
Supplemental Information 1. Modelling of the rice-pest dynamic system and its biological 

control 

Supplemental Information 1.1 – Assumption and model formulation of the rice-pest dynamic 

system  

Let 1( )x t  be the annual production of rice per unit area (hectare) and 2 ( )x t  be the corresponding pest species 

population at a time t where the annual production of rice acts as the prey population, and the corresponding pest 

species population acts as the predator population. In this regard, the pest population consumes and damages the rice 

growth which declines the annual production of rice. The relationships between the production of rice and the density 

of pests are as follows (Chunyan & Daqing, 2013; Milligan et al., 2016): 

(i) At the initial state, let the reproduction rate of rice be 1 . For the consumption of rice by the pest 

population, a part of the annual production of rice is lost which let’s 1  be the loss rate of 1( )x t  

due to the consumption of 2 ( )x t . Then the reproduction rate of rice can be represented by 

( )1 1 1 2 1( ) ( ) ( )
d

x t x t x t
dt

 = −                                                                                                       (S1) 

where 1 1 2( ) ( )x t x t  presents the annual loss of rice due to pests.   

(ii) On the other hand, the pest population in the system depends on rice for feeding. Therefore, the pest 

population proportionally increases with the increasing rice production. Let 2  be the energy gain 

rate of pest population by consuming rice. Again, since the pest population depends on the 

production of rice for feeding, their growth and population number will be reduced when the 

production of rice declines. Therefore, 2  is taken as the decline rate of the pest population 

proportionally with the decline of rice production. Then the growth rate of the pest population can 

be represented by 

   ( )2 2 1 2 2( ) ( ) ( )
d

x t x t x t
dt

 = −                                                                                                      (S2) 

where 2 1 2( ) ( )x t x t  presents the annual consumption of rice by the pest population.   

The rice-pest system can be written in terms of a pair of Nonlinear Ordinary Differential Equations (NODEs) 

in form of a Lotka-Volterra model: 
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where 1( )x t  and 2 ( )x t  respectively present the annual production of rice per unit area and the density of the rice 

pests at time t, and 10x  and 20x  respectively show the initial conditions of 1( )x t  and 2 ( )x t  i.e., the values of 2 ( )x t  

and 2 ( )x t  at 0t = . 

The production rate of rice is not damaged only by the attack of pests, but it may also be damaged owing to 

environmental impacts such as drought, global warming, etc. Similarly, the pest population may be reduced due to 

natural causes such as floods, droughts, etc. Therefore, two parameters i.e., 𝑑1 (decrease rate of rice production due 

to natural causes not related to the pest population), and 𝑑2 (death rate of pest population due to natural causes not 

related to the deficiency of rice) need to be considered in the model as well:  
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Here, the term 
2

1 1 ( )d x t  presents the decrease rate due to intraspecific competition in species 1( )x t  due to natural 

causes that are not related to 2 ( )x t , e.g., viral infections, droughts, or floods (Bazykin, 1976; Liu & Jiang, 2021). 

Similarly, the term 
2

2 2 ( )d x t  shows the intraspecific competition between 2 ( )x t  due to natural causes that are not 

related to 1( )x t , e.g., viral infection and heavy rains (Bazykin, 1976; Yang, 2020).  

A schematic diagram is shown in Fig. S1 which represents the dynamic relations of this model. 

 
Figure S1 A schematic diagram of the rice-pest system (S4) disclosing the interrelationship between rice and corresponding rice 

pests along with the impact of adverse environment.   

 

Supplemental Information 1.2 - Positivity Analysis 

In the following, we intend to show that the rice-pest system (S4) is bounded in a positive region and the 

dynamic species of the system (S4) consist of non-negative values at any time (Dym, 2004). 

 

Theorem 1.1. The rice-pest system (S4) is bounded in a positive region 𝛹 = {(𝑥1(𝑡), 𝑥2(𝑡)) ∈ ℝ+
2 }.  

