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S1 THE SKEW-NORMAL DISTRIBUTION
S1.1 The original form of the skew-normal distribution

Let φ(z) be the standard normal probability density function φ(z) = 1√
2π

e−
z2
2 , with

cumulative distribution function Φ(z) =
∫ z
−∞

φ(t)dt. The probability density function of
the skew-normal distribution is given by

ϕ(z,α) = 2φ(z)Φ(αz),

where α ∈ R is the skewness parameter. Suppose Z is a random variable that has
a skew-normal distribution (i.e. Z ∼ SN(α)). Its mean and its variance are given
by µz = E(Z) = bδ , σ2

z = Var(Z) = 1− (bδ )2, respectively, where b =
√

2/π and
δ = α/

√
1+α2. The formal derivation of the properties of the skew-normal distribution

is due to Azzalini (1985) who treated the skew-normal distribution as a generalization of
the normal distribution. Historically, the skew-normal model was arrived at by several
different authors in other contexts (e.g. as a prior distribution in Bayesian analysis by
O’Hagan and Leonard (1976); see Azzalini (2022)). However, these authors did not
elaborate further on the theoretical properties of the skew normal as in Azzalini (1985).

S1.2 The skew-normal distribution - direct and centered parametrizations
The probability density function of a skew-normal distribution with direct parameters
(DP) is given by

f (ygi;ξg,ωg,αg) =
2

ωg
φ

(ygi −ξg

ωg

)
Φ

(
αg

ygi −ξg

ωg

)
,

with location parameter ξg ∈ R, scale parameter ωg ∈ R+, and skewness parameter
αg ∈R; φ(·) and Φ(·) are the probability density function and the cumulative distribution
function of the standard normal distribution, respectively. The skew-normal distribution



with centered parameters (CP) is derived from the DP form via the mapping (Azzalini
and Capitanio, 2014)

µg = ξg +bωgδg, σg = ωg

√
1−b2δ 2

g , γg =
4−π

2
b3α3

g{
1+(1−b2)α2

g
}3/2 ; (1)

and the inverse mapping is provided by

ξg = µg −bωgδg, ωg =
σg√

1−b2σ2
g

, αg =
R√

b2 − (1−b2)R2
, (2)

where b =
√

2/π , δg = αg/
√

1+α2
g , and R = 3

√
2γg/(4−π).

For a single sample, the log-likelihood function for θθθ
(D)
g = (ξg,ωg,αg)

T is given by

ℓ1 = logL(θθθ (D)
g ;ygi) = c− logωg −

(ygi −ξg)
2

2ω2
g

+ζ0

(
αg

ygi −ξg

ωg

)
,

where c is a constant and ζ0(·) = log
{

2Φ(·)
}

. Taking zgi = (ygi − ξg)/ωg, we obtain
the partial derivatives of ℓ1:

∂ℓ1

∂ξg
=

zgi

ωg
−

αg

ωg
ζ1(αgzgi),

∂ℓ1

∂ωg
=− 1

ωg
+

z2
gi

ωg
−

αg

ωg
ζ1(αgzgi)zgi,

∂ℓ1

∂αg
= ζ1(αgzgi)zgi;

thus the likelihood equations for a sample of size n are given by

n

∑
i=1

zgi−αg

n

∑
i=1

ζ1(αgzgi)= 0,
n

∑
i=1

zgi
2−αg

n

∑
i=1

zgiζ1(αgzgi)= n,
n

∑
i=1

zgiζ1(αgzgi)= 0, (3)

where ζ1(·) = φ(·)/Φ(·). Numerical methods are necessary to solve these equations.
Azzalini and Capitanio (2014) suggested that a sample size up to about 50 may be
necessary for the skew- normal distribution. To initialize the search, method of moments
(MM) estimates are chosen as starting points for the CP components in Equation (1).
The MM estimators for the centered parameters are given by

µ̃g = Ȳg, σ̃g = Sg, γ̃g =
Mg,3

S3
g
, (4)

respectively, where Ȳg is the sample mean, Sg is the sample standard deviation, and Mg,3
is the sample third central moment. By estimating the CP components in Equation (1)
using Equation (4), and then converting them to DP components using Equation (2),
we obtain the MM estimators of the DP components: ξ̄g, ω̄g and ᾱg. Subsequently, a

search of the DP space where Equation (3) holds is done. Once θ̂θθ
(D)
g = (ξ̂g, ω̂g, α̂g) is

obtained, it is mapped to Equation (1) to get θ̂θθ
(C)
g = (µ̂g, σ̂g, γ̂g), the maximum likelihood

estimators of the centered parameters.
Under regular maximum likelihood estimation, certain data values can produce a

divergent α̂g. To overcome this problem, Azzalini and Arellano-Valle (2013) proposed
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a maximum penalized likelihood estimation (“Qpenalty”) approach. A non-negative
penalty term Q that penalizes the divergence of the skewness parameter αg is formulated
as Q = c1 log(1+c2α2

g ), where c1 ≈ 0.87591 and c2 ≈ 0.85625 (Azzalini and Arellano-
Valle, 2013; Azzalini and Capitanio, 2014). Then, the maximum penalized likelihood
for θθθ

