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Application of tissue-diet discrimination factors in the analyses 

We used the values of tissue-diet discrimination factors for carbon (D13C) and nitrogen 

(D15N) from studies with Caiman latirostris (Caut 2013; Marques et al. 2014), a congener 

species of Caiman crocodilus, which reported values for each collected tissues in our study 

(Table 1). As the tissue-diet discrimination values in Caut’s study differ according with diet, 

we analyzed and reported separately the effects upon Caiman crocodilus isotopic niches 

considering three treatments: (a) observed isotopic data, (b) corrections by discrimination 

factor using chicken diet (D13CChicken and D15NChicken), and (c) corrections by discrimination 

factor using Roach fish diet (D13CFish and D15NFish). We applied the same D13C and D15N 

values for claw and scute in both corrections.  

 We evaluated comparatively among treatments the niche metrics (position, overlap, 

and width) considering tissue, habitat, and sex factors. Detailed niche metric estimations are 

in the Materials and Methods of main text.  

 

Results 

The isotopic niches among tissues for each treatment had different results in the niche 

position: a isotopic concentration and high niche overlap in the observed data (Figure 1A); a 

isotopic concentration and high niche overlap, but with a specific displacement for muscle 

niche using the D13CChicken and D15NChicken correction (Figure 1B); and a descending change of 

isotopic niche along δ15N axis (Figure 1C), metabolically active tissues situating in high δ15N 

values, while inert tissues situating in low δ15N values when applied the D13CFish and D15NFish 

correction. Consequently, the niche overlap changed in the tissue pairwise comparisons from 

observed data to treatment-fish correction (Figure 1D-F). Otherwise, the niche widths showed 

identical results (Figure 1G-I). 

 For isotopic niches among habitats, the correction treatments had broader isotopic 

distribution, but with similar configuration in the niche position compared to observed data 

(Figure 2A-C). The niche overlap in habitat pairwise comparisons increased with treatments 

(Figure 2D-F). Otherwise, the niche width showed similar results, but with increase in the 

SEAB (Figure 2G-I).  

 For the sex factor, the results followed the habitat result pattern: broader isotopic 

distribution and similar configuration in the niche position with correction treatments (Figure 

3A-C); the niche overlap between sexes increased with treatments (Figure 3D-F); and similar 

results in the niche width, but SEAB increased with treatment (Figure 3G-I). 



 

 

3 

 

Discussion 

This exploration showed possible misleading results for tissue factor in the isotopic niche 

metrics when applied distinct values of the discrimination factors. Regarding to habitat and 

sex factors, the results from correction treatments maintained similar compared to observed 

isotopic data. With obvious effect on tissue factor, the treatments had similar results in the 

niche width, whereas the niche position and overlap changed drastically driven by increase of 

range in the δ15N axis, indicating distinct nitrogen pools according with tissues. Indeed, the 

differences among tissues are caused by selection of D13C and D15N values alone, suggesting 

a sensitivity and vulnerability to a bias in the results. 

The variation in diet-tissue discrimination factors among tissues can differ among 

individuals in a population due to life stage, reproductive, or nutritional status, but 

intrinsically relates to tissue factors, as macromolecule compositions, protein turnover, amino 

acid allocation (Kurle et al. 2014; Martínez del Rio et al. 2009; McCutchan Jr et al. 2003; 

Vanderklift & Ponsard 2003). However, diet has pivotal influence due to protein quality and 

content that directly increase or decrease the D15N (Caut et al. 2009; Kurle et al. 2014; 

Martinez del Rio & Wolf 2005; Martínez del Rio et al. 2009; Whiteman et al. 2021). So, we 

pointed out relevant aspects to consider about experiments. First, to produce D13C and D15N 

values, controlled experiments use specific diets that is not realistic compared to natural food 

webs and resource diversification that varies in the diet quality (content and nutrition 

propriety) for a consumer. Second, animals that have dietary ontogenetic shifts with increase 

of protein acquisition as the body size could vary the discrimination values ontogenetically, 

like crocodilians (Villamarín et al. 2018), and thus, implying in another variation factor to 

account regardless tissue type. Third, controlled experiments with crocodilians restrict 

analyses to juvenile population (e.g. Caut 2013; Hanson et al. 2015; Rosenblatt & Heithaus 

2013), lacking adults in the sampling, reflecting a limitation of scope to apply the 

discrimination values compared to sampled population in ecological studies, as our case. In 

this sense, the application of a unique discrimination value for all body size seems unrealistic. 

Therefore, the selection of which discriminant values to use in the analyses seems 

equivocated and arbitrary, remaining elusive and uncertain in the corrections. 
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Table 1. Reference values of the tissue-diet discrimination factors for carbon (D13C) and 

nitrogen (D15N) for collected tissues. 

Tissue Diet D13C (‰) D15N (‰) Reference 

Plasma Chicken -0.08 0.08 Caut (2013) 

Roach fish -0.11 -2.24 Caut (2013) 

Muscle Chicken -0.04 -1.59 Caut (2013) 

Roach fish 1.06 -2.50 Caut (2013) 

RBC Chicken -0.52 0.39 Caut (2013) 

Roach fish 0.66 0.93 Caut (2013) 

Claw Chicken 1.2* 1.1* Marques et al. (2014) 

Scute Chicken 0.9* 0.9* Marques et al. (2014) 

RBC: red blood cells; * Mean values 
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Figure 1. Isotopic niches, density distributions of the niche overlap area for pairwise 

comparisons from Bayesian simulations of the niche ellipses, and estimated niche width for 

tissue group in each treatment: A, D,and G from observed isotopic data; B, E, and H from 

corrections by tissue-diet discrimination factors using chicken diet (D13CChicken and 

D15NChicken); C, F, and I from corrections by tissue-diet discrimination factors using Roach 

fish diet (D13CFish and D15NFish). In the scatter plots, solid lines represent the core isotopic 

niche space. Black dots correspond to the mean and boxes represent the 50%, 75% and 95% 

credible intervals. 

 

Figure 2. Isotopic niches, density distributions of the niche overlap area for pairwise 

comparisons from Bayesian simulations of the niche ellipses, and estimated niche width for 

habitat group in each treatment: A, D,and G from observed isotopic data; B, E, and H from 

corrections by tissue-diet discrimination factors using chicken diet (D13CChicken and 

D15NChicken); C, F, and I from corrections by tissue-diet discrimination factors using Roach 

fish diet (D13CFish and D15NFish). Scatter plots exhibit the mean isotopic values of all tissues 

from each individual. Solid lines represent the core isotopic niche space. Black dots 

correspond to the mean and boxes represent the 50%, 75% and 95% credible intervals. 

 

Figure 3. Isotopic niches, density distributions of the niche overlap area for pairwise 

comparisons from Bayesian simulations of the niche ellipses, and estimated niche width for 

sex group in each treatment: A, D,and G from observed isotopic data; B, E, and H from 

corrections by tissue-diet discrimination factors using chicken diet (D13CChicken and 

D15NChicken); C, F, and I from corrections by tissue-diet discrimination factors using Roach 

fish diet (D13CFish and D15NFish). Scatter plots exhibit the mean isotopic values of all tissues 

from each individual. Solid lines represent the core isotopic niche space. Black dots 

correspond to the mean and boxes represent the 50%, 75% and 95% credible intervals. 
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