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S1 THE SKEW-NORMAL DISTRIBUTION

S1.1 The original form of the skew-normal distribution

2
Let ¢(z) be the standard normal probability density function ¢(z) = \/Lz—ﬂe"i, with

cumulative distribution function ®(z) = [*_ ¢ (r) dr. The probability density function of
the skew-normal distribution is given by

¢z, a) = 2¢(2)P(az),

where o € R is the skewness parameter. Suppose Z is a random variable that has
a skew-normal distribution (i.e. Z ~ SN(«)). Its mean and its variance are given
by i, =E(Z) =b8, 02 = Var(Z) =1— (b8)?, respectively, where b = /2/7 and
6 = a/v/'1+ a?. The formal derivation of the properties of the skew-normal distribution
is due to Azzalini (1985) who treated the skew-normal distribution as a generalization of
the normal distribution. Historically, the skew-normal model was arrived at by several
different authors in other contexts (e.g. as a prior distribution in Bayesian analysis by
O’Hagan and Leonard (1976); see Azzalini (2022)). However, these authors did not
elaborate further on the theoretical properties of the skew normal as in Azzalini (1985).

S$1.2 The skew-normal distribution - direct and centered parametrizations
The probability density function of a skew-normal distribution with direct parameters
(DP) is given by

f(ygi;ﬁg,a)g,ocg):w%q)(yg’wgég) ( ygzw §g>
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with location parameter &, € R, scale parameter @, € R, and skewness parameter
0y € R; ¢(-) and ®(-) are the probability density function and the cumulative distribution
function of the standard normal distribution, respectively. The skew-normal distribution



with centered parameters (CP) is derived from the DP form via the mapping (Azzalini
and Capitanio, 2014)

41 b3a3
Hg = &g+ bWy, O = 0y /1 —b252, ¥, = 5 (e0p a2}3/2 (D)

and the inverse mapping is provided by

Oy R

= Uy —bWeSy, By = ———e Q= ; 2
So = Mg s Og 4 m g V(- PR

where b = \/2/7, 8, = &g/ /1 + a2, and R = {/2y, /(4 — 7).

For a single sample, the log-likelihood function for GéD ) = (&g, @, 0,)T is given by

Ygi Vgi
4 :logL(OéD);yg,-) =c—logw, — ( g2 §g) —|—Co<a gw §g>
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where c is a constant and §o(-) = log{2®(-) }. Taking z,; = (y4i — &;)/ @, We obtain
the partial derivatives of /;:

851 00, 1 Zz' 20,
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thus the likelihood equations for a sample of size n are given by

n n n n n
Zzgi — O Z C1(gzgi) =0, z‘,zgi2 — O Z?giél (Otgzgi) =n, ZzgiCl (0gz4i) =0, (3)
i=1 i=1 i=1 i=1

i=1

where £1(-) = ¢(-)/®D(-). Numerical methods are necessary to solve these equations.
Azzalini and Capitanio (2014) suggested that a sample size up to about 50 may be
necessary for the skew- normal distribution. To initialize the search, method of moments
(MM) estimates are chosen as starting points for the CP components in Equation (1).
The MM estimators for the centered parameters are given by

Mg,3
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respectively, where Y, is the sample mean, S, is the sample standard deviation, and M, 3
is the sample third central moment. By estimating the CP components in Equation (1)
using Equation (4), and then converting them to DP components using Equation (2),
we obtain the MM estimators of the DP components: Eg, @, and &g. Subsequently, a
search of the DP space where Equation (3) holds is done. Once é;D) = (ég, 0y, Oty) is
= (fig, 64,7, ), the maximum likelihood

obtained, it is mapped to Equation (1) to get éi,c)

estimators of the centered parameters.
Under regular maximum likelihood estimation, certain data values can produce a
divergent &,. To overcome this problem, Azzalini and Arellano-Valle (2013) proposed
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a maximum penalized likelihood estimation (“Qpenalty’) approach. A non-negative
penalty term Q that penalizes the divergence of the skewness parameter o, is formulated
as Q = clog(1 —l—czocgz), where ¢1 =~ 0.87591 and ¢, =~ 0.85625 (Azzalini and Arellano-
Valle, 2013; Azzalini and Capitanio, 2014). Then, the maximum penalized likelihood
for BéD ) is the penalized log-likelihood

0,(07) = ¢(8P);y,) —0, )

where y, = (Vg1,Yg2, -+, Ygn)s £ (OéD ); ¥, ) is the log- likelihood function with respect to
the parameter vector Og,D ):

¢(8'");y,) = constant — nlog @, — Z<ygl &)’ +ZCO( Yei — ég)

2
-1 20 i=1 g

The maximum penalized likelihood estimator (MPLE), ééD)

(D)

, 1s a finite point that maxi-

mizes /¢ (0( )) The standard errors of 0 can be approximated from the correspond-

ing penalized information matrix as Var(Oi,D)) ~ —E;;(éZE,D))_I.

The “MPpenalty” approach (Azzalini and Capitanio, 2014) defines the penalty
function Q in Equation (5) as —logm, (), where 7, is a prior distribution for the
skewness parameter @,. The matching prior (Cabras et al., 2012) for @, allowing for

the presence of Y = (&,, ®,), is given by

Ton(0tg) o< (Togar, (W, ) — Ly (W, 0 Iy (W, 0tg) ™y, (W, %)) 72,

where the terms involved are specific blocks of the Fisher information matrix I of OéD ).

Since m,,(0) = 0, the matching prior penalty effectively penalizes o, = 0 with Q = co.

