
S1 APPENDIX: IMPLEMENTATION OF THE EVENTS IN THE DISCRETE
MODEL
Assume that t is the time of the previous event, t +∆t is the time of the current event.

Type 1. In this case a cytokine enters a “regular” healthy cell, so the number of healthy cells U0 is
decreased by 1, the number of resistant cells U1 is increased by 1 (we just change the type of the cell
with index U0(t) from healthy to resistant, so implementation complexity is constant), and the number of
cytokines Cyt is decreased by 1.

Type 2. In this case a virion enters a “regular” healthy cell, so the number of healthy cells U0 is
decreased by 1, the number of productive infected cells Ia is increased by 1 (we just swap types of several
cells in the array: the cell number U0(t) is made resistant, the cell number U0(t)+U1(t) is made infected
with parameters t in f = t +∆t , r = 1, l = L0, so implementation complexity is constant), and the number
of virions V is decreased by 1.

Type 3. In this case a virion enters a resistant cell, so the number of resistant cells U1 is decreased by 1,
the number of productive infected cells Ia is increased by 1 (we just make the cell number U0(t)+U1(t)
infected with parameters t in f = t +∆t , r = 1, l = L0, so implementation complexity is constant), and the
number of virions V is decreased by 1.

Type 4. In this case a free virion enters an infected cell, so we select a random infected cell (let the
index of this cell be equal to j, increment the value of the parameter r of the jth by 1 and decrease the
number of virions V by 1, so the complexity of implementation of this event is also constant).

Type 5. In this case we perform a global update of the parameters of the continuous part of the
model, i.e. the total numbers of free virions and cytokines, and local parameters of all infected cells.
Let tprev be the time of the previous execution of an event of the type 5 (tprev = 0 for the first occurrence),
∆ = t +∆t − tprev. For every infected cell we update the number of viral RNA using the formula

r = 2(t+∆t−t in f )/∆t RNAdouble

(i.e. we assume that concentration of viral RNA grows exponentially until it reaches some predefined
threshold). For every infected cell such that t +∆t − t in f > ∆t cyt we evaluate the number of cytokines
produced and add this number to Cyt

Cyt =Cyt +min{∆, t +∆t − t in f −∆t cyt} · pc

(i.e. we assume that cytokines are produced with a constant rate, and production starts after some latent
period). For every productive infected cell such that t +∆t − t in f > ∆t latent we evaluate the number of
virions produced (taking into account resources utilized) and add this number to V :

∆V = min
(
min{∆, t +∆t − t in f −∆t latent} · r · l · pVir, l/nl2V

)
V =V +∆V
l = l −∆V ·nl2V .

If resource concentration l drops to zero, the cell stops producing virions and becomes exhausted (similarly
to the previous event types this operation is reduced to swapping some elements of the array and thus has
a constant complexity).

Total complexity of implementation of this event is linear in the number of cells.

S2 APPENDIX: DETAILS OF THE CONTINUOUS MODEL
The function p is evaluated in the following way.

1. Consider the grid generated by the step ∆h on the segment [0,T ];

2. For every i, 0 ≤ i ≤ T/∆h, compute the number of virions ϕ(i) produced up to the moment i ·∆h by
a cell infected at the moment t = 0. Evaluation of ϕ(i) is based on the values l(i) (concentration
of resources such as lipids in the cell) and r(i) (concentration of viral RNA in the cell). Initially
l(0) = L0, r(0) = 1, ϕ(0) = 0. After that we iteratively evaluate new values:

• r(i) = 2i∆h/∆t RNAdouble ;
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• if i∆h < ∆t latent , then ∆V = 0, else ∆V = ∆h · r(i) · l(i) · pVir;

• ϕ(i) = ϕ(i−1)+∆V ;

• l(i) = max{0, l(i−1)−∆V nl2V}.

The values computed are stored in memory.