Proof Consider 𝑁(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) and 𝜇 ∈ ℝ+, then we can write 

1 2
1 2

( ) ( )( )
( ) ( ) ( )

d x t dx tdN t
N t x t x t

dt dt dt
  + = + + +  

2 2

1 1 2 1 1 1 2 2 1 2 2 2 1 2

( )
( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ) ( ) ( )

dN t
N t x t x t d x t x t x t d x t x t x t

dt
       + = − − − − − + +                 (S5) 

Since the consumption of pests and the losses of rice are approximately equal at the equilibrium point i.e., 𝛽1 ≈ 𝛽2, 

Eq. (S5) takes the following form  
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Applying the principle of differential inequalities in Eq. (S6), we get  

( ) ( )1 2 10 200 ( ) ( ), ( ) 1 ( )t tN t x t x t e x x e 



− −  − + + , where 
2 2

1 2
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1 1
( ) ( )

4 4d d
    = + + −  

Taking the limit as t →  we obtain 0 ( )N t



  , hence the region of attraction for the system can be formulated 

as Ψ = {(𝑥1(𝑡), 𝑥2(𝑡)) ∈ ℝ+
2 : 𝑁(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡), 0 ≤ 𝑁(𝑡) ≤

𝜉

𝜇
} with 𝜉, 𝜇 ∈ ℝ+. This indicates that the system is 

positively bounded in Ψ.  

 

 

 



Theorem 1.2. Each species of the model (S4) contains a non-negative real value for all 0t   .  

Proof To estimate the solution, consider the first equation of the model (S4) given as  
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According to the condition of positivity, Eq. (S7) takes the following form  
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After solving Eq. (S8), the solution of 1( )x t  becomes 
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   i.e., 1( )x t  is non-negatively bounded. Similarly, it 

can be shown that 
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Supplemental Information 1.3 - Equilibrium Points 

To conduct the stability analysis of the rice-pest system (S4), we first obtain the equilibria of the system, 

considering three different situations (Dym, 2004):  

(i). The trivial or pre-cultivation case refers to the situation prior to cultivation. No plants and pests 

exist yet.  Therefore, the pre-cultivating equilibrium point is 10 20( , ) (0, 0)x x = . 

(ii). The pest-free case refers to the pre-existing state of rice pests, indicating that there are rice plants, 

but no pests. Here, the pest-free equilibrium point is 1

1

1

( , 0) , 0x
d

 
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 

. 

(iii).  A co-existence or farming situation refers to a competitive case where both rice and pests coexist. 

The co-existing equilibrium point of the rice-pest system (S4) is  
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Supplemental Information 1.4 - Stability Analysis  

To illustrate the nature of the equilibrium points of the model (S4), a stability analysis has been conducted. 

In this case, let’s consider system (S4) in the following vectorial form (Dym, 2004)   
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where ( ) ( ) 2

1 1 1 2 1 1 1( ), ( ) ( ) ( )f x t t x t x t d x t = − −  and ( ) ( ) 2

2 2 1 2 2 2 2( ), ( ) ( ) ( )f x t t x t x t d x t = − −  

 After evaluating the vector field, the Jacobian matrix is obtained as the following  
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Theorem 1.3. System (S4) approaches a saddle-node at the pre-cultivation equilibrium. 

Proof To prove the theorem, evaluate the Jacobian matrix (S10) at 10 20( , )x x  which becomes of the following form 
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The characteristic equation of Eq. (S11) is 
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Hence the eigenvalues of Eq. (S12) are 11 =  and 22 = − . Since the eigenvalues are real and are opposite in sign, 

the pre-cultivating equilibrium represents a saddle point. 



For an autonomous system, an equilibrium point is a saddle point if the characteristic equation consists of opposite 

signed (one positive and one negative) real eigenvalues (Youssef & Raffoul, 2022). A stable point exhibits a mean 

position between the stability and instability of a point. For a biological example in two dimensions, the dynamic 

species appear to have reached a stable equilibrium situation but, their trajectory bends to the other side instead. 

 

Theorem 1.4. The system described by Eq. (S4) at pest-free equilibrium approaches a saddle point. 

Proof To test the stability at pest-free equilibrium, evaluate the Jacobian matrix (S10) at 1( , 0)x  through its 

characteristic equation by calculating ( )
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Therefore, the characteristic equation of Eq. (S13) is 
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Similarly, the eigenvalues of Eq. (S14) become 1 1 = − , and 
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1 2 2 1d    which indicates that the pest-free equilibrium represents a saddle point.  

 

Theorem 1.5. The rice-pest system (S4) approaches a spiral node at the co-existing equilibrium point.  

Proof Evaluating the Jacobian matrix (S10) at the co-existing equilibrium point, it takes the following form  
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The characteristic equation of Eq. (S15) is again calculated via ( )
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Both the eigenvalues are complex numbers which indicate that the co-existing equilibrium approaches a spiral node.  

 



 
Figure S2 Phase portrait discloses the characteristics of three equilibrium points (EP) of the rice-pest system (S4). Here, the co-

existing equilibrium point is a spiral node, and the others, pre-cultivating and pest-free equilibrium points, are saddle points.  

 


