FN Clarivate Analytics Web of Science VR 1.0 PT J AU Liu Yongmei Ge Xinghua Dong Xingzhi Wang Huaiyu Hu Nianzhao Z2 刘咏梅 盖星华 董幸枝 王怀玉 胡念钊 TI Spectral discrimination of flowers and leaves of major species in the degraded alpine meadow Z1 退化高寒草甸主要物种花与叶片的光谱识别方法 Z3 西北大学学报. 自然科学版 SO Journal of Northwest University. Natural Science Edition VL 52 IS 2 BP 159 EP 168 AR 1000-274X(2022)52:2<159:THGHCD>2.0.TX;2-S PY 2022 DT Article AB Alpine meadows on Qinghai-Tibet Plateau suffered various degrees of degeneration in recent years,it is important to study the spectral separability of major species for remote sensing investigation and dynamic monitoring of alpine meadow degradation.Based on the measured spectra of flowers and leaves of major plants in a typical degraded meadow in Qingyanggou,Qilian County of Qinghai Province,Kruskal-Wallis test,Classification and Regression Trees algorithm and Jeffries-Matusita Distance were integrated to extract optimal spectral difference bands of flowers and leaves of major species,and the potential of the method of hierarchical dimensionality reduction in remote sensing mapping and monitoring of grassland vegetation were determined.The results showed:①Reflectance spectra of flowers and leaves in the degraded meadow differed significantly in the wavelength of 380 ~ 1 300 nm,the behavior of reflectance spectra in the wavelength of 1 300 ~ 2 500 nm tended to be consistent.②Spectral dimensionality reduction was performed at three levels.Combining Kruskal-Wallis and Dunn post hoc test,CART algorithm and J-M distance,the efficiency was 66.0%,33.1% and 77.3%,respectively,and the overall efficiency reached 94.8%.The method of hierarchical reduction effectively extracted the optimal sensitive wavelengths for spectral discrimination between flowers and leaves of major species in degraded meadows.③Good or moderate spectral separability could be observed among four major colors of plant communities,feature bands were closely related to the sensitive wavelengths of pigments.White flower-yellow flower,white flower-green leaf and yellow flower-purple flower have good spectral separability,whereas white flower-purple flower,yellow flower-green leaf and purple flower-green leaf have moderate spectral separability,which suggested potential practical values.The work may provide scientific basis for optimal bands extraction in remote sensing classification of grassland vegetation. Z4 近年来,青藏高原高寒草甸呈现不同程度的退化趋势,研究草地植物光谱特征识别方法对退化草甸遥感调查与监测具有重要意义。该文基于青海省祁连县青阳沟典型 区主要植物花和叶片的实测光谱,综合采用Kruskal-Wallis检验、分类与回归树算法CART和J-M距离算法提取退化高寒草甸主要物种花和叶片 的最优光谱识别波段,分析层次降维方法在草地植被遥感中的应用潜力。得到以下结论:①研究区退化草甸主要物种花与叶片的反射光谱在380 ~ 1 300 nm波段存在明显差异,在1 300 ~ 2 500 nm波段反射光谱变化趋于一致。② Kruskal-Wallis和Dunn事后检验、CART算法和J-M光谱距离3个层次的光谱降维效率分别为66.0%、33.1%和77.3%,总体 降维效率达到94.8%,能够有效提取退化草甸主要物种花与叶片光谱识别的最优敏感波段。③退化草甸主要物种花与叶片之间均具有一定的光谱可分性。其中, 白花-黄花、白花-绿叶、黄花-紫花3个类对具有最佳的光谱可分性,J-M距离值>1.9;白花-紫花、黄花-绿叶、紫花-绿叶3个类对具有一定的光谱可 分性和潜在的应用价值,J-M距离值在1.0 ~ 1.9之间。花与叶片之间的光谱识别特征波长与色素的敏感波段密切相关,该研究可为草地植被遥感分类提供优化的波段参考依据。 C1 Liu Yongmei, College of Urban and Environmental Science,Northwest University;;Northwest University, ;;Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an;;Xi'an, ;; 710127;;710127. Ge Xinghua, College of Urban and Environmental Science,Northwest University, Xi'an, Shaanxi 710127, China. Dong Xingzhi, College of Urban and Environmental Science,Northwest University, Xi'an, Shaanxi 710127, China. Wang Huaiyu, College of Urban and Environmental Science,Northwest University, Xi'an, Shaanxi 710127, China. Hu Nianzhao, College of Urban and Environmental Science,Northwest University, Xi'an, Shaanxi 710127, China. Z6 刘咏梅, 西北大学城市与环境学院;;西北大学, ;;陕西省地表系统与环境承载力重点实验室, 西安;;西安, 陕西;;陕西 710127;;710127, 中国. 盖星华, 西北大学城市与环境学院, 西安, 陕西 710127, 中国. 董幸枝, 西北大学城市与环境学院, 西安, 陕西 710127, 中国. 王怀玉, 西北大学城市与环境学院, 西安, 陕西 710127, 中国. 胡念钊, 西北大学城市与环境学院, 西安, 陕西 710127, 中国. EM liuym@nwu.edu.cn Z7 liuym@nwu.edu.cn Z8 0 Z9 0 UT CSCD:7194382 DA 2023-03-23 ER PT J AU Liu Wanting Cao Wenxia Wang Wenhu Wang Xinyou Wang Shilin Deng Xiuxia Li Wen Shi Shangli Z2 刘婉婷 曹文侠 王文虎 王辛有 王世林 邓秀霞 李文 师尚礼 TI Characteristics of Underground Bud Bank and Community Persistence in Alpine Degraded Gramineous Mixed Sowing Grassland Z1 高寒退化禾本科混播草地地下芽库特征与群落持续性初探 Z3 草地学报 SO Acta Agrestia Sinica VL 30 IS 7 BP 1773 EP 1780 AR 1007-0435(2022)30:7<1773:GHTHHB>2.0.TX;2-S PY 2022 DT Article AB To investigate the community stability and sustainability after the degradation of different perennial mixed sowing combinations,we investigated and analyzed the community structure and underground bud bank composition of six kinds of mixed sowing grassland established 22years ago in Jinqianghe area of Qilian Mountains.The results showed as follows:In the 4-component mixed-planting grassland,the bud bank of the establishment species was better preserved,and the bud density of the establishment species was mainly tiller buds.However,the underground bud bank of the 3-component mixed-planting grassland was mainly composed of tiller buds,rhizome buds,root-derived buds,and crown buds of the invasive species, and the proportion of bud density of establishment species was low.The density of tiller buds was positively correlated with coverage,density,and aboveground biomass of establishment species,while the density of rhizome buds,root-derived buds,and crown buds were positively correlated with coverage,density, and aboveground biomass of invasive species.Among them,the mixed sowing combinationPoa crymophila+ Elymus sibiricus+Bromus inermis+Agropgyron cristatumwas the best underground bud structure,and could prolong the service life of mixed grassland appropriately.Therefore,the mixed sowing combination was suitable for the alpine region of Qinghai-Tibet Plateau. Z4 为探明多年生不同混播组合草地退化后的群落稳定性和可持续性,本研究以祁连山金强河地区22年前建植的6种混播草地为研究对象,对草地群落结构及地下芽库 构成进行调查分析。结果表明:4组分混播草地能够较好的保留建植种的地下芽,且以建植种分蘖芽为主,而3组分混播草地地下芽主要由侵入种的分蘖芽、根茎芽 、根颈芽和根蘖芽构成,建植种芽密度占比较低;分蘖芽密度与建植种植物盖度、密度和地上生物量正相关,根茎芽、根颈芽、根蘖芽密度与侵入种植物盖度、密度 和地上生物量正相关。其中,混播组合冷地早熟禾(Poa crymophila)+多叶老芒麦(Elymus sibiricus)+无芒雀麦(Bromus inermis)+扁穗冰草(Agropgyron cristatum)草地地下芽结构最优,可适当延长混播草地使用年限,是适宜青藏高原高寒地区的混播草种组合。 C1 Liu Wanting, Grassland Science College of Gansu Agricultural University, Grassland Ecosystem Key Laboratory of Ministry of Education;;Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Lanzhou, Gansu 730070, China. Cao Wenxia, Grassland Science College of Gansu Agricultural University, Grassland Ecosystem Key Laboratory of Ministry of Education;;Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Lanzhou, Gansu 730070, China. Wang Wenhu, Grassland Science College of Gansu Agricultural University, Grassland Ecosystem Key Laboratory of Ministry of Education;;Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Lanzhou, Gansu 730070, China. Wang Xinyou, Grassland Science College of Gansu Agricultural University, Grassland Ecosystem Key Laboratory of Ministry of Education;;Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Lanzhou, Gansu 730070, China. Wang Shilin, Grassland Science College of Gansu Agricultural University, Grassland Ecosystem Key Laboratory of Ministry of Education;;Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Lanzhou, Gansu 730070, China. Deng Xiuxia, Grassland Science College of Gansu Agricultural University, Grassland Ecosystem Key Laboratory of Ministry of Education;;Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Lanzhou, Gansu 730070, China. Shi Shangli, Grassland Science College of Gansu Agricultural University, Grassland Ecosystem Key Laboratory of Ministry of Education;;Sino-U.S. Research Centers for Sustainable Grassland and Livestock Management, Lanzhou, Gansu 730070, China. Li Wen, Qinghai Academy of Animal and Veterinary Sciences(Academy of Animal and Veterinarty Sciences,Qinghai University), Xining, Qinghai 810016, China. Z6 刘婉婷, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 曹文侠, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 王文虎, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 王辛有, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 王世林, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 邓秀霞, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 师尚礼, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 李文, 青海省畜牧兽医科学院(青海大学畜牧兽医科学院), 西宁, 青海 810016, 中国. EM 1339460931@qq.com; caowx@gsau.edu.cn Z7 1339460931@qq.com; caowx@gsau.edu.cn Z8 0 Z9 0 UT CSCD:7304291 DA 2023-03-23 ER PT J AU Wu Xueqin Chen Huiqing