3. Use linear interpolation to evaluate p(t) taking into consideration the relation p((i+1/2)∆h) =
(ϕ(i+1)−ϕ(i))/∆h.

Note that at the stage of equation solution evaluation of p(t) requires constant complexity.
The system is solved numerically using a semi-implicit Euler method (see e.g. (Atkinson, 1989,

p. 342)) with the fixed step ∆DE . At the initial moment (t = 0) we set U0 =Cinitial , U1 = 0, C = 0, I = 0,
V =Vinitial , R = 0. At the time of washing (t = ∆t clean) we set V =Cyt = 0. Note that in case of using
a semi-implicit Euler method the sum of the first, the second and the fourth equation has zero in the
right-hand side with some accuracy only.

S3 APPENDIX: GLOBAL AND LOCAL PARAMETER SELECTION PROCE-
DURE
Parameters were selected using the following implementation of coordinate descent method. Initial values
were selected manually. The models were evaluated multiple times with various random parameters; we
compared the resulting values of virions and RNA concentration with the ones obtained in the experiment
and picked up the best fitting combination.

The step of the procedure is the following:

• compute Err for the original parameters;

• for every parameter P compute Err for Params with the value of P multiplied by ηi,

ηi ∈
{

2−800,2−50,2−20,2−11,24,2−2,22,24,211,220,250,2800
}

;

• select minimum of the error values computed; if it corresponds to the original set of values, stop;
otherwise select the values corresponding to the minimum and go to the next step.

To speed the computations up all computed values are stored in memory, so for every combination
of parameters considered evaluation of Err() is performed just once, and then the required values are
extracted from memory.

S4 APPENDIX: SIMPLE PROPERTIES OF THE SYSTEM IN THREE VARI-
ABLES
Consider the system

dU
dt

=−βUV

dI
dt

= βUV

dV
dt

= pI

Without loss of generality assume that U(0) = 1, I(0) = 0, V (0) =V0 > 0. In other words, U(t) and I(t)
are the fractions of healthy cells and infected cells, respectively.

First show that in this model all cells get infected.

Assertion 1. I(t)→ 1 as t → ∞.
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Proof. The first two equations of the system imply that

dU
dt

+
dU
dt

≡ 0,

thus U(t)+ I(t)≡ 1. Obviously it holds that I(t)≥ 0, so the third equation implies that V (t)≥V0 for any
t ≥ 0. Thus

dI
dt

= βUV = β (1− I)V ≥ βV0(1− I).

Hence it holds that
d ln(1− I)

dt
=−dI/dt

1− I
≤−βV0.

As a result, if t → ∞, then ln(1− I0)−βV0t →−∞ and I → 1.

Now show that the number of virions keeps growing linearly.

Assertion 2. There exist C1,C2 > 0 and t0 ≥ 0 such that

C1 · t ⩽V (t)−V (t0)⩽C2 · t

for all t ⩾ t0.

Proof. By Assertion 1 there exists t0 > 0 such that I(t0)> 1/2. Obviously U(t)> 0 for all t ≥ 0, so I(t)
is an increasing function and I(t)≥ 1/2 for all t ≥ t0. Thus is holds that

dV
dt

= pI > p/2

and V (t)⩾V (t0)+ p/2 · t for all t ≥ t0. On the other hand obviously I(t)≤ 1 and V (t)⩽V (t0)+ p · t.

S5 APPENDIX: VERIFICATION OF PARAMETER INDEPENDENCE
In this section we provide mathematical background of parameter independence verification procedure.

Suppose that x(0) =
(

x(0)1 , . . . ,x(0)n

)
∈ Rn, i1, . . . , ik ∈ {1, . . . ,n}. Denote the set{

(x1, . . . ,xn) ∈ Rn | xl = x(0)l for l ̸= i1, . . . , ik
}

by Πi1,...,ik
(

x(0)
)

. Denote the set{
x = (x1, . . . ,xn) ∈ Π

i1,...,ik
(

x(0)
)

|
∥∥∥x− x(0)

∥∥∥= ε and xl = x(0)l for l ̸= i1, . . . , ik
}

by Si1,...,ik
ε

(
x(0)

)
(here ε is some real-valued positive constant).

