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S1 Refractory Period and Stochastic Error

A Poisson process assumes an exponential distribution of inter-visit intervals (IVIs), which

is a specific formulation of the gamma distribution. The gamma distribution can be

described by two parameters α and β; in an exponential distribution the α parameter is

fixed to 1 (Figure S1A). This results in a modal IVI of 0. When observing such a process

for a certain observation period (t), the mean number of observations (ȳ) is calculated as

ȳ =
t

µ
(S1)

, where µ is the mean IVI. The stochastic error (σy) is

σy =
t

αµ
(S2)

. Thus when α = 1, as under a Poisson process, then the stochastic error is equal to the

mean. This corresponds to a Poisson distribution of observations (Figure S1B).

In many scenarios it seems likely that the probability of very short IVIs would be low (i.e.

modal IVI > 0), for example if there is a minimum realistic time in which a bird could

find food. This can be described as there being a refractory period. Such distribution of

IVIs would be described by a gamma distribution where α > 1. Therefore, for the same

µ (and ȳ), as α increases, the stochastic error decreases (Figure S1A). α describes the

refractory period in terms of the expected interval length. When α = 2 the refractory

period is an average IVI long, and when α = 3 the refractory period is 2 IVIs long, etc.

The refractory period itself can be more intuitively thought of as the mode of the gamma

distribution, ((α− 1)/β), as this given a quantification in terms of a time period.

Using simulated data, we can demonstrate how stochastic error decreases with the pres-

ence of a refractory period, when the mean, and so observed number of visits, remains

constant. We simulated visit data from a gamma distribution, with a mean IVI (µ) of
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5 minutes, varying α. Assuming a total observation time (t) of 90 minutes, we counted

all visits from intervals whose cumulative sum was less than or equal to 90, and repeated

this 100 times to create 100 observations. Figure S1 shows the gamma distribution from

which the intervals were simulated (Figure S1A) and the resulting the number of obser-

vations (Figure S1B). The mean number of observations is constant (here 18), regardless

of the changing α, whilst the stochastic error decreases as a function of α (Figure S1D).

This process can be easily described with the Tweedie distribution, the variance of which

is defined as

σy = φȳξ (S3)

Therefore when ξ = 1 and φ = 1/α, the Tweedie distribution can be used to estimate the

stochastic error. This is shown in Figure S1C.

For this to be used a population level α would have to be estimated and specified in the

model. If the model was allowed to estimate φ, then it would include any residual or

over-dispersion variance, and so would not be able to be used to estimate α.

In the main text, we mention that if the refractory period, and so α, is small then assuming

Poisson distributed error results in less bias in effect size estimation than assuming no

stochastic error. As the stochastic error is scaled by 1/α, we can see that when 1 ≤ α < 2,

the stochastic error will be closer to Poisson distributed error than zero, whilst if α > 2

assuming no Poisson-distributed stochastic error would induce less bias than assuming

Poisson-distributed stochastic error (although would still result in the underestimation of

effect sizes). As can be seen from Figure S1A, when α > 2 the refractory period is quite

pronounced; this is not the case in distributions of inter-visit intervals from published

studies (see text for references).
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Figure S1: Effect of a refractory period on Poisson-distributed stochastic error. A) shows

the gamma distributions from which inter-visit intervals were simulated, with varying

values of alpha. B) shows the corresponding distributions of observation numbers from

sampling these distributions over a 90 minute period. C) shows the probability density

function from a Tweedie distribution that would best describe the distribution of counts

arising from these gamma distributions of IVIs. D) shows the relationship between al-

pha and the resulting stochastic error; the points are from the simulated datasets, line

represent theoretical expectations.
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S2 Demonstrating provisioning as a Poisson process

using the data of Lendvai et al. 2015

In a recent study, Lendvai et al. (2015) demonstrated that, as observation periods in-

crease, the correlation between number of visits in the observations and in the whole day

increases. We can use this data (Lendvai et al. 2015 Supplementary Materials) to further

demonstrate how provisioning data matches the assumptions a Poisson process. Lendvai

et al. (2015) measured provisioning over the course of a whole day, broken up into the

number of visits per 15 minute period. We subset their data to include records from

10:30 to 20:45; we discarded data before this time period, as there was a high proportion

of individuals with missing data, and after this time as most individuals had stopped

provisioning (Fig S2A and B). This left us with 41, 15 minute observation periods, of 128

individuals.

