selects a string f 'i of 327

length | f |i , and encrypts it through 3c ' Enc(,f ')i iK , where 3K is randomly sampled from 328

{0,1} . maintains three mappings: H , U and L , H stores (3||iid K , 'i), U stores ((), '
ii wH w u), 329

and the mapping L stores ('|| , '
i iw i wu st t) . H , U and L are used and updated by the generation of 330

search and update token. computes the hash value ' (c ')i ihash H , c 'i is stored in T '[']il and 331

'ihash is stored in B'[']il . selects a string 'v of length | |v , and stores it in T '[]
iwt v . 332

 T' , B ' and T ' are simulated by through the leakage
Setup

, the difference between (T ' ,333

T' , B ') and (T , T , B) is the generation of (f 'i , c 'i , 'v). In ideal environment, (f 'i , c 'i , 'v) are 334

randomly selected, since our encryption algorithm is secure against CKA2 , F and H are secure 335

pseudo-random functions, therefore , the probability that the adversary can distinguish between 336

the real environment and the ideal environment is negligible. 337

Simulating search token. For the keyword iw to query, gets '
iwu from the mapping U338

through calculating ()iH w , checks whether '
iwu is contained in U , if so returns the 339

corresponding entity, otherwise randomly picks a '
iwu in {0,1} and stores ((), '

ii wH w u) in U . 340

Similarly, the experiment gets '
iwl from L by L['||]

iw iu st , the search token , 'i QTK ={ '
iwl }. Under 341

the assumption that F and H are secure pseudo-random functions, the adversary cannot 342

distinguish
,i QTK and , 'i QTK . 343

Simulating update token. For file fk to be added, first randomly selects a bit string 'kc of 344

length | f |k , and encrypts it through 3c ' Enc(,f ')k kK . computes the hash value 345

' (c ')k khash H , c 'k is stored in T'[']kl and 'khash is stored in B'[']kl , where 'kl is obtained 346

from the mapping H . maintains a mapping E , which stores (0,st st), if there is no 347

corresponding entity for st , it randomly picks a st in {0,1}l
, otherwise it returns the corresponding 348

entity. gets '
iwu and '

iwl as in search token, selects a string '
j

v of length | |
j

v , and stores it in 349

T '['] '
j jwl v . The update token (' {(',c '), (', ')}

j js k k wl l v = ， ' {(', '), (', ')}
j jb k k wl hash l v =) 350

and ({(,c), (,)}
j js k k wl l v = ， {(,), (,)}

j jb k k wl hash l v =) are indistinguishable for the adversary351

. 352

In such a way, (T , T , B ,
,i QTK , s , b) and (T ' , T' , B ' , , 'i QTK , 's , 'b) are indistinguishable 353

for , and it means for a PPT adversary , the probability of distinguishing between Real () 354

and Ideal (), is negligible, so we have: 355

,|Pr[Real () 1] Pr[Ideal () 1] ()negl  = − =  . Therefore, our scheme satisfies CKA2-security. 356

 357

Performance Evaluation 358

In this section, we evaluate the performance of our scheme by constructing a series of experiments, 359

and compare the experimental results with Li et.al (2021) and Guo, Zhang & Jia (2020). Since 360

Guo, Zhang & Jia (2020) does not support multi-keyword search over encrypted data, we compare 361

our scheme with Li et.al (2021) which supports multi-keyword search. Besides, we compare our 362

scheme with Guo, Zhang & Jia (2020) in terms of dynamic operations. 363

We deploy our experiments on a local machine with an Intel Core i7-8550U CPU of 1.80GHz、364

8GB RAM. We use HMAC-SHA-256 for the pseudo-random functions F , SHA-256 for the hash 365

function H . We use AES as the encryption algorithm to encrypt files. We implement the 366

algorithms in data owner, data user and server using Python and construct the smart contract using 367

Solidity, and the smart contract is tested in with the Ethereum blockchain using a local simulated 368

network TestRPC. 369

 For the dataset, we adopt a real-world dataset, Enron email dataset (William, 2015), which 370

contains more than 517 thousand documents. We utilize the Porter Stemmer to extract more than 371

1.67 million keywords and filter that meaningless keywords, such as “of”, “the”. At last, we build 372

an inverted index with those keywords to improve the search efficiency of the experiment. 373