Zhang Lu Shang Guozhen Wu Yan Bian Jianghui Z2 吴学琴 陈慧青 张璐 尚国珍 吴雁 边疆晖 TI Grassland degradation affects serum total IgG level, intestinal parasitic infection and liver and kidney indices of plateau pika Z1 草地退化影响高原鼠兔血清总IgG水平、肠道寄生物感染及肝脏和肾脏指数 Z3 兽类学报 SO Acta Theriologica Sinica VL 42 IS 5 BP 531 EP 539 AR 1000-1050(2022)42:5<531:CDTHYX>2.0.TX;2-C PY 2022 DT Article AB As a key species in the alpine grassland ecosystem of the Qinghai-Tibet Plateau, the plateau pika(Ochotona curzoniae) population increased rapidly with grassland degradation. Understanding the changes in innate immune function and organ index of liver and kidney indices of plateau pika is of great significance for further revealing the physiological mechanism of plateau pika population outbreak caused by grassland degradation on the Qinghai-Tibet Plateau. In this study, we investigated the number of burrow entrances, measured serum total IgG levels, intestinal parasitic infection, and liver and kidney indices of adult plateau pikas inhabiting lightly, moderately, and heavily degraded grassland(LD, MD and HD) at Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem. Our results showed that with grassland degradation, the number of burrow entrances and serum total IgG levels increased significantly, while the prevalence and intensity of infection of cestodes and nematodes as well as liver and kidney indices decreased markedly. The prevalence of infection of cestodes and liver index in males were significantly lower than those in females, and the prevalence and intensity of infection of cestodes and nematodes in females in HD were significantly lower than those in LD. These results indicate that grassland degradation induced by overgrazing enhances the innate immune of plateau pika and alleviate the damage of toxins to liver and kidney, which may promote population outbreaks. Z4 高原鼠兔(Ochotona curzoniae)作为青藏高原高寒草地生态系统中的关键物种,其种群数量随着过度放牧导致的草地退化而暴发式增长。阐明此过程中高原鼠兔天然免疫能力 及肝脏和肾脏器官指数的变化,对深入揭示青藏高原草地退化引起的高原鼠兔种群暴发机理具有重要意义。本研究在青海海北高寒草地生态系统国家野外科学观测研 究站地区,调查了轻度、中度、重度退化草地中高原鼠兔洞口数量,并测定了成体高原鼠兔血清总IgG含量、肠道寄生物感染状况及肝脏和肾脏指数。结果发现: 随着草地退化,高原鼠兔洞口数量和血清总IgG水平显著增加;绦虫和线虫的感染率和感染强度以及肝脏和肾脏指数均显著降低。雄性对绦虫的感染率和肝脏指数 显著低于雌性;雌性在重度退化草地中对绦虫和线虫的感染率及感染强度显著低于轻度退化草地。以上结果表明,过度放牧介导的草地退化增强了高原鼠兔的天然免 疫功能,缓解了毒素对肝脏和肾脏的损伤,进而可能促进其种群暴发式增长。 C1 Wu Xueqin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Science, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100049. Chen Huiqing, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Science, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100049. Zhang Lu, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Science, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100049. Shang Guozhen, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;Qinghai Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota;;Qinghai Key Laboratory of Animal Ecological Genomics, Xining;;Xining, ;; 810001;;810001. Bian Jianghui, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;Qinghai Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota;;Qinghai Key Laboratory of Animal Ecological Genomics, Xining;;Xining, ;; 810001;;810001. Wu Yan, School of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310012, China. Z6 吴学琴, 中国科学院西北高原生物研究所;;中国科学院大学, 中国科学院高原生物适应与进化重点实验室;;, 西宁;;, ;;北京 810001;;100049. 陈慧青, 中国科学院西北高原生物研究所;;中国科学院大学, 中国科学院高原生物适应与进化重点实验室;;, 西宁;;, ;;北京 810001;;100049. 张璐, 中国科学院西北高原生物研究所;;中国科学院大学, 中国科学院高原生物适应与进化重点实验室;;, 西宁;;, ;;北京 810001;;100049. 尚国珍, 中国科学院西北高原生物研究所;;青海省动物生态基因组学重点实验室, 中国科学院高原生物适应与进化重点实验室;;青海省动物生态基因组学重点实验室, 西宁;;西宁, ;; 810001;;810001. 边疆晖, 中国科学院西北高原生物研究所;;青海省动物生态基因组学重点实验室, 中国科学院高原生物适应与进化重点实验室;;青海省动物生态基因组学重点实验室, 西宁;;西宁, ;; 810001;;810001. 吴雁, 杭州师范大学生命科学学院, 杭州, 浙江 310012, 中国. EM shangguozhen@nwipb.cas.cn Z7 shangguozhen@nwipb.cas.cn Z8 0 Z9 0 UT CSCD:7313196 DA 2023-03-23 ER PT J AU Wu Yuwei Luo Shan Laqiong Wu Jihua Z2 吴雨薇 罗珊 拉琼 吴纪华 TI Response of Soil Nematode Communities to Restoration of Alpine Meadow Grassland in Three-river Headwater Region on Qinghai-Tibet Plateau in Different Restoration Periods Z1 青藏高原三江源区不同恢复期高寒草甸土壤线虫群落演变 Z3 土壤 SO Soils VL 54 IS 3 BP 532 EP 538 AR 0253-9829(2022)54:3<532:QZGYSJ>2.0.TX;2-Z PY 2022 DT Article AB Alpine meadow in the Three-River Headwater Region on the Qinghai-Tibet Plateau is undergoing severe degradation. Artificial planting is an important way to restore degraded grasslands. This study compares the structure and function of soil nematode communities of alpine meadow grasslands at different restoration stages(artificial grassland planting for 1, 5 and 10 years) to test the effectiveness of grassland restoration from the view of belowground. Compared with the native vegetation plots, plant belowground biomass of the restored plots is significantly lower, and soil bulk density, pH, total phosphorus, total potassium and nitrate nitrogen are significantly higher. Nematode evenness index and Shannon Wiener index in the three restoration plots are significantly higher than those in native vegetation plots. In addition, with the increase of restoration years, nematode abundance index, metabolic footprint index and maturity index in restoration plots are increased. Correlation analysis results show that soil nematode abundance is significantly positively correlated with plant belowground biomass, soil organic matter, total nitrogen, total phosphorus, mineral nitrogen and available nitrogen(P<0.05), and significantly negatively correlated with soil pH, total potassium and bulk density(P<0.05). Although the artificial restoration measures of the degraded grassland in the Three-River Headwater Region have not fully restored the forage productivity to the state of native vegetation, soil biological structure and function have a trend of improvement, indicating the strong restoration potential for the degraded grassland ecosystem in this area. Z4 青藏高原三江源地区的高寒草甸面临着严峻的退化问题,人工建植是三江源地区退化草地的重要修复方式。为探究地下生物对草地人工恢复措施的响应,本研究比较 了三江源地区高寒草甸不同恢复期人工草地(建植1、5和10 a)的土壤线虫群落变化。结果显示:与原生植被样地相比,所有恢复期样地的植物地下生物量降低,土壤容重、pH、全磷、全钾和硝态氮含量升高,表明人工草 地系统的初级生产力和土壤特性尚未恢复到原生草地状态。不同恢复期样地中土壤线虫的均匀度和多样性指数均显著高于原生植被样地。此外,不同恢复期样地的线 虫多度、代谢足迹以及成熟度指数均随恢复年限的增加而增加。相关性分析结果表明,土壤线虫多度与植物地下生物量、土壤有机质、全氮、全磷、矿质氮和速效氮 含量显著正相关(P<0.05),与土壤pH、全钾和容重显著负相关(P<0.05)。尽管三江源区退化草地的人工恢复措施尚未完全恢复牧草生产力至原生 植被状态,但土壤生物结构及功能具有改善的趋势,显示该地区退化草地生态系统具有较强的恢复潜力。 C1 Wu Yuwei, Institute of Biodiversity Science, Fudan University, Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education, Shanghai 200438, China. Luo Shan, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, England. Laqiong, Ecological Research Center, School of Science, Tibet University, Joint Laboratory of Biodiversity and Global Change, Tibet University and Fudan University, Lhasa, Tibet 850000, China. Wu Jihua, Institute of Biodiversity Science, Fudan University;;Ecological Research Center, School of Science, Tibet University, Joint Laboratory of Biodiversity and Global Change, Tibet University and Fudan University, Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education;;, ;;Lhasa, Shanghai;; 200438;;850000. Z6 吴雨薇, 复旦大学生物多样性科学研究所, 生物多样性和生态工程教育部重点实验室, 上海 200438, 中国. 罗珊, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YW, United Kingdom. 拉琼, 西藏大学理学院生态学研究中心, 西藏大学和复旦大学生物多样性与全球变化联合实验室, 拉萨, 西藏 850000, 中国. 吴纪华, 复旦大学生物多样性科学研究所;;西藏大学理学院生态学研究中心, 西藏大学和复旦大学生物多样性与全球变化联合实验室, 生物多样性和生态工程教育部重点实验室;;, ;;拉萨, 上海;; 200438;;850000, 中国. EM 18210700093@fudan.edu.cn; jihuawu@fudan.edu.cn Z7 18210700093@fudan.edu.cn; jihuawu@fudan.edu.cn Z8 0 Z9 0 UT CSCD:7272010 DA 2023-03-23 ER PT J AU Xuan Wenting Zhao Yijun Li Yizhuang Liu Jinyin Wang Xianzhi Yu Yingwen Z2 宣文婷 赵一军 李艺妆 刘金银 王先之 于应文 TI Vegetation composition and interspecific associations of alpine meadow under different utilization rates on the northeast Qinghai-Tibet Plateau Z1 青藏高原东北缘不同利用率高寒草甸植被构成及种间关联 Z3 草业科学 SO Pratacultural Science VL 39 IS 4 BP 625 EP 633 AR 1001-0629(2022)39:4<625:QZGYDB>2.0.TX;2-7 PY 2022 DT Article AB The vegetation community structure and interspecific association are the main evaluation indices of grassland stability and community succession. It is important to study the vegetation composition and interspecific association under different utilization rates for grassland management and revealing the mechanism of stability maintenance in alpine meadow. This study analyzed vegetation composition, inter-species relationship and community stability under the annual average grassland utilization rate of 60%~70%(moderate utilization grassland, MG), 80%~90%(heavy utilization grassland, HG)and >90%(extreme utilization grassland, EG)in the northeastern Qinghai-Tibet Plateau. It aimed to explore the relative suitable grassland utilization rate in the northeastern Qinghai-Tibet Plateau. The results showed that 1)MG grassland dominated by grass(Elymus nutans, Stipa krylovii and Poa crymophila)and HG grassland dominated by Elymus nutans, Kobresia humilis and Stipa krylovii, while the EG grassland dominated by Kobresia humilis. 