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S1 Review of and Comments on Additional Meta-Analyses on the 
Fraternal Birth-Order Effect 

S1.1 Jones and Blanchard (1998) 

The very first meta-analysis (Jones & Blanchard, 1998) introduced two new measures of 
relative birth order, the fraternal and sororal indices. The fraternal index (FI) can be defined 
as an individual’s number of older brothers divided by their number of older brothers plus 
the number of younger brothers; i.e., the proportion of an individual’s older brothers 
relative to the individual’s total number of brothers. By analogy, the sororal index (SI) is 
equivalent to an individual’s proportion of older sisters relative to their total number of 
sisters. 

With respect to the notation introduced in the main text, the FI and SI for the 𝑖th individual 
are given by 

FI𝑖 =
#OB𝑖

#All Brothers𝑖
  and  SI𝑖 =

#OS𝑖

#All Sisters𝑖
. 

Jones and Blanchard (1998) stated that, assuming the absence of the FBOE, the mean FI and 
SI should be 0.5 for both homosexual and heterosexual men. Hence, under the FBOE, the 
mean FI in homosexual men should shift towards 1, while the mean FI in heterosexual men 
should shift towards 0. But the magnitude of this shift towards 0 in heterosexual men 
should be only a fraction of the magnitude of the shift towards 1 in homosexual men, due to 
homosexual men making up only approximately 2% of the male population (Cantor et al., 
2002). Jones and Blanchard (1998) observed this pattern of shifts in the FIs across 872 
homosexual and 2,115 heterosexual men taken from nine samples (see Table 5 in the main 
text for samples which were included). Such a group difference in the mean FIs would not 
only be expected under the FBOE, but also under a more general older sibling effect. That is, 
if homosexual men had a greater number of both older brothers and sisters than 
heterosexual men. In order to show that the difference between homosexual and 
heterosexual men in the mean FI is driven solely by by a greater number of older brothers, 
but not by a greater number of older siblings overall, one could compare the mean paired 
differences, the difference-in-difference, of FI-SI between groups. Jones and Blanchard 
(1998) found this difference-in-difference to be 0.036. Given the reported summary statistic 
of 𝑡(3165) = 2.01, we were able to construct an approximate 95% confidence interval CI of 
[.001, .072], which includes a wide range of compatible values. 

The samples included in Jones and Blanchard (1998) did not correspond to the complete 
set of studies which had already been published by 1998 (the year of publication). At least 
three separate samples from two studies (Blanchard & Bogaert, 1998; Bogaert et al., 1997) 
were omitted. Both of these studies were co-authored by Blanchard, thus raising the 
question as to why they were not included in the meta-analysis. 
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Since then, a number of further studies (Blanchard et al., 1998; Bozkurt et al., 2015; Gómez-
Gil et al., 2011; Schagen et al., 2012; Skorska et al., 2020; VanderLaan & Vasey, 2011; Vasey 
& VanderLaan, 2007) reporting fraternal and/or sororal indices (or some modified version 
thereof) have been published. However, none of these compared the mean paired difference 
of the fraternal and sororal indices between homosexual and heterosexual men. An update 
to Jones and Blanchard’s meta-analysis is impeded by the non-reporting of standard 
deviations for FIs and SIs by Jones and Blanchard (1998), as well as the non-reporting of 
correlations between fraternal and sororal indices in all samples mentioned in the main 
text (Table 5). Beyond that, the fraternal and sororal indices once again are ratios. This 
complicates their statistical analysis to an unnecessary degree (see our discussion about the 
use of ratios in the main text in Part I). 

Here, we also present t tests for both the between-group difference in the mean FI and the 
difference in the mean FI-SI for each of the 18,000 replicates in the simulation study of the 
main text in Part II. As can be seen in Figure S1, the FI behaved just like the MROB, the 
MPOB, the OBOR, and the other models and measures, which do not adjust for the number 
of older siblings (see Figure 2 in the main text). Used as a criterion for the existence of the 
FBOE, the mean FI would bring about false-positive decisions at a much greater frequency 
(close to 100% for some conditions) than expected with a significance level of 5%. 
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Figure S1. Results of the difference between the fraternal index (FI; top) and the paired 
difference of fraternal and sororal indices (FI-SI; bottom) across all 18,000 simulations of 
homosexual and heterosexual participants (see main text for the description of the 
simulation in Part II). Points depict the means of the differences (horizontal axis). The 
endpoints of the error bars depict the .025 and .975 quantiles of the distributions of 
differences. The column Sig. indicates the proportion of differences with p < .05 (two-
tailed). 
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S1.2 Blanchard (2004) 

The second meta-analysis (Blanchard, 2004) contained five additional samples (see Table 5 
in the main text). Instead of contrasting FIs and SIs (Jones & Blanchard, 1998), Blanchard 
(2004) treated the samples as equally weighted single observations and used the mean 
number of older brothers, older sisters, younger brothers, and younger sisters in each 
sample as predictor variables in a logistic regression model, with the sexual orientation of 
the groups as the outcome variable. The p value of the change in the logistic regression’s 
deviance statistic associated with the removal of each predictor separately was used for 
assessing the effect of each predictor. Only the removal of the mean number of older 
brothers from the model yielded a statistically significant change in the model’s deviance. 
Hence, Blanchard (2004) concluded that the number of older brothers must have increased 
the odds of homosexual orientation. Blanchard (2004) reported neither regression 
coefficients nor shared the data used in this meta-analysis. We reconstructed Blanchard’s 
(2004) analysis using the data of the 14 samples in (Blanchard, 2004) as reported in the 
appendix of the third meta-analysis (Blanchard, 2018a). 

The file blanchard_2018_append.csv contains the total number of older brothers, older 
sisters, younger sisters, and younger brothers for the 30 samples as reported by in the third 
meta-analysis (Blanchard, 2018a). Note that the data reported by Blanchard (2018a) are 
slightly different from the data we used in our meta-analyses in the main text, as we 
excluded bisexual individuals whenever possible. 

First, we preprocessed the data by selecting the subset of samples included in Blanchard 
(2004) and computing the corresponding group means. Samples included in Blanchard 
(2004) are indicated by 1s in the column named inB. 

library(tidyverse) 
# Load Data 
# sibship data as reported by Blanchard (2018a) 
blanchard_2018 <- read_csv('../Data/blanchard_2018_append.csv')  
 
# Select subset of samples included in Blanchard's 2004 meta analysis 
# inB denotes whether sample 
blanchard_2004 <- blanchard_2018[blanchard_2018$inB==1, ]  
 
# compute sample means 
 
blanchard_2004 <- blanchard_2004 %>%  
  mutate( 
    ob_avg = ob/n, 
    os_avg = os/n, 
    yb_avg = yb/n, 
    ys_avg = ys/n 
  ) 
 
#recode variable "group" to 0 = heterosexual 1 = homosexual 
blanchard_2004$group <- as.factor(ifelse(blanchard_2004$group == 'Homosexual'
, 1,0)) 
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The data for reconstructing the second meta-analysis are listed in Table S1. 

