Supplemental Information 2. Bifurcation analysis for the rice-pest system

In this section, we investigate the rice-pest system (S4) through transcritical bifurcation analysis (Banerjee \& Petrovskii, 2011). For a transcritical bifurcation exists a non-destructible fixed point over the whole bifurcation parameter range, which, however, changes its stability characteristic for altered bifurcation parameters (Banerjee \& Petrovskii, 2011). For the transcritical bifurcation analysis of the rice-pest system (S4), it is more convenient to use a dimensionless rice-pest system (S4) which reduces the number of parameters (Banerjee \& Petrovskii, 2011). In this case, we introduce the dimensionless variables $x_{1}(t)=x^{*} \cdot \hat{x}$ and $x_{2}(t)=y^{*} \cdot \hat{y}$ and consider the dimensionless time $t=\tau^{*} \sigma$. Removing the symbols '*' and '^', the system (S4) becomes dimensionless given as

$$
\left\{\begin{array}{l}
\frac{d x}{d \tau}=x(\alpha-x)-x y \equiv f_{1}(x, y) \tag{S16}\\
\frac{d y}{d \tau}=\beta x y-y-\gamma y^{2} \equiv f_{2}(x, y)
\end{array}\right.
$$

where $\sigma=\frac{1}{\alpha_{2}}, \alpha=\frac{\alpha_{1}}{\alpha_{2}}, \beta=\frac{\beta_{2}}{d_{1}}, \gamma=\frac{d_{2}}{\beta_{1}}$.
The biologically meaningful equilibria of the system (S16) are the non-negative solutions of $f_{1}(x, y)=0$ and $f_{2}(x, y)=0$. The rice (prey) isocline consists of the axis $x=0$ and the straight line $y=\alpha-x$ and the pests (predator) isocline consists of the axis $y=0$ and the line $x=\frac{1+\gamma y}{\beta}$ (Banerjee \& Petrovskii, 2011). Correspondingly, the system (S16) is bounded by two equilibrium points, the trivial/pre-cultural equilibrium $E_{0}(x, y)=(0,0)$ and the pest-free equilibrium $\quad E_{1}(x, y)=(\alpha, 0)$ An interior equilibrium $\quad E_{*}(x, y)=\left(x_{*}, y_{*}\right) \quad$ with $\left(x_{*}, y_{*}\right)=\left(\frac{1+\gamma y_{*}}{\beta}, \alpha-x_{*}\right)=\left(\frac{\alpha \gamma+1}{\beta+\gamma}, \frac{\alpha \beta-1}{\beta+\gamma}\right)$ can be found at the intersection of the two isoclines. For the existence of E_{*}, the value of the parameters must follow the conditions $\alpha \gamma+1 \geq 0, \beta+\gamma>0$ and $\alpha \beta-1 \geq 0$.

Theorem 2.1. The system (S16) experiences transcritical bifurcation at the pest-free equilibrium point $E_{1}(\alpha, 0)$ as the growth parameter α passes through the critical value α^{*}.
Proof At the pest-free equilibrium point $E_{1}(\alpha, 0)$, the associated Jacobian matrix of the system (S16) takes the form:

$$
J_{E_{1}}\left(\alpha^{*}\right)=\left[\begin{array}{cc}
-\alpha & 0 \tag{S17}\\
0 & 0
\end{array}\right]
$$

The set of eigenvalues of $J_{E_{1}}\left(\alpha^{*}\right)$ is $\lambda=\left[\begin{array}{c}-\alpha \\ 0\end{array}\right]$ i.e., one eigenvalue is zero and the other is negative since $\alpha>0$. Therefore, to examine the nature of the system at E_{1}, we have applied Sotomayor's theorem (Perko, 2000). For this purpose, we consider the system (S16) as

$$
\begin{equation*}
f(x, y)=\binom{f_{1}(x, y)}{f_{2}(x, y)} \tag{S18}
\end{equation*}
$$

Let the eigenvectors corresponding to the zero eigenvalues of $J_{E_{1}}\left(\alpha^{*}\right)$ and $J_{E_{1}}{ }^{T}\left(\alpha^{*}\right)$ be V and W, respectively, where $V=W=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. From Eq. (S18), we have $f_{\alpha}\left(E_{1} ; \alpha^{*}\right)=\left[\begin{array}{l}\alpha \\ 0\end{array}\right], \quad D f_{\alpha}\left(E_{1} ; \alpha^{*}\right)=\left[\begin{array}{cc}\alpha & 0 \\ 0 & 0\end{array}\right] \quad$ and $D^{2} f\left(E_{1} ; \alpha^{*}\right)(V, V)=\left[\begin{array}{c}-2 \\ 0\end{array}\right]$. Here, $D f$ denotes the partial derivative of f with respect to x and y, and $D f_{\alpha}$ denotes the partial derivative of f with respect to the parameter α. Therefore,

