Supplemental Information 2. Bifurcation analysis for the rice-pest system

In this section, we investigate the rice-pest system (S4) through transcritical bifurcation analysis (Banerjee
& Petrovskii, 2011). For a transcritical bifurcation exists a non-destructible fixed point over the whole bifurcation
parameter range, which, however, changes its stability characteristic for altered bifurcation parameters (Banerjee &
Petrovskii, 2011). For the transcritical bifurcation analysis of the rice-pest system (S4), it is more convenient to use a
dimensionless rice-pest system (S4) which reduces the number of parameters (Banerjee & Petrovskii, 2011). In this

case, we introduce the dimensionless variables x (t)=x".% and x,(t)=y".y and consider the dimensionless time

t = 7"o . Removing the symbols “** and “**, the system (S4) becomes dimensionless given as
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The biologically meaningful equilibria of the system (S16) are the non-negative solutions of f,(x,y)=0 and
f,(x,y) =0. The rice (prey) isocline consists of the axis x =0 and the straight line y = —x and the pests (predator)

isocline consists of the axis y =0 and the line x = “T” (Banerjee & Petrovskii, 2011). Correspondingly, the system

(S16) is bounded by two equilibrium points, the trivial/pre-cultural equilibrium E,(x,y)=(0,0) and the pest-free
equilibrium E,(x,¥) =(,0). An interior equilibrium E.(X,Y) =(X,VY.) with
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(X, ¥) = [_;/y = ij = [ay , ap j can be found at the intersection of the two isoclines. For the existence
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of E., the value of the parameters must follow the conditions ey +1>0, f+y >0 and aff-1>0.

Theorem 2.1. The system (S16) experiences transcritical bifurcation at the pest-free equilibrium point E, («,0) as
the growth parameter « passes through the critical value «".
Proof At the pest-free equilibrium point E,(«,0) , the associated Jacobian matrix of the system (S16) takes the form:

I (@)= {_g‘ 8} (S17)

The set of eigenvalues of J (@) is 2 {_oa} i.e., one eigenvalue is zero and the other is negative since «>0.

Therefore, to examine the nature of the system at E,, we have applied Sotomayor’s theorem (Perko, 2000). For this
purpose, we consider the system (S16) as

f.(x,
f(xy)= ( fl((); );))] (S18)

Let the eigenvectors corresponding to the zero eigenvalues of Jg (") and JEIT (@) be V and W, respectively,
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where VZWZ{O] From Eqg. (S18), we have fa(Elia)={0] Dfa(El;oz)={0 0} and
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D*f(E;a’)(V,V) :{ 0 } Here, Df denotes the partial derivative of f with respectto X and y, and Df, denotes

the partial derivative of f with respect to the parameter « . Therefore,
W' f (E;a)=a=0
WT[Df, (Esa’ )V |=a =0



WT[D*f(E;a")(V.,V)]=-2#0

Hence, there is a saddle-node bifurcation at the nonhyperbolic equilibrium point E,(«,0) at the bifurcation value « .
For a <0, there is no equilibrium point. For =0, the f,(x,y)=—x’ is structurally unstable and the bifurcation
value o =0. Therefore, there is a transcritical bifurcation at the origin for & =0. There are two equilibria at origin
(0,0) and E,(e,0) (Perko, 2000).

Theorem 2.2. The system (S16) experiences a transcritical bifurcation at the equilibrium point E.(x., Y.) as the growth

parameter of the pest species population 4 passes through the critical value # .
Proof At the equilibrium point E.(x.,Y.), the associated Jacobian matrix of the system (S16) takes the form:
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It can be shown that one eigenvalue of J_ (B") is negative and the other one is zero for the condition af =1

(Perko, 2000). To investigate the nature of the system at E., we have applied Sotomayor’s theorem (Sen, Banerjee
& Morozov, 2012). Let the eigenvectors correspond to the zero eigenvalues of J. (87) and J."(8") be V and W

, respectively, where V ={_1J and W = {ﬂ From Eq. (S18), we have f,(E.;f") = L*Oy } :
Dfﬂ(E,k;,B’*)={0 0} and sz(E*;ﬁ*)(V,V):[
Yo X
W', (E;8)=0
WT[Df,(E; BV |=y.—x #0
WT[D?f(E: f)V.V)]=-25-2y %0

Hence the system (S16) satisfies all the necessary conditions of Sotomayor’s theorem and thus the system (S16)
experiences a transcritical bifurcation at the co-existence equilibrium point E. for the bifurcation parameter g (Perko,

2000).

. Therefore,
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Supplemental Information 2.1 — Finding values for dimensionless parameters

We have numerically investigated the dynamic behaviour of the system (S16) for the variation in the growth
of pest populations (B ). Let f§, be the initial condition for the existence of E.. The parameters must follow the

conditions ay +1>0, f+y >0 and aff —1>0 and to estimate f,, we consider « =1 and y = 0.001 which satisfy

all the conditions. Therefore, we get S, =1 after calculating det(JE* (,8*)) =0 (Sen, Banerjee & Morozov, 2012).



Supplemental Information 2.2 — A supportive figure
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Figure S3 (A) Phase plane of the rice-pest system (S16) for 8 = 13.6, (B) time series analysis of (A), (C) phase plane of the system
(S16) for B = 13.7, and (D) time series analysis of (C). The system experiences a steady-state limit cycle for § = 13.6, and
approaches E1(0,0) for f = 13.7 meaning that the system exticts over a long time.