 374

Evaluation of Setup 375

In setup phase, data owner encrypts the files, calculates the initial verification values of ciphertexts, 376

generates the bitmap indexes of keywords, stores them in T , B and T , respectively. 377

First, we compare the setup time of our scheme with Li et.al (2021) and Guo, Zhang & Jia 378

(2020), the setup time is related to the number of files in the index and the number of keywords 379

included in each file. Figure 3 shows the setup time with different number of keywords in each file 380

while the number of files is fixed at 3137, Fig.4 shows the setup time with different number of 381

files when the number of keywords in each file is fixed at 20. Both figures show that the setup 382

time is affected by the number of keywords in each file and the number of files, and the setup time 383

increases linearly concerning the number of keywords and files. 384

Furthermore, Fig.3 and Fig.4 illustrate that our scheme is more efficient than Li et.al (2021) and 385

Guo, Zhang & Jia (2020) under the same condition in setup time. Since Guo, Zhang & Jia (2020) 386

utilizes the linked list instead of bitmap to build the index, it requires more time than the other 387

schemes. Our scheme takes less time than Li et.al (2021), the reason is that Li et.al (2021) adopts 388

RSA accumulator based on public key encryption to verify multi-keyword search results, 389

in contrast, our scheme utilizes hash functions to verify search results, which reduces the 390

computational overhead greatly. 391

 392

Evaluation of Search 393

For the performance of our scheme, we compare the search time of our scheme with Li et.al (2021). 394

Moreover, to better evaluate the performance of the scheme in multi-keyword search, we perform 395

two settings in a query: 5 keywords and 10 keywords, respectively. In figures, the suffix of the 396

icon indicates the number of keywords in a query, i.e., Our scheme_5 indicates the search time 397

spent in our scheme during a query which contains 5 keywords, Our scheme_10 indicates the 398

search time spent in our scheme during a query which contains 10 keywords, similarly, Li et.al 399

(2021)_5 and Li et.al (2021)_10 indicates the search time spent in Li et.al (2021) during a query 400

which contains 5 keywords and 10 keywords, respectively. 401

Figure 5 shows the search time with different number of keywords in each file when the number 402

of files is fixed at 3137, and Fig.6 shows the search time with different number of files when the 403

number of keywords in each file is fixed at 20. Both figures show that the search time is affected 404

by the number of keywords in each file and the number of files, and the search time increases sub-405

linearly with the number of keywords and files. 406

 From Fig. 5 and Fig. 6, we can see that the more keywords included in a query, the more time 407

it takes, this is because the more keywords, the search algorithm spends more time to calculate 408

matched files. Another conclusion can be drawn that our scheme is more efficient than Li et.al 409

(2021) in search, the reason is that the same as the setup algorithm, Li et.al (2021) takes more time 410

to calculate the verification values. 411

 412

Evaluation of Verify 413

Here, we evaluate the performance of our scheme in verification, we verify the results of searching 414

for 5 keywords and 10 keywords respectively, and compares the verification time with Li et.al 415

(2021),the comparison results are shown in Fig.7 and Fig.8. Figure 7 shows the verification time 416

with different number of keywords in each file when the number of files is fixed at 3137, and Fig.8 417

shows the verification time with different number of files when the number of keywords in each 418

file is fixed at 20. From those two figures, we can see that the verification time is affected by the 419

number of keywords in each file and the number of files, the verification time increases with the 420

number of keyword and files. 421

 Both figures shows that our scheme gains a higher verification efficiency than Li et.al (2021), 422

the reason is that Li et.al (2021) takes additional time to compute
fi i iy u=  ,where 423

f(||)
ii iu F K r= ,

f 3(,f)
i iK G K= . In addition, the initial verification values in Li et.al (2021) are 424

stored in untrusted server and the verification is performed by the data user, both the server and 425

the user may forge the verification results, while in our scheme, the values are stored in blockchain 426

and the verification is performed by blockchain, cannot be tampered with, hence, our scheme is 427

more fair and secure in verification. 428

 429

Evaluation of Update 430

Dynamic update is the important function in SSE, so we evaluate the performance of our scheme 431

in dynamic update by adding a file containing multiple keywords. Figure 9 and Fig.10 show the 432

performance of our scheme, Li et.al (2021) and Guo, Zhang & Jia (2020) in update time, _5 and 433