2)With the increasing of utilization rate, plant species richness decreased, and the beta diversity index, Shannon-Wiener diversity index and Simpson dominance index showed a declining trend, reaching the lowest in EG grassland;the aboveground biomass proportion of sedge increased, while the aboveground biomass proportion of grass decreased. 3)Compared to EG grassland, MG and HG grasslands had a closer interspecific association and stronger community stability, and EG grassland showed a trend of degradation. The study concluded that the moderate utilization rate under the rotational grazing pattern was beneficial to maintain the vegetation community stability in alpine meadow. Z4 植被群落结构和种间关系是草地稳定性管理及群落演替主要评价指标。不同利用率下高寒草甸植被构成和种间关系的研究,对于该类草地管理和稳定性维持机制揭示 具有重要意义。本研究以青藏高原东北缘高寒草甸为对象,通过对全年平均草地利用率60%~70%(中度,MG)、80%~90%(重度,HG)和>90% (极度,EG)下草地植被构成、种间关系及群落稳定性进行分析, 探究较适宜的草地利用率。结果表明: 1)MG草地以禾草[垂穗披碱草(Elymus nutans)、西北针茅(Stipa sareptana)和冷地早熟禾(Poa crymophila)为优势种,HG草地以垂穗披碱草、矮嵩草(Kobresia humilis)、西北针茅为优势种,EG草地以矮嵩草为优势种。2)随草地利用率增加,群落植物物种数减少, beta 多样性指数、Shannon-Wiener指数和Simpson优势度指数呈减小趋势,EG草地最低;莎草(Cyperus rotundus)地上生物量比例呈增加趋势,禾草地上生物量比例呈降低趋势。3)MG和HG草地较EG草地植物种间联结性紧密,群落稳定性较强,EG草 地呈现一定程度退化。研究结果表明,轮牧制度下的中度草地利用率有利于当地高寒草甸群落稳定性维持。 C1 Xuan Wenting, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosysterms, Lanzhou, Gansu 730020, China. Zhao Yijun, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosysterms, Lanzhou, Gansu 730020, China. Li Yizhuang, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosysterms, Lanzhou, Gansu 730020, China. Liu Jinyin, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosysterms, Lanzhou, Gansu 730020, China. Wang Xianzhi, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosysterms, Lanzhou, Gansu 730020, China. Yu Yingwen, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosysterms, Lanzhou, Gansu 730020, China. Z6 宣文婷, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 赵一军, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 李艺妆, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 刘金银, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 王先之, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 于应文, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM xuanwt19@lzu.edu.cn; yuyw@lzu.edu.cn Z7 xuanwt19@lzu.edu.cn; yuyw@lzu.edu.cn Z8 0 Z9 0 UT CSCD:7201337 DA 2023-03-23 ER PT J AU Chang Wenhua Ma Weiwei Li Guang Xu Guorong Song Liangcui Z2 常文华 马维伟 李广 徐国荣 宋良翠 TI Temporal and Spatial Distribution Characteristics of Soil Urease and Protease Activities in Different Degraded Gradients of Gahai Wetland Z1 尕海湿地不同退化梯度土壤脲酶与蛋白酶活性时空分布特征 Z3 土壤 SO Soils VL 54 IS 3 BP 524 EP 531 AR 0253-9829(2022)54:3<524:GHSDBT>2.0.TX;2-R PY 2022 DT Article AB In order to investigate the effect of alpine wetland degradation on soil enzyme activities, this paper investigated the spatial and temporal characteristics of soil urease and protease activities in 0-10, 10-20 and 20-40 cm layers in Gahai wetlands on the eastern edge of the Qinghai-Tibetan Plateau with four different degraded gradients: not degraded, slightly degraded, moderately degraded and severely degraded. The results showed that soil water content decreased but temperature increased with the increase of the degradation. Soil urease activity decreased but protease activity increased gradually with the increase of degradation in the 0-40 cm layer; Except for severely degraded, the two enzyme activities decreased with the increase of soil depth. The activity was the highest in the 0-40 cm layer in July and August for urease and in June and July for protease, respectively; Soil urease activity was positively correlated with protease activity and temperature(P<0.01), while soil protease activity was positively correlated with microbial nitrogen(P<0.01), water content and temperature(P<0.05), and negatively correlated with nitrate nitrogen(P<0.05). The degradation of marshy meadows significantly increased urease activity but decreased protease activity in topsoil; temperature promoted soil urease and protease activities, and water content and microbial nitrogen promoted soil protease activity. Z4 为探讨高寒湿地退化对土壤酶活性的影响,本文以青藏高原东缘尕海湿地未退化、轻度退化、中度退化和重度退化4种不同退化梯度的0 ~ 10、10 ~ 20和20 ~ 40 cm层土壤为研究对象,研究不同退化梯度土壤脲酶与蛋白酶活性时空变化特征。结果表明:随退化梯度加剧,土壤含水量降低,温度升高;土壤脲酶活性在0 ~ 40 cm土层中表现为随退化加剧而逐渐降低,而蛋白酶活性趋势恰好相反;除重度退化外,其他退化梯度土壤两种酶活性均随土层加深而降低;0 ~ 40 cm土层中脲酶与蛋白酶活性分别在7、8月和6、7月最高;相关性分析表明土壤脲酶活性与蛋白酶活性和温度极显著正相关(P<0.01);土壤蛋白酶活性 与微生物生物量氮极显著正相关(P<0.01),与含水量和温度显著正相关(P<0.05),与硝态氮显著负相关(P<0.05)。沼泽化草甸退化显著增 加土壤表层脲酶活性而降低蛋白酶活性;温度对土壤脲酶与蛋白酶活性起促进作用,含水量、微生物生物量氮对土壤蛋白酶活性具有促进作用。 C1 Chang Wenhua, College of Forestry, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Ma Weiwei, College of Forestry, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Li Guang, College of Forestry, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Xu Guorong, College of Forestry, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Song Liangcui, College of Forestry, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Z6 常文华, 甘肃农业大学林学院, 兰州, 甘肃 730070, 中国. 马维伟, 甘肃农业大学林学院, 兰州, 甘肃 730070, 中国. 李广, 甘肃农业大学林学院, 兰州, 甘肃 730070, 中国. 徐国荣, 甘肃农业大学林学院, 兰州, 甘肃 730070, 中国. 宋良翠, 甘肃农业大学林学院, 兰州, 甘肃 730070, 中国. EM changwh@st.gsau.edu.cn; mww-007@163.com Z7 changwh@st.gsau.edu.cn; mww-007@163.com Z8 0 Z9 0 UT CSCD:7272009 DA 2023-03-23 ER PT J AU Zhang Yuheng Zhang Li Zhang Xiujuan Yang Yongsheng Wang Junbang Xu Xingliang Huang Yuru Zhao Qiudong Li Yingnian Zhou Huakun Z2 张宇恒 张莉 张秀娟 杨永胜 王军邦 徐兴良 黄煜茹 赵求东 李英年 周华坤 TI Effects of degradation degree on plant communities and soil water holding capacity of Maqin alpine meadow Z1 退化程度对玛沁高寒草甸植物群落及土壤持水能力的影响 Z3 草业科学 SO Pratacultural Science VL 39 IS 2 BP 235 EP 246 AR 1001-0629(2022)39:2<235:THCDDM>2.0.TX;2-L PY 2022 DT Article AB To explore the influence of the degree of degradation on the success of plant communities and the water conservation capacity of alpine meadows in the Three Rivers Source Region, this study selected Maqin alpine meadow sample land with different degradation degrees in the source area of the Three Rivers on the Qinghai-Tibet Plateau. Through a combination of field monitoring and indoor tests, this study analyzed the effects of different degradation degrees on plant coverage, height, species number, biomass, soil bulk density, soil saturated hydraulic conductivity, and water holding capacity. The results showed the following: 1) The alpine meadow is in the process of continuous degradation, and the average height and coverage of plants in the Maqin alpine meadow decreased significantly by 41.1% and 58.5%, respectively (P < 0.05); the species number, richness, diversity index, and evenness index of vegetation decreased gradually, and the dominance index was the highest (0.18) in mildly degraded plots. 2) The aboveground, belowground, and total biomass decreased significantly with an increase in the degree of degradation (P < 0.05). Compared with the original vegetation sample plot, the aboveground, underground, and total biomass decreased by 49.8%, 71.1%, and 70.0%, respectively. 3) The effect of the degree of degradation on the soil water holding capacity and saturated water conductivity of alpine meadows decreased with increasing depth, and the effect on soil water holding capacity and saturated water conductivity of the surface layer (0 - 5 cm) was the most significant. Compared with the native vegetation, the 0 - 5 cm soil water capacity, field water capacity, capillary water capacity, and saturated water conductivity of the severely degraded alpine meadow decreased by 41.7%, 42.9%, 41.4%, and 84.4%, respectively. With an increase in the degree of degradation, the soil bulk density of the 0 - 5 cm soil layer of alpine meadow increased significantly (P < 0.05). In conclusion, as the degree of degradation increased, the species richness, diversity, evenness, and dominance of alpine meadow vegetation communities decreased. At the same time, the influence of the degree of degradation on the soil water holding capacity of alpine meadows is primarily concentrated in the 0 - 5 cm layer, and the surface matting of alpine meadows is the key to maintaining the water conservation function of this region. Z4 为探讨退化程度对三江源高寒草甸植物群落演替及水源涵养能力的影响,本研究选取青藏高原三江源玛沁不同退化程度高寒草甸样地,通过野外监测及室内试验相结 合的方法,分析不同退化程度对三江源高寒草甸植物群落盖度、高度、物种数、生物量及土壤容重、饱和导水率和持水能力的影响。