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Text S1 Metrics

The Silhouette score [10] shows how well clusters are separated, by calculating the average difference between the
similarity of a data point to its own cluster compared to the similarity to other clusters, with higher values indicating
better clustering. For a data point i, Silhouette score Si is defined as:

Si =
(bi − ai)

max(bi, ai)
(1)

In Eq. 1, ai is the mean intra-cluster distance and bi is the mean distance between the sample point i and the data
points from the nearest cluster Ck that sample i is not a part of.

ai =
1

|Ci| − 1

∑
j∈|Ci|,i̸=j

d(i, j) (2)

bi = min
k ̸=i

1

|Ck|
∑

j∈|Ck|

d(i, j) (3)

Here in Eq. 2, 3, |Ci| is the number of points in a cluster Ci and d(i, j) is the distance between data points i and j.
The total Silhouette score is measured as the mean of all Si and bounded between -1 for incorrect clustering and +1 for
dense and well-separated clusters.

The Davies-Bouldin index DB [3] in Eq. 4 measures the average similarity of the distance between clusters with the
size of the clusters themselves. It estimates the cohesion based on the distance from the points in a cluster to its centroid
and the separation based on the distance between centroids. Values closer to zero indicate better clustering, whereas
higher values indicate overlapping partitions.

DB =
1

K

K∑
i=1

max
j:j ̸=i

Rij Rij =
si + sj
d(µi, µj)

(4)

In Eq. 4, si is the average distance between each point of cluster i and a centroid µi of that cluster, K is the total
number of clusters, and d(µi, µj) is the distance between centroids µi and µj of the clusters i and j.

Both Silhouette score and Davies-Bouldin index are relatively easy to compute, but they are generally higher for
convex clusters than for the density based ones. In the presence of the non-convex clusters and noise, they may fail
to indicate the presence of a valid clustering partition. Density-Based Clustering Validation was proposed as a metric
for assessing the clustering partition quality for detecting non-convex clusters in the presence of noise. The metric is
based on the Hartigan model of Density Contour Trees [4] and provides values between -1 and +1, with greater values
indicating a better density-based clustering solution. See [8] for details.
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To estimate the stability of the data X partition C (X, k) into k clusters, we use Prediction Strength ps(k), see [12].
Following the m-fold cross-validation technique, we split m times the data X into Xtr and Xte with sizes ntr and nte,
such that all obtained Xte will cover the X. For each such split, we estimate the ps(k) as in Eq. 5 and then average
all of them across the splits. In Eq. 5, k is the number of clusters, Ak1, Ak2, ...Akk are the indices of the test clusters
1, 2, ...k with corresponding sizes nk1, nk2, ...nkk. They were obtained from clustering the test data Xte into k clusters -
C (Xte, k). Taking into account clustering decision boundaries from Xtr data, the D [C (Xtr, k) , Xte] is nte×nte matrix,
with its ii′ element equal to one if the observations i and i′ from Xte fall into the same cluster, and zero otherwise.
To construct D [C (Xtr, k) , Xte], we estimate the clustering decision boundaries for Xte from C (Xtr, k) using k-Nearest
Neighbour classification with distance weighting, Euclidean metric and five nearest neighbours.

ps(k) = min
1≤j≤k

1

nkj (nkj − 1)

∑
i ̸=i′∈Akj

D [C (Xtr, k) , Xte]ii′ (5)

To assess the disbalance in a clustering partition, we use the Shannon Entropy [11] H of the distribution that
indicates the probability pi of one of n data points to fall into a cluster i with |Ci| data points in it, see Eq. 6. Higher
H values indicate more balanced partition - when we are less sure in which cluster point is residing.

H = −
k∑

i=1

pilog(pi) pi =
|Ci|
n

(6)

We estimate the reconstruction error of inverse mapping x̂i = g(zi) from the manifold learning embedding z ∈ Z to
the original space of relative taxon abundances as the normalized Median Absolute Error as in Eq. 7:

MAE(X, X̂) = median{ |xi − x̂i|1
|xi|1

, i ∈ 1, N} (7)

