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S1 Contrast matrix for compositional manova14

We used the following contrast matrix in the ilr transformation for final compositions:15

V =

v1 v2 v3 v4



Aurelia aurita 1/
√

2 −
√

3/10 0 0

Bare panel −1/
√

2 −
√

3/10 0 0

Botrylloides spp. 0
√

2/15 1/
√

6 1/
√

2

Bugula spp. 0
√

2/15 −2/
√

6 0

Molgula tubifera 0
√

2/15 1/
√

6 −1/
√

2

. (S1)16

The columns of V represent the following logcontrasts: v1 between A. aurita and bare panel; v2 between the17

geometric mean of potential competitors and the geometric mean of A. aurita and bare panel; v3 between18

the geometric mean of ascidians and bryozoans; and v4 between colonial and solitary ascidians. This is a19

convenient basis because by setting ilr coordinates 3 and 4 to zero we can obtain the orthogonal projection of a20
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subcomposition onto a subspace that preserves variation between A. aurita, bare panel and the geometric mean21

of potential competitors, but ignores variation among potential competitors (Pawlowsky-Glahn et al., 2015,22

p. 51). Ternary diagrams in such subspaces are the preferred way to represent marginal relationships among23

compositions with more than three parts, because this approach is consistent with the Aitchison geometry24

(van den Boogaart and Tolosana-Delgado, 2013, section 4.2.1). In addition, the choice of v2 as a logcontrast25

between geometric means results in a lower-dimensional representation in which differences have a population-26

dynamic interpretation. For two subcompositions c(1), c(2), a difference in the coefficient of v1 is proportional27

to log(c
(2)
1 /c

(1)
1 ) − log(c

(2)
2 /c

(1)
2 ), which has the form of a difference in proportional growth rates between A.28

aurita and bare panel over one unit of time. Similarly, a difference in the coefficient of v2 is proportional to29

1

3

(
log

c
(2)
3

c
(1)
3

+ log
c
(2)
4

c
(1)
4

+ log
c
(2)
5

c
(1)
5

)
− 1

2

(
log

c
(2)
1

c
(1)
1

+ log
c
(2)
2

c
(1)
2

)
,30

which has the form of a difference in mean proportional growth rates between potential competitors and A.31

aurita and bare panel over a unit of time. Thus, differences in such coordinates measure the amount of unequal32

proportional growth needed to transform one composition into another (Chong and Spencer, 2018). Under33

the alternative approach of dimension reduction using amalgamations such as (c1, c2, c3 + c4 + c5), in which34

the third part is the sum of relative abundances of potential competitors, there is no such population-dynamic35

interpretation.36

S2 Coding of treatment effects in compositional manova37

For reference, we give the compositional manova model described in the main text again here:38

yjkl ∼ multinomial(njkl,ρjkl),

ρjkl = ilr−1 (µ+αj + βk + γjk + δl + εjkl) ,

δl ∼ N(0,Z),

εjkl ∼ N(0,Σ).

(S2)39

We coded treatment effects in the compositional manova using orthogonal contrasts. We represented treat-40

ment and depth effects by the matrices F,G respectively:41

F =




O 1 −1/2

C 0 1

A −1 −1/2

,

G =

 1 m −1

3 m 1
.

42
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The first column of F represents the difference between the O and A treatments, while the second column43

represents the difference between the C treatment and the other treatments. The single column of G represents44

the difference between depths. We constructed interaction contrasts H using the Kronecker product (denoted45

by ⊗) of F and G (Venables, 2018):46

H = F⊗G =





O, 1 m −1 1/2

O, 3 m 1 −1/2

C, 1 m 0 −1

C, 3 m 0 1

A, 1 m 1 1/2

A, 3 m −1 −1/2

,47

in which the first column represents the difference in depth effects between the O and A treatments, and the48

second column represents the difference in depth effects between treatment C and the other treatments. Then49

the effects of depth j, treatment k and their interaction can be written as50

αj = gjα,

βk = fk

(
β1 β2

)
,

γjk = hjk

(
γ1 γ2

)
,

51

where gj , fk and hjk are the row of G corresponding to depth j, the row of F corresponding to treatment j52

and the row of H corresponding to the combination of depth j, treatment k, respectively, and α,β1,β2,γ1,γ253

are parameter vectors.54

S3 Priors for compositional manova55

For the depth effect α, we used prior information from Chong and Spencer (2018). In that study, a Bayesian56

compositional linear model was used to model the relationship between community composition and depth, for57

communities on the dock wall of our study site. We took the posterior distribution of predicted differences in58

composition between communities at 3 m and 1 m and selected the subcomposition approximately corresponding59

to those taxa abundant enough to analyze at the end of our experiment. The Chong and Spencer (2018) model60

was based on amalgamated taxa. We therefore used the colonial ascidians taxon to represent Botrylloides spp.61

and the solitary ascidians taxon to represent Molgula tubifera. The remaining components (Bugula spp., Aurelia62

aurita and bare wall/bare panel) had obvious matches between our data and Chong and Spencer (2018). We63

transformed to logratio coordinates using the contrast matrix V given in Equation S1. Pairwise scatter plots64

and marginal kernel density plots of a sample drawn from the posterior distribution of this difference suggested65

that a multivariate normal would be a reasonable approximation (Figure S1, green). We chose a multivariate66
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normal prior centred on the posterior mean vector from Chong and Spencer (2018). However, because the67

experiment was done in a different year and on a different substrate, and the taxa in Chong and Spencer (2018)68

were amalgamated, we made our prior more diffuse and with a weaker correlation structure (Figure S1, orange):69

α ∼ N(µα,diag(2s)R diag(2s)),70

where µα = (2.8,−2.6,−0.1, 0.1)T is the sample posterior mean vector, s is the vector of sample posterior71

standard deviations, and R is a correlation matrix whose off-diagonal elements are all set to half the sample72

mean posterior correlation among all pairs of components, giving the prior covariance matrix73

Σα = diag(2s)R diag(2s)) =



12.7 3.2× 10−4 5.5× 10−5 8.5× 10−5

3.2× 10−4 7.1 4.1× 10−5 6.4× 10−5

5.5× 10−5 4.1× 10−5 0.21 1.1× 10−5

8.5× 10−5 6.4× 10−5 1.1× 10−5 0.5


74

This is close to a diagonal covariance matrix. Although it is a reasonable description of most aspects of the75

posterior distribution from Chong and Spencer (2018), it does not capture the strong correlation between α176

and α2. This is probably an advantage: we are not confident that data from an observational study in a different77

year are sufficient to support very strong prior information.78

For the covariance matrices Σ and Z of the panel effects ε and block effects δ respectively, we used generic79

weakly-informative priors, with independent half-Cauchy(0, 2.5) priors on the standard deviations and an LKJ80

prior (Lewandowski et al., 2009) with scale parameter 2 on the correlation matrix. These were the same as the81

priors on variation among dock wall images in Chong and Spencer (2018). We did not use posterior estimates82

of the corresponding effect for dock wall images from Chong and Spencer (2018) because our panels were83

smaller than the dock wall images, and in past experiments (Maxatova, 2016; Edney, 2017; Sharpe, 2020), there84

appeared to be more variation among panels than adjacent areas of dock wall. We used the same prior for block85

effects because previous experiments (Maxatova, 2016; Edney, 2017; Presser, 2019; Sharpe, 2020) suggested that86

among-block differences could plausibly be as large as among-panel differences.87

