
 

Supplemental Information 2. Bifurcation analysis for the rice-pest system 

In this section, we investigate the rice-pest system (S4) through transcritical bifurcation analysis (Banerjee 

& Petrovskii, 2011). For a transcritical bifurcation exists a non-destructible fixed point over the whole bifurcation 

parameter range, which, however, changes its stability characteristic for altered bifurcation parameters (Banerjee & 

Petrovskii, 2011). For the transcritical bifurcation analysis of the rice-pest system (S4), it is more convenient to use a 

dimensionless rice-pest system (S4) which reduces the number of parameters (Banerjee & Petrovskii, 2011). In this 

case, we introduce the dimensionless variables *

1
ˆ( ) .x t x x=  and *

2
ˆ( ) .x t y y=  and consider the dimensionless time 

*t  = . Removing the symbols ‘*’ and ‘^’, the system (S4) becomes dimensionless given as 
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 The biologically meaningful equilibria of the system (S16) are the non-negative solutions of 1( , ) 0f x y =  and 

2 ( , ) 0f x y = . The rice (prey) isocline consists of the axis 0x =  and the straight line y x= −  and the pests (predator) 

isocline consists of the axis 0y =  and the line 
1 y

x




+
=  (Banerjee & Petrovskii, 2011). Correspondingly, the system 

(S16) is bounded by two equilibrium points, the trivial/pre-cultural equilibrium 0 ( , ) (0,0)E x y =  and the pest-free 

equilibrium 1( , ) ( ,0)E x y = . An interior equilibrium * * *( , ) ( , )E x y x y=  with 
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 can be found at the intersection of the two isoclines. For the existence 

of *E , the value of the parameters must follow the conditions 1 0 +  , 0 +   and 1 0 −  .  

 

Theorem 2.1. The system (S16) experiences transcritical bifurcation at the pest-free equilibrium point 1( ,0)E  as 

the growth parameter   passes through the critical value * .  

Proof At the pest-free equilibrium point 1( ,0)E  , the associated Jacobian matrix of the system (S16) takes the form: 
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The set of eigenvalues of 
1

*( )EJ   is 
0




− 
=  
 

 i.e., one eigenvalue is zero and the other is negative since 0  . 

Therefore, to examine the nature of the system at 1E , we have applied Sotomayor’s theorem (Perko, 2000). For this 

purpose, we consider the system (S16) as  
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Let the eigenvectors corresponding to the zero eigenvalues of 
1

*( )EJ   and 
1

*( )T

EJ   be V  and W , respectively, 

where 
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. From Eq. (S18), we have 
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. Here, Df  denotes the partial derivative of f  with respect to x  and y , and Df  denotes 

the partial derivative of f  with respect to the parameter  . Therefore,  
*

1( ; ) 0TW f E  =   

*

1( ; ) 0TW Df E V    =    



 

2 *

1( ; )( , ) 2 0TW D f E V V  = −    

Hence, there is a saddle-node bifurcation at the nonhyperbolic equilibrium point 1( ,0)E  at the bifurcation value  . 

For 0  , there is no equilibrium point. For 0 = , the 2

1( , )f x y x= −  is structurally unstable and the bifurcation 

value 0 = . Therefore, there is a transcritical bifurcation at the origin for 0 = . There are two equilibria at origin 

(0,0)  and 1( ,0)E  (Perko, 2000).  

 

Theorem 2.2. The system (S16) experiences a transcritical bifurcation at the equilibrium point * * *( , )E x y as the growth 

parameter of the  pest species population   passes through the critical value 
* . 

Proof At the equilibrium point * * *( , )E x y , the associated Jacobian matrix of the system (S16) takes the form: 
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It can be shown that one eigenvalue of 
*

*( )EJ   is negative and the other one is zero for the condition 1 =  

(Perko, 2000). To investigate the nature of the system at *E , we have applied Sotomayor’s theorem (Sen, Banerjee 

& Morozov, 2012). Let the eigenvectors correspond to the zero eigenvalues of 
*

*( )EJ   and 
*

*( )T

EJ   be V  and W

, respectively, where 
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. From Eq. (S18), we have 
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. Therefore,  
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Hence the system (S16) satisfies all the necessary conditions of Sotomayor’s theorem and thus the system (S16) 

experiences a transcritical bifurcation at the co-existence equilibrium point *E  for the bifurcation parameter   (Perko, 

2000).  

Supplemental Information 2.1 – Finding values for dimensionless parameters  

 We have numerically investigated the dynamic behaviour of the system (S16) for the variation in the growth 

of pest populations (  ). Let 0  be the initial condition for the existence of *E . The parameters must follow the 

conditions 1 0 +  , 0 +   and 1 0 −   and to estimate 0 , we consider 1 =  and 0.001 =  which satisfy 

all the conditions. Therefore, we get 0 1 =  after calculating ( )
*

*det ( ) 0EJ  =  (Sen, Banerjee & Morozov, 2012).  

 

 

 

 

 



 

Supplemental Information 2.2 – A supportive figure 
 

 
Figure S3 (A) Phase plane of the rice-pest system (S16) for 𝛽 = 13.6, (B) time series analysis of (A), (C) phase plane of the system 

(S16) for 𝛽 = 13.7, and (D) time series analysis of (C). The system experiences a steady-state limit cycle for 𝛽 = 13.6, and 

approaches E1(0,0) for 𝛽 = 13.7 meaning that the system exticts over a long time.  

 