 

Table S1. Data for reconstructing analyses by Blanchard (2004). 

study group ob_avg os_avg yb_avg ys_avg 

Blanchard & Bogaert (1996a) 1 0.6959 0.5882 0.5031 0.4831 

 0 0.5839 0.539 0.5779 0.5758 

Blanchard & Bogaert (1996b) 1 0.7053 0.6026 0.5397 0.5861 

 0 0.4816 0.4747 0.6613 0.6336 

Blanchard & Bogaert (1998), OA 1 0.8269 0.7115 0.4615 0.5705 

 0 0.8902 0.9133 1.069 0.9422 

Blanchard & Bogaert (1998), OP 1 1.145 1.13 0.7101 0.8116 

 0 1.165 0.937 1.386 1.189 

Blanchard & Bogaert (1998), OC 1 1 0.9524 0.8571 0.619 

 0 1.077 1.091 1.028 1.084 

Blanchard et al. (2000) 1 1.077 0.7846 0.8154 0.6615 

 0 0.7566 0.6908 0.8421 0.8092 

Blanchard & Sheridan (1992) 1 1.041 0.8187 0.7876 0.5803 

 0 0.4908 0.4762 0.7399 0.5751 

Blanchard & Zucker (1994) 1 0.5026 0.4499 0.4903 0.4974 

 0 0.4377 0.3559 0.516 0.5694 

Blanchard et al. (1995) 1 0.6346 0.4295 0.3141 0.25 

 0 0.4167 0.391 0.4167 0.4103 

Blanchard et al. (1996) 1 0.9904 0.6346 0.5577 0.4615 

 0 0.6456 0.3924 0.7215 0.7089 

Blanchard et al. (1998) 1 0.5325 0.426 0.4805 0.4519 

 0 0.3244 0.4267 0.4178 0.4178 

Bogaert et al. (1997) 1 0.7647 0.8088 0.4853 0.6176 

 0 0.5614 0.7018 0.8772 1.035 

Ellis & Blanchard (2001) 1 0.6686 0.4857 0.4914 0.4914 

 0 0.5088 0.4964 0.4985 0.4449 

Zucker & Blanchard (1994) 1 0.449 0.4898 0.3469 0.2857 

 0 0.3929 0.3452 0.3571 0.3214 

Notes. Column group indicates the sexual orientation of a sample (0 = heterosexual, 1 = 
homosexual), which are regarded as the subjects of analysis here; OA = “offenders against 
adults”, OP = “offenders against pubescents”, OC = “offenders against children”. 
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We next fitted the same models as described by Blanchard (2004). First, the baseline model 
predicting the samples’ sexual orientation from the mean number of older brothers, older 
sisters, younger brothers, and younger sisters. Notice that R returns a warning, indicating 
that some fitted values are 0 or 1. 

mod_base <- glm( 
  group~ob_avg+os_avg+yb_avg+ys_avg, 
  family = binomial(link = "logit"), 
  data = blanchard_2004 
) 

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred 

We ignore this issue for now, since our goal was to reproduce the analyses. Next, Blanchard 
(2004) defined a second model omitting the mean number of older brothers from the list of 
predictors and compared this second model to the baseline model using the p value 
associated with the change in the deviance from the baseline model. 

mod_ob <- glm( 
  group ~ os_avg+yb_avg+ys_avg, 
  family = binomial(link = 'logit'), 
  data = blanchard_2004 
) 
 
#Compare models 
anova(mod_ob, mod_base, test = 'Chisq')  

Analysis of Deviance Table 
 
Model 1: group ~ os_avg + yb_avg + ys_avg 
Model 2: group ~ ob_avg + os_avg + yb_avg + ys_avg 
  Resid. Df Resid. Dev Df Deviance  Pr(>Chi)     
1        24     17.391                           
2        23      5.617  1   11.774 0.0006007 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The difference between the two models’ deviance statistics is almost identical to that 
reported by Blanchard (2004). Here, we observe a value of 11.77, Blanchard reported a 
value of 11.88. Blanchard (2004) did not report regression coefficients for any of the 
models. An analysis of deviance reveals very little about the size and direction of the 
association between outcome and predictors. The regression coefficients for the baseline 
model were: 

summary(mod_base) 

 
Call: 
glm(formula = group ~ ob_avg + os_avg + yb_avg + ys_avg, family = binomial(li
nk = "logit"),  
    data = blanchard_2004) 
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Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.37569  -0.00906   0.00000   0.00003   1.67358   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)   -2.240      3.973  -0.564    0.573 
ob_avg       141.864    137.833   1.029    0.303 
os_avg       -42.664     51.456  -0.829    0.407 
yb_avg      -133.047    134.924  -0.986    0.324 
ys_avg        28.649     45.099   0.635    0.525 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 38.816  on 27  degrees of freedom 
Residual deviance:  5.617  on 23  degrees of freedom 
AIC: 15.617 
 
Number of Fisher Scoring iterations: 11 

According to the above results, the estimated regression coefficient associated with the 
mean number of older brothers (ob_avg) is 142 lnORs, which corresponds to an OR of 
4.08 × 1061. An estimate this large clearly indicates that entire analysis cannot be trusted. 

S1.3 Blanchard and VanderLaan (2015) 

In the third meta-analysis, Blanchard and Vanderlaan (2015) aggregated 14 samples, which 
were neither collected nor analysed by themselves or any of their collaborators. The study 
was described as a “simple meta-analysis that would be as free from our own potential 
unconscious biases as possible” (Blanchard & VanderLaan, 2015, p. 1506). Yet, this meta-
analysis excluded the sample from a national cohort study with more than 2 million 
participants (Frisch & Hviid, 2006), which assessed sexual orientation via the registered sex 
of a person’s spouse (i.e., used same-sex marriage as an indicator of homosexual 
orientation). Notably, said study (Frisch & Hviid, 2006) concluded to have found no 
evidence for a greater number of older brothers in homosexual men, compared to 
heterosexual men. 

Blanchard and VanderLaan (2015) reported a positive sign for 13 out of the 14 
comparisons between homosexual and heterosexual men in the included studies, meaning 
that the average number of older brothers was greater for homosexual than heterosexual 
men. Testing this number against the null hypothesis of an equal probability of positive and 
negative signs for these comparisons yielded a p-value of .002, which is well below the 
significance threshold of .05. For the respective average number of older sisters, only 10 out 
of 13 comparisons had a positive sign (only 13 samples reported the mean number of older 
sisters). This number was not statistically significant, p = .097. Based on this pattern of 
statistically significant and statistically not significant effects, Blanchard and VanderLaan 
(2015) concluded that homosexual men, on average, had more older brothers than 
heterosexual men, whereas no such difference existed with respect to the average number 
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of older sisters. However, the lack of statistical significance does not imply the absence of an 
(even similar-sized) effect with respect to older sisters here. It is yet another example of the 
“the-difference-between-significant-and-not-significant-is-not-itself-statistically-
significant”-fallacy (Gelman & Stern, 2006). Observing that one effect is significantly 
different from the point-null effect and that a second effect is not significantly different 
from the point-null effect, does not necessarily indicate that the two effects are themselves 
significantly different from each other. If anything, Blanchard and VanderLaan (2015) 
provided evidence for a more general older sibling effect (i.e., homosexual men have more 
older brothers and sisters than heterosexual men; the exact same point had already been 
raised by Gelman and Stern, 2006, who used the analysis in Blanchard and Bogaert, 1996a, 
to illustrate this fallacy). Even if Blanchard and VanderLaan’s interpretation of the sign test 
had been correct, their analysis would have provided no information about the magnitude 
of the supposed greate number of older brothers in homosexual men. Furthermore, the 
application of a sign test implies that each study should be treated as containing the same 
amount of information (i.e., each study carries the same weight), an assumption which 
cannot be justified when aggregating over differently-sized studies (Hedges & Olkin, 1985). 
A properly weighted meta-analysis could have led to a vastly different conclusion. 

S1.4 Blanchard, Krupp, VanderLaan, Vasey, and Zucker (2020) 

For the sixth meta-analysis, Blanchard et al. (2020) put forth yet another measure for 
quantifying the supposed greater number of older brothers, originally proposed by 
Khovanova (2020). The authors’ implementation of Khovanova’s suggestion may be 
described in two steps. First, the sampling space is restricted to men from two-son sibships 
(i.e., these men reported either a single older brother or a single younger brother and any 
number of sisters). Second, the following odds ratio is computed and subjected to the usual 
inferential machinery: 

𝑂𝑅21 =
#SecondHom/#FirstHom

#SecondHet/#FirstHet
, 

where #Second and #First, refer to the number of second- and first-born sons. We refer to 
this OR as the second-to-first-born OR. Over a set of 14 samples, the authors reported a mean 
OR21 of 1.38. Thus, there seemed to be an excess of second-born sons among homosexual 
men, who have exactly one brother but any number of sisters. This was in turn interpreted 
as evidence for the FBOE. Again, this result carries little information about the FBOE, as it 
fails to account for the number of older sisters (i.e., the older sibling effect). 