结果表明:1)高寒草甸不断退 化过程中,玛沁高寒草甸植物平均高度和盖度分别显著降低了41.1%和58.5%(P < 0.05),植被物种数、丰富度、多样性指数、均匀度指数逐步降低,优势度指数以轻度退化样地最高(0.18)。2)地上、地下生物量及总生物量均随退化 程度的加剧显著减少(P < 0.05),与原生植被样地相比,重度退化样地地上、地下及总生物量分别下降了49.8%、71.1%和70.0%;随着土壤深度的增加,退化程度对地下 生物量的影响逐步降低。3)退化程度对高寒草甸土壤持水能力与饱和导水率的影响程度随土壤深度的增加而减弱,其对表层(0 - 5 cm)土壤持水能力和饱和导水率的影响最明显,与原生植被相比,重度退化高寒草甸0 - 5 cm土壤饱和持水量、田间持水量、毛管持水量及饱和导水率分别下降了41.7%、 42.9%、41.4%和84.4%,随着退化程度的增加,高寒草甸0 - 5 cm土层的土壤容重显著增加(P < 0.05)。综上所述,随着退化程度加剧,高寒草甸植被群落的物种丰富度、多样性、均匀度及优势度随之降低;同时,退化程度对高寒草甸土壤持水能力的影响 主要集中在0 - 5 cm土层,高寒草甸地表草毡层是保持该区域水源涵养功能的关键所在。 C1 Zhang Yuheng, College of Horticulture and Gardening,Yangtze University, Jingzhou, Hubei 434025, China. Zhang Xiujuan, College of Horticulture and Gardening,Yangtze University, Jingzhou, Hubei 434025, China. Zhang Li, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Qinghai Key Laboratory of Restoration Ecology in Cold Regions;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, Qinghai;;Qinghai 810001;;810001. Yang Yongsheng, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Qinghai Key Laboratory of Restoration Ecology in Cold Regions;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, Qinghai;;Qinghai 810001;;810001. Huang Yuru, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Qinghai Key Laboratory of Restoration Ecology in Cold Regions;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, Qinghai;;Qinghai 810001;;810001. Li Yingnian, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Qinghai Key Laboratory of Restoration Ecology in Cold Regions;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, Qinghai;;Qinghai 810001;;810001. Zhou Huakun, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Qinghai Key Laboratory of Restoration Ecology in Cold Regions;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, Qinghai;;Qinghai 810001;;810001. Wang Junbang, Institute of Geographic Sciences and Natural Resources Research,CAS, Key Laboratory of Ecosystem Network Observation and Modeling, Beijing 100101, China. Xu Xingliang, Institute of Geographic Sciences and Natural Resources Research,CAS, Key Laboratory of Ecosystem Network Observation and Modeling, Beijing 100101, China. Zhao Qiudong, Northwest China Ecological Environment and Resource Research Institute,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 张宇恒, 长江大学园艺园林学院, 荆州, 湖北 434025, 中国. 张秀娟, 长江大学园艺园林学院, 荆州, 湖北 434025, 中国. 张莉, 中国科学院西北高原生物研究所;;中国科学院高原生物适应与进化重点实验室, 青海省寒区恢复生态学重点实验室;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, 青海;;青海 810001;;810001, 中国. 杨永胜, 中国科学院西北高原生物研究所;;中国科学院高原生物适应与进化重点实验室, 青海省寒区恢复生态学重点实验室;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, 青海;;青海 810001;;810001, 中国. 黄煜茹, 中国科学院西北高原生物研究所;;中国科学院高原生物适应与进化重点实验室, 青海省寒区恢复生态学重点实验室;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, 青海;;青海 810001;;810001, 中国. 李英年, 中国科学院西北高原生物研究所;;中国科学院高原生物适应与进化重点实验室, 青海省寒区恢复生态学重点实验室;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, 青海;;青海 810001;;810001, 中国. 周华坤, 中国科学院西北高原生物研究所;;中国科学院高原生物适应与进化重点实验室, 青海省寒区恢复生态学重点实验室;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, 青海;;青海 810001;;810001, 中国. 王军邦, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 徐兴良, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 赵求东, 中国科学院西北生态环境资源研究院, 兰州, 甘肃 730000, 中国. EM zhangyuheng1996@126.com; zxj510@yangtzeu.edu.cn; ysyang@nwipb.cas.cn Z7 zhangyuheng1996@126.com; zxj510@yangtzeu.edu.cn; ysyang@nwipb.cas.cn Z8 0 Z9 1 UT CSCD:7170726 DA 2023-03-23 ER PT J AU Zhang Fawei Li Hongqin Yi Lubei Luo Fanglin Zhang Guangru Wang Chunyu Yang Yongsheng Li Yingnian Z2 张法伟 李红琴 仪律北 罗方林 张光茹 王春雨 杨永胜 李英年 TI Spatial response of topsoil organic carbon, total nitrogen, and total phosphor content of alpine meadows to grassland degradation in the Sanjiangyuan National Park Z1 草地退化对三江源国家公园高寒草甸表层土壤有机碳、全氮、全磷的空间驱动 Z3 生态学报 SO Acta Ecologica Sinica VL 42 IS 14 BP 5586 EP 5592 AR 1000-0933(2022)42:14<5586:CDTHDS>2.0.TX;2-# PY 2022 DT Article AB Alpine meadows constitute approximately 23% of the Qinghai-Tibetan Plateau surface and are vital to ecosystem services and human well-being. Under the context of unprecedented climate warming and heavy grazing practices, alpine grasslands have been undergoing serious and extensive degradation for the past decades. Grassland degradation substantially weakened soil nutrients status and ecological carrying capacity of alpine meadows, but their spatial driving magnitudes and environmental controls remain unclear in the Three Rivers Source. From July to August in 2020, based on 60 paired soil samples of native and degraded alpine meadows in the Sanjiangyuan National Park, the spatial response of topsoil (030 cm) organic carbon content (SOC), total nitrogen content (TN), and total phosphorus content (TP) to grassland degradation was quantified, as well as the underlying environmental controls. The contents of SOC and TN in native alpine meadows were (2.452.05)% (MeanStandard deviation, the same below) and (0.250.20)%, respectively. The results of the paired-samples t-test showed that the content of SOC and TN in degraded alpine meadows were significantly (P < 0.001) decreased by 44.0% and 35.6%, compared to native alpine meadows. The degradation induced-loss in topsoil density of SOC and TN was 2.23 kg/m~2 and 0.16 kg/m~2, respectively, given that marginally significant (P = 0.06) difference between bulk density in native (0.93 g/cm~3) and degraded alpine meadows (1.12 g/cm~3). The content of TP exhibited no significant (P = 0.22) response to grassland degradation, because soil phosphor comes mainly from rock weathering, which was strongly affected by soil parent materials. The C ∶ N ∶ P of native and degraded alpine meadows averaged 59.6∶ 6.2∶ 1.0 and 35.6∶ 4.2∶ 1.0, respectively. And it was remarkably reduced by 28.3% due to grassland degradation, which might alleviate the nutrient limitations on plant growth. The difference of soil nutrients and stoichiometry between native and degraded alpine meadows was used as an indicator for the spatial effects of grassland degradation. And the general linear model analysis revealed that the spatial magnitudes of grassland degradation on SOC, TN, and soil stoichiometry were significantly related to latitude and elevation (P <0.01), rather than longitude and soil depth. This finding suggested that the response to degradation could be much stronger in alpine meadows of lower latitude and higher elevation. Therefore, grassland degradation caused serious losses of topsoil carbon and nitrogen and decreased soil stoichiometry of alpine meadows in the Sanjiangyuan National Park. These results can provide a theoretical basis for the rehabilitation and management of the soil nutrient function of the degraded alpine meadows in the Sanjiangyuan National Park. Z4 草地退化显著削弱了三江源高寒草甸的土壤肥力及生态承载功能,但空间尺度上的驱动强度和环境调控尚不清晰。在2020年78月,基于三江源国家公园高寒草 甸典型分布区原生植被和退化植被的60个配对采样,研究表层(030 cm)土壤有机碳(SOC)、全氮(TN)和全磷(TP)含量对草地退化的空间响应特征。三江源国家公园高寒草甸原生植被SOC和TN含量分别为(2.4 52.05)%(平均值标准差,下同)和(0.250.20)%,配对样本t-检验的结果表明草地退化导致SOC和TN分别极显著(P<0.001)下降 了44.0%和35.6%。TP对草地退化无显著响应(P = 0.22)。原生植被的土壤C ∶N ∶P平均为59.6∶6.2∶1.0,草地退化导致化学计量值平均下降28.3%。一般线性模型的结果表明草地退化对SOC和TN及土壤生态化学计量特征 的空间降低强度主要取决于纬度和海拔(P<0.01),与经度和土壤深度关系较弱(P>0.30),即低纬度高海拔的高寒草甸响应相对强烈。草地退化导致 三江源国家公园高寒草甸土壤碳氮损失严重,降低了土壤生态化学计量。研究结果可为三江源退化高寒草甸土壤营养功能的治理和恢复提供理论支撑。 