Supplemental Information 2. Bifurcation analysis for the rice-pest system

In this section, we investigate the rice-pest system (S4) through transcritical bifurcation analysis (*Banerjee & Petrovskii*, 2011). For a transcritical bifurcation exists a non-destructible fixed point over the whole bifurcation parameter range, which, however, changes its stability characteristic for altered bifurcation parameters (*Banerjee & Petrovskii*, 2011). For the transcritical bifurcation analysis of the rice-pest system (S4), it is more convenient to use a dimensionless rice-pest system (S4) which reduces the number of parameters (*Banerjee & Petrovskii*, 2011). In this case, we introduce the dimensionless variables $x_1(t) = x^* \cdot \hat{x}$ and $x_2(t) = y^* \cdot \hat{y}$ and consider the dimensionless time

 $t = \tau^* \sigma$. Removing the symbols '*' and '^', the system (S4) becomes dimensionless given as

$$\begin{aligned} \left| \frac{dx}{d\tau} = x(\alpha - x) - xy &\equiv f_1(x, y) \\ \frac{dy}{d\tau} = \beta xy - y - \gamma y^2 &\equiv f_2(x, y) \\ &\equiv \frac{1}{2} \quad \alpha = \frac{\alpha_1}{2} \quad \beta = \frac{\beta_2}{2} \quad \gamma = \frac{d_2}{2} \end{aligned}$$
(S16)

where $\sigma = \frac{1}{\alpha_2}$, $\alpha = \frac{\alpha_1}{\alpha_2}$, $\beta = \frac{\beta_2}{d_1}$, $\gamma = \frac{d_2}{\beta_1}$.

The biologically meaningful equilibria of the system (S16) are the non-negative solutions of $f_1(x, y) = 0$ and $f_2(x, y) = 0$. The rice (prey) isocline consists of the axis x = 0 and the straight line $y = \alpha - x$ and the pests (predator) isocline consists of the axis y = 0 and the line $x = \frac{1 + \gamma y}{\beta}$ (*Banerjee & Petrovskii, 2011*). Correspondingly, the system (S16) is bounded by two equilibrium points, the trivial/pre-cultural equilibrium $E_0(x, y) = (0, 0)$ and the pest-free equilibrium $E_1(x, y) = (\alpha, 0)$. An interior equilibrium $E_*(x, y) = (x_*, y_*)$ with $(x_*, y_*) = \left(\frac{1 + \gamma y_*}{\beta}, \alpha - x_*\right) = \left(\frac{\alpha\gamma + 1}{\beta + \gamma}, \frac{\alpha\beta - 1}{\beta + \gamma}\right)$ can be found at the intersection of the two isoclines. For the existence of E_* the value of the normator must follow the conditions $\alpha y + 1 \ge 0$ and $\alpha \beta - 1 \ge 0$.

of E_* , the value of the parameters must follow the conditions $\alpha\gamma + 1 \ge 0$, $\beta + \gamma > 0$ and $\alpha\beta - 1 \ge 0$.

Theorem 2.1. The system (S16) experiences transcritical bifurcation at the pest-free equilibrium point $E_1(\alpha, 0)$ as the growth parameter α passes through the critical value α^* .

Proof At the pest-free equilibrium point $E_1(\alpha, 0)$, the associated Jacobian matrix of the system (S16) takes the form:

$$J_{E_{\rm I}}(\alpha^*) = \begin{bmatrix} -\alpha & 0\\ 0 & 0 \end{bmatrix}$$
(S17)

The set of eigenvalues of $J_{E_1}(\alpha^*)$ is $\lambda = \begin{bmatrix} -\alpha \\ 0 \end{bmatrix}$ i.e., one eigenvalue is zero and the other is negative since $\alpha > 0$. Therefore, to examine the nature of the system at E_1 , we have applied *Sotomayor's theorem (Perko, 2000)*. For this purpose, we consider the system (S16) as

$$f(x, y) = \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix}$$
(S18)

Let the eigenvectors corresponding to the zero eigenvalues of $J_{E_1}(\alpha^*)$ and $J_{E_1}^{T}(\alpha^*)$ be V and W, respectively,

where
$$V = W = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
. From Eq. (S18), we have $f_{\alpha}(E_1; \alpha^*) = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$, $Df_{\alpha}(E_1; \alpha^*) = \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix}$ and $D^2 f(E_1; \alpha^*)(V, V) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$. Here, Df denotes the partial derivative of f with respect to X and Y , and Df denotes