With this data set we combined adjacent 15 minute time blocks to create new, longer,

observation periods, i.e. to make 30 minute observations, we combined pairs of adjacent

time blocks to make 20 new 30 minute time blocks. We did this to create observation

periods increasing in length by 15 minutes, up to 615 minutes (i.e. 41 *15 minutes).

Depending on the length of the observation period, we could not use all the time blocks

(i.e. if the length of the new observation period did not divide exactly into 615 minutes).

We therefore preferentially took observation from the latter part the day, as there were

less missing values here (see Figure S2C).

To calculate the observed coefficient of variation (CV = σy/ȳ), for each observation period

we pooled the new data and calculated CV across this data. Using the observed CV

(CVobs) and mean (ȳ) across different observation periods, we estimated the expected CV
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(CVexp) using a nonlinear model with the nls function in R with the form

CVobs =

√
ȳ + (ȳCVexp)2

ȳ
(S4)

The predictions from this model are plotted in Figure 2B.

To calculate repeatability, we use these new observation periods as repeated measures,

and calculated repeatability across the new data, in a linear mixed model, with individual

ID as a random effect, using the lme4 package in R (Bates et al., 2015). Repeatability

was then calculated as individual variance / (individual variance + residual variance).

This was only possible for observation periods up to 300 mins, as at least two time blocks

were needed to estimate repeatability. Using the observed repeatability (ICCobs), mean

(ȳ) across different observation periods and the expected CV (CVexp) as calculated above,

we estimated the true repeatability (ICC) using a nonlinear model with the form

ICCobs =
ICCȳCV 2

exp

1 + ȳCV 2
exp

(S5)

The predictions from this model are plotted in Figure 2D.
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Figure S2: Selection and manipulation of data from Lendvai et al. 2015. A) and B) show

time periods that were excluded because of A) high level of missing data and B) high level

of individuals that had stopped provisioning. Red points are those that were excluded.

Black dotted line shows total number of individuals. C) shows how new observation

periods were made; the red and yellow line shows that 15 minute observation periods,

and the blue and green line show how there were combined to make longer observation

periods.
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S4 Simulations

We ran simulations to demonstrate the difference between analysing provisioning rate

when correcting and not correcting for Poisson-distributed stochastic error, with provi-

sioning rate as both response and predictor variables, across different mean number of

observed visits. For each mean, we simulated a dataset of 100 observations of provisioning

rate with an expected CV of 0.3. For provisioning as a response variable, we simulated

provisioning rate being affected by a single variable, which accounted to 50% of varia-

tion in provisioning rate on the expected scale (R2 = 0.5). We ran two models; a linear

model and a GLMM with Poisson error distribution and observation level random effect,

the latter using the lme4 package in R (Bates et al., 2015). Both models included the

observed number of visits as a response variable. For provisioning as a predictor variable,

we simulated provisioning rate explaining 50% of variation in a another variable, on the

expected scale (R2 = 0.5). Again we ran two models; a linear model and a measurement

error model, the latter using Stan (Carpenter et al., 2017). Both models had number

of visits as a predictor variable, but the measurement error model accounted for the

uncertainty in observed number of visits. In both cases R2 was calculated as

σ2
f

σ2
f + σ2

r

(S6)

where σ2
f is the variance due to the fixed effects calculated following Nakagawa & Schielzeth

(2013) and σ2
r is the residual variance, which in the GLMM was the variance associated

with the observation level random effect. All code for these simulations can be found at

https://doi.org/10.5281/zenodo.7439115.