Moreover, and in line with Parts I and II of the main text, the second-to-first-born OR cannot 
distinguish between a genuine older brother effect and a more general older sibling effect. 
This can be seen clearly from the results obtained by fitting the OR21 to the simulated data 
reported in the main text (Figure S2; See main text for the description of simulation study in 
Part II). 
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Figure S2. Results of the second-to-first-born odds ratio across all 18,000 simulations of 
homosexual and heterosexual participants (see main text for the description of the 
simulation in Part II). Points depict the average across all 18,000 point estimates 
(horizontal axis). The endpoints of the error bars depict the .025 and .975 quantiles of the 
distributions of the point estimates. The column Sig. indicates the proportion of point 
estimates with p < .05 (two-tailed). 

S2 Explanations of Equations in Part I 

Equation 1 states that if all of the siblings reported by homosexual and heterosexual 
participants are treated as the sample, the OBOR is given by the odds of observing an older 
brother among all siblings of homosexual individuals divided by the odds of observing an 
older brother among all siblings of heterosexual individuals. Per definition (e.g., Blitzstein & 
Hwang, 2019, p. 53), the odds of observing an older brother in either group are given by the 
probability of observing an older brother among all siblings divided by the probability of 
not observing an older brother among all siblings (i.e., the probability of observing an older 
sisters, a younger brother or a younger sister). 

Equation 2 is just an algebraic transformation of equation 1 (see Supplement S3 for a 
derivation). It states that if the odds of observing an older brother among all of the siblings 
of homosexual individuals are greater than those same odds for heterosexual individuals, 
then the probability of observing an older brother among the siblings of homosexual 
individuals must also be greater than the same probability for heterosexual individuals, and 
vice versa. 

The equation in-between equation 2 and equation 3 (has no number) states that in addition 
to classifying the siblings in both groups (the homosexual and the heterosexual group) into 
whether they are older brothers or not, we can also classify them according to whether they 
are older siblings or not. That is, among the siblings reported by the homosexual and 
heterosexual participants, respecitvely, we can further distinguish between siblings who 
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are older and siblings who are younger than the participant. All older brothers can be found 
among the group of older siblings, whereas it is impossible for an older brother to be among 
the younger siblings. 

Equation 3 states that, since there are no older brothers among the younger siblings 
reported by the homosexual and heterosexual individuals, respectively, the probability of 
observing an older brother among younger siblings is 0. Thus, the probability of observing 
an older brother among all siblings of homosexual and heterosexual individuals, 
respectively, can be decomposed into the probability of observing an older brother among 
the older siblings multiplied by the probability of observing an older sibling in either group 
(homosexual or heterosexual) in the first place. 

Equation 4 combines the statements from equations 1 to 3. The inequality in the bottom 
row shows that one can have an OBOR > 1 even if the proportion of older brothers is 
smaller in the homosexual group as compared to the heterosexual group if the proportion 
of older siblings (i.e., brothers and sisters) is sufficiently greater in the homosexual group as 
opposed to the heterosexual group. 

S3 Converting Inequalities About Odds Ratios to Inequalities About 
Probabilities/Proportions 

Let 𝐴, 𝐵, 𝐶 be disjunct events defined on a sample space. The conditional probabilities of 
event 𝐴 given either 𝐵 or 𝐶 are denoted by 𝑃(𝐴|𝐵) and 𝑃(𝐴|𝐶), respectively. Further, let 
0 < 𝑃(𝐴|𝐵) < 1 and 0 < 𝑃(𝐴|𝐶) < 1. By definition (e.g., Blitzstein & Hwang, 2019, p. 53) 
the odds of the event 𝐴 (conditional on 𝐵 or 𝐶) are given by Odds(𝐴|𝐵) = 𝑃(𝐴|𝐵)/[1 −

𝑃(𝐴|𝐵)] and 𝑂𝑅Odds(𝐴|𝐶) = 𝑃(𝐴|𝐶)/[1 − 𝑃(𝐴|𝐶)]. Then the Odds Ratio is given 
Odds(𝐴|𝐵)

Odds(𝐴|𝐶)
. 

And 𝑂𝑅 > 1 can be rewritten as: 

                                                                    Odds(𝐴|𝐵) > Odds(𝐴|𝐶) 

⇔
𝑃(𝐴|𝐵)

1 − 𝑃(𝐴|𝐵)
>

𝑃(𝐴|𝐶)

1 − 𝑃(𝐴|𝐶)
 

⇔ 𝑃(𝐴|𝐵)[1 − 𝑃(𝐴|𝐶)] > 𝑃(𝐴|𝐶)[1 − 𝑃(𝐴|𝐵)] 

⇔ 𝑃(𝐴|𝐵) − 𝑃(𝐴|𝐵)𝑃(𝐴|𝐶) > 𝑃(𝐴|𝐶) − 𝑃(𝐴|𝐵)𝑃(𝐴|𝐶) 

⇔ 𝑃(𝐴|𝐵) > 𝑃(𝐴|𝐶) 

Substituting 𝐴, 𝐵, 𝐶 by 𝑂𝐵, 𝐻𝑜𝑚, 𝐻𝑒𝑡 in equation 1 of the main text, equation 2 of the main 
text follows immediately. 

S4 Additional Researcher Degrees of Freedom in Primary Studies 

Having a number of different measures in one’s statistical toolbox is by far not the only 
degree of freedom available to researchers in the field (Gelman & Loken, 2013; Simmons et 
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al., 2011). It is not difficult to obtain a statistically significant result under these conditions 
(Gelman & Loken, 2013; Simmons et al., 2011). Importantly, it does not even have to be the 
case that researchers try out various analysis plans (cf. Blanchard, 2018b) and only report 
results that turned out to be statistically significant. All that is required is a set of different 
hypothetically justifiable analysis plans from which researchers can choose in light of the 
data. Two additional examples of inconsistent data analytic decisions which have been 
made in primary studies on the FBOE may clarify this point. 

Some studies considered a moderating effect of handedness on the excess of older brothers 
(Blanchard, 2008; Blanchard et al., 2006; Skorska et al., 2020), while others did not even 
mention handedness. Thus, when analysing data, the theoretical hypothesis of the fraternal 
birth order effect could be mapped at least onto two different statistical hypothesis tests: 
one test that does not include handedness as a moderator and another test that does. If the 
test which does not consider handedness turns out to be statistically significant, then this 
would be interpreted as supporting the theoretical hypothesis of the FBOE. If the statistical 
test turns out significant in only one handedness-group but not in the other, then this result 
could also be reconciled with the FBOE (Blanchard, 2008; not to mention the large number 
of ways, which may be employed for classifying handedness). 

Having found a statistically significant effect, one can post-hoc always draw on biological 
theory or evolutionary psychology and put forth a potent and coherent explanation as to 
why an effect may be present in one handedness group, but not the other. For instance, the 
presence of an effect in right-handers, but not left-handers, could be ascribed to differences 
in the level of testosterone in utero between left- and right-handed individuals. Yet, such an 
approach is not identical to, and differs in significant ways from, using statistical tests for 
pre-experimentally derived hypotheses, employing pre-registered analysis plans that make 
the substantive case that the hypothesis has actually been derived beforehand. 

As a second example, some studies either excluded a large number of participants 
(Blanchard & Lippa, 2007) or explained away not significant findings by supposing that a so 
called “stopping rule” obfuscated the effect of the FBOE (Zucker et al., 2007). A stopping 
rule entails that, due to societal or environmental factors, parents cease to reproduce; for 
instance, after a certain number of offspring or combination of offspring-sexes is obtained 
(Blanchard & Lippa, 2007). It is argued that if such a stopping rule is at play, the FBOE 
might not show as there are not enough younger brothers who are homosexual to detect 
the effect (Blanchard & Lippa, 2007). 