For the overall mean µ in ilr coordinates, we chose independent univariate N(0, 4) priors on each coordinate88

(where the second parameter is the variance). Among past experiments (Maxatova, 2016; Edney, 2017; Presser,89

2019; Sharpe, 2020), typical composition was quite variable from year to year, with some taxa almost absent90

in some years and abundant in others. Centring priors on zero means that the most likely composition is equal91

relative abundance of each component. We chose the variance 4 by experimenting with simulated data, so92

that after back-transformation from ilr coordinates, compositions having almost none of a component or being93

almost filled by it were possible (with 80% of the probability for any component between relative abundances94

of about 0.004 and 0.6).95

For the treatment effects β1,β2 and treatment by depth interactions γ1,γ2 we used independent univariate96

N(0, 1) priors on each ilr coordinate. Based on the fact that we were aiming to remove half of the target taxon,97
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changes at least as large as doubling or halving a single component should be highly plausible. We calculated98

the squared Aitchison distance (Aitchison, 1992) between the zero vector in the simplex and a vector in which99

a single component is doubled or halved. This is equal to the squared Euclidean distance from the origin in ilr100

coordinates (Egozcue et al., 2003). The probability of a random vector lying at least this squared distance d2101

from the origin, for a 4-dimensional multivariate normal distribution with mean vector 0 and covariance matrix102

cI4, is given by P (χ2
4 ≥ d2

c ) (e.g. Härdle and Simar, 2019, Theorem 4.7). This probability is large for c = 1103

(Figure S2, green line), and in fact, larger changes in a single component are also likely (Figure S2, orange,104

purple and pink lines). This prior is therefore sufficiently broad to cover likely scraping treatment effects. In105

the absence of detailed knowledge about the likely size of interactions between scraping treatments and depth,106

we used the same prior for this interaction.107

S4 Fitting, checking and calibration for compositional manova108

We fitted the compositional manova using cmdstan 2.23.0 (Carpenter et al., 2017). We ran 4 chains for 2500109

warmup and 2500 sampling iterations. This took approximately 90 s on a 64-bit Ubuntu 20.04 system with110

4 Intel Xeon 3.2 GHz cores and 16 GiB RAM. Effective sample size was at least 1242 (median 7561) and the111

potential scale reduction statistic was no larger than 1.003 (median 1.000), for all parameters (these values112

are for the full model: similar values were obtained for the simplified model reported in the results section).113

Inspection of trace plots did not reveal any evidence of failure to converge. Processing and visualization of114

samples from the posterior was done in R version 4.1.0 (R Core Team, 2020), with the packages rstan 2.21.2115

(Stan Development Team, 2020) and compositions 2.0-2 (van den Boogaart et al., 2020).116

We checked the assumption of multivariate normal distributions on the hierarchical block effects δ and117

panel effects ε using QQ plots of squared Mahalanobis distance from the origin against quantiles of the χ2(4)118

distribution, for samples of size 1000 from the posterior. No large deviations from multivariate normality were119

apparent.120

We carried out two graphical posterior predictive checks of the plausibility of the model: plots of sample121

proportions of each taxon from posterior predictive simulations against sample proportions from the real data,122

and plots of density curves for sample versions of the logit difference statistics described below (calculated using123

sample proportions with add-one pseudocounts, rather than by re-fitting models), for real data and posterior124

predictive simulations. Neither of these revealed strong departures of posterior predictive simulated data from125

the observed data.126

We checked the performance of the sampling algorithm for the full model using simulation-based calibration127

(Talts et al., 2018), implemented in the sbc() function in rstan 2.21.2. We conditioned 500 times on draws128

from the prior predictive distribution, ran Stan on each draw for 2500 warmup and 2500 sampling iterations as129

above (taking approximately 32 h on a 64-bit Ubuntu 20.04 system with 4 Intel Xeon 3.2 GHz cores and 16 GiB130

RAM), thinned using the default value of 3, and inspected histograms of rank statistics for true parameters131

within the posterior samples. No large deviations from uniformity were apparent in the histograms of rank132
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statistics, consistent with absence of bias in sampling from the posterior.133

S5 Model comparison for compositional manova134

We compared versions of the compositional manova using leave-one-cluster-out cross-validation. The loss func-135

tion was the Bayesian leave-one-cluster-out estimate of out-of-sample prediction error (expected log predictive136

density) elpdloco, where a cluster corresponds to a block of panels:137

elpdloco =

L∑
l=1

log f(yl|y−l).138

Here, L is the number of blocks and f(yl|y−l) is the posterior density of the lth block yl, given the data set139

y−l in which block l is excluded (Vehtari et al., 2017). The leave-one-cluster-out posterior density is140

f(yl|y−l) =

∫
f(yl|θ)f(θ|y−l) dθ, (S3)141

where θ is the parameter vector {µ,α,β1,β2,γ1,γ2,Σ,Z}, f(yl|θ) is the density of the lth block given param-142

eter vector θ, and f(θ|y−l) is the posterior density of θ estimated from all blocks other than l. To estimate143

f(yl|θ), we need to integrate over the unknown block and panel effects for each new panel in a new block (with144

one panel from each of two depths and three removal treatments):145

f(yl|θ) =

2∏
j=1

3∏
k=1

∫ ∫
f(δ|θ)f(ε|θ)f(yjkl|θ, δ, ε) dε dδ, (S4)146

where f(δ|θ) and f(ε|θ) are the multivariate normal densities of block and panel effects, with mean vector 0147

and covariance matrices Z and Σ respectively, and f(yjkl|θ, δ, ε) is the multinomial probability for the counts148

from the panel at depth j, removal treatment k in block l (Equation S2). We estimated the integral in Equation149

S3 using samples of size 1000 from the posterior density of f(θ|y−l), obtained using Stan as described in section150

S4, on data sets with each block left out in turn. For each draw from each of these posterior densities, we151

estimated the integrals in Equation S4 by Monte Carlo integration in R, using samples of size 1000 from f(δ|θ)152

and f(ε|θ). We compared models using the loo_compare() function in the R package loo version 2.4.1 (Vehtari153

et al., 2020). Computation of elpdloco for all the models considered took approximately 44 h on a 64-bit Ubuntu154