Selecting and supervised training of the inverse mapping algorithm g brings ambiguity into the method. To mitigate
it, we use additional scale-independent rank-based quality criteria for dimensionality reduction proposed in [7]. Given a
distance metric d(i, j), two rank matrices are constructed ρij = {|k : d(xk, xj) < d(xi, xj)|} for the original data points
xi ∈ X and rij = {|k : d(zk, zj) < d(zi, zj)|} for their low-dimensional embeddings zi ∈ Z. Then, a co-ranking matrix
Q is built, where Qkl = {|(i, j) : ρij = k, rij = l|} indicates the total number of instances when the k-th neighbor
for some point became l-th. Thus, all non-diagonal elements of this matrix correspond to changes in arrangement of
the embedded points compared to the original data. The co-ranking matrix contains all information on how the data
structure is distorted in a low-dimensional representation. This information is represented further as two scalars Qloc

and Qglob that range from 0 (bad) to 1 (good) and reflect the preservation of the ”local” and ”global” structure of the
data cloud. The Qloc and Qglob encompass most of the co-ranking metrics properties, mitigating our need for a unified
model-free dimensionality reduction criteria since each manifold algorithm we are using is defined with unique quality
criteria. See [7] for details.

For similarity measure between the predicted clustering partition X and given ground-truth labels Y we utilize
Adjusted Rand Index [5], based on the Rand Index (RI) [9]. Given the predicted X = {Xi}ri=1 and the true Y = {Yj}sj=1

clustering partitions into r and s clusters respectively, the Rand Index is non-zero for random independent partitions
X and Y and 1 for the same partitions up to labeling permutations. The Adjusted Rand Index is ”adjusted” version
of RI such its values are close to 0 for random labeling. In Tab. 8 a contingency table is presented, where nij denotes
the common number of points in clusters Xi and Yj : nij = |Xi ∩ Yj |. Given ai, bj , nij from Tab. 8, the Adjusted Rand
Index (ARI) is defined as Eq. 9. The Ck

n = n!
k!(n−k)! denotes a k-combination from a set of n elements.

X Y1 Y2 · · · Ys ai =
∑

k nik

X1 n11 n12 · · · n1s a1
X2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...
Xr nr1 nr2 · · · nrs ar

bj =
∑

k nkj b1 b2 · · · bs

(8)

ARI =

∑
ij C

2
nij

−
[∑

i C
2
ai

∑
j C

2
bj

]
/C2

n

1
2

[∑
i C

2
ai

+
∑

j C
2
bj

]
−
[∑

i C
2
ai

∑
j C

2
bj

]
/C2

n

(9)

2



Text S2 Synthetic dataset

In this section, we provide the results of our method on synthetic data. The positive control datasets with clusters were
created similarly to [6]. We generated nine synthetic datasets with the number of clusters k ranging from two to four,
with different dimensionality d similar to the O,F and G taxonomy levels, if we remove OTU found in less than 1%
of the samples or with a standard deviation less than 0.001. The dimensionalities are 39, 70 and 108 correspondingly.
Each dataset consists of 3000 data points representing vectors of un-normalized abundances of mock OTUs. 90% of
data points were sampled from one of k multivariate gaussian distributions, each reflecting a cluster, and other 10%
are sampled from a distribution with a larger variance, representing noise. To compare estimated clustering partitions
with the ground-truth labels, we used the Adjusted Rand Index [5] (see Supplementary Notes Text S1 for details). The
dimensionality dPCA that retains 99% of the cumulative explained variance after the PCA projection, estimated intrinsic
dimension, the Median Absolute Error (MAE) and Qloc, Qglob metrics are reported in Tab. S1.

d k dPCA dMLE MAE Qloc Qglob

39 2 38 22 0.052 0.87 0.98
39 3 38 21 0.049 0.88 0.99
39 4 38 20 0.047 0.88 0.99
70 2 68 31 0.070 0.87 0.98
70 3 68 29 0.063 0.87 0.98
70 4 67 28 0.075 0.87 0.98
108 2 104 39 0.084 0.85 0.98
108 3 103 37 0.087 0.85 0.98
108 4 103 36 0.087 0.86 0.98

Table S1: Original dimensionality d, number of clusters k, dimensionality dPCA after PCA projection and estimated
intrinsic dimensionality dMLE of synthetic datasets. For each dataset MAE, Qloc and Qglob metrics were computed

after the PCA projection with respect to the original data.