Both the moderating effect of handedness and the presence of a stopping rule are plausible 
explanations. However, the inconsistency with which these covariates are included 
throughout the entire field, the fact that many of these explanations have been put forth 
post-hoc, and that there are studies that have made adjustments to their analysis plans after 
the primary analyses did not return a statistically significant result (Blanchard et al., 1995, 
1996; Blanchard & Lippa, 2007) leave the impression that many of the decisions pertaining 
to the mapping of the theoretical hypothesis of the FBOE and the implied excess of older 
brothers in homosexual men onto statistical hypotheses were at least data driven if not 
motivated by a desire to obtain statistically significant results. 
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S5 Simulation Study in Part II 

S5.1 Methods 

We used the R packages simstudy (version 0.2.1; Goldfeld & Wujciak-Jens, 2021), doRNG 
(version 1.8.2; Gaujoux, 2021), doParallel (version 1.0.16; Microsoft Corporation & Weston, 
2021a), and foreach (version 1.5.1; Microsoft Corporation & Weston, 2021b) to generate 
random draws from a four-dimensional Poisson distribution with a specified correlation 
matrix, wherein each draw represented a simulated participant. The four dimensions 
served as the variables #OB, #OS, #YB, and #YS. We chose the Poisson distribution over 
other discrete distributions because it provides a simple way of generating count data. 
Other distributions may well provide better approximations to real-world sibling data; 
however, we are not trying to approximate or model the distribution of sibling counts as 
they are encountered in real data. Rather, we aim to demonstrate the problems that emerge 
when applying inadequate methods and decision rules to the kind of count data inevitably 
encountered in FBOE research. The odds of homosexual orientation for participants with no 
older brothers were fixed at 0.02 (this is a baseline estimate that occurs throughout the 
FBOE literature; e.g., Cantor et al., 2002). Each older brother increased these odds by a 
factor of (1 + θ) with θ ∈ (-1,∞). Thus, individuals’ simulated odds of homosexual 
orientation were given by 

0.02(1 + θ)#OB. 

We investigated the choices of -0.33, 0.33, and 0 as possible values for θ, with 0 
representing no effect of older brothers on homosexual orientation at all, -0.33 a decrease 
in the odds of homosexual orientation per each older brother, and 0.33 a true increase in 
the odds of homosexual orientation per each older brother. A value of θ = 0.33 corresponds 
to the 33% increase in the odds of homosexual orientation per older brother reported 
throughout the literature (Blanchard, 2001; Blanchard et al., 1996); a value of θ = 0 
corresponds to a scenario in which the theoretical estimand is 0 and thus, there is no 
distinct association between the number of older brothers and sexual orientation and a 
value of θ = -0.33 corresponds to a scenario in which the number of older brothers 
decreases the odds of homosexual orientation.  

The Poisson distribution was parametrised by a vector 𝛌 containing four elements: The 
mean numbers of older brothers, older sisters, younger brothers, and younger sisters, 
respectively (i.e., the rates at which these events occur). This vector of means (or rates) was 
determined by multiplying the mean number of all siblings, μ, by the vector 

[. 515 × π (1 − .515) × π . 515 × (1 − π) (1 − .515) × (1 − π)]𝑇 , 

where .515 again represented the population estimate for the probability of male birth 
(Grech & Mamo, 2020), and π denoted the proportion of older siblings in a given sample. 

For instance, for an average number of siblings of μ = 3 and equal probability that each 
sibling is an older or a younger sibling (i.e., π = .5), 𝛌 would be given by 

𝛌 = 3 ×  [. 515 × .5 (1 − .515) × .5 . 515 × (1 − .5) (1 − .515) × (1 − .5)]𝑇

= [0.77 0.73 0.77 0.73]𝑇 .
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By plugging in different values for π, the simulation could generate an older sibling effect 
independently of the specific older brother effect θ. This way, we could flexibly adjust the 
magnitude of θ, while being able to distinguish it from a more general older sibling effect. 
There are a multitude of alternative ways for implementing different older brothers and 
older sibling effects in a simulation: This is just one of them. For the homosexual sample, 
the study employed three different values for π, namely π = .5, π = .6, and π = .7, while for 
the heterosexual sample π was fixed at .5. That is, we simulated differences in the number 
(or proportion) of older siblings by increasing π in the homosexual group, assuming that 
the proportion of older siblings is equal to the proportion of younger siblings among 
homosexual individuals. We considered only scenarios in which the proportion of older 
siblings is greater in the homosexual versus the heterosexual sample, because the greater 
number (or proportion) of older siblings (as opposed to just a greater number of older 
brothers) represents the alternative model consistent with much of the FBOE literature. 
Other scenarios, wherein there are fewer older siblings in homosexual as opposed to 
heterosexual men, may be interesting, but would correspond to a model of homosexual men 
having fewer older siblings than heterosexual men. This model does not compete with the 
FBOE model and therefore is irrelevant. 

The median of the mean numbers of all siblings for homosexual participants across the 45 
samples in Blanchard (2018a, 2018b), and Blanchard et al. (2021) was 2.45. In the equal 
condition of the simulation study, this value served as the mean number of all siblings 
(i.e., μ = 2.45) for both the homosexual and heterosexual group. In the unequal condition, 
the mean number of siblings for each group were taken from the Mismatch 2 sample in 
Blanchard (2014), where the mean number of siblings in the homosexual group was μ = 
2.19, and the mean number of siblings in the heterosexual group was μ = 3.31. Blanchard 
used the Mismatch 2 sample to demonstrate the inability of tests for mean differences and 
logistic regression to detect an older brother effect and to promote the use of the MROB and 
MPOB. 

As mentioned in the introduction in the main text, it is claimed that due to a positive 
correlation between the number of older brothers and older sisters, homosexual men 
should also have more older sisters than heterosexual men (Blanchard, 2014; Blanchard & 
Klassen, 1997; Jones & Blanchard, 1998). However, to our knowledge, no estimate of the 
magnitude, or an explanation of the precise nature, of the correlation, that would be 
required to bring about a difference in the number of older sisters, has been put forth. We 
nevertheless address this purported correlation and incorporated our best guess of such an 
estimate, by imposing the correlation matrix of the four sibling types found in the male 
participants of Tran et al. (2019) onto our simulated participants (Table S2; see 
https://osf.io/3wnhu/ for data). This study consisted of 1,779 men, who provided complete 
information on the number of each sibling type (see the original publication for full 
description of the sample). That is, the simulation assumed equal correlation structures in 
both homosexual and heterosexual participants, as we are unaware of any claims in the 
FBOE literature that these structures should differ between homosexual and heterosexual 
men. 

Thus, there were 18 possible combinations of θ, μ and π. For each combination, we fitted 10 
different models (see Table 3 in the main text). 

https://osf.io/3wnhu/
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Table S2. Correlation matrix used to simulate participants. 

 #OB #OS #YB #YS 

#OB 1    

#OS .158 1   

#YB -.092 -.071 1  

#YS -.057 -.066 .063 1 

Note. #OB = Number of older brothers, #OS = Number of older sisters, #YB = Number of 
younger brothers, #YS = Number of younger sisters. Correlations taken from Tran et al. 
(2019), see https://osf.io/3wnhu/ for the raw data.  

S5.2 Further Evaluation and Sample-Size Considerations 

The performance of the models was primarily assessed with respect to inferring the state of 
θ with null-hypothesis significance testing (NHST), as it is the case throughout the FBOE 
literature. Only Models 1, 6, 7, and 9 in Table 3 in the main text could be interpreted as 
providing an estimate of θ (by exponentiating the estimates and subtracting 1). It thus 
makes little sense to report conventional quantities such as bias, (root) mean-squared 
errors, or coverage probabilities, which are used to assess how well the coefficients of 
interest of the models in Table 3 perform in estimating θ, as most of the model coefficients 
of interest in Table 3 are not intended to estimate θ or used in that manner. For instance, it 
would not be meaningful to determine the relative frequency (i.e., the coverage probability) 
with which the natural logarithm (ln) of the factor (1+θ) (i.e., the odds ratio for being 
homosexual per additional older brother) is inside the 95% CI for the lnOBOR (Model 4), as 
the lnOBOR is an entirely different unknown parameter than ln(1+ θ). Say, lnOBOR = 
ln(1+η), where η is the proportional increase in the odds of observing an older brother in 
the homosexual versus heterosexual group, whereas θ is the proportional increase in the 
odds of being homosexual per older brother. It is evident that η and θ are entirely different 
parameters. 