_10 indicate that the update document contains 5 keywords and 10 keywords, respectively. We 434

observe that the update time increases with the number of files, since the more files, the longer of 435

the bitmap corresponding to a keyword, then the update algorithm performs more operations when 436

calculating (||)
j jw wv H u st  . Moreover, the update time is related to the number of 437

keywords contained in the update file, since the more keywords the file contains, the more indexes 438

to update. 439

 440

Conclusions 441

In this paper, we present an efficient verifiable multi-keyword search SSE scheme based on 442

blockchain, which accomplishes efficient multi-keyword search and verification. In our scheme, 443

the yardstick of the file is stored on the blockchain, and the verification of the search results is also 444

completed by the blockchain, thus the fairness and reliability of the verification can be ensured. In 445

addition, our solution supports the dynamic update of files and guarantees forward security during 446

the update. Formal security analysis and experimental results show that our scheme is CKA2-447

security and efficient. Our scheme can be widely used in cloud storage systems such as data 448

outsourcing, cloud-based IoT (Ge et.al, 2021), medical cloud data (Li et.al, 2020),etc., helping to 449

achieve efficient multi-keyword searches, and ensuring the integrity and credibility of search 450

results. 451

 452

 453

References 454

[1] Song DX, Wagner D, Perrig A. 2000. Practical Techniques for Searches on Encrypted Data. 455

In: 2000 IEEE Symposium on Security and Privacy. IEEE, 44–55 DOI: 456

10.1109/SECPRI.2000.848445. 457

[2] Curtmola R, Garay J, Kamara S, Ostrovsky R. 2006. Searchable Symmetric 458

Encryption:Improved Definitions and Efficient Constructions. In 13th ACM Conference on 459

Computer and Communications Security. ACM, 79–88. 460

[3] Wang C, Cao N, Li J, Ren K. 2010. Secure Ranked Keyword Search over Encrypted Cloud 461

Data. in IEEE 30th international conference on distributed computing systems. IEEE, 253-262 462

DOI: 10.1109/ICDCS.2010.34. 463

[4] Cash D, Jarecki S, Jutla CS, Krawczyk H, Rosu M, Steiner M. 2013. Highly-scalable 464

Searchable Symmetric Encryption with Support for Boolean Queries. In Advances in 465

Cryptology-CRYPTO, 353–373. 466

[5] Lai S, Patranabis S, Sakzad A, Liu J, Mukhopadhyay D, Steinfeld R, Sun S, Liu D, Zuo C. 467

2018. Result pattern hidingsearchable encryption for conjunctive queries. Proceedings of the 468

https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/ICDCS.2010.34

2018 ACM SIGSAC Conference on Computer and Communications Security. ACM, 745–762 469

DOI: 10.1145/3243734.3243753. 470

[6] Xu G, Li HW, Dai YS, Yang K, Lin XD. 2019. Enabling Efficient and Geometric Range 471

Query with Access Control over Encrypted Spatial Data. IEEE Transactions on Information 472

Forensics and Security,14(4): 870-885 DOI: 10.1109/TIFS.2018.2868162. 473

[7] Qi C, Gong G. 2012. Verifiable Symmetric Searchable Encryption for Semi-Honest-but-474

Curious Cloud Servers. In: Proc of the IEEE International Conference on Communications. 475

IEEE, 917-922 DOI: 10.1109/ICC.2012.6364125. 476

[8] Kurosawa K, Ohtaki Y. 2012. UC-Secure Searchable Symmetric Encryption. In: Proc of the 477

International Conference on Financial Cryptography and Data Security. Springer, 285-298 DOI: 478

10.1007/978-3-642-32946-3_21. 479

[9] Zhu X, Liu Q, Wang G. 2016. A Novel Verifiable and Dynamic Fuzzy Keyword Search 480

Scheme over Encrypted Data in Cloud Computing. In: Proc of the IEEE Trustcom/BigDataSE/I 481

SPA. IEEE, 845-851 DOI: 10.1109/TrustCom.2016.0147. 482

[10] Liu Q, Nie XH, Liu XH, Peng T, Wu J. 2017. Verifiable Ranked Search over dynamic 483

encrypted data in cloud computing. In: Proc of the 2017 IEEE/ACM 25th International 484

Symposium on Quality of Service. IEEE, DOI: 10.1109/IWQoS.2017.7969156. 485

[11] Zhang Z, Wang J, Wang Y. 2019. Towards Efficient Verifiable Forward Secure Searchable 486

Symmetric Encryption. In: Proc of the European Symposium on Research in Computer Security. 487