20.04 system with 4 Intel Xeon 3.2 GHz cores and 16 GiB RAM.155

S6 Visualization of compositional manova results156

In the compositional manova, let φ′jk = α′j ⊕ β′k ⊕ γ′jk ∈ S4 denote a treatment effect (the effect of the157

combination of depth j and removal treatment k). Let e1 = (1, 0, 0, 0)T , . . . , e4 = (0, 0, 0, 1)T be the standard158

basis vectors in R4. Then a basis for S4 is given by the vectors e′i = ilr−1 ei, i = 1, . . . , 4. The orthogonal159
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projection of a treatment effect onto a subset of these basis vectors with indices S is given by160

⊕
i∈S
〈φ′jk, e′i〉a � e′i,161

where
⊕

i∈S denotes repeated perturbation, 〈·, ·〉a denotes the Aitchison inner product (Egozcue et al., 2003) and162

� represents the powering operator (Aitchison, 1986, p. 120). With S = {1, 2}, we obtain the projection of treat-163

ment effects onto the 2-simplex with parts representing A. aurita, bare panel and gm (potential competitors),164

where gm () denotes the geometric mean. With S = {3, 4}, we obtain treatment effects on the subcomposition165

of potential competitors, with parts Botrylloides spp., Bugula spp. and Molgula tubifera.166

We represented each of these projections of treatment effects in a ternary plot. We calculated 95 % highest167

posterior density credible regions for the projections of treatment effects using the algorithm in Hyndman168

(1996), implemented in the hdr.2d() function in R package hdrcde 3.4 (Hyndman, 2018). We plotted the169

corresponding observations in the form ρ̂ijkl 	 µ̂′, where ρ̂ijkl denotes the sample estimate of the relative170

abundance vector in panel i from depth j, treatment k, block l (with zeros replaced by 1/2, which is half the171

detection limit), µ̂′ denotes the estimated posterior mean overall metric centre from the manova, and 	 is the172

compositional difference operator (Egozcue et al., 2003).173

We visualized the panel and block covariance matrices (Σ and Z respectively) by constructing ellipses of174

unit Mahalanobis distance around the origin in the first two and last two ilr coordinates. We constructed175

100 such ellipses using draws from the posterior distributions of the corresponding submatrices of Σ and Z,176

back-transformed and plotted them in ternary plots.177

S7 Measuring treatment effects178

We assessed the effects of potential competitors on A. aurita using differences in logit (A. aurita) between179

potential competitor removal (O) and control (C) treatments. Similarly, we assessed the effects of A. aurita180

on potential competitors using differences in logit (potential competitors) between A. aurita removal (A) and181

control (C) treatments.182

Differences in treatment metric centres from the manova are not directly relevant to our hypotheses, because183

we expect the metric centre to be affected by a removal treatment, even if the non-target taxon does not respond184

to this removal. In contrast, logit differences take the value zero if the non-target taxon does not respond. For185

example, consider the map fO representing removal of half the potential competitors:186

fO : S4 → S4,

(c1, c2, c3, c4, c5) 7→
(
c1, c2 +

1

2
(c3 + c4 + c5),

1

2
c3,

1

2
c4,

1

2
c5

)
.

(S5)187

The removal treatment has no direct effect on logit(c1) = log(c1/(1− c1)), because we are simply turning some188

of the space occupied by potential competitors into bare panel, without changing 1 − c1. The same applies to189
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repeated application of this treatment. Let logit(c1)O and logit(c1)C denote the values of logit(c1) in the O and190

C treatments respectively, at the end of the experiment. Under the null hypothesis that potential competitor191

removal does not affect A. aurita,192

logit(c1)O − logit(c1)C = 0.193

However, if potential competitors have a negative effect on A. aurita, we expect194

logit(c1)O − logit(c1)C > 0.195

Similarly, if A. aurita has a negative effect on potential competitors, we expect196

logit(c3 + c4 + c5)A − logit(c3 + c4 + c5)C > 0.197

We therefore calculated the posterior distributions of the logit difference statistics logit(c1)O − logit(c1)C and198

logit(c3 + c4 + c5)A − logit(c3 + c4 + c5)C for each treatment combination at each depth. We plotted these199

distributions using kernel density estimates (obtained using the density() function in R with default param-200

eters). We calculated 95 % highest posterior density credible intervals using the hdr() function in R package201

hdrcde 3.4 (Hyndman, 2018).202

Removal treatments such as repeated application of fO (Equation S5) are settling processes (Pawlowsky-203

Glahn et al., 2015, section 9.3), which are not linear in the Aitchison geometry, even under the null response.204

The logit difference statistics which we use to measure the response, and models of community dynamics such205

as Equations S9 below, which determine whether responses are non-null, are also nonlinear in the Aitchison206

geometry. Nevertheless, the two-way manova model with interaction (Equation 2) can describe any pattern of207

variation in metric centres among treatments. Thus, our manova model can represent the outcome of removal208

treatments and resulting responses in community dynamics, but not the underlying mechanism.209

S8 Model for community dynamics including polyp growth on po-210

tential competitors211

In the main text, we do not include polyp growth on potential competitors, because this was very rarely212

observed in the experimental data (although it is common in some years). Here, we describe and analyze the213

basic properties of a model with a third state variable representing polyps on potential competitors (the model214

we specified before collecting data), because it may be useful for future work. We show that in this model, it is215

possible for potential competitors to have either a positive or a negative effect on the proportional population216

growth rate of polyps growing on potential competitors, depending on parameter values.217

To the model in the main text we add a third state variable, the density y2 of A. aurita polyps on potential218

competitors, per unit surface area of substrate (numbers L−2). We separate polyp density into those on substrate219

and those on potential competitors because polyps are able to settle on some organisms such as the ascidian220

8



Ascidiella aspersa and the bivalve Mytilus edulis. In this model, increases in the proportion of substrate filled221

by potential competitors could potentially have either a negative or a positive net effect on polyps, depending222

on the amount of new surface area created and the ability of polyps to settle on this new area.223

Our updated model is224

dx

dt
= a0 (1− x− δy1) + a1x (1− x− δy1) + a2x, (S6)225

dy1
dt

= b0 (1− x− δy1) + b1y1 (1− x− δy1) + b2y1 + b3y2(1− x− δy1), (S7)226

dy2
dt

= c0 (ψx− δy2) + c1y2 (ψx− δy2) + a2ψxy2 + c2y2 + c3y1 (ψx− δy2) . (S8)227

228

The processes included in this model are sketched in Figure S3.229

The dynamics of polyps on substrate (Equation S7) are the same as those of the basic model in the main text,230

apart from an additional term representing the contribution of budding by polyps on potential competitors to231

polyps on substrate, with proportional rate given by the positive parameter b3 (T−1). The dynamics of polyps on232

potential competitors (Equation S8) have the same general form as Equation S7, apart from two key differences.233

First, the surface area unoccupied by polyps on competitors per unit substrate surface area is given by ψx−δy2,234

where the positive parameter ψ (dimensionless) is the surface area available for occupation by polyps per unit235

substrate area occupied by potential competitors. The parameter ψ would be equal to 1 for a perfectly flat236

potential competitor, but will generally be greater than 1. For example, a hemispherical potential competitor237

would have ψ = 2, because such an organism with radius r would occupy πr2 units of substrate area, but create238