C1 Zhang Fawei, Institute of Sanjiangyuan National Park,Chinese Academy of Sciences;;Northwest Institute of Plateau Biology,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810001;;810001. Luo Fanglin, Institute of Sanjiangyuan National Park,Chinese Academy of Sciences;;Northwest Institute of Plateau Biology,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810001;;810001. Zhang Guangru, Institute of Sanjiangyuan National Park,Chinese Academy of Sciences;;Northwest Institute of Plateau Biology,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810001;;810001. Wang Chunyu, Institute of Sanjiangyuan National Park,Chinese Academy of Sciences;;Northwest Institute of Plateau Biology,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810001;;810001. Yang Yongsheng, Institute of Sanjiangyuan National Park,Chinese Academy of Sciences;;Northwest Institute of Plateau Biology,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810001;;810001. Li Yingnian, Institute of Sanjiangyuan National Park,Chinese Academy of Sciences;;Northwest Institute of Plateau Biology,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810001;;810001. Li Hongqin, Institute of Sanjiangyuan National Park,Chinese Academy of Sciences;;College of Life Sciences,Luoyang Normal University, ;;, Xining;;Luoyang, ;; 810001;;471934. Yi Lubei, Forestry carbon sequestration service center,Qinghai Forestry and Grassland Bureau, Xining, Qinghai 810008, China. Z6 张法伟, 中国科学院三江源国家公园研究院;;中国科学院西北高原生物研究所, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, ;; 810001;;810001. 罗方林, 中国科学院三江源国家公园研究院;;中国科学院西北高原生物研究所, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, ;; 810001;;810001. 张光茹, 中国科学院三江源国家公园研究院;;中国科学院西北高原生物研究所, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, ;; 810001;;810001. 王春雨, 中国科学院三江源国家公园研究院;;中国科学院西北高原生物研究所, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, ;; 810001;;810001. 杨永胜, 中国科学院三江源国家公园研究院;;中国科学院西北高原生物研究所, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, ;; 810001;;810001. 李英年, 中国科学院三江源国家公园研究院;;中国科学院西北高原生物研究所, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, ;; 810001;;810001. 李红琴, 中国科学院三江源国家公园研究院;;洛阳师范学院生命科学学院, ;;, 西宁;;洛阳, ;; 810001;;471934. 仪律北, 青海省林业和草原局林业碳汇服务中心, 西宁, 青海 810008, 中国. EM mywing963@126.com Z7 mywing963@126.com Z8 0 Z9 0 UT CSCD:7266626 DA 2023-03-23 ER PT J AU Xu Ganjun Chai Yongyu Yan Liang Wu Shengyi Li Yong Kang Enze Wang Xiaodong Yang Ao Kang Xiaoming Zhang Xiaodong Z2 徐干君 柴永煜 颜亮 吴胜义 李勇 康恩泽 汪晓东 杨澳 康晓明 张骁栋 TI Dynamics of carbon flux of alpine meadows along a degradation gradient Z1 不同退化程度高寒草甸生态系统碳通量 Z3 草业科学 SO Pratacultural Science VL 39 IS 9 BP 1733 EP 1742 AR 1001-0629(2022)39:9<1733:BTTHCD>2.0.TX;2-1 PY 2022 DT Article AB Alpine meadow is one of the main vegetation types in the Qinghai-Tibet Plateau.Alpine meadows are variably degraded under the influence of climate change and human activities.The carbon flux in alpine meadows changes with the degradation.However,the characteristics of carbon flux components during degradation in alpine meadows are still unclear,hindering our understanding of the transition between carbon sink and source in responding to global changes.In this study,four degradation degrees of alpine meadows,including enclosure as control check,lightly degraded,moderately degraded,and severely degraded meadows were studied.The net ecosystem exchange (NEE),ecosystem respiration (ER),gross ecosystem productivity (GEP),methane (CH_4) fluxes,and related environmental factors were measured during the growing season by the static chamber method.Results showed that:1) Alpine meadows with different degrees of degradation in summer were significant CO_2 sinks,with NEE ranging from -1 437.55 to -98.45 mg·(m~2·h)~(-1) (CO_2);NEE,ER,and GEP decreased significantly with the degradation of alpine meado(CH_4)w (P <0.05).The alpine meadow presented a weak CH_4 sink with a mean rate of 0.029 mg·(m~2·h)~(-1) (CH_4),showing no significant difference among degradation degrees (P >0.05).2) Soil organic carbon content and vegetation coverage were the two main environmental factors that affected NEE,GEP,and ER.Our study found that the capacity of carbon sequestration of alpine meadows decreased by 55% from lightly degraded to moderately degraded in the growing season,indicating that more attention should be paid to the succession of alpine meadows from light to moderate degradation,which is crucial to maintaining the carbon sequestration function of alpine meadow. Z4 高寒草甸是青藏高原的主要植被类型之一。受气候变化和人类活动的影响,高寒草甸面临不同程度的退化,生态系统碳通量也随之改变。当前,高寒草甸退化过程中 的碳通量组分变化特征仍不明晰,对于深入理解高寒草甸碳源汇格局对全球变化的响应产生阻碍。本研究以4个退化梯度(对照样地、轻度退化、中度退化和重度退 化)的高寒草甸为研究对象,利用静态箱法测定了夏季不同退化程度的高寒草甸生态系统净交换(NEE)、生态系统呼吸(ER)、总生态系统生产力(GEP) 和甲烷(CH_4)通量以及相关环境因子。结果表明:1)夏季不同退化程度的高寒草甸为显著的CO_2汇,NEE范围为-1 437.55~-98.45 mg·(m~2·h)~(-1) (CO_2),NEE、ER和GEP随着高寒草甸退化而显著减弱(P <0.05);同时高寒草甸呈微弱的CH_4汇,平均吸收速率为0.029 mg·(m~2·h)~(-1) (CH_4),CH_4通量随退化加剧无显著变化(P >0.05)。2)土壤有机碳含量和植被盖度是影响NEE、GEP和ER的主要环境因素。本研究发现高寒草甸碳汇从轻度退化到中度退化急剧减弱了约55% ,说明加强预防高寒草甸从轻度到中度退化的演替,将有效维持高寒草甸的碳汇功能。 C1 Xu Ganjun, Northwest Surveying and Planning Institute of National Forestry and Grassland Administration, Xi'an, Shaanxi 710048, China. Chai Yongyu, Northwest Surveying and Planning Institute of National Forestry and Grassland Administration, Xi'an, Shaanxi 710048, China. Wu Shengyi, Northwest Surveying and Planning Institute of National Forestry and Grassland Administration, Xi'an, Shaanxi 710048, China. Yan Liang, Institute of Ecological Protection and Restoration,Chinese Academy of Forestry;;Sichuan Zoige Wetland Ecosystem Research Station, Beijing Key Laboratory of Wetland Services and Restoration;;Sichuan Zoige Wetland Ecosystem Research Station, ;;Aba, Beijing;;Sichuan 100091;;624500. Li Yong, Institute of Ecological Protection and Restoration,Chinese Academy of Forestry;;Sichuan Zoige Wetland Ecosystem Research Station, Beijing Key Laboratory of Wetland Services and Restoration;;Sichuan Zoige Wetland Ecosystem Research Station, ;;Aba, Beijing;;Sichuan 100091;;624500. Kang Enze, Institute of Ecological Protection and Restoration,Chinese Academy of Forestry;;Sichuan Zoige Wetland Ecosystem Research Station, Beijing Key Laboratory of Wetland Services and Restoration;;Sichuan Zoige Wetland Ecosystem Research Station, ;;Aba, Beijing;;Sichuan 100091;;624500. Wang Xiaodong, Institute of Ecological Protection and Restoration,Chinese Academy of Forestry;;Sichuan Zoige Wetland Ecosystem Research Station, Beijing Key Laboratory of Wetland Services and Restoration;;Sichuan Zoige Wetland Ecosystem Research Station, ;;Aba, Beijing;;Sichuan 100091;;624500. Yang Ao, Institute of Ecological Protection and Restoration,Chinese Academy of Forestry;;Sichuan Zoige Wetland Ecosystem Research Station, Beijing Key Laboratory of Wetland Services and Restoration;;Sichuan Zoige Wetland Ecosystem Research Station, ;;Aba, Beijing;;Sichuan 100091;;624500. Kang Xiaoming, Institute of Ecological Protection and Restoration,Chinese Academy of Forestry;;Sichuan Zoige Wetland Ecosystem Research Station, Beijing Key Laboratory of Wetland Services and Restoration;;Sichuan Zoige Wetland Ecosystem Research Station, ;;Aba, Beijing;;Sichuan 100091;;624500. Zhang Xiaodong, Institute of Ecological Protection and Restoration,Chinese Academy of Forestry;;Sichuan Zoige Wetland Ecosystem Research Station, Beijing Key Laboratory of Wetland Services and Restoration;;Sichuan Zoige Wetland Ecosystem Research Station, ;;Aba, Beijing;;Sichuan 100091;;624500. Z6 徐干君, 国家林业和草原局西北调查规划院, 西安, 陕西 710048, 中国. 柴永煜, 国家林业和草原局西北调查规划院, 西安, 陕西 710048, 中国. 吴胜义, 国家林业和草原局西北调查规划院, 西安, 陕西 710048, 中国. 颜亮, 中国林业科学研究院生态保护与修复研究所;;四川若尔盖高寒湿地生态系统定位观测研究站, 湿地生态功能与恢复北京市重点实验室;;四川若尔盖高寒湿地生态系统定位观测研究站, ;;阿坝, 北京;;四川 100091;;624500, 中国. 李勇, 中国林业科学研究院生态保护与修复研究所;;四川若尔盖高寒湿地生态系统定位观测研究站, 湿地生态功能与恢复北京市重点实验室;;四川若尔盖高寒湿地生态系统定位观测研究站, ;;阿坝, 北京;;四川 100091;;624500, 中国. 康恩泽, 中国林业科学研究院生态保护与修复研究所;;四川若尔盖高寒湿地生态系统定位观测研究站, 湿地生态功能与恢复北京市重点实验室;;四川若尔盖高寒湿地生态系统定位观测研究站, ;;阿坝, 北京;;四川 100091;;624500, 中国. 汪晓东, 中国林业科学研究院生态保护与修复研究所;;四川若尔盖高寒湿地生态系统定位观测研究站, 湿地生态功能与恢复北京市重点实验室;;四川若尔盖高寒湿地生态系统定位观测研究站, ;;阿坝, 北京;;四川 100091;;624500, 中国. 杨澳, 中国林业科学研究院生态保护与修复研究所;;四川若尔盖高寒湿地生态系统定位观测研究站, 湿地生态功能与恢复北京市重点实验室;;四川若尔盖高寒湿地生态系统定位观测研究站, ;;阿坝, 北京;;四川 100091;;624500, 中国. 康晓明, 中国林业科学研究院生态保护与修复研究所;;四川若尔盖高寒湿地生态系统定位观测研究站, 湿地生态功能与恢复北京市重点实验室;;四川若尔盖高寒湿地生态系统定位观测研究站, ;;阿坝, 北京;;四川 100091;;624500, 中国. 