LNCS, 11736: 304-321 DOI: 10.1007/978-3-030-29962-0_15. 488

[12] Ge X, Yu J, Zhang H, Hu CY, Li ZP, Qin Z, Hao R. 2019. Towards Achieving Keyword 489

Search over Dynamic Encrypted Cloud Data with Symmetric-Key based Verification. IEEE, 490

18:490-504 DOI: 10.1109/TDSC.2019.2896258. 491

[13] AZRAOUI M, ELKHIYAOUI K, ÖNEN M. 2015. Publicly Verifiable Conjunctive 492

Keyword Search in Outsourced Databases. IEEE Conference on Communications and Network 493

Security, Florence. IEEE, 619–627 DOI:10.1109/CNS.2015.7346876 494

[14] Wang J, Chen X, Sun SF, Liu JK, Man HA, Zhan ZH. 2018. Towards Efficient Verifiable 495

Conjunctive Keyword Search for Large Encrypted Database. In: Proc of the European 496

Symposium on Research in Computer Security. Springer, 83-100 DOI: 497

10.1007/978-3-319-98989-1_5 498

[15] Sun W, Liu X, Lou W, Hou YT, Li H. 2015. Catch You if You Lie to Me: Efficient 499

verifiable conjunctive keyword search over large dynamic encrypted cloud data. In: Proc of the 500

IEEE Conf. on Computer Communications. IEEE, 2110-2118 DOI: 501

10.1109/INFOCOM.2015.7218596 502

[16] Wan ZZ, Deng RH. 2018. VPSearch: Achieving Verifiability for Privacy-Preserving Multi-503

Keyword Search over Encrypted Cloud Data. IEEE Transactions on Dependable and Secure 504

Computing, 15:1083-1095 DOI: 10.1109/TDSC.2016.2635128. 505

[17] Li F, Ma JF, Miao YB, Jiang Q, Liu XM, Kim-Kwang RC. 2021. Verifiable and Dynamic 506

Multi-keyword Search over Encrypted Cloud Data Using Bitmap. IEEE Transactions on Cloud 507

Computing,1-14 DOI: 10.1109/TCC.2021.3093304. 508

https://doi.org/10.1145/3243734.3243753
https://doi.org/10.1109/TIFS.2018.2868162
https://doi.org/10.1109/ICC.2012.6364125
http://dx.doi.org/10.1007/978-3-642-32946-3_21
https://doi.org/10.1109/TrustCom.2016.0147
https://doi.org/10.1109/IWQoS.2017.7969156
https://doi.org/10.1109/TDSC.2019.2896258
https://doi.org/10.1109/INFOCOM.2015.7218596
https://doi.org/10.1109/TCC.2021.3093304

[18] Hu S, Cai C, Wang Q, Wang C, Luo X, Ren K.2018. Searching an Encrypted Cloud Meets 509

Blockchain: A Decentralized, Reliable and Fair Realization. In: Proc of the IEEE Conference on 510

Computer Communications. IEEE, 792-800 DOI: 10.1109/INFOCOM.2018.8485890. 511

[19] Cai C, Weng J, Yuan X, Wang C. 2021. Enabling Reliable Keyword Search in Encrypted 512

Decentralized Storage with Fairness. IEEE Trans on Dependable and Secure Computing. 513

18(1):131-144 DOI: 10.1109/TDSC.2018.2877332. 514

[20] Li HG, Tian HB, Zhang FG, He JJ. 2019. Blockchain-based Searchable Symmetric 515

Encryption Scheme. Computers & Electrical Engineering.73:32-45 DOI: 516

10.1016/j.compeleceng.2018.10.015 517

[21] Guo Y, Zhang C, Jia X. 2020. Verifiable and Forward-secure Encrypted Search Using 518

Blockchain Techniques. IEEE International Conference on Communications. IEEE, DOI: 519

10.1109/ICC40277.2020.9148612. 520

[22] Spiegler I, Maayan R. 1985. Storage and Retrieval Considerations of Binary Data Bases. 521

Information processing & management, 21(3): 233–254 DOI: 10.1016/0306-4573(85)90108-6. 522

[23] Soleimanian A, Khazaei S. 2019. Publicly Verifiable Searchable Symmetric Encryption 523

Based on Efficient Cryptographic Components. Designs, Codes and Cryptography, 87(1): 123–524