Definition 1. Suppose that F : Rn → R is a continuous function that reaches a local minimum at a
point x(0) =

(
x(0)1 , . . . ,x(0)n

)
. The set of coordinates xi1 , . . . ,xik is said to be ε-dependent, if there exists a

continuous curve γ parameterized by t ∈ [0,1] such that γ(t)∈Πi1,...,ik
(

x(0)
)

for any t ∈ [0,1], γ(0) = x(0),

γ(1) ∈ Si1,...,ik
ε

(
x(0)

)
and F(γ(t)) = F

(
x(0)

)
for any t ∈ [0,1]. Otherwise the set xi1 , . . . ,xik is referred to

as ε-independent.

Informally speaking, the curve γ specifies an implicit function that determines the dependence of
the parameters xi1 , . . . ,xik . E.g., for the case of linear dependence it is sufficient to consider a linear
combination of the respective parameters.

Assertion 3. Suppose that a continuous function F : Rn → R achieves its local minimum F0 at some
point x(0) and there exists ε > 0 such that F(x) > F

(
x(0)

)
for any x ∈ Si1,...,ik

ε

(
x(0)

)
. Then the set

xi1 , . . . ,xik is δ -independent for any δ > ε .

3/6



Proof. Assume that the set xi1 , . . . ,xik is δ -dependent for some δ > ε . Then by definition there exists a

continuous curve γ parameterized by t ∈ [0,1] such that γ(t)∈Πi1,...,ik
(

x(0)
)

for any t ∈ [0,1], γ(0) = x(0),

γ(1) ∈ Si1,...,ik
δ

(
x(0)

)
and F(γ(t)) = F

(
x(0)

)
for any t ∈ [0,1]. Since δ > ε , it holds that γ intersects

Si1,...,ik
ε

(
x(0)

)
in some point x′ = γ(t ′). Thus the following chain of relations leads to a contradiction:

F0 = F(γ(t ′)) = F(x′)> F0.

Assertion 3 implies the following procedure.

1. Consider a sufficiently small sphere around the minimum point obtained by optimization procedure.

2. Evaluate the value of the error function for a sufficiently dense mesh on this sphere and estimate
the values outside the mash using some sort of interpolation.

3. If all values are greater than the minimum value, then there is no dependence outside the sphere,
thus the parameters can be considered as independent.

REFERENCES
Atkinson, K. A. (1989). An Introduction to Numerical Analysis. John Wiley & Sons, New York, second

edition.
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SUPPORTING FIGURES

Figure S1. The plot of the function p(t).

Figure S2. Solutions of the continuous model accurately explain experimental data for the WT (A)
and Delta (B) variants. All parameters except two (cell entry rate β and cytokine production
intensity pc) are common for both variants. Dashed red lines stand for an experimental measurement of
the percentage of WT-infected cells at 24 hpi.
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SUPPORTING TABLES

∆t RNAdouble k pc β βcyt ∆t latent pVir nl2V
∆t RNAdouble —– 0.564 0.518 0.960 0.512 0.988 0.388 1.62656

k 0.564 —– 1.493 0.972 1.038 1.467 0.192 0.983
pc 0.518 1.489 —– 1.499 0.631 1.409 0.263 1.572
β 0.858 0.972 1.499 —– 0.909 1.212 0.193 1.131

βcyt 0.512 1.038 0.631 0.909 —– 0.757 0.112 1.024
∆t latent 1.764 1.467 1.409 1.212 0.757 —– 0.892 1.285

pVir 0.313 0.192 0.263 0.193 0.112 0.168 —– 0.294
nl2V 0.681 0.983 1.572 1.131 1.024 1.285 0.294 —–

Table S1. Increase of the functional generated by pairs of parameters on a circle around the
minimum point
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