$$
\begin{aligned}
& W^{T} f_{\alpha}\left(E_{1} ; \alpha^{*}\right)=\alpha \neq 0 \\
& W^{T}\left[D f_{\alpha}\left(E_{1} ; \alpha^{*}\right) V\right]=\alpha \neq 0
\end{aligned}
$$

$$
W^{T}\left[D^{2} f\left(E_{1} ; \alpha^{*}\right)(V, V)\right]=-2 \neq 0
$$

Hence, there is a saddle-node bifurcation at the nonhyperbolic equilibrium point $E_{1}(\alpha, 0)$ at the bifurcation value α. For $\alpha<0$, there is no equilibrium point. For $\alpha=0$, the $f_{1}(x, y)=-x^{2}$ is structurally unstable and the bifurcation value $\alpha=0$. Therefore, there is a transcritical bifurcation at the origin for $\alpha=0$. There are two equilibria at origin $(0,0)$ and $E_{1}(\alpha, 0)($ Perko, 2000).

Theorem 2.2.The system (S16) experiences a transcritical bifurcation at the equilibrium point $E_{*}\left(x_{*}, y_{*}\right)$ as the growth parameter of the pest species population β passes through the critical value β^{*}.
Proof At the equilibrium point $E_{*}\left(x_{*}, y_{*}\right)$, the associated Jacobian matrix of the system (S16) takes the form:

$$
J_{E_{*}}\left(\beta^{*}\right)=\left[\begin{array}{cc}
-\frac{\alpha \gamma+1}{\beta+\gamma} & -\frac{\alpha \gamma+1}{\beta+\gamma} \tag{S19}\\
\frac{\alpha \beta^{2}-\beta}{\beta+\gamma} & \frac{\gamma(1-\alpha \beta)}{\beta+\gamma}
\end{array}\right]
$$

It can be shown that one eigenvalue of $J_{E_{*}}\left(\beta^{*}\right)$ is negative and the other one is zero for the condition $\alpha \beta=1$
(Perko, 2000). To investigate the nature of the system at E_{*}, we have applied Sotomayor's theorem (Sen, Banerjee \& Morozov, 2012). Let the eigenvectors correspond to the zero eigenvalues of $J_{E_{*}}\left(\beta^{*}\right)$ and $J_{E_{*}}{ }^{T}\left(\beta^{*}\right)$ be V and W , respectively, where $V=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $W=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. From Eq. (S18), we have $f_{\beta}\left(E_{*} ; \beta^{*}\right)=\left[\begin{array}{c}0 \\ x_{*} y_{*}\end{array}\right]$,

$$
\begin{aligned}
& D f_{\beta}\left(E_{*} ; \beta^{*}\right)=\left[\begin{array}{cc}
0 & 0 \\
y_{*} & x_{*}
\end{array}\right] \text { and } D^{2} f\left(E_{*} ; \beta^{*}\right)(V, V)=\left[\begin{array}{c}
0 \\
-2 \beta-2 \gamma
\end{array}\right] . \text { Therefore, } \\
& W^{T} f_{\beta}\left(E_{*} ; \beta^{*}\right)=0 \\
& W^{T}\left[D f_{\beta}\left(E_{*} ; \beta^{*}\right) V\right]=y_{*}-x_{*} \neq 0 \\
& W^{T}\left[D^{2} f\left(E_{*} ; \beta^{*}\right)(V, V)\right]=-2 \beta-2 \gamma \neq 0
\end{aligned}
$$

Hence the system (S16) satisfies all the necessary conditions of Sotomayor's theorem and thus the system (S16) experiences a transcritical bifurcation at the co-existence equilibrium point E_{*} for the bifurcation parameter β (Perko, 2000).

Supplemental Information 2.1 - Finding values for dimensionless parameters

We have numerically investigated the dynamic behaviour of the system (S16) for the variation in the growth of pest populations (β). Let β_{0} be the initial condition for the existence of E_{*}. The parameters must follow the conditions $\alpha \gamma+1 \geq 0, \beta+\gamma>0$ and $\alpha \beta-1 \geq 0$ and to estimate β_{0}, we consider $\alpha=1$ and $\gamma=0.001$ which satisfy all the conditions. Therefore, we get $\beta_{0}=1$ after calculating $\operatorname{det}\left(J_{E_{*}}\left(\beta^{*}\right)\right)=0$ (Sen, Banerjee \& Morozov, 2012).

Figure S3 (A) Phase plane of the rice-pest system (S16) for $\beta=13.6$, (B) time series analysis of (A), (C) phase plane of the system (S16) for $\beta=13.7$, and (D) time series analysis of (C). The system experiences a steady-state limit cycle for $\beta=13.6$, and approaches $E_{l}(0,0)$ for $\beta=13.7$ meaning that the system exticts over a long time.

