library(iNEXT) library(SpadeR) library(knitr) library(dplyr) library(ggplot2) library(bipartite) knitr::kable(matrix) t <- seq (1,1000) interp-extrap <- iNEXT(matrix, q = 0, datatype = "abundance", size = t) interp-extra par(mar=c(10,10,10,10), las = 1, xpd=TRUE) plotweb(matrix, method = "normal", empty = TRUE, labsize = 1.5, ybig =3, y.width.low = 0.1, y.width.high = 0.1, low.spacing = NULL, high.spacing = NULL, arrow="no", col.interaction="grey80", col.high = "orange1", col.low="darkgreen", bor.col.interaction ="black", bor.col.high="black", bor.col.low="black", high.lablength = NULL, low.lablength = NULL, sequence=NULL, low.abun=NULL, low.abun.col="green", bor.low.abun.col ="black", high.abun=NULL, high.abun.col="red", bor.high.abun.col="black", text.rot=90, text.high.col="black", text.low.col="black", adj.high=NULL, adj.low=NULL, plot.axes =FALSE, low.y=-1.2, high.y=2.3, add=FALSE, y.lim=c(-2,3.4), x.lim=c(0,3.5), low.plot=TRUE, high.plot=TRUE, high.xoff = 0, low.xoff = 0, high.lab.dis = NULL, low.lab.dis = NULL, abuns.type="additional") visweb(matrix, prednames = T, preynames = T, labsize =1) all_indices<-networklevel(matrix) all_indices indices_sps_aves<-specieslevel(matrix)[[1]] indices_sps_animals indices_sps_plantas<-specieslevel(matrix)[[2]] indices_sps_plants mod.Red.1<-computeModules(web=matrix,steps=1E8) mod.Red.2<-computeModules(web=matrix,steps=1E8) mod.Red.3<-computeModules(web=matrix,steps=1E8) mod.Red.4<-computeModules(web=matrix,steps=1E8) mod.Red.5<-computeModules(web=matrix,steps=1E8) mod.Red.6<-computeModules(web=matrix,steps=1E8) mod.Red.7<-computeModules(web=matrix,steps=1E8) mod.Red.8<-computeModules(web=matrix,steps=1E8) mod.Red.9<-computeModules(web=matrix,steps=1E8) mod.Red.10<-computeModules(web=matrix,steps=1E8) mod.Red.11<-computeModules(web=matrix,steps=1E8) mod.Red.12<-computeModules(web=matrix,steps=1E8) mod.Red.13<-computeModules(web=matrix,steps=1E8) mod.Red.14<-computeModules(web=matrix,steps=1E8) mod.Red.15<-computeModules(web=matrix,steps=1E8) mod.Red.16<-computeModules(web=matrix,steps=1E8) mod.Red.17<-computeModules(web=matrix,steps=1E8) mod.Red.18<-computeModules(web=matrix,steps=1E8) mod.Red.19<-computeModules(web=matrix,steps=1E8) mod.Red.20<-computeModules(web=matrix,steps=1E8) mod.Red.1@likelihood mod.Red.2@likelihood mod.Red.3@likelihood mod.Red.4@likelihood mod.Red.5@likelihood mod.Red.6@likelihood mod.Red.7@likelihood mod.Red.8@likelihood mod.Red.9@likelihood mod.Red.10@likelihood mod.Red.11@likelihood mod.Red.12@likelihood mod.Red.13@likelihood mod.Red.14@likelihood mod.Red.15@likelihood mod.Red.16@likelihood mod.Red.17@likelihood mod.Red.18@likelihood mod.Red.19@likelihood mod.Red.20@likelihood printoutModuleInformation(mod.Red.19) plotModuleWeb(mod.Red.19,rank=TRUE, labsize = 0.9) nulos <- nullmodel(matrix, N=10, method=1) indice.nulos <- unlist(sapply(nulos, networklevel, index="connectance")) indice.nulos obs mean(indice.nulos) sd(indice.nulos) (z <- (obs - mean(index.nulls))/sd(index.nulls)) plot(density(indice.nulos), xlim=c(min(obs, min(indice.nulos)), max(obs, max(indice.nulos))), main="CObserved and Expected values", xlab = "connectance", ylab = "Density") abline(v=obs, col="red", lwd=3)