(D)
g is the penalized log-likelihood

ℓp(θθθ
(D)
g ) = ℓ(θθθ (D)

g ;yyyg)−Q, (5)

where yyyg = (yg1,yg2, . . . ,ygn), ℓ(θθθ (D)
g ;yyyg) is the log- likelihood function with respect to

the parameter vector θθθ
(D)
g :

ℓ(θθθ (D)
g ;yyyg) = constant−n logωg −

n

∑
i=1

(ygi −ξg)
2

2ω2
g

+
n

∑
i=1

ζ0
(
αg

ygi −ξg

ωg

)
.

The maximum penalized likelihood estimator (MPLE), θ̃θθ
(D)
g , is a finite point that maxi-

mizes ℓp(θθθ
(D)
g ). The standard errors of θ̃θθ

(D)
g can be approximated from the correspond-

ing penalized information matrix as Var(θ̃θθ
(D)
g )≈−ℓ

′′
p(θ̃θθ

(D)
g )−1.

The “MPpenalty” approach (Azzalini and Capitanio, 2014) defines the penalty
function Q in Equation (5) as − logπm(αg), where πm is a prior distribution for the
skewness parameter αg. The matching prior (Cabras et al., 2012) for αg, allowing for
the presence of ψψψ = (ξg,ωg), is given by

πm(αg) ∝
(
Iαgαg(ψ̂ψψ,αg)− Iαgψψψ(ψ̂ψψ,αg)Iψψψψψψ(ψ̂ψψ,αg)

−1Iψψψαg(ψ̂ψψ,αg)
)1/2

,

where the terms involved are specific blocks of the Fisher information matrix III of θθθ
(D)
g .

Since πm(0) = 0, the matching prior penalty effectively penalizes αg = 0 with Q = ∞.

S1.3 Fisher Information Matrix
For the direct parameters (DP) vector θθθ

(D) = (ξ ,ω,α), the Fisher information matrix is
given by

I
θθθ
(D) =


1+α2a0

ω2
1

ω2

(
E(Z)1+2α2

1+α2 +α2a1

)
1
ω

{
b

(1+α2)3/2 −αa1

}
1

ω2

(
E(Z)1+2α2

1+α2 +α2a1

)
2+α2a1

ω2 −αa2
ω

1
ω

{
b

(1+α2)3/2 −αa1

}
−αa2

ω
a2

 ,

where b=
√

π/2, ak = ak(α) =E
(

Zkζ 2
1 (αZ)

)
,ζ1(·) = φ(·)/Φ(·),k = 0,1,2 (Azzalini,

1985). The matrix I
θθθ
(D) becomes singular as α → 0. This problem prevents the direct

application of maximum likelihood estimation (MLE) for estimating the parameters
of the DP form of the skew-normal distribution. In the same paper, Azzalini (1985)
introduced the centered parametrization form to address the singulariy problem. He
redefines a skew-normal variable

Y = µ +σ
Z −µz

σz
,
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which has E(Y ) = µ and Var(Y ) = σ2. The centered parameters (CP) vector θθθ
(C) =

(µ,σ ,γ) has parameter space R×R+× (−0.9953,0.9953) (Azzalini and Capitanio,
2014). The skewness parameter γ is the coefficient of skewness of Z, and also that of Y .
Thus, we write Y ∼ SNC(µ,σ ,γ). Figure S1 shows examples of the probability density
functions of the skew-normal distribution with CP for different values of µ,σ and γ .
For centered parameters θθθ

(C) = (µ,σ ,γ), the Fisher information matrix is given by

III
θθθ
(C) = DDDT III

θθθ
(D)DDD,

where DDD is the Jacobian matrix, that is, the derivatives of the parameters θθθ
(D) = (ξ ,ω,α)

with respect to θθθ
(C) = (µ,σ ,γ). The Jacobian matrix DDD is given by

DDD =

1 −µz
σz

∂

∂γ
ξ

0 1
σz

∂

∂γ
ω

0 0 ∂

∂γ
α

 ,

where µz = bδ and σ2
z = 1−b2δ 2. The terms in the last column of DDD are given by

∂ξ

∂γ
=− σ µz

3σzγ
,

∂ω

∂γ
=− σ

σ2
z

dσz

dα

dα

dγ
,

∂α

∂γ
=

2
3(4−π)

( 1
T R2 +

1−b2

T 3

)
,

where

dσz

dα
=−µz

σz

b
(1+α2)3/2 , T =

{
b2 − (1−b2)R2}, and R = 3

√
2γ

4−π
.