147 DOI: 10.1007/s10623-018-0489-y. 525

[24] Kamara S, Papamanthou C, Roeder T. 2012. Dynamic Searchable Symmetric Encryption. in 526

Proc. ACM Conference on Computer and Communications Security. ACM, 965–976 DOI: 527

10.1145/2382196.2382298. 528

[25] Cash D, Grubbs P, Perry J, Ristenpart T. 2015. Leakage-abuse Attacks Against Searchable 529

Encryption. In: Proc. of the 22nd ACM SIGSAC Conference on Computer and Communications 530

Security. ACM, 668–679 DOI: 10.1145/2810103.2813700. 531

[26] Zhang YP, Katz J, Papamanthou C. 2016. All Your Queries are Belong to Us: the power of 532

file-injection attacks on searchable encryption. In: Proc. of the 25th USENIX Conf. on Security 533

Symposium. Austin, 707–720. 534

[27] Abdelraheem MA, Gehrmann C, Lindstrom M, Nordahl C. 2016. Executing Boolean 535

Queries on An Encrypted Bitmap Index. In Proc. ACM on Cloud Computing Security 536

Workshop. ACM, 11–22 DOI: 10.1145/2996429.2996436. 537

[28] Zuo C, Sun S, Liu JK, Shao J, Pieprzyk J. 2019. Dynamic Searchable Symmetric 538

Encryption with Forward and Stronger Backward Privacy. In Proc. European Symposium on 539

Research in Computer Security. Springer, 283–303 DOI: 10.1007/978-3-030-29962-0_14. 540

[29] William WC. 2015. Enron email dataset. Available at http://www.cs.cmu.edu/~enron/. 541

[30] Maryam H, Parvaneh A,Hamid HSJ. 2021. Dynamic Secure Multi-keyword Ranked Search 542

over Encrypted Cloud Data. Journal of Information Security and Applications. 61:1-12 DOI: 543

10.1016/j.jisa.2021.102902 544

[31] Miao Y, Deng RH, Choo KKR, Liu X,Ning J, Li H. 2021. Optimized Verifiable Fine-545

grained Keyword Search in Dynamic Multi-Owner Settings. IEEE Transactions on Dependable 546

and Secure Computing. 18(4):1804-1820 DOI: 10.1109/TDSC.2019.2940573. 547

https://doi.org/10.1109/INFOCOM.2018.8485890
https://doi.org/10.1109/ICC40277.2020.9148612
https://doi.org/10.1016/0306-4573(85)90108-6
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2996429.2996436
http://www.cs.cmu.edu/~enron/

[32] Chen CM, Tie Z, Wang EK, Khan MK, Kumar S, Kumari S. 2021. Verifiable Dynamic 548

Ranked Search with Forward Privacy over Encrypted Cloud Data. Peer-to-Peer Networking and 549

Applications, 14:2977–2991 DOI: /10.1007/s12083-021-01132-3. 550

[33] Ge XR, Yu J, Chen F, Kong F, Wang H. 2021. Towards Verifiable Phrase Search over 551

Encrypted Cloud-based IoT Data. IEEE Internet of Things Journal.8(16):12902 – 12918 DOI: 552

10.1109/JIOT.2021.3063855. 553

[34] Liu X,Yang X, Luo Y, Zhang Q. 2021. Verifiable Multi-keyword Search Encryption 554

Scheme with Anonymous Key Generation for Medical Internet of Things. IEEE Internet of 555

Things Journal. DOI: 10.1109/JIOT.2021.3056116. 556

[35] Liang YR, Li YP, Cao Q, Ren F. VPAMS: Verifiable and Practical Attribute-based Multi-557

keyword Search Over Encrypted Cloud Data. Journal of Systems Architecture. DOI: 558

10.1016/j.sysarc.2020.101741. 559

[36] Liang Y, Li Y, Zhang K, Ma L. 2021. DMSE: Dynamic Multi-keyword Search Encryption 560

Based on Inverted Index. Journal of Systems Architecture. DOI: 10.1016/j.sysarc.2021.102255. 561

[37] Li H, Yang Y, Dai Y, Yu S, Xiang Y. 2020. Achieving Secure and Efficient Dynamic 562

Searchable Symmetric Encryption over Medical Cloud Data. IEEE Transactions on Cloud 563

Computing. 8(2):484-494 DOI: 10.1109/TCC.2017.2769645. 564