In order to explore the conditions under which we might see increased bias and lower

precision, we again simulated provisioning rate as a response variable, being affected by

a single variable, with an R2 of 0.5 (θ). In these simulations we also varied the expected

CV. For each expected CV and mean combination we simulated 1000 datasets, of 100

24

https://doi.org/10.5281/zenodo.7439115


No Bias, High Precision

●

●

●

●

●

Biased, High Precision

●

● ● ●

●

No Bias, Low Precision

●

●

●

●

●

Biased, Low Precision

●

●

●

●

●

Figure S3: Bias and Precision

observations. For each dataset, we ran a GLMM with Poisson error distribution and

observation level random effect, and estimated R2 (θ̂). Bias was calculated as θ − E(θ̂),

precision as 1/σθ̂. Bias is measure of whether, and how much, estimates differ from the

true value, whilst precision is a measure of variability in the estimates. This is shown

graphically in Figure S3

For these latter simulations, we also calculated expected CV from the simulated datasets,

following the equations in Box 2 to explore the conditions under which expected CV

cannot be calculated, shown in Figure II.
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S5 Calculating CV of expected rates

To calculate the expected CV, we can use the mean (ȳ) and variance of the observed

number of arrivals (σ2
y) in a population:

CVexp =

√
σ2
y − ȳ
ȳ

(S7)

This formula works specifically for observations of the same length. When observation

periods differ this can be accounted for by removing the variation due to observation

period (t)

ŷ = yt̄/t (S8)

where ŷ is the adjusted arrival rate. Here we have derived a rate, but importantly we

have kept the mean number of visits the same. ŷ can then be substituted into equation

3, in place of y.

Once the number of observed arrivals are transformed to a different scale (e.g. the number

of arrivals is standardised to arrivals/hour) equation S7 is no longer valid, as Poisson

distributed stochastic error does not scale in the same way as the expected variance in

arrival rates. Therefore, the mean no longer represents the stochastic variance. Imagine

a 120 min observation period with a mean of 20± 8 arrivals; the expected CV would be

calculated as 0.332. However, when transformed to arrivals/hour, the mean±SD becomes

10±4 arrivals/hour, and expected CV is calculated as 0.245, as we are overestimating the

amount of Poisson sampling error. In order to estimate the true expected CV, the mean

and SD of number of observed arrivals should therefore be back transformed to the scale

on which the data was collected (i.e. by multiplying by the mean observation period;

t̄). This allows us to see why using rates instead of observed counts in a Poisson models

results in an under- or overestimation of effect size. The model estimates the stochastic

error based on the counts it is presented with. When the scale is changed, the model does
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this incorrectly - if the counts are smaller than those observed, as in the example above,

the stochastic error is overestimated, and so are effect sizes (Supplementary Material S6).

It is also important to note that when the mean number of observed visits is low, the

estimation of expected CV may not be possible. As the variance is so dominated by

stochastic error, random fluctuations in this error (induced by sampling error) can lead

to the mean being larger than the variance meaning that σ2
y − ȳ is negative. We can see

this pattern in both simulated data, and in data from the literature review (Figure S4).

Moreover, this is likely why we see an upward bias in effect size occur in the Poisson

models, as the residual (i.e. expected) variance is underestimated.
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Figure S4: The proportion of samples in which the mean is greater than the variance

declines with increasing mean number of observed arrivals, in both A) simulated and

B) observed data (from literature review). In B) the mean number of observed arrivals

is rounded to the nearest integer. See Supplementary Material S5 for further details of

simulations.
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S6 Tutorial - Analysing Provisioning Data

Data for this tutorial is included in supplementary files S7, S8 and S9.

S6.1 Exploring Provisioning Rate

Imagine we have collected some provisioning data; we observed 100 nests, each 3 times

for 2 hours. Using R, lets find out some properties of this provisioning data (id is the

nest ID, visits is the number of visits observed and time is the observation time)

data_ICC <- read.csv("S7_data_ICC.csv")

head(data_ICC)

## id visits time

## 1 1 24 2

## 2 1 13 2

## 3 1 24 2

## 4 2 23 2

## 5 2 13 2

## 6 2 27 2

plot(table(data_ICC$visits), xlab="Number of visits", ylab="Frequency", xaxt="n")

axis(1,seq(5,60,5))
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c(mean = mean(data_ICC$visits), variance = var(data_ICC$visits))