张骁栋, 中国林业科学研究院生态保护与修复研究所;;四川若尔盖高寒湿地生态系统定位观测研究站, 湿地生态功能与恢复北京市重点实验室;;四川若尔盖高寒湿地生态系统定位观测研究站, ;;阿坝, 北京;;四川 100091;;624500, 中国. EM 13789255@qq.com; zhangxiaod@caf.ac.cn Z7 13789255@qq.com; zhangxiaod@caf.ac.cn Z8 0 Z9 0 UT CSCD:7319747 DA 2023-03-23 ER PT J AU Zeng Hongli Bai Wei Fang Jiachen Xu Lei Shang Guanglie Z2 曾红丽 白炜 房佳辰 徐磊 商光烈 TI Effects of Simulated Warming on Soil Bacterial Communities of Alpine Swamp Meadow in the Qinghai-Tibet Plateau Z1 模拟增温对高寒沼泽草甸土壤细菌群落的影响 Z3 环境科学与技术 SO Environmental Science and Technology VL 45 IS 4 BP 164 EP 172 AR 1003-6504(2022)45:4<164:MNZWDG>2.0.TX;2-2 PY 2022 DT Article AB In order to investigate the impacts of climate warming on soil bacterial communities of alpine swamp meadow in the Qinghai-Tibet Plateau, a simulated warming experiment was conducted with the experimental facility, i. e. open top chambers (OTCs). The effects of two simulated warming modes (W1: 1.5~2.5 ℃; W2: 3~5 ℃) were explored on the basis of the high-throughput sequencing technique and measuring relevant physico-chemical indicators. Consequently, the experiment presented that the soil dominant bacterial phyla were Proteobacteria (38.717%~53.872%), Acidobacteria (13.303%~ 30.484%) and Actinobacteria (6.031%~13.534%); the relative abundance of the dominant bacteria was affected by warming magnitude; and the temperature elevation inhibited the diversity of soil bacterial communities: for the example of case W2, in the top-layer (10~20 cm) soil there were notable decline of the Shannon and Simpson indices compared with that of the control case. Additionally, result of the Mantel test showed that pH and soil microbial biomass nitrogen were the main driving factors affecting soil bacterial community structure; and the Pearson correlation analysis suggested that pH and soil ammonium nitrogen were the major soil factors influencing the dominant bacterial phyla. In conclusion, the simulated warming experiment suggested that climate warming would alter the relative abundance of soil bacteria phyla and the diversity of soil bacterial communities in the Qinghai-Tibet Plateau; the soil bacteria communities tended to decline; and the bacterial communities were significantly influenced by the soil physico-chemical indicators. Z4 文章以青藏高原高寒沼泽草甸为研究对象,建造开顶式增温室模拟增温,基于高通量测序技术,并结合土壤理化指标,探讨2种增温处理(W1:1.5~2.5 ℃;W2:3~5 ℃)对土壤细菌群落结构及多样性的影响。结果表明:变形菌门(38.717%~53.872%)、酸杆菌门(13.303%~30.484%)和放线菌门 (6.031%~13.534%)为优势菌群,优势菌门相对丰度对增温幅度的高低表现出不同的响应趋势。增温抑制了土壤细菌群落多样性,其中,W2处理1 0~20 cm土层,Shannon和Simpson指数相比对照均显著降低。Mantel分析表明,pH和微生物量氮是影响细菌群落结构的主要驱动因子。Pear son相关性分析表明,pH和铵态氮是影响优势菌门的主要土壤因子。模拟增温使青藏高原土壤细菌类群相对丰度发生改变,土壤细菌群落多样性表现为降低趋势 ,土壤理化指标对细菌群落影响显著。 C1 Zeng Hongli, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Bai Wei, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Fang Jiachen, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Xu Lei, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Shang Guanglie, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Z6 曾红丽, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 白炜, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 房佳辰, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 徐磊, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 商光烈, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. EM 2602585734@qq.com; baiwei915@163.com Z7 2602585734@qq.com; baiwei915@163.com Z8 0 Z9 1 UT CSCD:7262158 DA 2023-03-23 ER PT J AU Zeng Hongli Bai Wei Fang Jiachen Xu Lei Shang Guanglie Z2 曾红丽 白炜 房佳辰 徐磊 商光烈 TI Effect of Nitrogen Addition on Soil Bacterial Community in Alpine Swamp Meadow of Qinghai-Tibet Plateau Z1 氮添加对青藏高原高寒沼泽草甸土壤细菌群落的影响 Z3 西北农业学报 SO Acat Agriculturae Boreali-Occidentalis Sinica VL 31 IS 8 BP 1035 EP 1045 AR 1004-1389(2022)31:8<1035:DTJDQZ>2.0.TX;2-9 PY 2022 DT Article AB In order to investigate the effect of nitrogen addition on soil bacterial community structure and diversity,an insitu nitrogen addition experiment was conducted in an alpine swamp meadow of Qinghai-Tibet Plateau.Three nitrogen treatments(CK,0 g·m~(-2)·a~(-1);N1,5 g·m~(-2)·a~(-1);N2,10 g·m~(-2)·a~(-1)) was set,the soil samples were collected from the 0 - 10 cm,10 -20 cm and 20-30 cm soil layers,based on high-throughput sequencing technology,combined with soil physicochemical properties and determination of the microbial biomass carbon and nitrogen,the change of soil bacterial community structure was studied under different treatments of nitrogen addition.The results showed that five dominant bacterial phyla were Proteobacteria,Acidobacteria,Actinobacteria,Gemmatimona-detes and Firmicutes,the effect of nitrogen addition on the relative abundance of different bacterial groups was different atdiffrent soil layers.With increasing nitrogen application,the bacterial diversity indexes had declining tend,but the overall difference was not significant.The correlation analysis showed that there were significant positive relations between ammonium nitrogen and Ace index,Chaol index and Shannon index;nitrate nitrogen,soil organic carbon and soil water content were significantly correlated with specific bacteria at phylum level.The results showed that increasing nitrogen deposition in alpine swamp meadow on the Qinghai-Tibet Plateau can affect the composition of soil bacterial community and inhibit bacterial diversity.In addition,soil ammonium nitrogen,nitrate nitrogen,organic carbon and water content are key factors affecting soil bacterial community under different treatments of nitrogen addition. Z4 为了解氮添加对青藏高原高寒沼泽草甸土壤细菌群落的影响,进行原位氮添加试验。设置对照(CK,0 g·m~(-2)·a~(-1))、低氮(Nl,5 g·m~(-2)·a~(-1))和高氮(N2,10 g·m~(-2)·a~(-1))3种处理,采集0~10 cm、10~20 cm和20~30 cm土层的土壤样品,基于高通量测序技术,并结合土壤理化性质和微生物量碳氮的测定,探讨不同氮添加条件下土壤细菌群落的变化。结果显示:细菌优势类群为 变形菌门、酸杆菌门、放线菌门、芽单胞菌门和厚壁菌门,不同土壤细菌类群相对丰度对氮添加的响应趋势因土层而异。氮添加降低细菌alpha多样性指数,但 整体差异不显著。相关性分析表明,铵态氮与Ace指数、Chaol指数和Shannon指数显著正相关,硝态氮、有机碳和含水量与特定细菌门显著相关。结 果表明,青藏高原高寒沼泽草甸氮添加会影响土壤细菌群落组成,抑制细菌多样性,铵态氮、硝态氮、有机碳和含水量是驱动这种变化的主要土壤因子。 C1 Zeng Hongli, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Bai Wei, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Fang Jiachen, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Xu Lei, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Shang Guanglie, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Z6 曾红丽, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 白炜, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 房佳辰, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 徐磊, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 商光烈, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. EM 2602585734@qq.com; baiwei915@163.com Z7 2602585734@qq.com; baiwei915@163.com Z8 0 Z9 0 UT CSCD:7268761 DA 2023-03-23 ER PT J AU Li Yan Dai Rui Zhang Yunxia Gong Jie Z2 李焱 戴睿 张云霞 巩杰 TI Spatiotemporal Variation of Vegetation NDVI and Its Relationship with Altitude Gradient in Southwest Tibet Plateau Z1 藏西南高原植被NDVI时空变化及其与海拔梯度的关系 Z3 水土保持研究 SO Research of Soil and Water Conservation VL 29 IS 4 BP 215 EP 222 AR 1005-3409(2022)29:4<215:ZXNGYZ>2.0.TX;2-T PY 2022 DT Article AB Vegetation distribution in the Qinghai-Tibet Plateau is not only closely influenced by regional hydrothermal conditions,but also affected by the altitude and topography of the plateau.Understanding of the relationship between vegetation and altitude gradient is of great scientific and practical significance to the ecological protection of the Qinghai-Tibet Plateau.Based on MODIS NDVI data and vegetation type data,we analyzed the spatial and temporal variation characteristics of NDVI during the growing season of different vegetation types in the Southwest Tibetan Plateau in the past 21 years,then explored the correlation between vegetation cover and elevation gradient based on DEM data.The results show that there are eight vegetation cover types in the Southwest Tibet Plateau.including forest,desert,grassland,meadow,alpine vegetation,cultivated vegetation,shrub,and other vegetation types;the NDVI of each vegetation type kept increasing and reached their maximum value in 2017;the increasing rates of grassland,meadow,shrub and alpine vegetation in the study area were 0.006/decade,0.004/decade,0.01/decade and 0.006/decade,respectively;in addition to the local vegetation degradation trend,most of the vegetation coverage continued to improve;grassland,meadow,shrub and alpine vegetation mainly concentrate in the area with an altitude of more than 4 000 m,and NDVI has great differences in each elevation gradient;the NDVI of different vegetation types showed different decreasing trends with the increase of altitude,and the NDVI of the same vegetation had similar changing trends with the change of altitude gradient in different years.These results can provide the scientific support for decision-making for ecological construction,vegetation restoration,and animal husbandry in Southwest Tibet Plateau. Z4 青藏高原植被分布不仅与区域水热条件密切相关,而且受海拔和地形的共同影响,认知植被与海拔梯度的关系对青藏高原生态保护具有重要科学和现实意义。基于M ODIS NDVI数据和植被类型数据,分析了藏西南高原近21年来不同植被类型生长季NDVI时空变化特征,探讨了植被覆盖与海拔梯度的关系。结果表明:藏西南高 原植被类型有森林、荒漠、草原、草甸、高山植被、栽培植被、灌丛和其他植被8种;随时间推移,各植被类型NDVI均显著增加且在2017年达到最大值。研 究区草原、草甸、灌丛和高山植被的增加速率依次为0.006/10a,0.004/10a,0.01/10a和0.006/10a。除了局地植被呈退化趋 势外,绝大部分植被覆盖不断改善。草原、草甸、灌丛和高山植被主要集中分布在海拔4 000m以上的地区,NDVI在各海拔梯度上均存在较大差异。不同植被类型NDVI随海拔升高均呈现不同的减小趋势,不同年份间同种植被NDVI随海拔梯 度变化具有相似的变化趋势。