##Graceful Kelp Crab Analysis #Set Working directory and add libraries setwd("~/Documents/Bates/Thesis/FHL 2020/GracefulKelpCrab") library(nlme) library(ggplot2) library(ggpubr) library(tidyverse) library(broom) library(AICcmodavg) #Import feeding preference data crab.data <- read.csv("1KelpCrabData.csv",header=T) #Import temperature data tempdata <- read.csv("PaperMetric.csv") temptest <- read.csv("TEST.csv") #viewing feeding preference data crabchoice<-subset(crab.data, Treatment=="Choice") head(crabchoice) crabnochoice<-subset(crab.data, Treatment=="NoChoice") head(crabnochoice) summary (crabchoice) summary (crabnochoice) #normality and equal variances crabchoicelme<-lme(fixed=GAlgalPerGCrab~Food,random=~1|Crab, data=crabchoice) summary(crabchoicelme) par(mfrow=c(1,1)) residualscrabchoice<-residuals(crabchoicelme) plot(residualscrabchoice) shapiro.test(residualscrabchoice) #W=0.95599, p=0.4126 bartlett.test(GAlgalPerGCrab~Food, data=crabchoice) #K-squared=0.53862, df=1, p-value=0.463 #normality and equal variances crabnochoicelme<-lme(fixed=GAlgalPerGCrab~Food,random=~1|Crab, data=crabnochoice) summary(crabnochoicelme) par(mfrow=c(1,1)) residualscrabnochoice<-residuals(crabnochoicelme) plot(residualscrabnochoice) shapiro.test(residualscrabnochoice) #W=0.98517, p=0.9729 bartlett.test(GAlgalPerGCrab~Food, data=crabnochoice) #K-squared=0.29886, df=1, p-value=0.5846 #box plots for choice ggplot(crabchoice, aes(x = Food, y = GAlgalPerGCrab)) + geom_boxplot() + geom_point(size = 4, color = 'lightgrey', alpha = 0.5) + xlab("Food Source") + ylab("Algal Mass Consumed (g) Per Crab Mass (g)") + theme_bw() + theme(axis.text.x=element_text(face=c("italic","italic","italic","italic"))) #box plots for no choice ggplot(crabnochoice, aes(x = Food, y = GAlgalPerGCrab)) + geom_boxplot() + geom_point(size = 4, color = 'lightgrey', alpha = 0.5) + xlab("Food Source") + ylab("Algal Mass Consumed (g) Per Crab Mass (g)") + theme_bw() + theme(axis.text.x=element_text(face=c("italic","italic","italic","italic"))) #t-test for choice t.test(GAlgalPerGCrab~Food, data=crabchoice, paired=T) #t=3.0378, df=10, p-value=0.01251 #t-test for no-choice t.test(GAlgalPerGCrab~Food, data=crabnochoice, paired=F, var.equal = TRUE) #t=0.74643, df=20.028, p-value=0.4637 #viewing temperature data summary(tempdata) #box plot for temperature data ggplot(tempdata, aes(x= Temp, y = Mass)) + geom_boxplot() + geom_point(size = 4, color = 'lightgrey', alpha = 0.5) + xlab("Temperature") + ylab("Algal Mass Consumed (g) Per Crab Mass (g)") + theme_bw() #welch's test for temp data t.test(temptest$Ambient, temptest$Elevated)