 $D^{-}f(E_{1};\alpha)(V,V) = \begin{bmatrix} 0 \end{bmatrix}$. Here, Df denotes the partial derivative of f with respect to x and y, and Df_{α} denotes the partial derivative of f with respect to the parameter α . Therefore

the partial derivative of f with respect to the parameter α . Therefore,

$$W^{T} f_{\alpha}(E_{1}; \alpha^{*}) = \alpha \neq 0$$
$$W^{T} \left[D f_{\alpha}(E_{1}; \alpha^{*}) V \right] = \alpha \neq 0$$

$$W^{T}\left[D^{2}f(E_{1};\alpha^{*})(V,V)\right] = -2 \neq 0$$

Hence, there is a saddle-node bifurcation at the nonhyperbolic equilibrium point $E_1(\alpha, 0)$ at the bifurcation value α . For $\alpha < 0$, there is no equilibrium point. For $\alpha = 0$, the $f_1(x, y) = -x^2$ is structurally unstable and the bifurcation value $\alpha = 0$. Therefore, there is a transcritical bifurcation at the origin for $\alpha = 0$. There are two equilibria at origin (0,0) and $E_1(\alpha, 0)$ (*Perko*, 2000).

Theorem 2.2. The system (S16) experiences a transcritical bifurcation at the equilibrium point $E_*(x_*, y_*)$ as the growth parameter of the pest species population β passes through the critical value β^* .

Proof At the equilibrium point $E_*(x_*, y_*)$, the associated Jacobian matrix of the system (S16) takes the form:

$$J_{E_*}(\beta^*) = \begin{bmatrix} -\frac{\alpha\gamma+1}{\beta+\gamma} & -\frac{\alpha\gamma+1}{\beta+\gamma} \\ \frac{\alpha\beta^2-\beta}{\beta+\gamma} & \frac{\gamma(1-\alpha\beta)}{\beta+\gamma} \end{bmatrix}.$$
(S19)

It can be shown that one eigenvalue of $J_{E_*}(\beta^*)$ is negative and the other one is zero for the condition $\alpha\beta = 1$ (*Perko*, 2000). To investigate the nature of the system at E_* , we have applied *Sotomayor's theorem* (*Sen, Banerjee* & *Morozov*, 2012). Let the eigenvectors correspond to the zero eigenvalues of $J_{E_*}(\beta^*)$ and $J_{E_*}^{T}(\beta^*)$ be V and W

, respectively, where
$$V = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $W = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. From Eq. (S18), we have $f_{\beta}(E_*; \beta^*) = \begin{bmatrix} 0 \\ x_* y_* \end{bmatrix}$,
 $Df_{\beta}(E_*; \beta^*) = \begin{bmatrix} 0 & 0 \\ y_* & x_* \end{bmatrix}$ and $D^2 f(E_*; \beta^*)(V, V) = \begin{bmatrix} 0 \\ -2\beta - 2\gamma \end{bmatrix}$. Therefore,
 $W^T f_{\beta}(E_*; \beta^*) = 0$
 $W^T \begin{bmatrix} Df_{\beta}(E_*; \beta^*)(V, V) \end{bmatrix} = y_* - x_* \neq 0$
 $W^T \begin{bmatrix} D^2 f(E_*; \beta^*)(V, V) \end{bmatrix} = -2\beta - 2\gamma \neq 0$

Hence the system (S16) satisfies all the necessary conditions of *Sotomayor's theorem* and thus the system (S16) experiences a transcritical bifurcation at the co-existence equilibrium point E_* for the bifurcation parameter β (*Perko*, 2000).

Supplemental Information 2.1 – Finding values for dimensionless parameters

We have numerically investigated the dynamic behaviour of the system (S16) for the variation in the growth of pest populations (β). Let β_0 be the initial condition for the existence of E_* . The parameters must follow the conditions $\alpha\gamma + 1 \ge 0$, $\beta + \gamma > 0$ and $\alpha\beta - 1 \ge 0$ and to estimate β_0 , we consider $\alpha = 1$ and $\gamma = 0.001$ which satisfy all the conditions. Therefore, we get $\beta_0 = 1$ after calculating det $(J_{E_*}(\beta^*)) = 0$ (*Sen, Banerjee & Morozov, 2012*).

Figure S3 (A) Phase plane of the rice-pest system (S16) for $\beta = 13.6$, (B) time series analysis of (A), (C) phase plane of the system (S16) for $\beta = 13.7$, and (D) time series analysis of (C). The system experiences a steady-state limit cycle for $\beta = 13.6$, and approaches $E_1(0,0)$ for $\beta = 13.7$ meaning that the system exticts over a long time.