In Fig. S1 we display the clustering metrics distribution over all partitions that have been calculated for each dataset
with a given number of clusters k and dimensionality d, each manifold learning method, and each clustering algorithm
with a different combination of its hyperparameters, described in the Materials & Methods section of the manuscript.
Clustering partitions with moderate or strong support for both metrics correspond to points lying at the intersection
of the blue and orange areas in Fig. S1. For each dataset the most accurate clustering partition was found in the
UMAP embedding by the HDBSCAN algorithm. Such partitions have the Adjusted Rand Index and the Prediction
Strength higher than 0.99, the Davies-Bouldin index lower than 0.3, the Silhouette score higher than 0.8 and DBCV
higher than 0.8. Moreover each such clustering exhibit Entropy over 0.6, which corresponds to the balanced partition.
Together, these metrics assert the presence of stable and distinct clusters in the data for every number of clusters k and
dimensionality d.

Text S3 Original datasets

In the following section we provide clustering analysis results for the Sanger, Illumina and Pyroseq (pyrosequencing-based
16S RNA) datasets from the original studies [1], as mentioned in the Materials & Methods section of the manuscript.
The sizes of the datasets are 33, 85 and 154 samples, and the dimensionalities at the Genus taxonomy level are,
respectively, 249, 483 and 165. Since the number of dimensions, relative to the number of samples, is too large for
each dataset, application of the dimensionality reduction methods is unreasonable due to the insufficient amount of
data. Therefore, we skipped the estimation of the intrinsic dimension and manifold learning steps for these datasets.
Still, we retained preprocessing step with normalization by dividing the Operational taxonomy Units (OTUs) values
by the total sum of abundances for a given data sample. For the PCA step we assess number dPCA of the principal
components retaining 99% of the cumulative variance. We estimate the Median Absolute Error (MAE) and Qloc, Qglob

metrics of the linear dimensionality reduction by projection on principal components. These metrics are presented in
Tab. S2. The sorted cumulative sum of the singular values for dPCA estimation is presented in Fig. S2 along with the
PCA loadings. These loadings indicate contribution of the OTU coordinates to the principal components. As one can
see, the abundances of Prevotella and Bacteroides genera along with Lachnospiraceae Family (includes Roseburia and
Blautia Genus) contribute most to the principal components coordinates.

We applied the original clustering approach that had initially revealed enterotypes in [1]. It exploits the Partition
Around Medoids (PAM) algorithm with the Jensen-Shannon distances estimated in the original space of normalized
taxonomy abundances. Following this approach, we did not include the unassigned fraction of metagenomic reads
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Figure S1: Silhouette score and Davies-Bouldin index (left), DBCV index and Prediction Strength (right) of clustering
partitions for all nine synthetic datasets with the number of clusters k equal to 2, 3 and 4, and the dimensionality d

equal to 39, 70 and 108.

Dataset Size dinit. dproc. dPCA MAE Qloc Qglob

Sanger 33 249 34 13 0.141 1.00 0.99
Illumina 85 483 27 11 0.136 0.87 0.98
Pyroseq 154 165 58 20 0.141 0.92 0.99

Table S2: Original dimensionality dinit., dimensionality after preprocessing dproc. and after PCA projection dPCA. For
each dataset the Median Absolute Error (MAE), Qloc, and Qglob metrics were computed after the PCA projection

with respect to the preprocessed data.

Figure S2: Cumulative explained variance of the Principal Component Analysis (PCA) and PCA loadings,
representing contribution of the original taxonomy coordinates to the principal components.

as a feature while estimating the distances. As a result, we obtain reference clustering partitions, shown in Fig. S3.
We compare them to the selected clustering partitions obtained within our framework are presented in Fig. S5. As a
similarity measure between different partitions of the same data, we use Adjusted Rand Index. Due to the application
of a wider range of clustering methods and diverse data representations, our framework revealed clustering partitions
with substantially better metrics. Ideally, partitions in our approach are represented as points lying in the overlap of
the orange and blue areas in Fig. S4. Nevertheless, according to the Silhouette score and the Davies-Bouldin index there
are no clusters that are distinct and balanced at the same time. The only distinct partition that passes the Silhouette
score and the Davies-Bouldin index thresholds was found for the Illumina dataset in Fig. S4 (top). Yet this partition
is unbalanced, as indicated by the low entropy value. Most partitions were identified by the DBCV and Prediction
Strength metrics for Sanger and Illumina datasets in Fig. S4 (bottom). For every pair of metrics for each dataset, we
find the best partition and visualize them in Fig. S5. The best partition is chosen either by maximizing entropy among
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Figure S3: Visualization of the clustering partitions along with the metrics, for the Sanger, Illumina and Pyroseq
datasets. The originally proposed clustering method was used - Partition Around Medoids (PAM) algorithm applied to

the pre-computed pairwise Jensen-Shannon distances (JS).