S1.3 Fisher Information Matrix

For the direct parameters (DP) vector ) = (&, , @), the Fisher information matrix is
given by

1+oay 1 14202 | 2 1 b
o2 @2 (E(Z) 1+02 +a a o\ (1+a2)32 ay
! 1+2a? 2 2+02a, oay
Ie(D) - E(E(z) 1+o2 +a al) 2 T o )
1)J_ b _Gay
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where b= \/7/2, a = ar(at) = E(zkgf(az)) () =0()/D(-),k=0,1,2 (Azzalini,
1985). The matrix /4») becomes singular as o — 0. This problem prevents the direct
application of maximum likelihood estimation (MLE) for estimating the parameters
of the DP form of the skew-normal distribution. In the same paper, Azzalini (1985)
introduced the centered parametrization form to address the singulariy problem. He
redefines a skew-normal variable

Z—

Oz

Y=u+o
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which has E(Y) = u and Var(Y) = 62. The centered parameters (CP) vector () =
(1,0,7) has parameter space R x RT x (—0.9953,0.9953) (Azzalini and Capitanio,
2014). The skewness parameter Y is the coefficient of skewness of Z, and also that of Y.
Thus, we write Y ~ SN¢(u, 0, 7). Figure S1 shows examples of the probability density
functions of the skew-normal distribution with CP for different values of i, o and 7.

For centered parameters 8(C) = (1, 0,7), the Fisher information matrix is given by

Iyc)=D"1,0)D,

where D is the Jacobian matrix, that is, the derivatives of the parameters 0P — (&, 0,a)
with respect to 8(€) = (i, 0, 7). The Jacobian matrix D is given by

K Od

1 Oz %Yg

_ 1z J
D= |0 o aayw ,

0 0 W(X

where u, = b6 and GZZ = 1 —b?82. The terms in the last column of D are given by

o __ow do_ odods du_ 2 (1 1-b)
oy 3oy dy  ordady’ dy 3(4-m)\TR* T3 )’
where

2
do: _ M b (1R, andr= -2

do o, (1+0a2)3/? 4—m
After some algebra, I 5(c) can be expressed as
2
(2 + yzaz) /62 {b5 111272; + 7*a, }/62 —Yay/o
2 2
Ie(c): {bSﬁy’Q —l—)/za]}/Gz (l—l—}/za())/Gz {W—}’a]}/(? ,
N S
where
b=+/2/m, 8§ =y/\/1+Y*and a; = a;(y) = / 2zkwdz, k=0,1,2,
R ®(rz)

following the notation in Liseo and Loperfido (2006). The Fisher information matrix
1 5 (c) converges to a diagonal matrix with diagonal (1/ 62,2/62,1/6),as y— 0 (Azzalini,
1985; Azzalini and Capitanio, 2014).

S2 LIST OF R PACKAGES USED

The following R packages (according to alphabetical order) were used in the present
work: compositions (van den Boogaart et al., 2022), Di ffDist (Roberts, 2023),
edgeR (Robinson et al., 2010), gam1 s s (Rigby and Stasinopoulos, 2005), gridExtra
(Baptiste, 2017), ht t r (Wickham, 2022), jsonlite (Ooms, 2014), MDSeq (Ran and
Daye, 2017), missMethyl (Phipson and Oshlack, 2014), polyester (Alyssa et al.,
2022), readr (Wickham et al., 2022), sn (Azzalini, 2022), VennDiagram (Chen,
2022) and vioplot (Adler and Kelly, 2020).
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S3 CAPTIONS FOR SUPPLEMENTARY TABLES

Table S3: List of DV genes detected by clrDV for the control vs. AD comparison in the
analysis of the Mayo RNA-Seq dataset.

Table S4: List of DV genes detected by clrDV for the control vs. PSP comparison in the
analysis of the Mayo RNA-Seq dataset.

Table S5: List of DV genes detected by clrDV, MDSeq, and GAMLSS for the control vs.
AD comparison in the analysis of the Mayo RNA-Seq dataset.

Table S6: List of DV genes detected by clrDV, MDSeq, and GAMLSS for the control vs.
PSP comparison in the analysis of the Mayo RNA-Seq dataset.
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Figure S1. Probability density functions of the skew-normal distribution with centered
parameters. (a) 0 =2, Y= —0.9; black: © =0, blue: u =2, red: u =4; (b) u =0,
Y= 0.8; black: 0 =0.75, blue: 6 = 1.5, red: 0 =2.5; (c) u =2, 6 = 2; black:
Y=0.9, blue: y=10.5,red: y=0; and (d) u = 3, 6 = 3; black: y= —0.95, blue:

Y= —0.5,red: y=—0.1.
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Table S1. Mean computing times (in seconds) for each of the five DV tests applied to
data simulated from the Valentim dataset (30 instances). Standard deviation in
parentheses. BH and BY variants of GAMLSS have similar computing time.

Sample size Method

per group clrDV - MDSeq difftVar GAMLSS DiffDist
50 81(5) 59(2) 0.2(0.01) 79(1)  221(4)
100 69(11) 103(10) 0.4(0.2) 97(12)  422(8)
150 67(2) 143(7) 0.7(0.3) 116(1) 690(16)
200 76(8) 196(14) 1.3(0.4) 153(16)  922(7)

Table S2. Mean computing times (in seconds) for each of the five DV tests applied to
data simulated from the Kelmer dataset (30 instances). Standard deviation in
parentheses. BH and BY variants of GAMLSS have similar computing time.

Sample size Method

per group clrDV  MDSeq diffVar GAMLSS DiffDist
50 73(5) 32(1) 0.2(0.02) 62(1)  228(1)
100 53(2) 45(2)  0.4(0.1) 7033)  427(7)
150 58(2) 63(3) 0.7(0.3) 81(2) 634(15)
200 65(1) 84(4) 1.0(0.3) 95(1) 864(18)
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