2πr2 units of surface area for settlement. Second, when a competitor dies, we assume that it falls from the239

substrate, taking any polyps on its surface with it. The term a2ψxy2 represents the resulting rate of decrease240

of polyp numbers on potential competitors per unit substrate area. Note that in order to keep track of total241

polyp numbers, y2 must be per unit substrate area, not per unit competitor surface area. This is because the242

loss of a competitor organism together with its associated polyps does not reduce the number of polyps per unit243

competitor surface area. The other parameters are the proportional rate of settlement of polyps on potential244

competitors (c0, positive, numbers L−2T−1), the proportional rate of increase of polyp number on potential245

competitors by budding of polyps on potential competitors (c1, positive, T−1), the proportional death rate of246

polyps on potential competitors (c2, negative, T−1), and the proportional rate of increase of polyps on potential247

competitors due to budding from polyps on substrate (c3, positive, T−1).248

We determine the signs of the elements of the community matrix for this model below (section S10).249

S9 Dimensionless form and community matrix for basic dynamic250

model251

Writing the basic model in an equivalent dimensionless form will reduce the number of parameters, and will252

also make it a more natural description of point-count data from experiments. The proportion of substrate253
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filled by potential competitors, x, is already dimensionless. Let y∗1 = δy1 be the proportion of substrate filled254

by polyps on the substrate. Let t∗ = tδb0 be a dimensionless time variable, scaled by the proportional rate at255

which polyps on substrate fill area by settlement. Substituting these dimensionless variables into Equations 3256

and 4, we obtain the dimensionless system257

dx

dt∗
= Π1(1− x− y∗1) + Π2x(1− x− y∗1) + Π3x,

dy∗1
dt∗

= (1− x− y∗1) + Π4y
∗
1(1− x− y∗1) + Π5y

∗
1 ,

(S9)258

with parameters Π1 = a0/(δb0) (positive, ratio of settlement rate by potential competitors to the proportional259

rate at which polyps on substrate fill area by settlement), Π2 = a1/(δb0) (positive, ratio of growth rate of260

potential competitors to the proportional rate at which polyps on substrate fill area by settlement), Π3 =261

a2/(δb0) (negative, ratio of death rate of potential competitors to the proportional rate at which polyps on262

substrate fill area by settlement), Π4 = b1/(δb0) (positive, ratio of polyp budding rate onto substrate by polyps263

on substrate to the proportional rate at which polyps on substrate fill area by settlement), Π5 = b2/(δb0)264

(negative, ratio of polyp death rate on substrate to the proportional rate at which polyps on substrate fill area265

by settlement).266

We measure interaction strengths using the community matrix of partial derivatives of proportional rates of267

change with respect to the dimensionless state variables. This is an appropriate choice of interaction strength268

measurement for our experiment, because it does not require the assumption of equilibrium (Laska and Wootton,269

1998). We include effects on settlement, because we want to measure the overall effects on proportional rates270

of change of relative abundances. However, if we wanted a measure of habitat quality alone, it would be more271

appropriate to exclude effects on settlement (Drake and Richards, 2018).272

Let f(x, y∗1) =
1

x

dx

dt∗
, g(x, y∗1) =

1

y∗1

dy∗1
dt∗

be the proportional rates of change of the dimensionless variables273

x, y∗1 . Then the community matrix C is274

C =


∂f

∂x

∂f

∂y∗1
∂g

∂x

∂g

∂y∗1


=

−Π1(1− y∗1)/x2 −Π2 −Π1/x−Π2

−1/y∗1 −Π4 −(1− x)/(y∗1)2 −Π4

 .

275

Now because 0 ≤ x ≤ 1, 0 ≤ y∗1 ≤ 1, 0 ≤ x + y∗1 ≤ 1, and Π3 is the only negative parameter appearing in the276

community matrix, the signs of the elements in the matrix are277

− −

− −

 . (S10)278

Thus, each group of organisms in the model has overall negative intra-group density dependence (diagonal279

elements), and potential competitors and polyps on substrate have negative effects on each other (elements280
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(1, 2) and (2, 1)).281

S10 Dimensionless form and community matrix for model including282

polyp growth on potential competitors283

We take the same approach to nondimensionalizing the model with polyp growth on potential competitors284

(section S8) as for the model in the main text. Let y∗2 = δy2 be the area filled by polyps on potential competitors285

per unit substrate area: this may be greater than 1, because ψ ≥ 1. Substituting this and the other dimensionless286

variables from the main text into Equations S6, S7 and S8, we obtain the dimensionless system287

dx

dt∗
= Π1(1− x− y∗1) + Π2x(1− x− y∗1) + Π3x,

dy∗1
dt∗

= (1− x− y∗1) + Π4y
∗
1(1− x− y∗1) + Π5y

∗
1 + Π6y

∗
2(1− x− y∗1),

dy∗2
dt∗

= Π7(ψx− y∗2) + Π8y
∗
2(ψx− y∗2) + Π3ψxy

∗
2 + Π9y

∗
2 + Π10y

∗
1(ψx− y∗2),

(S11)288

with parameters (in additionl to those in the main text) Π6 = b3/(δb0) (positive, ratio of polyp budding289

rate onto substrate by polyps on potential competitors to the proportional rate at which polyps on substrate290

fill area by settlement), Π7 = c0/b0 (positive, ratio of settlement rate of polyps on potential competitors to291

settlement rate of polyps on substrate), Π8 = c1/(δb0) (positive, ratio of polyp budding rate onto substrate by292

polyps on potential competitors to the proportional rate at which polyps on substrate fill area by settlement),293

Π9 = c2/(δb0) (negative, ratio of polyp death rate on potential competitors to the proportional rate at which294

polyps on substrate fill area by settlement) and Π10 = c3/(δb0) (positive, ratio of polyp budding rate onto295

potential competitors by polyps on substrate to the proportional rate at which polyps on substrate fill area by296

settlement).297

We use the community matrix to measure interaction strengths, as for the model in the main text, addition-298

ally defining h(x, y∗1 , y
∗
2) =

1

y∗2

dy∗2
dt∗

to be the proportional rate of change of the dimensionless variable y∗2 . Then299

the community matrix is300

C =


∂f

∂x

∂f

∂y∗1

∂f

∂y∗2
∂g

∂x

∂g

∂y∗1

∂g

∂y∗2
∂h

∂x

∂h

∂y∗1

∂h

∂y∗2



=


−Π1(1− y∗1)/x2 −Π2 −Π1/x−Π2 0

−(1 + Π6y
∗
2)/y∗1 −Π4 −(1− x)(1 + Π6y

∗
2)/(y∗1)2 −Π4 Π6(1− x− y∗1)/y∗1

ψ((Π7 + Π10y
∗
1)/y∗2 + Π3 + Π8) Π10(ψx− y∗2)/y∗2 −ψx(Π7 + Π10y

∗
1)/(y∗2)2 −Π8

 .