After some algebra, III
θθθ
(C) can be expressed as

III
θθθ
(C) =


(
2+ γ2a2

)
/σ2

{
bδ

1+2γ2

1+γ2 + γ2a1

}
/σ2 −γa2/σ{

bδ
1+2γ2

1+γ2 + γ2a1

}
/σ2 (

1+ γ2a0
)
/σ2

{
b

(1+γ2)3/2 − γa1

}
/σ

−γa2/σ

{
b

(1+γ2)3/2 − γa1

}
/σ a2

 ,

where

b =
√

2/π, δ = γ/
√

1+ γ2 and ak = ak(γ) =
∫
R

2zk φ(γz)φ(z)
Φ(γz)

dz, k = 0,1,2,

following the notation in Liseo and Loperfido (2006). The Fisher information matrix
III

θθθ
(C) converges to a diagonal matrix with diagonal (1/σ2,2/σ2,1/6), as γ → 0 (Azzalini,

1985; Azzalini and Capitanio, 2014).

S2 LIST OF R PACKAGES USED
The following R packages (according to alphabetical order) were used in the present
work: compositions (van den Boogaart et al., 2022), DiffDist (Roberts, 2023),
edgeR (Robinson et al., 2010), gamlss (Rigby and Stasinopoulos, 2005), gridExtra
(Baptiste, 2017), httr (Wickham, 2022), jsonlite (Ooms, 2014), MDSeq (Ran and
Daye, 2017), missMethyl (Phipson and Oshlack, 2014), polyester (Alyssa et al.,
2022), readr (Wickham et al., 2022), sn (Azzalini, 2022), VennDiagram (Chen,
2022) and vioplot (Adler and Kelly, 2020).
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S3 CAPTIONS FOR SUPPLEMENTARY TABLES
Table S3: List of DV genes detected by clrDV for the control vs. AD comparison in the
analysis of the Mayo RNA-Seq dataset.
Table S4: List of DV genes detected by clrDV for the control vs. PSP comparison in the
analysis of the Mayo RNA-Seq dataset.
Table S5: List of DV genes detected by clrDV, MDSeq, and GAMLSS for the control vs.
AD comparison in the analysis of the Mayo RNA-Seq dataset.
Table S6: List of DV genes detected by clrDV, MDSeq, and GAMLSS for the control vs.
PSP comparison in the analysis of the Mayo RNA-Seq dataset.
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Figure S1. Probability density functions of the skew-normal distribution with centered
parameters. (a) σ = 2, γ =−0.9; black: µ = 0, blue: µ = 2, red: µ = 4; (b) µ = 0,
γ = 0.8; black: σ = 0.75, blue: σ = 1.5, red: σ = 2.5; (c) µ = 2, σ = 2; black:
γ = 0.9, blue: γ = 0.5, red: γ = 0; and (d) µ = 3, σ = 3; black: γ =−0.95, blue:
γ =−0.5, red: γ =−0.1.
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Table S1. Mean computing times (in seconds) for each of the five DV tests applied to
data simulated from the Valentim dataset (30 instances). Standard deviation in
parentheses. BH and BY variants of GAMLSS have similar computing time.

Sample size Method
per group clrDV MDSeq diffVar GAMLSS DiffDist
50 81(5) 59(2) 0.2(0.01) 79(1) 221(4)
100 69(11) 103(10) 0.4(0.2) 97(12) 422(8)
150 67(2) 143(7) 0.7(0.3) 116(1) 690(16)
200 76(8) 196(14) 1.3(0.4) 153(16) 922(7)

Table S2. Mean computing times (in seconds) for each of the five DV tests applied to
data simulated from the Kelmer dataset (30 instances). Standard deviation in
parentheses. BH and BY variants of GAMLSS have similar computing time.

Sample size Method
per group clrDV MDSeq diffVar GAMLSS DiffDist
50 73(5) 32(1) 0.2(0.02) 62(1) 228(1)
100 53(2) 45(2) 0.4(0.1) 70(3) 427(7)
150 58(2) 63(3) 0.7(0.3) 81(2) 634(15)
200 65(1) 84(4) 1.0(0.3) 95(1) 864(18)
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