For normal condition BRN modelling: Entry of logical parameters set as tabulated in Table 2 in SMBioNet and GINsim tolls with description of the resources.

S.no	SMBioNet Kinetic parameters with description	GINsim kinetic parameters
1.	$K_{CoV2}\{$ } = 0; PICyts and MAC are active for CoV2.	$K_{CoV2}\{PICyts, MAC\} = 0$
2.	$K_{CoV2}\{MAC\} = 0$; PICyts is active, MAC is inactive for CoV2.	$K_{CoV2}\{PICyts\} = 0$
3.	$K_{CoV2}\{PICyts\} = 0$; PICyts is inactive, MAC is active for CoV2.	$K_{CoV2}\{MAC\} = 0$
4.	$K_{CoV2}\{MAC, PICyts\} = 0$; MAC and PICyts are inactive for CoV2.	$K_{CoV2}\{ \} = 0$
5.	$K_{C3}\{$ } = 0; CoV2 and PICyts are inactive and FI-CR1-DAF is active for C3.	$K_{C3}\{FI - CR1 - DAF\} = 0$
6.	$K_{C3}\{CoV2\} = 1$; CoV2 and FI-CR1-DAF are active, PICyts is inactive for C3.	$K_{C3}\{CoV2, FI - CR1 - DAF\} = 1$
7.	K_{C3} {FI - CR1 - DAF } = 0; FI-CR1-DAF, CoV2 and PICyts are inactive.	$K_{C3}\{\}=0$
8.	K_{C3} {PICyts} = 0; PICyts, FI-CR1-DAF are active and CoV2 is inactive for C3.	K_{C3} {PICyts, FI - CR1 - DAF} = 0
9.	$K_{C3}\{CoV2, {\rm FI-CR1-DAF}\ \}=1;$ CoV2 is active, FI-CR1-DAF and PICyts are inactive for C3	$K_{C3}\{CoV2\} = 1$
10.	$K_{C3}\{{\rm FI-CR1-DAF}$, $PICyts$ $\}=1;$ PICyts is active, FI-CR1-DAF and CoV2 are inactive for C3.	$K_{C3}\{PICyts\} = 1$
11.	$K_{C3}\{{ m CoV2},\ PICyts\ \}=1$; CoV2, PICyts and FI-CR1-DAF are active for C3.	$K_{C3}\{\text{CoV2}, PICyts, \text{FI} - \text{CR1} - \text{DAF}\} = 1$
12.	$K_{C3}\{\text{CoV2},\ PICyts, \text{FI}-\text{CR1}-\text{DAF}\}=1; \text{CoV2}, \text{PICyts} \text{ are active and FI-CR1-DAF is inactive for C3}.$	$K_{C3}\{\text{CoV2}, PICyts\} = 1$
13.	$K_{C5a}\{$ } = 0; C3 and PICyts are inactive and FI-CR1-DAF is active for C5a.	$K_{C5a}\{\text{FI} - \text{CR1} - \text{DAF}\} = 0$
14.	$K_{C5a}\{C3\}=1$; C3, FI-CR1-DAF are active and PICyts is inactive for C5a.	$K_{C5a}\{C3, FI - CR1 - DAF\} = 1$
15.	$K_{C5a}\{{ m FI-CR1-DAF}\}=0$; FI-CR1-DAF, C3 and PICyts are inactive for C5a.	$K_{C5a}\{\}=0$
16.	$K_{C5a}\{PICyts\} = 0$; PICyts, FI-CR1-DAF are active and C3 is inactive for C5a.	K_{C5a} {PICyts, FI – CR1 – DAF} = 0
17.	$K_{C5a}\{C3,\ FI-CR1-DAF\}=1;$ C3 is active, FI-CR1-DAF and PICyts are inactive for C5a.	$K_{C5a}\{C3\} = 1$
18.	$K_{C5a}\{FI-CR1-DAF,PICyts\}=0$; FI-CR1-DAF, C3 are inactive, and PICyts active for C5a.	$K_{C5a}\{PICyts\} = 0$
19.	$K_{C5a}\{C3, PICyts\} = 1$; C3 and PICyts and FI-CR1-DAF are active for C5a.	$K_{C5a}\{C3, PICyts, FI - CR1 - DAF\} = 1$
20.	$K_{C5a}\{C3, PICyts, FI-CR1-DAF\}=1; C3, PICyts$ are active and FI-CR1-DAF is inactive for C5a.	$K_{C5a}\{C3, PICyts\} = 1$

21.	$K_{MAC}\{$ $\}=0$; C3 and PICyts are inactive for MAC.	$K_{MAC}\{$ $\}=0$
22.	$K_{MAC}\{C3\} = 1$; C3 is active and PICyts is inactive for MAC.	$K_{MAC}\{C3\} = 1$
23.	$K_{MAC}\{PICyts\} = 1$; PICyts is active and C3 is inactive for MAC.	$K_{MAC}\{PICyts\} = 1$
24.	$K_{MAC}\{C3, PICyts\} = 1$; C3 and PICyts are active for MAC.	$K_{MAC}\{C3, PICyts\} = 1$
25.	$K_{FI-CR1-DAF}$ } = 0; PICyts is inactive for FI-CR1-DAF.	$K_{FI-CR1-DAF}\{ \} = 0$
26.	$K_{FI-CR1-DAF}\{PICyts\} = 1$; PICyts is active for FI-CR1-DAF.	$K_{FI-CR1-DAF}\{PICyts\} = 1$
27.	$K_{PICyts}\{\ \}=0$; C3, C5a are inactive and FI-CR1-DAF is active for PICyts.	$K_{PICyts}\{FI-CR1-DAF\}=0$
28.	$K_{PICyts}\{C3\}=0$; C3, FI-CR1-DAF are active and C5a is inactive for PICyts.	$K_{PICyts}\{C3, FI - CR1 - DAF\} = 0$
29.	$K_{PICyts}\{C5a\}=2$; C5a, FI-CR1-DAF are active and C3 is inactive for PICyts.	$K_{PICyts}\{C5a, FI - CR1 - DAF\} = 2$
30.	$K_{PICyts}\{{ m FI-CR1-DAF}\}=0$; FI-CR1-DAF, C3, and C5a are inactive for PICyts.	$K_{PICyts}\{\}=0$
31.	$K_{PICyts}\{{\rm C3,C5a}\}=2$; C3, C5a, and FI-CR1-DAF are active for PICyts.	K_{PICyts} {C3, C5a, FI - CR1 - DAF} = 2
32.	$K_{PICyts}\{{\rm C5a,FI-CR1-DAF}\}=2$; C5a is active, FI-CR1-DAF and C3 are inactive for PICyts.	$K_{PICyts}\{C5a\}=2$
33.	$K_{PICyts}\{{\rm C3,FI-CR1-DAF}\}=1$; C3 is active, FI-CR1-DAF and C5a are inactive for PICyts.	$K_{PICyts}\{C3\} = 1$
34.	$K_{PICyts}\{{\rm C3,C5a,FI-CR1-DAF}\}=2$; C3 and C5a are active, FI-CR1-DAF is inactive for PICyts.	$K_{PICyts}\{C3, C5a\} = 2$