301

As in the main text, 0 ≤ x ≤ 1, 0 ≤ y∗1 ≤ 1, 0 ≤ y∗2 , 0 ≤ x+ y∗1 ≤ 1, 0 ≤ ψx− y∗2 ≤ 1, ψ ≥ 1, and Π3 is the only302
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negative parameter, so the signs of the elements in the matrix are303


− − 0

− − +

? + −

 .304

In addition to the effects discussed in the main text, polyps on substrate and polyps on potential competitors305

have positive effects on each other (elements (2, 3) and (3, 2)), and polyps on potential competitors have no306

direct effect on potential competitors (element (1, 3)). The sign of the effect of potential competitors on polyps307

growing on potential competitors (element (3, 1)) is unknown until parameter values are known. However, the308

sign does not depend on ψ, the surface area available for occupation by polyps per unit substrate area occupied309

by potential competitors, although the magnitude does. Furthermore, the sign is more likely to be negative if310

y∗2 , the area filled by polyps on potential competitors per unit substrate area, is large, the ratio Π7 of settlement311

rates of polyps on potential competitors to substrate is small, the ratio Π10 of polyp budding rate onto potential312

competitors by polyps on substrate the the proportional rate at which polyps on substrate fill area by settlement313

is small, the proportion y∗1 of substrate filled by polyps is small, the ratio Π3 of the (negative) death rate of314

potential competitors to the proportional rate at which polyps on substrate fill area by settlement is large,315

and the ratio Π8 of polyp budding rate onto substrate by polyps on potential competitors to the proportional316

rate at which polyps on substrate fill area by settlement is small. In other words, low input rates of polyps317

on potential competitors and a high death rate of potential competitors (both scaled relative to the rate of318

settlement on substrate), or a high density of polyps on potential competitors, are likely to result in a negative319

effect of potential competitors on polyps growing on potential competitors.320

S11 Community matrices for models with positive effects of polyps321

on potential competitors322

Here, we write models for community dynamics in which polyps may have positive effects on potential com-323

petitors in dimensionless form, and give the community matrices for each. For reference, the basic model324

is325

dx

dt∗
= Π1(1− x− y∗1) + Π2x(1− x− y∗1) + Π3x,

dy∗1
dt∗

= (1− x− y∗1) + Π4y
∗
1(1− x− y∗1) + Π5y

∗
1 ,

(S12)326

Dimensionless parameters that are not new are as in Equation S12, and community matrices are obtained as in327

the main text. In all cases, the signs of the elements in the community matrix are328

− ?

− −

 ,329
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with the effect of polyps on potential competitors positive for some but not all compositions and parameter330

values. We give the condition for c1,2 > 0 in each model.331

S11.1 Facilitation of settlement332

For reference, the model with facilitation of settlement is333

dx

dt
= (a0 +m0δy1) (1− x− δy1) + a1x (1− x− δy1) + a2x. (S13)334

The dimensionless form of Equation S13 is335

dx

dt∗
= (Π1 + Π11y

∗
1)(1− x− y∗1) + Π2x(1− x− y∗1) + Π3x,336

where Π11 = m0/(δb0) > 0. The community matrix is337

C =

−(Π1 + Π11y
∗
1)(1− y∗1)/x2 −Π2 −Π1/x−Π2 + (Π11/x)(1− x− 2y∗1)

−1/y∗1 −Π4 −(1− x)/(y∗1)2 −Π4

338

with c1,2 > 0 if Π11(1− x− 2y∗1) > Π1 + Π2x.339

S11.2 Facilitation of growth340

For reference, the model for facilitation of growth is341

dx

dt
= a0 (1− x− δy1) + (a1 +m1δy1)x (1− x− δy1) + a2x. (S14)342

The dimensionless form of Equation S14 is343

dx

dt∗
= Π1(1− x− y∗1) + (Π2 + Π12y

∗
1)x(1− x− y∗1) + Π3x,344

where Π12 = m1/(δb0) > 0. The community matrix is345

C =

−Π1(1− y∗1)/x2 −Π2 −Π12y
∗
1 −Π1/x−Π2 + Π12(1− x)− 2Π12y

∗
1

−1/y∗1 −Π4 −(1− x)/(y∗1)2 −Π4

346

with c1,2 > 0 if Π12(1− x− 2y∗1) > Π1/x+ Π2.347
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S11.3 Overgrowth of polyps by potential competitors348

For reference, the model for overgrowth of polyps by potential competitors is349

dx

dt
= a0 (1− x− δy1) + a1x (1− x− δy1) + a1,y1xy1 + a2x, (S15)350

dy1
dt

= b0 (1− x− δy1) + b1y1 (1− x− δy1)− a1,y1
δ

xy1 + b2y1. (S16)351

352

The dimensionless form of Equations S15 and S16 is353

dx

dt∗
= Π1 (1− x− y∗1) + Π2x (1− x− y∗1) + Π13xy

∗
1 + Π3x,

dy∗1
dt∗

= (1− x− y∗1) + Π4y
∗
1 (1− x− y∗1)−Π13xy

∗
1 + Π5y

∗
1 ,

354

where Π13 = a1,y∗1 /(δb0) > 0. The community matrix is355

C =

−Π1(1− y∗1)/x2 −Π2 −Π1/x−Π2 + Π13

−1/y∗1 −Π4 −Π13 −(1− x)/(y∗1)2 −Π4

356

with c1,2 > 0 if Π13 > Π1/x+ Π2.357

S11.4 Protection from predators358

For reference, the model for protection from predators is359

dx

dt
= a0 (1− x− δy1) + a1x (1− x− δy1) + a2e

−m2δy1x. (S17)360

The dimensionless form of Equation S17 is361

dx

dt∗
= Π1 (1− x− y∗1) + Π2x (1− x− y∗1) + Π3e

−m2y
∗
1x,362

where m2 is already dimensionless. The community matrix is363

C =

−Π1(1− y∗1)/x2 −Π2 −Π1/x−Π2 −m2Π3e
−m2y

∗
1

−1/y∗1 −Π4 −(1− x)/(y∗1)2 −Π4

 ,364

with c1,2 > 0 if −m2Π3e
−m2y

∗
1 > Π1/x+ Π2 (note that Π3 < 0).365

S12 Fitting dynamic models to experimental data366

We fitted versions of Equations 3 and 4, with each of the modifications in section 2.3.2 in turn, to the experi-367

mental data from all weeks and panels. As explained below, our underlying model for dynamics is deterministic,368

so we will only obtain a caricature of the true dynamics. Nevertheless, this will give a qualitative understanding369
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of the interactions in the community. We wrote Equations 3 and 4 in terms of proportions of space occupied, x370

and y∗1 , but retained time in dimensioned form (measured in weeks since panels were put in the water). Thus371

the basic model is:372

dx

dt
= a0 (1− x− y∗1) + a1x (1− x− y∗1) + a2x, (S18)373

dy∗1
dt

= δb0 (1− x− y∗1) + b1y
∗
1 (1− x− y∗1) + b2y

∗
1 . (S19)374

375

In the version with overgrowth of polyps by potential competitors, the overgrowth effect is then +a1,y∗1xy
∗
1 in376

dx

dt
, and −a1,y∗1xy

∗
1 in

dy∗1
dt

, where a1,y∗1 = a1,y1/δ.377

Let y
(3)
jkl,t be the point counts of A. aurita on panel, bare panel and potential competitors (Botrylloides spp.,378