the selected partitions, lying in the overlapping area, or by finding the closest one to the overlapping area. By taking
into consideration all clustering metrics for every visualized partition, we conclude that there are no clustering partitions
that meet all metrics criteria at the same time. The only partition demonstrated metrics that are closest to the optimal
was obtained for the Sanger dataset using Silhouette score and the Davies-Bouldin index in Fig. S5 (top-left). This
partition also reproduces the initially proposed enterotyping in [1]. Overall, according to the Adjusted Rand Index, the
selected partitions found by our method for the Sanger and the Pyroseq datasets in Fig. S5, are moderately similar
to the ones found by original approach from [1] and shown in Fig. S3. The clustering results for the Sanger, Illumina
and Pyroseq datasets demonstrate lower Prediction Strength than for the clustering results on the large-scale AGP and
HMP datasets. We emphasize that removing small percentage of the data should not change the structure of the data
in an essential way, if there indeed exist natural clusters. Otherwise, unstable clusters can be attributed to artifacts of
the data preprocessing or clustering method. The stability of partitions highly depends on the dataset size. If a dataset
is sufficiently large, all variations of the structure are well-represented, reducing the influence of artifacts and outliers.
Therefore, we hypothesize that the initial enterotypes findings [1] were possible due to the absence of available large
metagenome datasets and the use of only linear methods of data analysis like PCA and the simple clustering methods
like PAM.

Text S4 Pre-determined clustering

Here, we provide visualization and clustering metrics, using pre-determined artificial enterotype assignment for every
data point. This assignment is based on the abundances of the Bacteroides, Prevotella, and Ruminococcus in different
enterotypes from the Sanger dataset metagenomes [1]. Points whose OTU composition does not fall into any enterotype
are not included in the visualization and clustering metrics calculation. We visualized the distribution of the data points
in Fig. S6 (top) in three dimensions of the Genus taxonomy level, namely Bacteroides, Prevotella, and Ruminococcus,
originally reported as the main enterotype drivers. We observe no clusters but a dense distribution of the data with
high variance along these dimensions, which is also demonstrated by the PCA analysis in the manuscript. Application
of such artificial partition to the three-dimensional projection in Fig. S6 (bottom) dissects the data distribution into
three tightly arranged clusters that are driven mostly by the OTU coordinates. The corresponding clustering metrics
indicate that such partition is stable and balanced, according to high values of the Prediciton Score and Entropy, yet
poorly separated, according to the low DBCV index. We also demonstrate an apparent absence of natural clusters in
such three-dimensional representations for the AGP and HMP dataseta by including them to the clustering step of our
framework, that could potentially reveal possible partitions other than an artificial enterotype assignment. Further, we
estimate clustering metrics for every representation of the data we obtain, given the artificial partition into enterotypes.
These representations include manifold-learning embeddings, pairwise distances of the original data in different metric
spaces, and projection on principal components, all in different taxonomy levels, namely Order, Family, and Genus.
The results are presented in Fig. S7. As we see, such artificial assignment reveals no natural clusters in any data
representation, according to the metrics thresholds.
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Figure S4: Silhouette score and Davies-Bouldin index (top), DBCV index and Prediction Strength (bottom) for all
clustering partitions for Sanger, Illumina and Pyroseq datasets, obtained by our framework.

Text S5 Additional preprocessing

In this section we introduce results for the additional analysis, performed on the truncated AGP and HMP datasets,
obtained after removing samples with an extreme gut microbiota composition containing more that 70% of the same
OTU. This analysis includes all steps within our framework, namely, preprocessing, PCA projection, intrinsic dimension
estimation, manifold learning and clustering, as described in Materials & Methods. The remained data percentages
n% after samples removal are presented in Tab. S3. Dimensionalities of the truncated datasets at the Order, Family,
and Genus taxonomy levels repeat the original ones (without removing OTUs accounting for > 70% abundance), as
presented in Tab. 1 of the manuscript. Sorted cumulative sums of the singular values for dPCA estimation are shown
in Fig. S8 along with the PCA loadings, indicating contribution of the OTU coordinates to the principal components.
Following the main analysis, we estimate the Median Absolute Error (MAE) and the Qloc and Qglob metrics of the linear
projection on the principal components, that are presented in Tab. S3. As one can see in Fig. S8, the abundances of
Prevotella and Bacteroides contribute most to the final principal components coordinates at the Genus taxonomy level.
At the Family level, it is Bacteroidaceae, Prevotellaceae, and Ruminococcaceae for both datasets with Enterobacteriaceae
and Lactobacteriaceae as additional strong drivers of the variance for HMP dataset. At the Order level it is Bacteroidales
and Clostridiales for both datasets. After the PCA projection, we performed the intrinsic dimension estimation dMLE