Owing to the finite number of observations (1,000 replications per condition), the observed 
false-positive rates for the regression coefficients could differ from the underlying real 
false-positive rate. We defined the margin of error for an acceptable true false-positive rate 
of .05 as follows: Falsely rejected null-hypotheses can be modelled as Bernoulli random 
variables with probability of success equal to .05. Thus, the sum of 1,000 Bernoulli random 
variables (i.e., the number of falsely rejected null-hypotheses) is a binomial random 
variable. Suppose a test has a false-positive rate of 5%. The probability of observing 67 
successes or less in 1000 trials (i.e., a false-positive rate of 6.7%) is .99. Hence, we regarded 
an observed false-positive rate of greater than 5%, but smaller than 6.7% as compatible 
with a true false-positive rate of 5%. Sample sizes were determined by carrying out the 
simulation several times, increasing the sample size on each iteration until at least 80% of 
the regression coefficients for the predictor #OB in Model 9 returned a p < .05 (two-tailed) 
given θ = 0.33. In other words, we increased the sample size until the coefficient of interest 
in Model 9 had a minimum approximate power of 80% or more. Conditional on the 
alternative hypothesis (here: θ = 0.33) being true, a test is equivalent to a Bernoulli 
random variable with probability of success equal to the test’s power. Thus, the probability 

https://osf.io/3wnhu/
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of observing 829 successes or less in 1,000 trials (i.e., a success rate of 82.9%) is .99. It 
should then be safe to conclude that for an observed rate of correctly rejected null 
hypotheses of 829 across 1,000 simulation replications, the hypothesis tests had a power of 
at least 80%. A sample size of 700 participants per group seemed to be more than sufficient 
for this purpose (see results below). The rationale for tuning the sample size such that 
Model 9 had adequate power was that this model not only adjusted for the number of older 
siblings but also provided a direct estimate for θ (i.e., the older brother effect in our 
simulation study) and was thus the most easily interpretable of the models. 

S5.3 Models 

Model 1 in Table 3 in the main text predicted the logit of the probability of being 
homosexual, using the raw number of older brothers and older sisters as predictors. 
Blanchard (2014) warned against using this model, stating that differences in the total 
number of siblings between homosexual and heterosexual participants (i.e., heterosexual 
participants having more siblings in general) may lead to the non-detection of a genuine 
association between the number of older brothers and sexual orientation as conveyed by 
the regression coefficient of #OB. 

Models 2 and 3 used the MROB and MROS (Model 2) or the MPOB and MPOS (Model 3), 
respectively, instead of the raw numbers of older brothers and older sisters as predictors in 
a logistic regression model, as recommended by Blanchard (2014) and Blanchard et al. 
(2020). 

The regression coefficients for the predictor Hom𝑖 in Models 4 and 5 correspond to the 
natural logarithms (ln) of the OBOR (Model 4) and the OSOR (Model 5) when regarded as 
generalized linear models at the level of the reported siblings. Specifically, Model 4 
predicted the logit probability of the 𝑗th sibling reported by the 𝑖th participant being an 
older brother (for Model 5: older sister), using only the homosexual orientation of the 𝑖th 
participant as a predictor (abbreviated as “Hom”), with a value of “0” meaning no 
homosexual orientation and a value of “1” representing homosexual orientation. In Model 5, 
exp(βHom) was not intended to capture the older-brother effect (θ) itself, but to assess a 
positive, but weaker, OSOR (as compared to the OBOR), which should be observable in the 
presence of an isolated effect of older brothers on sexual orientation, presumably due to the 
positive correlation between older brothers and older sisters (Blanchard, 2018c; Blanchard 
et al., 2021). 

Models 6 and 7 both included the raw number of older brothers as one predictor, but 
differed with respect to the second predictor, i.e., the variable whose confounding effect 
should be adjusted for. Model 6 adjusted for the number of all siblings, #All, and Model 7 
adjusted for the number of siblings who are not older brothers (i.e., “other siblings,” 
#Other). These are the models implied by the claimed necessity of having to adjust for #All 
and #Other (as opposed to the MPOB and the MROB), respectively. 

Models 8 through 10 adjusted for the number of older siblings, #Older (Frisch & Hviid, 2006; 
Gelman & Stern, 2006; Zietsch, 2018). Model 8 corresponds to the one suggested by Gelman 
and Stern (2006) and included the difference between the number of older brothers and 
older sisters as the predictor of interest, while adjusting for #Older. The regression 
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coefficient of interest, β#OB−#OS, quantifies the particular association between older 
brothers and homosexual orientation. Model 9 contains instead the number of older 
brothers as the predictor of interest.  

Finally, the regression coefficient for Hom𝑖 in Model 10 is equivalent to the natural 
logarithm (ln) of the odds ratio of older brothers to older sisters introduced in Equation 6, 
with the sampling frame being restricted to older siblings only. Model 10 predicted the logit 
of the probability of the 𝑗th older sibling reported by the 𝑖th participant being an older 
brother using the homosexual orientation (coded as 0 and 1) of the 𝑖th participant. 

Thus, just like Models 8 and 9, Model 10 adjusts for the number of older siblings, but is 
defined on the level of the reported siblings, rather than the level of participants. 

S5.4 Summary Plots of Models Fitted to Simulated Data 

The full of the seven logistic regression models predicting the probability of homosexual 
orientation from the simulation study are displayed as error plots in Figure S3. These plots 
are different from Figures 1 and 2 in the main text, in that they also convey summaries of 
the regression coefficients of the predictors that the models in Table 3 (main text) were 
intended to control for. As noted in the main text (Footnote 5), the regression coefficients 
for the MROB and MPOB were consistently greater in magnitude than the corresponding 
regression coefficients for the MROS and MPOS when an older brother effect was present. 
This suggests that interpreting the two conjointly (for instance, by considering their 
difference) may yield decisions with a false-positive rate of 5%. 
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Figure S3. The error plots show the average log odds ratios (lnOR) over 1,000 
simulations of the seven logistic regression models predicting the probability of 
homosexual orientation for each combination of 𝜇, 𝜋 and 𝜃. The column 𝜇 indicates 
whether the mean number of all siblings was equal at 𝜇 = 2.25 for both the homo- and 
heterosexual participants or whether this mean was unequal, i.e., the mean number of all 
siblings was greater in heterosexual group (𝜇 = 3.31) as opposed to the homosexual 
group (𝜇 = 2.19). The column 𝜋 denotes the proportion of older siblings in the 
homosexual group. For the heterosexual group, 𝜋 was fixed at 0.5. The column 𝜃 denotes 
the presence of a positive (𝜃 = 0.33), a negative (𝜃 = -0.33) or the absence (𝜃 = 0) of an 
effect of older brothers on the odds of homosexual orientation. The endpoints of the error 
bars correspond to the .025 and .975 quantiles of the distribution of simulated 
coefficients. The column “% p < .05” indicates the percentage of simulation replications 
that yielded a two-tailed p-value of less than .05. 