Bugula spp and M. tubifera, as in the models for final composition, but amalgamated into a single part) on the379

panel from depth j, treatment k, block l at time t, pre-treatment in those cases where a treatment was applied.380

We model these counts using:381

y
(3)
jkl,t ∼ multinomial(n

(3)
jkl,t,ρ

(3)
jkl,t), (S20)382

ρ
(3)
jkl,t =


y∗1,jkl(t)

1− xjkl(t)− y∗1,jkl(t)

xjkl(t)

 , (S21)383

384

where xjkl(t) and y∗1,jkl(t) are the solutions to Equations S18 and S19 (or modified versions as in section 2.3.2)385

for the panel with depth j, treatment k in block l, obtained using a fourth and fifth order Runge-Kutta method,386

with initial conditions xjkl(0) = 0, y∗1,jkl(0) = 0 (the empty panel). We estimated all the parameters (other387

than removal effects, as described below) separately at depths 1 m and 3 m.388

We did not include block and panel effects. These should really be the outcome of block- and panel-specific389

temporal variation in parameters such as settlement and growth rates in a stochastic differential equation version390

of Equations S18 and S19. We did not attempt to fit such a model because it presents substantial technical391

difficulties. First, each parameter has a fixed sign (for example, settlement rates a0 and δb0 must always be392

positive). Care must be taken to respect such conditions when specifying a stochastic differential equation.393

The usual stochastic differential equation models for community dynamics avoid the problem by allowing only394

proportional population growth rates at low density (which do not have a sign constraint) to be stochastic395

(Kloeden and Platen, 1999, p. 254). Second, we cannot obtain an explicit solution for a stochastic differential396

equation version of Equations S18 and S19, and would therefore have to rely on numerical methods such as397

the Euler-Maruyama algorithm. However, if the time steps in such a method are small, standard Markov chain398

methods for Bayesian estimation can converge arbitrarily slowly, and although alternative algorithms exist399

(Fuchs, 2013, section 7.3), they cannot be implemented in Stan, and dealing with the experimental design in400

existing software designed for estimating parameters of stochastic differential equations appears difficult. With401

large time steps, estimation bias may be substantial, and there is a risk that the estimated composition might402
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fall outside the simplex. These problems are not insoluble, but are outside the scope of this paper.403

Where a treatment was applied, we model the post-treatment counts y
(3)
jkl,t,post as404

y
(3)
jkt,post ∼ multinomial(n

(3)
jkt,post,ρ

(3)
jkt,post), (S22)405

ρ
(3)
jkt,post =


(1− rA1A,jkt)y

∗
1(t)

1− (1− rO1O,jkt)x(t)− (1− rA1A,jkt)y
∗
1(t)

(1− rO1O,jkt)x(t)

 , (S23)406

407

where 1A,jkt and 1O,jkt are indicator variables for the application of treatments A and O respectively on408

the panel from treatment k, depth j, time t, and rA and rO are the proportions of A. aurita and potential409

competitors removed in the A and O treatments respectively (both intended to be 1/2, and the same at both410

depths). If a treatment was applied, we used the post-treatment state to initialize the differential equation411

solver for the next time interval.412

We fitted each version of the dynamic model using cmdstan 2.25.0 (Hoffman and Gelman, 2014; Carpenter413

et al., 2017). Priors are described in the supporting information, section S13. Fitting, checking, calibration and414

model comparison using approximate leave-one-out cross-validation are described in the supporting information,415

section S14.416

S13 Priors for models of community dynamics417

In models for community dynamics, all parameters other than rA and rO were estimated separately at each418

depth. Priors were generally based on some biological knowledge from previous experiments. We used the same419

priors at both depths because we did not have strong prior knowledge of how each parameter might depend on420

depth.421

The proportional population growth rate of A. aurita polyps at low density in the absence of settlement is422

b1 − b2. From a lab experiment conducted in winter, with ample food and a low density of polyps, this was423

estimated as 0.1 week−1, with a standard deviation of 0.06 week−1 (data from 9 tanks at ambient temperature,424

Goggins, 2018). Previous experiments with similar settlement panels at the same site suggest that few A.425

aurita polyps will be visible until panels have been in the water for at least 2 weeks, and that A. aurita polyps426

might cover about 0.05 of the available space after 5 weeks (Maxatova, 2016). A positive half-normal N(0, 0.02)427

prior for δb0 (these two parameters only appear as a product in this form of the model), together with positive428

half-normal N(0, 0, 0.2) for b1 and negative half-normal N(0, 0.05) for b2 gives a distribution for b1 − b2 with429

mean 0.1, standard deviation 0.1, and a distribution of trajectories that is consistent with previous experiments430

(Figure S4a).431

Settlement and growth rates of potential competitors may be somewhat higher than those of A. aurita.432

In a previous experiment, potential competitors filled a mean of 0.06 of the available space after 1 week, and433

mean 0.24, range 0.04 to 0.97 after 5 weeks (Maxatova, 2016). A positive half-normal N(0, 0.05) prior for a0,434
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positive half-normal N(0, 1) for a1 and negative half-normal N(0, 0.05) for a2 gives mean 0.06 after 1 week, and435

proportional cover over almost the entire range from 0 to 1 (with mean 0.42) after 5 weeks (Figure S4c).436

In the removal treatments, we aimed to remove half of the target taxon. However, this was done by eye, so437

the actual proportion removed may differ. We treated rA and rO as parameters to be estimated, with beta(2, 2)438

priors, which are moderately concentrated around 1/2. We did not allow rA and rO to differ between depths,439

because we have no reason to believe that the proportions removed will depend on depth.440

In the settlement facilitation model, it seems plausible that facilitation might double the settlement rate of441

potential competitors when polyps are very abundant (i.e. y∗1 close to 1), so m0 could be of similar size to a0.442

We therefore chose a positive half-normal N(0, 0.05) prior for m0. In the growth facilitation model, it seems443

plausible that facilitation might double the proportional growth rate of potential competitors when polyps are444

very abundant, so m1 could be of a similar size to a1. We therefore chose a positive half-normal N(0, 1) prior445

for m1. In the overgrowth model, it seems plausible that the rate at which potential competitors overgrow space446

occupied by polyps might be similar to the rate at which they grow into empty space, so a1,y∗1 could be of a447

similar size to a1. We therefore chose a positive half-normal N(0, 1) prior for a1,y∗1 . In the protection model, it448

seems plausible that protection might halve the proportional death rate of potential competitors when polyps449

are very abundant, so that e−m2 = 1/2 should be a plausible value. This corresponds to m2 = − log(1/2). We450

therefore chose a positive half-normal N(0,−(1/2) log(1/2)) prior for m2.451

S14 Fitting, checking, calibration and model comparison for models452

of community dynamics453

We fitted each version of the dynamic model using cmdstan 2.25.0 (Hoffman and Gelman, 2014; Carpenter454

et al., 2017). We ran 4 chains for 2500 warmup and 2500 samping iterations. This took up to 7546 s on a 64-bit455