and subsequent manifold learning procedure for the dimensionality reduction from dPCA to dMLE. Like in the original
analysis, with all samples preserved, near-optimal manifold learning algorithms were found via enumeration of different
combinations of potential hyperparameters and selecting the ones with the lowest reconstruction Median Absolute Error
(MAE). The respective lowest MAE values of the data reconstruction from the nonlinear embedding are listed in Tab. S4
and the distribution of the Qloc and Qglob metrics is presented in Fig. S9.

In Fig. S10, we provide the distribution of metrics for all clustering results, calculated for every taxonomy level,
sub-optimal manifold learning method, and clustering algorithm with different hyperparameters. Clustering partitions
with moderate or strong support for both metrics correspond to the points lying at the intersection of the blue and
orange areas. Consistent with the results from the main body of the manuscript, all found partitions consist of two
or three highly imbalanced clusters with more than 95% of the data points concentrated in one cluster. We visualize
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Figure S5: Visualization of the selected clustering partitions for the Sanger, Illumina and Pyroseq datasets in the two
first principal components. Dataset name, taxonomy level, representation of the data, clustering algorithm, and the

pair of metrics used to select the partition are shown in the title. Color indicates different clusters. Clustering metrics
of the visualized partition are shown in the legend. Adjusted Rand Index represents similarity between the presented

partition and the one obtained by the original method in Fig. S3.

Dataset Tax n% dPCA dMLE MAE Qloc Qglob

AGP

O 83 18 6 0.051 0.92 0.99
F 96 34 8 0.040 0.96 0.99
G 96 49 9 0.050 0.95 0.99

HMP
O 71 19 5 0.037 0.92 0.99
F 79 39 7 0.037 0.94 0.99
G 77 44 7 0.056 0.94 0.99

Table S3: Dimensionalities dPCA - number of the first principal components explaining 99% variance, and dMLE -
estimated intrinsic dimension. n% - percentage of the data remained after removing samples with more that 70% of

composition occupied by the same OTU. MAE - Median Absolute Error of the linear inverse transformation from data
projected on the principal components to the original space of taxon abundances. Qloc and Qglob - metrics that

indicate preservation of the local and global data structure correspondingly.

selected partitions with moderate support in Fig. S11, by projecting on first two principal components or by using
Large Margin Nearest Neighbor method [13]. For visualization, for every pair of metrics and the dataset, we select the
partition, with the maximal entropy, among all partitions satisfying metrics thresholds. As one can see, the clusters are
non-convex, yet distinguishable, which is consistent with the metrics. Nevertheless, the distribution of the data points
among the clusters for every selected partition is highly imbalanced, which is indicated by the low entropy value. As in
the main analysis, these results imply that diverse clustering methods applied to different manifold learning algorithms
yield stable and distinctive, but highly imbalanced partitions. We assign such partitions to the data outliers or artifacts
of the manifold learning algorithms and clustering methods, since clusters that contain less than 5% of the total data
are not related to the enterotypes. In Fig. S12 and S13, we demonstrate continuous variation of the specific OTU at
the Genus taxonomy level, along a two-dimensional representation, obtained by the UMAP and t-SNE methods. The
points are colored as specific taxon relative abundances, corresponding to the genera of bacteria most relevant for the
definition of enterotypes, Bacteroides, Prevotella, and Ruminococcus, according to the initial finding [1]. Salient parts
of the manifolds represent higher concentrations of the Bacteroides and Prevotella OTUs. Prior to the UMAP and
t-SNE dimensionality reduction, datasets were projected on the principal components capturing 99% of variance. After
obtaining two-dimensional representations, small clusters of points containing less that 1% of the data were removed
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Figure S6: Visualization of the AGP and HMP datasets in projection on three main enterotype drivers, namely
Bacteroides, Prevotella and Ruminococcus (top). The same visualization, but with an artificial clustering partition

applied (bottom). This partition is provided by assigning each point to corresponding enterotype. Points that do not
fall into any enterotype are denoted as Unclassified and are not included in the visualization. Corresponding clustering

metrics, estimated for an artificial partition are presented in the legend.