S6 Meta-Analyses in Part III 

S6.1 Meta-Analyses of Specific Subsets using the Difference in Proportion 

The following provides the R code for conducting the meta-analyses of the five specific 
study sets, using the difference in proportion (as opposed to the lnOR in the main text) as an 
effect size. To this end, it is first needed to compute the proportion of older brothers among 
the set of older siblings for the homosexual and heterosexual groups in each sample: 

# Load packages 
library(metafor) #Used for fitting meta-analysis 
 
# Load male and female data and compute proporitons of older brothers 
# among older siblings and variances 
es_male <- read_csv("../Data/maleData.csv") %>%  
  mutate( 
    prop_ob_hom = obHom/(obHom+osHom), 
    prop_ob_het = obHet/(obHet+osHet) 
  ) %>%  
  mutate( 
    prop_ob_hom_vi = 1/(obHom+osHom)*prop_ob_hom*(1-prop_ob_hom), 
    prop_ob_het_vi = 1/(obHet+osHet)*prop_ob_het*(1-prop_ob_het) 
  ) %>%  
  mutate( 
    prop_diff = prop_ob_hom-prop_ob_het, 
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    prop_diff_vi = prop_ob_hom_vi+prop_ob_het_vi 
  ) 
 
 
es_female <- read_csv("../Data/femaleData.csv") %>%  
  mutate( 
    prop_ob_hom = obHom/(obHom+osHom), 
    prop_ob_het = obHet/(obHet+osHet) 
  ) %>%  
  mutate( 
    prop_ob_hom_vi = 1/(obHom+osHom)*prop_ob_hom*(1-prop_ob_hom), 
    prop_ob_het_vi = 1/(obHet+osHet)*prop_ob_het*(1-prop_ob_het) 
  ) %>%  
  mutate( 
    prop_diff = prop_ob_hom-prop_ob_het, 
    prop_diff_vi = prop_ob_hom_vi+prop_ob_het_vi 
  ) 

The random effects estimate for the mean proportion of older brothers among the older 
siblings reported by heterosexual group was .505, 95% CI = [.495, .516]. To reproduce this 
result, call: 

rma(yi = prop_ob_het, vi = prop_ob_het_vi, data = es_male, slab = study) 

 
Random-Effects Model (k = 64; tau^2 estimator: REML) 
 
tau^2 (estimated amount of total heterogeneity): 0.0008 (SE = 0.0003) 
tau (square root of estimated tau^2 value):      0.0282 
I^2 (total heterogeneity / total variability):   89.99% 
H^2 (total variability / sampling variability):  9.99 
 
Test for Heterogeneity: 
Q(df = 63) = 1112.6991, p-val < .0001 
 
Model Results: 
 
estimate      se     zval    pval   ci.lb   ci.ub       
  0.5054  0.0051  98.8366  <.0001  0.4954  0.5155  ***  
 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The fixed-effect estimate, however, was quite different from this value (and also from the 
theoretically expected value of .515) 

( 
  fe_prop <- 
    rma( 
      yi = prop_ob_het, 
      vi = prop_ob_het_vi, 
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      data = es_male, 
      method = "FE", 
      slab = study 
    ) 
) 

 
Fixed-Effects Model (k = 64) 
 
I^2 (total heterogeneity / total variability):   94.34% 
H^2 (total variability / sampling variability):  17.66 
 
Test for Heterogeneity: 
Q(df = 63) = 1112.6991, p-val < .0001 
 
Model Results: 
 
estimate      se      zval    pval   ci.lb   ci.ub       
  0.5441  0.0008  670.8997  <.0001  0.5426  0.5457  ***  
 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

This deviation from .515 of almost 3 percentage points seemed to have been largely due to 
the sample by Frisch and Hviid (2006), as removing this sample from the analysis resulted 
in fixed-effects estimates much closer to .515. To see how the meta-analytic estimates 
change upon the exclusion of a sample, we invoke the leave1out() function, which fits 
separate meta-analyses for each subset of samples, leaving out one sample at a time. The 
resulting table of meta-analytic summaries (each row corresponds to one of the leave-one-
out meta-analyses) is sorted in ascending order of the meta-analytic summary estimate. 

arrange(as.data.frame(leave1out(fe_prop))[, c("estimate", "ci.lb", "ci.ub")], 
estimate) %>%  
  round(3) %>%  
  head()  

                                estimate ci.lb ci.ub 
Frisch and Hviid (2006)            0.506 0.503 0.509 
Blanchard et al. (1996) Study 2    0.544 0.543 0.546 
VanderLaan et al. (2016)           0.544 0.543 0.546 
Blanchard et al. (1996) Study 1    0.544 0.543 0.546 
Blanchard and Bogaert (1998) OP    0.544 0.543 0.546 
Blanchard and Zucker (1994)        0.544 0.543 0.546 

With reference to the theoretical value of .515, the proportions of older brothers among 
older sisters reported by Frisch and Hviid (2006) were elevated in both, the homo- and 
heterosexual men at .55 and .56, respectively (i.e., almost 5 percentage points from the 
expected proportion). To see this, simply call 

es_male$prop_ob_het[es_male$study=="Frisch and Hviid (2006)"] 
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[1] 0.56037 

es_male$prop_ob_hom[es_male$study=="Frisch and Hviid (2006)"] 

[1] 0.5521327 

For the heterosexual female samples, the fixed- and random-effects estimates for the mean 
proportion of older brothers among older siblings are obtained by calling: 

# Random-Effects 
rma( 
  yi = prop_ob_het, 
  vi = prop_ob_het_vi, 
  data = es_female, 
  slab = study 
) 

 
Random-Effects Model (k = 17; tau^2 estimator: REML) 
 
tau^2 (estimated amount of total heterogeneity): 0.0017 (SE = 0.0008) 
tau (square root of estimated tau^2 value):      0.0409 
I^2 (total heterogeneity / total variability):   98.18% 
H^2 (total variability / sampling variability):  55.06 
 
Test for Heterogeneity: 
Q(df = 16) = 308.5711, p-val < .0001 
 
Model Results: 
 
estimate      se     zval    pval   ci.lb   ci.ub       
  0.5005  0.0123  40.7806  <.0001  0.4765  0.5246  ***  
 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

# Fixed-Effects 
( 
  fe_female <- rma( 
    yi = prop_ob_het, 
    vi = prop_ob_het_vi, 
    data = es_female, 
    slab = study, 
    method = "FE" 
  ) 
) 

 
Fixed-Effects Model (k = 17) 
 
I^2 (total heterogeneity / total variability):   94.81% 
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H^2 (total variability / sampling variability):  19.29 
 
Test for Heterogeneity: 
Q(df = 16) = 308.5711, p-val < .0001 
 
Model Results: 
 
estimate      se      zval    pval   ci.lb   ci.ub       
  0.5465  0.0008  683.0655  <.0001  0.5449  0.5480  ***  
 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

And again, the Frisch and Hviid (2006) sample seems to be responsible for the discrepancy 
between the fixed- and random-effects estimates: 

arrange(as.data.frame(leave1out(fe_prop))[, c("estimate", "ci.lb", "ci.ub")], 
estimate) %>%  
  round(3) %>%  
  head()  

                                estimate ci.lb ci.ub 
Frisch and Hviid (2006)            0.506 0.503 0.509 
Blanchard et al. (1996) Study 2    0.544 0.543 0.546 
VanderLaan et al. (2016)           0.544 0.543 0.546 
Blanchard et al. (1996) Study 1    0.544 0.543 0.546 
Blanchard and Bogaert (1998) OP    0.544 0.543 0.546 
Blanchard and Zucker (1994)        0.544 0.543 0.546 

Next, we compute the difference in proportions and the corresponding variance (or 
standard error) for each sample under the assumption that within-study dependence of 
these proportions is negligible. 

es_male <- es_male %>%  
  mutate( 
    prop_diff = prop_ob_hom-prop_ob_het, 
    prop_diff_vi = prop_ob_hom_vi+prop_ob_het_vi 
  ) 
 
es_female <- es_female %>%  
  mutate( 
    prop_diff = prop_ob_hom-prop_ob_het, 
    prop_diff_vi = prop_ob_hom_vi+prop_ob_het_vi 
  ) 

The meta-analyses for each of the five specific study sets are obtained by calling 

# Create list of subsets 
exemp_set <- list( 
  blanchard_2018 = es_male[es_male$inD==1, ], 
  blanchard_2018b = es_male[es_male$inE==1, ], 
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  blanchard_2020 =es_male[es_male$inG==1, ], 
  full_set = es_male, 
  female = es_female 
) 
 
# Vector of methods "FE" = fixed effects, "REML" = restr. max. likel. 
method <- c("FE", "REML") 
 
# Results are stored in list "res" 
res <- list() 
for (i in 1:length(method)) { 
  if (method[i] == "FE") { 
    res[[i]] <- lapply(exemp_set, function(y) { 
      rma( 
        yi = prop_diff, 
        vi = prop_diff_vi, 
        slab = study, 
        method = method[i], 
        data = y 
      ) 
    }) 
  } else { 
    res[[i]] <- lapply(exemp_set, function(y) { 
      rma.mv( 
        yi = prop_diff, 
        V = prop_diff_vi, 
        slab = study, 
        random = ~ 1 | as.factor(study), 
        data = y 
      ) 
    }) 
  } 
} 
 