Ubuntu 18.04 system wih 4 Intel Xeon 3.2 GHz cores and 16 GiB RAM. Effective sample sizes were always at456

least 1572, potential scale reduction factors were always no greater than 1.0026, and inspection of trace plots457

did not reveal any evidence of failures to converge. Processing and visualization of samples from the posterior458

was done in R version 4.0.3 (R Core Team, 2020), with the packages rstan 2.21.2 (Stan Development Team,459

2020) and compositions 2.0-0 (van den Boogaart et al., 2020).460

We compared models using approximate leave-one-out cross-validation (Vehtari et al., 2017). Because we461

did not include block or panel effects, this could be done directly using Pareto-smoothed importance sampling462

via the function loo_compare() in the R package loo 2.4.1 (Vehtari et al., 2020).463

We carried out a graphical posterior predictive check for the best-fitting version of the dynamic model. We464

generated 100 simulated data sets drawn from the multinomial distribution for each time point on each panel,465

given by Equations S20 and S21 in the main text, plotted the time series of simulated observations, and visually466

compared with the time series of real observations.467

We checked for gross errors in coding and obtained a rough estimate of performance of the estimation method468
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by fitting the best-performing model to 10 data sets simulated under this best-performing model, with the same469

structure (number of replicates, pattern of sampling and treatment applications, multinomial sample sizes) as the470

real data. Simulated counts were generated from Equations S20, S21 S22 and S23 in the main text. The model471

was fitted to each simulated data set in exactly the same way as for the real data set. This took approximately472

10.5 h on a 64-bit Ubuntu 18.04 system wih 4 Intel Xeon 3.2 GHz cores and 16 GiB RAM. We plotted the473

true parameter values, prior densities, and posterior densities from each simulated data set, and recorded the474

number of simulated data sets for which the estimated 95% HPD interval included the true parameter value.475

Unlike simulation-based calibration, this approach cannot tell us whether the method is correctly sampling476

from the posterior distribution for each parameter, because the true posterior densities are unknown. However,477

simulation-based calibration would have been too time-consuming for this model. Nevertheless, gross errors478

may be revealed by implausible posterior densities. If the proportion of simulated data sets for which the 95%479

HPD interval includes the true parameter value is low, possible interpretations include biased sampling from480

the posterior or a strong influence of the prior.481
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Table S1: Manova parameter estimates for the selected model (with no interaction): overall mean µ, depth
effect α, removal treatment effects β1, β2, rows of lower triangle of panel covariance matrix Σ, rows of lower
triangle of block covariance matrix Z. Columns are ilr coordinates. Each cell contains the posterior mean,
with marginal 95 % credible highest density regions in parentheses. For some elements of Z, the highest density
region consists of multiple disjoint intervals.

1 2 3 4
µ -2.00 (-2.27, -1.72) -1.18 (-1.64, -0.71) 0.36 (0.00, 0.72) -1.33 (-1.68, -0.99)
α 0.22 (0.08, 0.36) -1.59 (-1.85, -1.34) 0.31 (0.07, 0.54) 0.29 (0.02, 0.55)
β1 0.29 (0.13, 0.45) -1.33 (-1.64, -1.03) -0.16 (-0.44, 0.13) -0.02 (-0.36, 0.31)
β2 0.07 (-0.12, 0.27) 1.08 (0.74, 1.41) 0.21 (-0.09, 0.51) -0.14 (-0.49, 0.20)
σ1 0.10 (0.00, 0.21)
σ2 -0.02 (-0.16, 0.10) 0.64 (0.23, 1.04)
σ3 0.10 (-0.01, 0.22) -0.08 (-0.31, 0.15) 0.43 (0.11, 0.76)
σ4 0.02 (-0.10, 0.15) 0.25 (-0.03, 0.53) 0.10 (-0.14, 0.35) 0.66 (0.26, 1.08)
ζ1 0.13 (-0.02, 0.36)
ζ2 -0.03 (-0.20, 0.12) 0.36 (-0.18, 0.96)
ζ3 0.04 (-0.05, 0.17) 0.01 (-0.15, 0.19) 0.14 (-0.02, 0.46)
ζ4 -0.01 (-0.10, 0.07) 0.03 (-0.12, 0.20) 0.00 (-0.09, 0.10) 0.10 (-0.01, 0.35)
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Figure S1: Prior for the depth effect on final subcomposition in ilr coordinates, α (orange), and the posterior
distribution of the difference in subcomposition between dock wall communities at 3 m and 1 m from Chong
and Spencer (2018), on which it was based (green). Diagonal panels are kernel density estimates for individual
components, and off-diagonal panels are pairwise scatter plots of pairs of components. Both based on samples
of size 20000.
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Figure S2: Choice of scale factor c for covariance matrix cI4 of scraping treatment effects, scraping treatment
by depth interaction and block effects. Each line represents a change corresponding to multiplying or dividing
a single component by 2 (green), 3 (orange), 4 (purple) or 5 (pink). The y-axis is the probability of drawing a
random vector at least as far from the origin as this, for scale factor c on the x-axis.
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free space

x potential competitors

y1 A. aurita polyps on substrate

y2 A. aurita polyps on potential competitors

ao settlement

a2 death

bo settlement

b2 death

a1 growth

b1 budding

c1 budding

c2 death

c0 settlement

b3 budding

c3 budding

Figure S3: A model for the dynamics of polyps and potential competitors, including polyps growing on potential
competitors, as in Equations S6, S7 and S8.
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Figure S4: Prior distribution for time series of proportions of space filled by (a) A. aurita, (b) bare panel and (c)
potential competitors, from the model specified by Equations S12 (with time redimensionalized by multiplying
by the polyp settlement rate δb0). Each of the 100 lines on each panel represents a simulated time series for a
single draw from the priors.

26



4
6

8
10

date

ox
yg

en
m

g 
l−1

2019−07−30 2019−08−13 2019−08−27 2019−09−10 2019−09−24

a
1 m
3 m

17
18

19
20

date

te
m

pe
ra

tu
re

°C

2019−07−30 2019−08−13 2019−08−27 2019−09−10 2019−09−24

b

24
.0

24
.4

24
.8

date

sa
lin

ity
/p

su

2019−07−30 2019−08−13 2019−08−27 2019−09−10 2019−09−24

c

Figure S5: Dissolved oxygen (a, mg l−1), temperature (b, ◦C) and salinity (c, psu) at 1 m (dashed lines) and
3 m (solid lines) over the course of the experiment. Ther were no salinity data on 2019-08-27.
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A. aurita Bare panel

gm(potential competitors)

Σ
Z

Figure S6: Visualization of panel (Σ, green) and block (Z, orange) covariance submatrices. Ellipses of unit
Mahalanobis distance from the origin in the submatrix corresponding to the first two ilr coordinates, back-
transformed into the 2-simplex with parts representing A. aurita, bare panel and gm(potential competitors).
Samples of 100 ellipses from posterior distributions.