## mean variance

## 19.94333 57.65230

We know that the stochastic error is equal to the mean, so we can calculate the variance

in expected provisioning rates

var(data_ICC$visits) - mean(data_ICC$visits)

## [1] 37.70896

From this we can then calculate the CV of expected provisioning rate

sqrt(var(data_ICC$visits) - mean(data_ICC$visits)) / mean(data_ICC$visits)

## [1] 0.3079105

As discussed in Box 2, we may want to present our results as visits/hour; however if we

do this, we cannot calculate any of the descriptive statistics mentioned above on this new

measure, as we would miscalculate the amount of Poisson-distributed stochastic error.

For example if we calculate the expected CV, in this case it is underestimated (and

Poisson-distributed stochastic error overestimated).

visits_per_hour <- data_ICC$visits / data_ICC$time

sqrt(var(visits_per_hour) - mean(visits_per_hour)) / mean(visits_per_hour)

## [1] 0.2113453

S6.2 Analysing Provisioning Rate as a Response Variable

S6.2.1 Estimating repeatability with and without Poisson-distributed stochas-

tic error

We want to know if the provisioning rate observed at a nest is repeatable. We can run

a linear mixed model, as is commonly done in the literature. This assumes no Poisson-

distributed stochastic error.
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## run LMM using lme4 package

library(lme4)

mod_LMM <- lmer(visits ~ 1 + (1|id), data=data_ICC)

## extract ID variance

V_id_LMM <- as.numeric(summary(mod_LMM)$var$id)

## extract residual variance

V_e_LMM <- summary(mod_LMM)$sigma^2

## calculate ICC

ICC_LMM <- V_id_LMM / (V_id_LMM + V_e_LMM)

For comparison, we can also run a GLMM, with Poisson error distribution, in order to

calculate ICC, which accounts for Poisson-distributed stochastic error. We add in an

observation level random effect to calculate over-dispersion variance (Harrison, 2014).

## create observation level random effect, i.e a different level for each data point

data_ICC$obs <- 1:nrow(data_ICC)

## run GLMM using lme4 package

mod_GLMM <- glmer(visits ~ 1 + (1|id) + (1|obs), data=data_ICC, family="poisson")

V_id_GLMM <- as.numeric(summary(mod_GLMM)$var$id)

V_e_GLMM <- as.numeric(summary(mod_GLMM)$var$obs)

ICC_GLMM <- V_id_GLMM / (V_id_GLMM + V_e_GLMM)

This model can also be run in MCMCglmm (Hadfield, 2010), but here we do not have

to specify a observation level random effect, as this is done by default. As we get a

posterior distribution from MCMCglmm, we can calculate the error associated with our

ICC estimate.

library(MCMCglmm)

mod_MCMCglmm <- MCMCglmm(visits ~ 1, random = ~id, data = data_ICC,

family = "poisson", verbose = FALSE)

## posterior distribution of individual variance
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V_id_MCMCglmm <- mod_MCMCglmm$VCV[, "id"]

## posterior distribution of residual variance

V_e_MCMCglmm <- mod_MCMCglmm$VCV[, "units"]

## posterior distribution of ICC

ICC_MCMCglmm <- V_id_MCMCglmm/(V_id_MCMCglmm + V_e_MCMCglmm)

Comparing the three, we see that the estimate from the LMM is much lower than when

we account for the Poisson-distributed stochastic error in the GLMMs.

cat("LMM =", round(ICC_LMM, 3), "\nGLMM =", round(ICC_GLMM, 3), "\nMCMCglmm =",

paste0(round(mean(ICC_MCMCglmm), 3), " +/- ", round(sd(ICC_MCMCglmm),

3)))

## LMM = 0.39

## GLMM = 0.604

## MCMCglmm = 0.607 +/- 0.088

Previous work has suggested estimating ICC on the observed rather than expected scale

(Nakagawa & Schielzeth, 2010, 2013). This can be done by adding the Poisson-distributed

stochastic error back on to the total variance , using the trigamma function (Nakagawa

et al., 2017)