using the Local Outlier Factor algorithm [2]. Further, for the two-dimensional visualizations, we estimate the density of
the points. We perform standard Kernel Density Estimation (KDE) with the bandwidth parameter equal to the median
value of a distribution of pairwise distances from every point to 100 closest neighbors. As we see in Fig. S14, the density
of regions is not uniform, indicating that there are regions of preferential data concentration in UMAP and t-SNE
visualizations in Fig. S12 and Fig. S13, correspondingly. Removing all regions in Fig. S14 with density less than the
70% percentile of the total density distribution, we obtain well-separated, high-density regions. In Fig. S15, we show the
arrangement of those regions in the two-dimensional visualization (Z1 and Z2 coordinates), along with the distributions
of ten most significant OTU in each region. The most significant OTUs are the ones with the highest mean value for all
selected high-density regions. We observe that the difference in the OTU distribution between the high-density clusters
is mainly controlled by variation of Bacteroides, Prevotella, Ruminococcus, Lactobacillus, and Faecalibacterium, as well
as variation of an unclassified OTU in the Genus level, denoted as Rest. This observation is consistent with the OTU
abundance gradient visualization in Fig. S13 and Fig. S12 and the similar analysis performed for the data with all
samples retained in the main body of the manuscript.
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Figure S7: Distribution of the Silhouette score and Davies-Bouldin index (left), DBCV index and Prediction Strength
(right) of an artificial enterotyping partition applied to the different representations of the AGP and HMP datasets:
pre-computed distances, low-dimensional manifold learning embeddings and projection on principal components.

Figure S8: Cumulative explained variance of the Principal Component Analysis (PCA) and PCA loadings,
representing contribution of original taxonomy coordinates to the principal components, for AGP and HMP datasets

in different taxonomy levels: O - Order, F - Family, G - Genus.
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Figure S9: Co-ranking metrics for different manifold learning methods. Horizontal axis - Qloc metric (local information
preservation), vertical axis - Qglob metric (global information preservation) of the non-linear dimensionality reduction
methods. Datasets (AGP and HMP) and taxonomy levels (O - Order, F - Family, G - Genus) are shown in the inset.

SE - Spectral Embedding, LLE - Locally Linear Embedding, AE - AutoEncoder.

Dataset Method Tax O Tax F Tax G

AGP

AutoEncoder 0.06 0.19 0.22
t-SNE 0.05 0.19 0.22
UMAP 0.06 0.22 0.24
Isomap 0.06 0.22 0.25
LLE 0.06 0.21 0.24

Spectral 0.06 0.21 0.23

HMP

AutoEncoder 0.09 0.24 0.22
t-SNE 0.13 0.28 0.27
UMAP 0.14 0.31 0.30
Isomap 0.15 0.34 0.33
LLE 0.15 0.32 0.31

Spectral 0.17 0.37 0.34

Table S4: The Median Absolute Error of the reconstruction, assessed using Leave-One-Out procedure. The
reconstruction is done by the independent K-Nearest Neighbors Regression of the coordinates in the original space of

relative taxon abundances from the non-linear embedding.
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Figure S10: Silhouette score and Davies-Bouldin index (top), DBCV index and Prediction Strength (bottom) of
clustering partitions for the truncated AGP and HMP datasets (the samples with the same OTU constituting more

than 70% of the microbiome composition removed).
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Figure S11: Visualization of the clustering results for the AGP and HMP datasets, using the first two principal
components (PC1 and PC2) or the Large Margin Nearest Neighbor method (LMC1 and LMC2). The visualized
clustering partitions have the highest entropy among all partitions satisfying corresponding metrics thresholds.

Dataset name, taxonomy level, representation of the data, clustering algorithm, and the pair of metrics used to select
the partition are shown in the title. Color indicates different clusters. Percentage of the data belonging to each cluster

is depicted on the legend.
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Figure S12: Two-dimensional UMAP visualization of truncated AGP and HMP datasets for the Genus taxonomy
level. Samples with extreme gut microbiota composition that includes more that 70% of the same OTU were removed

prior to the visualization. Colors reflect the relative abundance of specific taxa, see the headers.