研究结果可为藏西南高原生态建设、植被恢复和畜牧业发展提供一定的科学依据和决策支持。 C1 Li Yan, College of Earth and Environmental Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Zhang Yunxia, College of Earth and Environmental Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Gong Jie, College of Earth and Environmental Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Dai Rui, Climate Center of Tibet Meteorogical Bureau, Lhasa, Tibet 850000, China. Z6 李焱, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 张云霞, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 巩杰, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 戴睿, 西藏自治区气象局气候中心, 拉萨, 西藏 850000, 中国. EM liyan2019@lzu.edu.cn; jgong@lzu.edu.cn Z7 liyan2019@lzu.edu.cn; jgong@lzu.edu.cn Z8 0 Z9 0 UT CSCD:7227784 DA 2023-03-23 ER PT J AU Du Ziyin Wang Xiaodan Hong Jiangtao Zhang Qingsong Z2 杜子银 王小丹 洪江涛 张青松 TI Effects of Seasonal Freeze-Thaw Cycles and Livestock Excreta Returning on Soil Physical Properties,and Nitrogen and Phosphorus Dynamics in Alpine Grassland Z1 冻融及牲畜排泄物作用下的高寒草地土壤物理特性和氮磷变化 Z3 山地学报 SO Mountain Research VL 40 IS 1 BP 29 EP 42 AR 1008-2786(2022)40:1<29:DRJSCP>2.0.TX;2-V PY 2022 DT Article AB In the alpine grassland ecosystem of the Tibetan Plateau,the degradation process of livestock excreta in freeze-thaw circumstance regulates its nutrient release and return efficiency,which affects the nutrient balance of grassland soil and the nutrient supply of vegetation growth. Research on the physical and chemical properties of grassland soil in seasonal freeze-thaw circumstances mostly analyzed the effects of freeze-thaw cycles on soil physical structure,hydrothermal changes and carbon and nitrogen dynamics through fixed-point monitoring and indoor freeze-thaw simulation. There was still a lack of research reports on the coupling effect and mechanism of seasonal freeze-thaw of grassland soil with livestock excreta. In this paper,taking the seasonal permafrost region of northern Tibet Plateau as an example,the indoor freezethaw simulation experiment was carried out to explore the soil physical characteristics and nitrogen and phosphorus nutrient changes of alpine grassland under the action of livestock excreta and soil freezing and thawing. The results showed that: (1) Soil moisture content in 5 ~ 10 cm and 10 ~ 15 cm depth significantly decreased (P < 0.05) after 30 days of experiment,and frequent freeze-thaw settlement resulted in the fragmentation of soil aggregates and increased silt content in deep soil layer. (2) Freeze-thaw cycles enhanced soil nitrogen mineralization and nitrification,and the peaked values of soil ammonium nitrogen and nitrate nitrogen respectively reached 212 and 48.8 mg·kg~(-1) followed by the addition of livestock excreta during the freeze-thaw period. (3) Combined effects of the phosphorus released from livestock excreta and the deep infiltration of soil phosphorus under freeze-thaw circumstance were considered to be the main causes for the dynamics of soil available phosphorus concentration at different soil depths. The conclusions of this study provide scientific guidances for optimizing livestock excreta management and promoting the sustainable development of grassland ecosystem. Z4 在青藏高原高寒草地生态系统中,牲畜排泄物自身冻融及其降解过程调控其养分释放及返还效率,影响草地土壤养分平衡和植被生长的养分供应。当前关于季节性冻 融区草地土壤理化特性的研究,多通过定点监测和室内冻融模拟等方式分析冻融循环对土壤物理结构、水热变化及碳氮动态等方面的影响,尚缺乏关于草地土壤季节 性冻融与牲畜排泄物耦合效应和作用机制方面的研究报道。本文以藏北高原季节性冻土区为例,通过开展室内冻融模拟试验,探究牲畜排泄物添加与土壤冻融作用下 的高寒草地土壤物理特性及氮磷养分变化特征。结果表明: (1)冻融模拟试验30 d后显著降低了5 ~ 10 cm和10 ~ 15 cm土壤含水量(P < 0.05) ,频繁的冻胀融沉导致土壤团聚体破碎增加了深层土壤粉粒含量。(2)冻融作用增强了土壤氮矿化与硝化作用,牲畜粪尿添加使得表土铵态氮和硝态氮含量最大值 分别达到212 mg·kg~(-1)和48.8 mg·kg~(-1)。(3)牲畜排泄物磷的释放和冻融作用下土壤磷的深层渗透是导致不同土层有效磷含量差异的主要因素。本研究有助于认识牲畜排泄物返还 与草地土壤季节性冻融的耦合效应和作用机制,并为优化牲畜排泄物管理模式、促进草地生态系统可持续发展提供理论指导。 C1 Du Ziyin, School of Geographical Sciences,China West Normal University;;Institute of Mountain Hazards and Environment,Chinese Academy of Sciences;;Xainza Alpine Steppe and Wetland Ecosystem Observation Station,Chinese Academy of Sciences, ;;;;Xainza Alpine Steppe and Wetland Ecosystem Observation Station,Chinese Academy of Sciences, Nanchong;;Chengdu;;Shenzha, Sichuan;;;;Tibet 637009;;610041;;853199. Wang Xiaodan, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences;;Xainza Alpine Steppe and Wetland Ecosystem Observation Station,Chinese Academy of Sciences, ;;Xainza Alpine Steppe and Wetland Ecosystem Observation Station,Chinese Academy of Sciences, Chengdu;;Shenzha, ;;Tibet 610041;;853199. Hong Jiangtao, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences;;Xainza Alpine Steppe and Wetland Ecosystem Observation Station,Chinese Academy of Sciences, ;;Xainza Alpine Steppe and Wetland Ecosystem Observation Station,Chinese Academy of Sciences, Chengdu;;Shenzha, ;;Tibet 610041;;853199. Zhang Qingsong, School of Geographical Sciences,China West Normal University, Nanchong, Sichuan 637009, China. Z6 杜子银, 西华师范大学地理科学学院;;中国科学院、水利部成都山地灾害与环境研究所;;中国科学院申扎高寒草原与湿地生态系统观测试验站, ;;;;中国科学院申扎高寒草原与湿地生态系统观测试验站, 南充;;成都;;申扎, 四川;;;;西藏 637009;;610041;;853199, 中国. 王小丹, 中国科学院、水利部成都山地灾害与环境研究所;;中国科学院申扎高寒草原与湿地生态系统观测试验站, ;;中国科学院申扎高寒草原与湿地生态系统观测试验站, 成都;;申扎, ;;西藏 610041;;853199. 洪江涛, 中国科学院、水利部成都山地灾害与环境研究所;;中国科学院申扎高寒草原与湿地生态系统观测试验站, ;;中国科学院申扎高寒草原与湿地生态系统观测试验站, 成都;;申扎, ;;西藏 610041;;853199. 张青松, 西华师范大学地理科学学院, 南充, 四川 637009, 中国. EM duzy@cwnu.edu.cn; hongjiangtao@imde.ac.cn Z7 duzy@cwnu.edu.cn; hongjiangtao@imde.ac.cn Z8 0 Z9 0 UT CSCD:7203326 DA 2023-03-23 ER PT J AU Yang Chong Wang Chunyan Wang Wenying Mao Xufeng Zhou Huakun Chen Zhe Suo Nanji Jin Lei Ma Huaqing Z2 杨冲 王春燕 王文颖 毛旭峰 周华坤 陈哲 索南吉 靳磊 马华清 TI Soil Nutrient Characteristics and Quality Evaluation of Alpine Grassland in the Source Area of the Yellow River on the Qinghai Tibet Plateau Z1 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价 Z3 生态环境学报 SO Ecology and Environmental Sciences VL 31 IS 5 BP 896 EP 908 AR 1674-5906(2022)31:5<896:QZGYHH>2.0.TX;2-# PY 2022 DT Article AB Taking the alpine meadow, alpine steppe and swamp meadow ecosystems in the source area of the Yellow River on Qinghai-Tibet Plateau as the research objects, this paper tested the impacts of grassland degradation and artificial vegetation restoration on soil nutrient characteristics. The soil quality was evaluated to provide a theoretical basis for the management and utilization of alpine grassland in the source area of the Yellow River. Some interesting and innovative findings were obtained. (i) Vegetation degradation in alpine steppe significantly reduced soil water content, while no obvious effect on soil carbon content, nitrogen content, phosphorus content, potassium content, bulk density and pH were observed. The degradation of alpine meadow vegetation significantly decreased soil total carbon, total organic carbon, total nitrogen, soluble organic nitrogen, ammonium nitrogen, total phosphorus, available phosphorus and soil water content, but significantly increased soil nitrate nitrogen, bulk density and pH. Vegetation degradation in alpine meadow had no significant effect on soil total potassium and available potassium. (ii) Vegetation restoration in degraded alpine steppe can significantly increase soil total organic carbon, total nitrogen, soluble organic nitrogen, ammonium nitrogen, nitrate nitrogen, available potassium and soil water content. Vegetation restoration in degraded alpine steppe had no significant effect on soil bulk density, pH, total carbon, total phosphorus, total potassium and available phosphorus. After vegetation restoration of degraded alpine meadow, the contents of soil water content, soluble organic nitrogen, ammonium nitrogen, total potassium and available potassium could be significantly increased. Vegetation restoration on degraded alpine meadow showed little no effect on soil total carbon, organic carbon, total nitrogen, nitrate nitrogen, total phosphorus and available phosphorus. (iii) In 0-20 cm depth soil layer, the comprehensive evaluation results of soil quality are as follows: swamp meadow> alpine meadow > artificial grassland (5 years old)>artificial grassland (15 years old)>degraded alpine meadow>artificial grassland (4 years old)>alpine grassland>degraded alpine grassland. In conclusion, soil nutrient showed different characteristics among different types of alpine grassland ecosystems. The degradation of alpine meadow has a significant impact on soil nutritional characteristics. Vegetation restoration improved the soil quality of degraded grassland. Z4 以黄河源区高寒草甸、高寒草原和沼泽草甸生态系统为研究对象,分析草地退化和人工植被恢复措施对土壤营养特征的影响程度,评价黄河源区高寒草地土壤质量的 基本状况,以期为黄河源区高寒草地的管理和利用提供理论依据。