# Meta-analytic summaries will be stored in list "res_tbl" 
res_tbl <- list() 
 
for(i in 1:length(method)){ 
  if(method[i] == "FE"){ 
    res_tbl[[i]] <- lapply(res[[i]], function(x) { 
      data.frame( 
        rbind( 
          mean = as.matrix(predict(x))[,c(1,3,4)] 
        ) 
      ) %>% set_names(c("estimate", "2.5%", "97.5%")) %>%  
        round(3) 
    }) 
  } else { 
    res_tbl[[i]] <- lapply(res[[i]], function(x) { 
      data.frame( 
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        rbind( 
          mean = as.matrix(predict(x))[,c(1,3,4)], 
          tau = confint(x)[[1]][2,], 
          predicted = as.matrix(predict(x))[,c(1,5,6)] 
        )) %>% set_names(c("estimate", "2.5%", "97.5%")) %>%  
        round(3) 
    }) 
  } 
} 

The estimates for the fixed-effects models are: 

res_tbl[[1]] 

$blanchard_2018 
     estimate  2.5% 97.5% 
mean    0.036 0.022  0.05 
 
$blanchard_2018b 
     estimate   2.5% 97.5% 
mean    0.008 -0.016 0.031 
 
$blanchard_2020 
     estimate 2.5% 97.5% 
mean    0.025 0.01  0.04 
 
$full_set 
     estimate  2.5% 97.5% 
mean    0.017 0.009 0.024 
 
$female 
     estimate  2.5% 97.5% 
mean    0.017 0.005 0.029 

Similarly, the estimates for the random-effects models are: 

res_tbl[[2]] 

$blanchard_2018 
          estimate   2.5% 97.5% 
mean         0.043  0.022 0.065 
tau          0.038  0.000 0.068 
predicted    0.043 -0.034 0.121 
 
$blanchard_2018b 
          estimate   2.5% 97.5% 
mean         0.032 -0.014 0.078 
tau          0.037  0.000 0.114 
predicted    0.032 -0.055 0.118 
 
$blanchard_2020 
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          estimate 2.5% 97.5% 
mean         0.025 0.01 0.040 
tau          0.000 0.00 0.031 
predicted    0.025 0.01 0.040 
 
$full_set 
          estimate   2.5% 97.5% 
mean         0.033  0.018 0.048 
tau          0.036  0.018 0.057 
predicted    0.033 -0.040 0.106 
 
$female 
          estimate   2.5% 97.5% 
mean         0.019 -0.031 0.069 
tau          0.073  0.026 0.138 
predicted    0.019 -0.134 0.171 

Finally, fixed-effects, random-effects, and three-level models, comparing the effect in men 
and women, are fitted: 

# combine the two samples 
es_full <-  
  rbind(es_male[, c("prop_diff", "prop_diff_vi", "ref")], 
        es_female[, c("prop_diff", "prop_diff_vi", "ref")]) 
 
# Add 'sex' and ID as a factor 
es_full$sex <- c(rep(1, nrow(es_male)), rep(0,nrow(es_female))) 
es_full$id <- 1:nrow(es_full) 
 
# Fixed-Effects Model 
rma( 
  yi = prop_diff, 
  vi = prop_diff_vi, 
  data = es_full, 
  mods = ~ as.factor(sex), 
  method = "FE" 
) 

 
Fixed-Effects with Moderators Model (k = 81) 
 
I^2 (residual heterogeneity / unaccounted variability): 46.76% 
H^2 (unaccounted variability / sampling variability):   1.88 
R^2 (amount of heterogeneity accounted for):            0.00% 
 
Test for Residual Heterogeneity: 
QE(df = 79) = 148.3965, p-val < .0001 
 
Test of Moderators (coefficient 2): 
QM(df = 1) = 0.0080, p-val = 0.9286 
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Model Results: 
 
                 estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt            0.0171  0.0060   2.8484  0.0044   0.0053  0.0289  **  
as.factor(sex)1   -0.0006  0.0072  -0.0895  0.9286  -0.0147  0.0134      
 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

# Random-Effects Model 
rma.mv( 
  yi = prop_diff, 
  V = prop_diff_vi, 
  data = es_full, 
  random = ~1|id, 
  mods = ~as.factor(sex) 
) 

 
Multivariate Meta-Analysis Model (k = 81; method: REML) 
 
Variance Components: 
 
            estim    sqrt  nlvls  fixed  factor  
sigma^2    0.0018  0.0419     81     no      id  
 
Test for Residual Heterogeneity: 
QE(df = 79) = 148.3965, p-val < .0001 
 
Test of Moderators (coefficient 2): 
QM(df = 1) = 0.8080, p-val = 0.3687 
 
Model Results: 
 
                 estimate      se    zval    pval    ci.lb   ci.ub     
intrcpt            0.0160  0.0182  0.8784  0.3797  -0.0197  0.0518     
as.factor(sex)1    0.0180  0.0200  0.8989  0.3687  -0.0213  0.0573     
 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

# 3-level model 
rma.mv( 
  yi = prop_diff, 
  V = prop_diff_vi, 
  data = es_full, 
  random = list(~1|id, ~1|as.factor(ref)), 
  mods = ~as.factor(sex) 
) 
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Multivariate Meta-Analysis Model (k = 81; method: REML) 
 
Variance Components: 
 
            estim    sqrt  nlvls  fixed          factor  
sigma^2.1  0.0009  0.0293     81     no              id  
sigma^2.2  0.0011  0.0326     53     no  as.factor(ref)  
 
Test for Residual Heterogeneity: 
QE(df = 79) = 148.3965, p-val < .0001 
 
Test of Moderators (coefficient 2): 
QM(df = 1) = 0.7577, p-val = 0.3840 
 
Model Results: 
 
                 estimate      se    zval    pval    ci.lb   ci.ub     
intrcpt            0.0173  0.0177  0.9749  0.3296  -0.0174  0.0520     
as.factor(sex)1    0.0159  0.0183  0.8705  0.3840  -0.0199  0.0518     
 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

S6.2 Results of the Fixed-Effect Model Analyses 

Table S3 presents the fixed-effect summary estimates of the four sets of male samples and 
the full set of female samples. 

Table S3. Summary of results of fixed-effect meta-analyses using either lnOR or lnOBOR as an 
effect size. 

Set Unit: lnOR  Unit: lnOBOR 

Men included in Blanchard (2018a) 0.14 [0.08, 0.20] 0.32 [0.28, 0.37] 

 

Men included in Blanchard (2018b) 0.03 [-0.07, 0.12] 0.20 [0.12, 0.27] 

 

Men included in Blanchard et al. (2021) 0.10 [0.04, 0.16] 0.25 [0.20, 0.30] 

 

Men Full Set 0.06 [0.03, 0.09] 0.28 [0.25, 0.32] 

 

Women full set 0.07 [0.02, 0.12] 0.15 [0.07, 0.23] 

 

Note. Numbers are estimated fixed-effect means with 95% confidence intervals. 
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The difference between male and female samples amounted to -0.004, 95% CI = [-0.061, 
0.053]. 

The re-analysis of Blanchard (2018a) using the lnOR returned fixed-effect summary 
estimates of 0.09, 95% CI = [0.03, 0.16], for the “non-feminine/cisgender” subgroup of 
samples and 0.29, 95% CI = [0.17, 0.40], for the “feminine” group. Across all 47 samples 
which were not denoted “feminine” by Blanchard (2018a), we obtained fixed-effect 
estimates of lnOR = 0.05, 95% CI = [0.01, 0.08]. 

Regressing the observed effect sizes on their standard errors, the regression coefficient for 
the standard error was 0.70, 95% CI = [0.35,1.05] in the fixed-effect model. This indicates 
that (when rescaling these coefficients by dividing them by 10), on average, two effect sizes 
differing by 0.1 standard errors are expected to differ by 0.07 lnORs. Sample size 
contributes less to study weight in the random-effects model than in the fixed-effect model. 
Hence, small-study effects (if they go into the direction of the desired effect, as was the case 
in the present data) may explain the larger summary estimates in the random-effects 
models (Table 7 in the main text), compared to those of the fixed-effect models in Table S4. 