Figure S13: Two-dimensional t-SNE visualization of truncated AGP and HMP datasets for the Genus taxonomy level.
Samples with extreme gut microbiota composition that includes more that 70% of the same OTU were removed prior

to the visualization. Colors reflect the relative abundance of specific taxa, see the headers.
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Figure S14: Kernel Density Estimation of UMAP (top) and t-SNE (bottom) two-dimensional visualizations. Density
color indicates relative likelihood of the point to belong to the data distribution, according to KDE.
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Figure S15: Analysis of the high-density regions for UMAP (top) and t-SNE (bottom) two-dimensional visualizations.
The regions correspond to the Kernel Density Estimation likelihood larger than 70% percentile of the total likelihood
distribution. Color indicates different high-density clusters, depicted in the two-dimensional scatter plot with Z1 and
Z2 coordinates. For the first ten selected OTU with the largest mean value among all high-density regions, the violin

plots depict their distribution within each region.
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Algorithm Description Pros Cons
Spectral
Embedding

Uses eigenvalues and
eigenvectors of the Lapla-
cian matrix based on
dataset graph to represent
dataset while preserving
its spectral properties

Captures nonlinear data
structure, preserves lo-
cal properties, computa-
tionally efficient, explic-
itly emphasizes clusters

Requires hyperparameters
tuning, may not work well
for large datasets and ac-
centuate spurious clusters,
sensitive to noise

Locally
Linear
Embedding
(LLE)

Locally preserves linear
structure of the data
by reproducing it in the
lower-dimensional space

Captures nonlinear data
structure, computation-
ally efficient, requires no
assumptions about data

Preserve only local prop-
erties, may not work well
for high-dimensional data,
sensitive to the choice of
the hyperparameters

ISOMAP Calculates geodesic dis-
tances in a neighborhood
graph to preserve the in-
trinsic geometry of the
data in the embedding

Captures nonlinear data
structure, works well for
data with manifold struc-
tures, robust to noise

Requires tuning of hyper-
parameters, may not work
well for data with discon-
nected point clouds

Autoencoder Neural network that
learns to encode and
decode data, effectively
reducing dimensionality

Captures nonlinear data
structure, learns inverse
transform from embed-
ding space to the original

Requires training data
and may suffer from
overfitting, sensitive to
the noise and outliers

t-SNE Uses a probabilistic ap-
proach and optimization
to create an embedding
preserving pairwise simi-
larities between points

Captures local and global
nonlinear structure,
works well for the high-
dimensional data with
intricate structure

Computationally expen-
sive, sensitive to the
choice of hyperparame-
ters, embeddings are not
always interpretable

UMAP Uses a fuzzy topological
representation of the
data to create a low-
dimensional embedding,
using optimization proce-
dure similar to t-SNE

Captures nonlinear data
structure, works well for
high-dimensional data
with a complex structure,
less computationally ex-
pensive than t-SNE

Relies on assumptions
about the data, embed-
dings are not always
interpretable and depend
on the hyperparameters

Table S5: Comparison of the dimensionality reduction algorithms used in the manuscript.

Algorithm Description Pros Cons
Partition
Around
Medoids
(PAM)

Finds a set of medoids,
one for every cluster. Ev-
ery medoid minimizes dis-
similarity between itself
and the points within the
corresponding cluster

Fast, robust to outliers,
handles categorical data,
provides interpretable
cluster representatives,
straightforwardly ad-
dresses out of sample data

Requires specifying num-
ber of clusters, sensitive
to the initialization, gen-
erally does not account for
the non-convex, density-
based clusters, and noise

Spectral
Clustering

Treats clustering as a
graph partition problem,
by using the eigenvalues
and eigenvectors of the the
Laplacian matrix based on
dataset graph

Capable of revealing non-
convex and noisy clusters
with different sizes and
shapes, efficient for sparse
affinity matrices

Requires specifying num-
ber of clusters and tuning
of hyperparameters, sensi-
tive to outliers, does not
account for noise, compu-
tationally expensive

HDBSCAN Identifies clusters by es-
timating density of the
data, constructing hierar-
chy of clusters and con-
densing small clusters

Robust to noise, vary-
ing shapes, densities, and
sizes of the clusters, works
well for datasets with non-
convex clusters

Highly sensitive to the
choice of hyperparame-
ters that depend on the
data, computationally ex-
pensive for large datasets

Table S6: Comparison of the clustering algorithms used in the manuscript.
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