## from Nakagawa & Schielzeth 2017

P_error <- trigamma(mean(data_ICC$visits))

V_id_GLMM / (V_id_GLMM + V_e_GLMM + P_error)

## [1] 0.3793103

which you can see is similar to what we would predict when not accounting for this

stochastic error (i.e. in the LMM). Note this is not what we recommend in this particular

case. Conversely, we could ‘correct’ the ICC estimate from the linear model for the

presence of Poisson-distributed stochastic error, by directly removing it

V_id_LMM / (V_id_LMM + V_e_LMM - mean(data_ICC$visits))

## [1] 0.5957898

which gives a result similar to that from the Poisson model.
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It is common for researchers to log transform this kind of data when analysing it using a

LMM, as count data is highly skewed at low means. Repeatability is unaffected by this

transformation (here we use log(y+0.5) following Yamamura 1999),

mod_LMM_log <- lmer(log(visits + 0.5)~ 1 + (1|id), data_ICC)

V_id_LMM_log <- as.numeric(summary(mod_LMM_log)$var$id)

V_e_LMM_log <- summary(mod_LMM_log)$sigma^2

V_id_LMM_log / (V_id_LMM_log + V_e_LMM_log)

## [1] 0.3736332

and Poisson-distributed stochastic error can similarly be corrected for post-hoc using the

trigamma function (as it on the log scale).

P_error <- trigamma(mean(data_ICC$visits))

V_id_LMM_log / (V_id_LMM_log + V_e_LMM_log - P_error)

## [1] 0.5916202

S6.2.2 Estimating CVB

In a linear mixed model context, CVB is intuitively calculated as

CVB =

√
VB
x̄

(S9)

, where VB if the between individual variation (i.e. the individual variance component)

(?).

CV_B_LMM <- sqrt(V_id_LMM) / mean(data_ICC$visits)

This is less simple for non-Gaussian traits. From de Villemereuil et al. (2016), we can

derive CVB from a Poisson GLMM as

CVB =
√
VBl (S10)
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, where VBl is the between individual variance estimated on the link scale (i.e. the

individual variance component from the Poisson GLMM). We can compare these values

from different models

CV_B_GLMM <- sqrt(V_id_GLMM)

CV_B_MCMCglmm <- sqrt(V_id_MCMCglmm)

cat("LMM =", round(CV_B_LMM, 3), "\nGLMM =", round(CV_B_GLMM, 3),

"\nMCMCglmm =", paste0(round(mean(CV_B_MCMCglmm), 3), " +/- ",

round(sd(CV_B_MCMCglmm), 3)))

## LMM = 0.238

## GLMM = 0.229

## MCMCglmm = 0.23 +/- 0.026

As you can see, CVB is not affected by the scale (observed or expected) on which it is

calculated, as it does not depend on the calculation of total variance.

It is worth noting that if CVB is estimated using a LMM with log transformed provisioning

rate, then CVB should be calculated as
√
VB (again because it is on the log scale).

sqrt(V_id_LMM_log)

## [1] 0.2283472

S6.2.3 Problems associated with analysing rate

As mentioned in Box 2, some authors have analysed transformed provisioning rate in

Poisson model. We presume that authors do this by rounding to the nearest whole

number, as most GLMM softwares to not take non-integers as input when a Poisson

error distribution is specified.

mod_GLMM_rate <- glmer(round(visits_per_hour) ~ 1 + (1 | id) + (1 |

obs), data = data_ICC, family = "poisson")

V_id_GLMM_rate <- as.numeric(summary(mod_GLMM_rate)$var$id)

V_e_GLMM_rate <- as.numeric(summary(mod_GLMM_rate)$var$obs)

V_id_GLMM_rate/(V_id_GLMM_rate + V_e_GLMM_rate)

33



## [1] 1

sqrt(V_id_GLMM_rate)/mean(round(visits_per_hour))

## [1] 0.02269032

In this extreme case, the ICC has been estimated as 1 which is clearly a large overesti-

mation, as the model has estimated there being no residual (over-dispersion) variance,

whilst CVB has been hugely underestimated.