In the specification curve and multiverse analyses, when including GDY as a predictor, the 
fixed-effect summary estimates for the 52 non-GDY and the 12 GDY samples were lnOR = 
0.05, 95% CI = [0.02, 0.08], and lnOR = 0.30, 95% CI = [0.16, 0.44]. Including the Which 
factor in Previous MA as a moderator in the meta-analysis consisting of all 64 samples, the 
fixed-effect summary estimates were lnOR = 0.02, 95% CI = [-0.02,0.07], and lnOR = 0.11, 
95% CI = [0.06,0.16] (difference of 0.09, 95% CI = [0.03,0.15], in favour of studies included 
in previous meta-analyses). 

Figure S4 presents a rainforest plot of the fixed-effect meta-analysis of all male samples 
lnOR effect sizes. 
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Figure S4. Rainforest plot of the fixed-effect meta-analysis of all male sample lnOR effect 
sizes. In this plot, the sample weights are both encoded in the degree of saturation and 
the thickness of the shaded regions, with heavier effect sizes being more saturated and 
thicker. The widths of the shaded regions correspond to 95% confidence intervals (CIs); 
the point estimates are represented by the ticks inside these intervals. The teardrop-
shape encodes the relative likelihood function of the mean of a normal distribution 
conditional on the standard deviation being equal to the observed standard error (i.e., the 
lnORs are assumed to be distributed normally) and its horizontal mirror image over the 
range of the 95% CI. The teardrop shape encodes the likelihood of true values over the 
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range of the 95% CI, given the observed estimate and assuming the lnORs to be normally 
distributed with known variance. 

S7 Distribution of S Values Under the Null Model 

Technically, if a test statistic is continuous (as opposed to discrete) and the null (or test) 
hypothesis refers to a single parameter value (e.g., 𝐻0: β = β0), the associated p value is 
distributed uniformly over the unit interval upon repeated sampling if the null model is 
true. 

Let 𝑈 be distributed uniformly over the unit interval, i.e., 𝑈 ∼ Unif(0,1), let 𝑆 = log2(1/𝑈), 
and denote by 𝐹𝑆 and 𝐹𝑈 the cumulative distribution functions (cdf) of 𝑆 and 𝑈, respectively. 
Then 

𝐹𝑆(𝑠) = 𝑃(𝑆 ≤ 𝑠)

= 𝑃(log2(1/𝑈) ≤ 𝑠)

= 𝑃(1/𝑈 ≤ 2𝑠)

= 𝑃(𝑈 > 2−𝑠)

= 1 − 𝐹𝑈(2−𝑠)

= 1 − 2−𝑠

= 1 − exp{−ln(2)𝑠},

 

which describes the cdf of an exponential distribution with rate parameter equal to ln(2); 
Exponential{𝜆 = ln(2)}. Thus, under the null model and given a continuous test statistic, 𝑆 
values follow an exponential distribution. 

S8 Parametric Bootstrapping Plots 

A modified approach to the parametric bootstrapping procedure described in Voracek et al. 
(2019) was carried out to also explore its sensitivity to different degrees of effect size 
heterogeneity. For each of the 64 male samples, a random value from a normal distribution 
with mean equal to zero and variance equal to 𝜎𝑗

2 + τ2 was drawn. Three τ values were 

used: (1) τ = 0, corresponding to a fixed-effect model; (2) τ = 0.13, corresponding to the 
REML-estimate observed across all 64 male samples; (3) τ = 0.21, corresponding to the 
upper bound of the 95% CI for the REML-estimate. We computed the 1,638 meta-analytic 
specifications for each set of simulated effect sizes, and repeated this procedure 1,000 
times. The resulting 0.025 and 0.975 quantiles of the estimated meta-analytic means for 
each of the 1,638 specification were sorted in ascending order. Plotting each specification’s 
quantiles and connecting them with a line resulted in a 95% parametric bootstrap 
confidence region for specification curves under the null model. Figure S5 displays the 
results of these simulations for both male and female samples. 

The observed specification curve (red line) for male samples (Figure S5, top row) is mostly 
located outside the bootstrapped confidence bands created by the simulated data under the 
three conditions of effect size heterogeneity considered here. This suggests a mismatch 
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between the data and the respective models which entail an effect of lnOR = 0. This is in line 
with the results obtained thus far – conditional on all assumptions about the data 
generating process being met (most importantly, the assumption that the observed effect 
sizes are a random selection of all effect sizes; e.g., Rafi & Greenland, 2020) the effect does 
not appear to be zero (or in the immediate vicinity of zero). 

In comparing the female specification curve to its respective confidence bands, it is easy to 
see that most of the meta-analytic effects are well inside the confidence bands for the null 
model which assumes an ln𝑂𝑅 of equal to 0. Thus, the meta-analytic summary effects of the 
specifications of female samples do not appear unusual given the null model. 

Note that it would be a mistake to conclude that (a) “the effect is present in male samples 
but not in female samples” or (b) “the effect is greater in male as opposed to female 
samples”. As far as (a) is concerned, the confidence bands could theoretically be made 
arbitrarily narrow if enough female samples were available (no effect is exactly zero). As far 
as (b) is concerned: Judgments about the size of a difference between two effects actually 
require that this difference be assessed - otherwise one would fall victim to the “the-
difference-between-significant-and-not-significant-is-not-itself-statistically-significant”-
fallacy (Gelman & Stern, 2006; the inferential specification curves are in fact equivalent to 
hypothesis tests for each observed specification summary effect). 
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Figure S5. Inferential specification curve plots for the male (top) and female (bottom) 
samples and three values of 𝜏;. The plots show the observed specification curves from 
Figures 5 and 6 (red lines) in the main text for male and female samples. The lower and 
upper bounds of the grey area correspond to the .025 and .975 quantiles of 1,000 
simulations of each specification obtained by drawing effect size estimates from a normal 
distribution with mean equal to 0, heterogeneity equal to 𝜏; (= 0, 0.13, 0.19), and standard 
deviation equal to the observed standard error. Observed estimates outside this area are 
taken as evidence against a true effect of lnOR = 0. 
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S9 Specification Curve Analysis over the Difference of Male and 
Female Samples 

Here we present the results of specification-curve multiverse meta-analyses obtained by 
comparing the estimated meta-analytic means for each of the 1,638 specifications of male 
samples to the fixed- and random-effects mean for all 17 female samples. To this end, we 
added all 17 female samples to each of the 814 unique subsets of male samples and 
computed both fixed- and random-effects meta-analyses using sex (male versus female) as 
a predictor. The resulting 1,628 regression coefficients, (i.e., the difference in the mean 
effect between male and female samples for each specification), the 95% CIs and the p 
values were extracted. Figure S6 shows the corresponding specification-curve (see Part III 
in the main text for description of specification-curve plot). 

The estimated mean differences between the male subsets and all 17 female samples 
ranged from lnOR = -0.36 to lnOR = 0.86, with an inter-quartile range of -0.01 to 0.08. 69% 
of these differences were greater than 0. Of these, 4.3% were accompanied by 95% CIs 
which did not include 0 (i.e., had a two-tailed p value of less than .05). Overall, 3.3% of 
specifications returned p < .05. 
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Figure S6. Specification-curve for the difference between male and female samples. 

Figure S7 provides the inferential specification-curve plots, Figure S8 the kernel-density 
estimates of the S values. 
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Figure S7. Inferential specification-curve plots for the difference between male and 
female samples and three values of τ. 

The kernel density estimate of the of 𝑆-values shown in Figure S8 appears to be reasonably 
well approximatedby an exponential distribution with rate parameter 𝜆 = ln(2), as judged 
by the visual comparison of the observed 𝑆 values to the 1,638 random draws from an 
Exponential{ln(2)} distribution as well as the probability density function. 

 

Figure S8. Kernel density estimate of the S values for the difference between male and 
female samples. 
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