28



Botrylloides spp. Bugula spp.

Molgula tubifera

Σ
Z

Figure S7: Visualization of panel (Σ, green) and block (Z, orange) covariance submatrices. Ellipses of unit
Mahalanobis distance from the origin in the submatrix corresponding to the third and fourth ilr coordinates,
back-transformed into the 2-simplex with parts representing potential competitors. Samples of 100 ellipses from
posterior distributions.
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A. auri ta bare panel

potential competitors

(a): overgrowth, 1 m

A. auri ta bare panel

potential competitors

(b): overgrowth, 3 m

A. auri ta bare panel

potential competitors

(c): protection, 1 m

A. auri ta bare panel

potential competitors

(d): protection, 3 m

A. auri ta bare panel

potential competitors

(e): basic, 1 m

A. auri ta bare panel

potential competitors

(f): basic, 3 m

A. auri ta bare panel

potential competitors

(g): settlement facilitation, 1 m

A. auri ta bare panel

potential competitors

(h): settlement facilitation, 3 m

A. auri ta bare panel

potential competitors

(i): growth facilitation, 1 m

A. auri ta bare panel

potential competitors

(j): growth facilitation, 3 m

−100

−50

0

50

100

Figure S8: Effect c1,2 of A. aurita polyps on proportional growth rate of potential competitors (colours represent
posterior mean effects: positive blue, negative red, truncated at ±100) in the overgrowth (a, b), protection (c,
d), basic (e, f), settlement facilitation (g, h) and growth facilitation (i, j) models, at 1 m (a, c, e, g, i) and 3 m
(b, d, f, h, j). Models are ordered by elpdloo, with the best model (overgrowth) at the top. Lines are posterior
mean trajectories for typical panels. Dashed lines represent panels at 1 m, solid lines panels at 3 m. Line colours
represent treatments: control (C) green, A. aurita removal (A) orange, potential competitor removal (O) purple.
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Figure S9: Apparent overgrowth of A. aurita polyps (small white translucent objects) by a colony of Botrylloides
sp. (right, yellow). Some polyps can be seen apparently partially underneath the translucent margin of the
colony. This is a closeup of the lower right corner of panel 3 (1 m depth, potential competitor removal treatment,
2019-09-24, pre-treatment, for which the whole panel is shown in Figure 2b in the main text.
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Figure S10: Modelled time series (basic model) for proportional cover of (a) A. aurita, (b) bare panel and (c)
potential competitors. Each line is the posterior mean for a typical panel from a combination of treatment
and depth. Dashed lines represent panels at 1 m, and solid lines panels at 3 m. Colours represent treatments:
control (C) green, A. aurita removal (A) orange, potential competitor removal (O) purple. 95 % highest posterior
density credible bands are shown, but are usually too narrow to be visible. Panels were put in the water on
2019-07-30.
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Figure S11: Modelled time series (model with settlement facilitation) for proportional cover of (a) A. aurita, (b)
bare panel and (c) potential competitors. Each line is the posterior mean for a typical panel from a combination
of treatment and depth. Dashed lines represent panels at 1 m, and solid lines panels at 3 m. Colours represent
treatments: control (C) green, A. aurita removal (A) orange, potential competitor removal (O) purple. 95 %
highest posterior density credible bands are shown, but are usually too narrow to be visible. Panels were put
in the water on 2019-07-30.
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Figure S12: Modelled time series (model with growth facilitation) for proportional cover of (a) A. aurita, (b)
bare panel and (c) potential competitors. Each line is the posterior mean for a typical panel from a combination
of treatment and depth. Dashed lines represent panels at 1 m, and solid lines panels at 3 m. Colours represent
treatments: control (C) green, A. aurita removal (A) orange, potential competitor removal (O) purple. 95 %
credible bands are shown, but are usually too narrow to be visible. Panels were put in the water on 2019-07-30.
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Figure S13: Modelled time series (model with protection from predators) for proportional cover of (a) A.
aurita, (b) bare panel and (c) potential competitors. Each line is the posterior mean for a typical panel from
a combination of treatment and depth. Dashed lines represent panels at 1 m, and solid lines panels at 3 m.
Colours represent treatments: control (C) green, A. aurita removal (A) orange, potential competitor removal
(O) purple. 95 % credible bands are shown, but are usually too narrow to be visible. Panels were put in the
water on 2019-07-30.
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Figure S14: Comparison between post-treatment and pre-treatment sample proportions of space filled by A.
aurita on panels from the A (A. aurita removal) treatment on each sample date. Each point represents a
single panel from the A treatment in a given week. Lines have slopes 1 − rA and represent predictions from
each dynamic model, with 95 % highest posterior density credible bands. Open circles are from 1 m, and filled
circles from 3 m. Predictions from all models other than overgrowth are essentially indistinguishable and give
overlapping lines. No post-treatment samples were taken on the first sample date because no A. aurita were
observed.
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Figure S15: Comparison between post-treatment and pre-treatment sample proportions of space filled by poten-
tial competitors on panels from the A (A. aurita removal) treatment on each sample date. Each point represents
a single panel from the A treatment in a given week, and the line has intercept 0, slope 1. Open circles are from
1 m, and filled circles from 3 m. No post-treatment samples were taken on the first sample date because no A.
aurita were observed.
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Figure S16: Posterior predictive simulation from the overgrowth model for proportional cover of (a) A. aurita,
(b) bare panel and (c) potential competitors. Each line is a single posterior predictive simulation for a single
panel, with parameters drawn from their posterior distributions, and observations generated by multinomial
sampling. Dashed lines represent panels at 1 m, and solid lines panels at 3 m. Colours represent treatments:
control (C) green, A. aurita removal (A) orange, potential competitor removal (O) purple. 100 simulated data
sets are shown. Lines are drawn partially transparent, so that regions with more intense colour represent higher
posterior predictive density.
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Figure S17: Performance of the overgrowth model on simulated data sets. Each panel represents a single
parameter at a single depth, as labelled on the x-axis. Green vertical lines: true parameter values (posterior
mean estimates from the real data, overgrowth model). Orange dashed lines: prior densities. Thin grey lines:
posterior densities from each of 10 simulated data sets simulated under the overgrowth model, with the same
structure as the real data. Numbers on panels: proportion of simulated data sets for which the posterior 95%
HPD interval for the parameter contained the true value. The parameters kA and kO in panels o and p are the
proportions not removed, 1 − rA and 1 − kA respectively. Note that both x- and y-axis scales differ between
panels.
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