S6.2.4 Accounting for observation period

Imagine we observed the same population, but this time we had a large amount of vari-

ation in our observation periods.

data_ICC_time <- read.csv("S8_data_ICC_time.csv")

head(data_ICC_time)

## id visits time

## 1 1 38 4.860166

## 2 1 32 3.847738

## 3 1 39 4.913166

## 4 2 25 2.397478

## 5 2 41 4.788769

## 6 2 32 3.220871

Firstly, we can calculate expected CV

adj_visits <- (data_ICC_time$visits * mean(data_ICC_time$time))/data_ICC_time$time

sqrt(var(adj_visits) - mean(adj_visits))/mean(adj_visits)

## [1] 0.3218552

When estimating ICC, we can correct for this variation in observation period by adding

an offset of log observation period. An offset is a covariate where the slope is fixed to 1.
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Mathematically, this is equivalent to dividing by the observation period (t), but allows

the model to remove the Poisson error before this occurs.

log(y) = βx+ log(t) + ε (S11)

log(y/t) = βx+ ε (S12)

We can do this with the lme4 package by using the offset function

## create observation level random effect, i.e a different level

## for each data point

data_ICC_time$obs <- 1:nrow(data_ICC_time)

## run GLMM using lme4 package

mod_GLMM_time <- glmer(visits ~ 1 + offset(log(time)) + (1 | id) +

(1 | obs), data = data_ICC_time, family = "poisson")

V_id_GLMM_time <- as.numeric(summary(mod_GLMM_time)$var$id)

V_e_GLMM_time <- as.numeric(summary(mod_GLMM_time)$var$obs)

ICC_GLMM_time <- V_id_GLMM_time/(V_id_GLMM_time + V_e_GLMM_time)

We can also run this in the MCMCglmm package, but here the offset function does not

work. instead we have to fix the prior of the slope to 1 (or at least make a very informative

prior with mean 1 and extremely low variance)

## create priors for fixed effects - intercept and obs. time, with

## large variance

prior <- list(B = list(V = diag(2) * 1e+07, mu = c(0, 1)), G = list(G1 = list(V = 1,

nu = 0.002)))

## make obs. time variance very small

prior$B$V[2, 2] <- 1e-07

mod_MCMCglmm_time <- MCMCglmm(visits ~ log(time), random = ~id, data = data_ICC_time,

family = "poisson", prior = prior, verbose = FALSE)

V_id_MCMCglmm_time <- mod_MCMCglmm_time$VCV[, "id"]

V_e_MCMCglmm_time <- mod_MCMCglmm_time$VCV[, "units"]
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ICC_MCMCglmm_time <- V_id_MCMCglmm_time/(V_id_MCMCglmm_time + V_e_MCMCglmm_time)

## compare results

c(GLMM = round(ICC_GLMM_time, 3), MCMCglmm = paste0(round(mean(ICC_MCMCglmm_time),

3), "+/-", round(sd(ICC_MCMCglmm_time), 3)))

## GLMM MCMCglmm

## "0.483" "0.485+/-0.074"

S6.3 Analysing Provisioning Rate as a Predictor Variable

Imagine we have collected some provisioning data of 100 nests in 2 hour observations.

We also collected data on chick mass at the end of the provisioning period.

data_pred <- read.csv("S9_data_pred.csv")

head(data_pred)

## visits time mass

## 1 18 2 196.7587

## 2 26 2 181.4664

## 3 17 2 196.4869

## 4 40 2 228.1916

## 5 30 2 222.9193

## 6 25 2 212.5197

par(mfrow=c(1,2))

plot(table(data_pred$visits), xlab="Provisioning Rate", ylab="Frequency", xaxt="n")

axis(1,seq(5,60,5))

hist(data_pred$mass, col="grey", main="", xlab="Chick Mass")
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We want to estimate the effect of provisioning rate on chick mass. Traditionally this is

done in a linear model

mod_LM <- lm(mass~visits, data_pred)

V_f_LM <- var(model.matrix(mod_LM) %*% coef(mod_LM))

V_e_LM <- summary(mod_LM)$sigma^2

R2_LM <- V_f_LM / (V_f_LM + V_e_LM)

R2_LM

## [,1]

## [1,] 0.4270903

This model does not take into account the Poisson-distributed stochastic error in provi-

sioning rate, which leads to an underestimation of effect size. We can account for this

using a measurement error model. We can specify such a model in Stan (Carpenter et al.,

2017) using the following code

//modelling uncertainty in a Poisson predictor variable

data { // data being input:
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int <lower=0> N; // number of data points

vector[N] a; // chick body mass

int <lower=0> v[N] ; // number_of_visits

}

parameters { // parameters to be estimated:

real beta_0; // intercept

real beta_1; // slope of provisioning rate

real <lower=0> meanPR; // mean provisioning rate

real <lower=0> sigmaPR; // sd provisioning rate

vector <lower=0> [N] PR; // provisioning rate

real <lower=0> sigma; // residual sd

}

model {

PR ~ lognormal(meanPR,sigmaPR);

v ~ poisson(PR);

a ~ normal(beta_0 + beta_1 * PR,sigma);

}

In this code we first tell Stan what data we are using, then we define the parameters we

want the model to estimate, and then we specify the model and any priors. In essence,

what we are doing with this model is creating a latent (unobserved) variable, ’PR’, for

provisioning rate, and we use this variable in the model for chick mass. For more details

about specifying models in Stan see http://mc-stan.org.

We can run this model in R using the package rstan. To do this we can save the stan

code in a ’.stan’ file, and input to rstan along with the data, formatted as a list

stan_data <- list(N = nrow(data_pred), a = data_pred$mass, v = data_pred$visits)

library(rstan)

## compile the model - this takes a bit of time

stanModel <- stan_model(file = "Poisson_measurement_error_model.stan")

## run the model
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fit <- sampling(stanModel, data = stan_data, iter = 2000, chains = 1,

open_progress = F, control = list(max_treedepth = 15, adapt_delta = 0.91))

## extract posterior distirbutions of estimated parameters

ex_fit <- extract(fit, permute = FALSE)

## posterior distributions of latent provisioning rate variable

PR_pred <- ex_fit[, , grep("PR\\[", dimnames(ex_fit)[[3]])]

## posterior distributions of predicted values

outmat <- ex_fit[, , "beta_0"] + ex_fit[, , "beta_1"] * PR_pred[,

]

## posterior distribution of fixed effect variance

V_f_stan <- apply(outmat, 1, var)

## posterior distribution of residual variance

V_e_stan <- ex_fit[, , "sigma"]^2

## posterior distribution of R2

R2_stan <- V_f_stan/(V_f_stan + V_e_stan)

Comparing the two we can see that that the R2 from the measurement error model is

substantially higher, as the covariance between provisioning rate and chick mass has been

better estimated.

c(LM=round(R2_LM,3), stan=paste0(round(mean(R2_stan),3), "+/-", round(sd(R2_stan),3)))

## LM stan

## "0.427" "0.615+/-0.093"

S6.3.1 Accounting for observation period

Below is some example code for accounting for observation period when including provi-

sioning rate as a predictor variable. The highlighted code shows the difference with the

last code. We have an additional data variable - time (t), and we know that the visits (v)

are a function of the provisioning rate (PR) and time, observed with Poisson-distributed

stochastic error.

//modelling uncertainty in a Poisson predictor variable
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data { // data being input:

int <lower=0> N; // number of data points

vector[N] a; // chick body mass

int <lower=0> v[N] ; // number_of_visits

vector <lower=0> [N] t; //observation time

}

parameters { // parameters to be estimated:

real beta_0; // intercept

real beta_1; // slope of provisioning rate

real <lower=0> meanPR; // mean provisioning rate

real <lower=0> sigmaPR; // sd provisioning rate

vector <lower=0> [N] PR; // provisioning rate

real <lower=0> sigma; // residual sd

}

model {

PR ~ lognormal(meanPR,sigmaPR);

v ~ poisson(t .* PR);

a ~ normal(beta_0 + beta_1 * PR,sigma);

}
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