结果表明, (1)高寒草原植被退化显著降低了土壤含水量(P<0.05),对土壤碳氮磷钾含量、土壤容重和土壤pH值均没有产生显著影响(P>0.05);高寒草甸 植被退化显著降低了土壤全碳、有机碳、全氮、可溶性有机氮、铵态氮、全磷、速效磷含量和土壤含水量(P<0.05),显著增加了容重、pH和土壤硝态氮含 量(P<0.05),对土壤全钾和速效钾没有显著影响(P>0.05)。 (2)在退化的高寒草原上恢复植被,可显著增加土壤有机碳、全氮、可溶性有机氮、铵态氮、硝态氮、速效钾含量和土壤含水量(P<0.05),对土壤容重、 pH、全碳、全磷、全钾和速效磷含量没有产生显著影响(P>0.05);在退化高寒草甸上恢复植被,可显著提升土壤含水量、可溶性有机氮、铵态氮、全钾和 速效钾含量(P<0.05),对土壤全碳、有机碳、全氮、硝态氮、全磷、速效磷没有显著影响(P>0.05)。(3)在0-20 cm土层,土壤质量综合评价结果为:沼泽草甸>高寒草甸>人工草地(5 a)>人工草地(15 a)>退化高寒草甸>人工草地(4 a)>高寒草原>退化高寒草原。综上,不同类型高寒草地生态系统土壤营养特征差异极大,高寒草甸的退化对土壤营养特征影响显著,植被恢复措施提高了退化草 地的土壤质量。 C1 Yang Chong, College of Geography Science, Qinghai Normal University;;College of Life Science, Qinghai Normal University, ;;, Xining;;Xining, ;; 810008;;810008. Wang Chunyan, Editorial Department of Journal of Lanzhou University (Medical Sciences), Lanzhou, Gansu 730000, China. Wang Wenying, College of Geography Science, Qinghai Normal University, Xining, Qinghai 810008, China. Chen Zhe, College of Geography Science, Qinghai Normal University, Xining, Qinghai 810008, China. Suo Nanji, College of Geography Science, Qinghai Normal University, Xining, Qinghai 810008, China. Jin Lei, College of Geography Science, Qinghai Normal University, Xining, Qinghai 810008, China. Ma Huaqing, College of Geography Science, Qinghai Normal University, Xining, Qinghai 810008, China. Mao Xufeng, College of Life Science, Qinghai Normal University, Xining, Qinghai 810008, China. Zhou Huakun, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 杨冲, 青海师范大学地理科学学院;;青海师范大学生命科学学院, ;;, 西宁;;西宁, 青海;;青海 810008;;810008, 中国. 王春燕, 兰州大学学报(医学版)编辑部, 兰州, 甘肃 730000, 中国. 王文颖, 青海师范大学地理科学学院, 西宁, 青海 810008, 中国. 陈哲, 青海师范大学地理科学学院, 西宁, 青海 810008, 中国. 索南吉, 青海师范大学地理科学学院, 西宁, 青海 810008, 中国. 靳磊, 青海师范大学地理科学学院, 西宁, 青海 810008, 中国. 马华清, 青海师范大学地理科学学院, 西宁, 青海 810008, 中国. 毛旭峰, 青海师范大学生命科学学院, 西宁, 青海 810008, 中国. 周华坤, 中国科学院西北高原生物研究所, 旱区恢复生态学青海省级重点实验室, 西宁, 青海 810008, 中国. EM vvvonion@163.com; wangwy0106@163.com Z7 vvvonion@163.com; wangwy0106@163.com Z8 0 Z9 0 UT CSCD:7248899 DA 2023-03-23 ER PT J AU Li Youmo Wu Duo Yuan Zijie Chen Lin Chen Xuemei Zhou Aifeng Z2 李友谟 吴铎 袁子杰 陈林 陈雪梅 周爱锋 TI HOLOCENE SUMMER MONSOON VARIATION AND ENVIRONMENTAL RESPONSE IN THE DRAINAGE BASIN OF LAKE BANDE IN THE INNER TIBETAN PLATEAU Z1 青藏高原腹地班德湖记录的全新世夏季风变化与流域环境响应 Z3 第四纪研究 SO Quaternary Sciences VL 42 IS 5 BP 1328 EP 1348 AR 1001-7410(2022)42:5<1328:QZGYFD>2.0.TX;2-P PY 2022 DT Article AB As theThird Poleof the Earth,the Tibetan Plateau is sensitive to global climate change. Interactions between the Asian monsoon and the Westerlies systems control climatic and environmental changes in the Tibetan Plateau,resulting in an out-of-phase pattern of precipitation variation between the northern and the southern Tibetan Plateau on decadal to centurial time scales during the past several millenniums. However,it is not clear whether such an out-of-phase pattern of precipitation existed on a millennial time scale during the Holocene due to the lack of high resolution precipitation records with robust chronology from the northern Tibetan Plateau. In addition,it remains unknown how the ecosystem of a lake and the natural environment in its drainage basin response to climate change. In the present study,we focus on a 115-cm-long sedimentary core(BDH19A) collected from Lake Bande(34.239°N,92.099°E; 4583 m a.s.l),an open lake in the upper reaches of Tuotuo River in the inner Tibetan Plateau where is located in an arid and semi-arid continental climate and surrounded by desert, alpine grassland and meadow. The reliable age model of the core was established by using AMS 14C dates from plant remains. Based on multiple proxies including grain size,XRF-based elements,minerals,carbon and oxygen isotopes of authigenic carbonate,organic matter content and n-alkanes from lacustrine sediments,the Holocene climate variations and their influences on the environment in the inner Tibetan Plateau during the past 10 ka(1 ka = 1000 cal. a B. P.) were reconstructed. The results show that the oxygen isotope of authigenic carbonate,representing the summer monsoon precipitation,ranges from-10.70 to-5.80,with an average of-9.03,and has been continuously positive since the Early Holocene,indicating that the precipitation gradually decreased during the Holocene. The percentage of sand in sediments increased rapidly from about 30% during the Early Holocene to over 60% during the Late Holocene. In addition,the values of principal component 1,which represents the terrigenous mineral elements decreases periodically during the Holocene. The organic matter content ranges from 2.27% to 7.08%(with an average of 4.18%) and the total concentration of n-alkanes ranges from 2.76 mug/g to 21.83 mug/g (with an average of 6.45 mug/g). The carbonate content varies from 21.59% to 57.73% (with an average of 36.70%),and its carbon isotope values change between 3.21 to 7.50(with an average of 5.45). In summary,the terrestrial mineral elements content,carbonate content,carbon isotope of authigenic carbonate, organic matter content and total n-alkanes concentration decreased correspondingly during the Holocene. We also found that the inner Tibetan Plateau has experienced a gradually decreasing summer monsoon precipitation during the Holocene,which was triggered by the Northern Hemisphere summer insolation; the long-term decreasing precipitation has led to a continuous decline of productivity in the basin and the lake,and led to the overall increase of regional aeolian activities. On millennium timescales,summer monsoon precipitation was enhanced during 10.0 ~ 8.7 ka,resulting in decreased runoff erosion and weakened aeolian activities with a possible higher vegetation coverage. During the periods of 7.7~5.2 ka and 4~2 ka,the summer monsoon precipitation maintained at a high level and the runoff increased,promoting increased productivity and the inhibited aeolian activities. On the contrary,the intensification of aeolian activities were the response of the rapid decline of Asian summer monsoon during intervals of 8.7 ~ 7.7 ka,5.2 ~ 4.0 ka and 2 ~ 0 ka. We suggest that the modern aeolian environment in the drainage basin of Lake Bande is the continuation and intensification of the arid and aeolian environment during the past 2 ka. Z4 青藏高原作为地球第三极,对全球气候变化响应敏感。在季风与西风协同作用下,青藏高原在过去数千年中的年代际、百年时间尺度上存在南北相反的气候变化格局 ;但受限于青藏高原腹地缺少年代可靠的全新世高分辨率气候记录,千年时间尺度高原南北气候变化模态异同仍不明晰,更无从得知高原腹地湖泊及其流域的生态环 境对气候变化的响应过程。本研究聚焦高原腹地沱沱河上游的开放湖泊班德湖(34.239°N,92.099°E; 4583 m a.s.l),基于长115 cm的BDH19A沉积物岩芯的植物残体AMS 14C年代建立了可靠的年代框架,通过粒度、元素、矿物、自生碳酸盐及其碳、氧同位素、有机质含量和正构烷烃等多指标,重建了过去10 ka以来青藏高原中部的气候变化与生态环境响应过程。结果显示,青藏高原腹地在全新世以来表现出北半球夏季太阳辐射控制下夏季风降水逐渐减少的季风模式, 导致流域和湖泊生产力持续降低,区域风沙活动整体增强。在千年时间尺度上, 10~ 8.7 ka高原中部夏季风降水量最大,加之可能由于植物覆盖度较高,流域径流侵蚀减弱,风沙活动减少; 7.7~ 5.2 ka和4~ 2 ka夏季风降水维持高值,入湖径流增加,促进流域和湖泊生物生产力提高,风沙活动受到抑制;相反,8.7~ 7.7 ka、5.2~ 4 ka和2 ka以来高原中部风沙活动的加剧是对亚洲夏季风快速衰退的响应,当前班德湖流域风沙环境是过去2 ka干旱风沙环境的延续与加剧。 C1 Li Youmo, College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory of Western China's Environmental Systems,Ministry of Education, Lanzhou, Gansu 730000, China. Wu Duo, College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory of Western China's Environmental Systems,Ministry of Education, Lanzhou, Gansu 730000, China. Yuan Zijie, College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory of Western China's Environmental Systems,Ministry of Education, Lanzhou, Gansu 730000, China. Chen Lin, College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory of Western China's Environmental Systems,Ministry of Education, Lanzhou, Gansu 730000, China. Zhou Aifeng, College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory of Western China's Environmental Systems,Ministry of Education, Lanzhou, Gansu 730000, China. Chen Xuemei, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China. Z6 李友谟, 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 吴铎, 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 袁子杰, 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 陈林, 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 周爱锋, 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 陈雪梅, 中国科学院西北生态环境资源研究院, 兰州, 甘肃 730000, 中国. EM liym2020@lzu.edu.cn; dwu@lzu.edu.cn Z7 liym2020@lzu.edu.cn; dwu@lzu.edu.cn Z8 0 Z9 1 UT CSCD:7294074 DA 2023-03-23 ER PT J AU Li Xueping Xu Shiyang Li Minquan Wang Jianxi Guo Zhijie Qi Yonghong Jing Zhuoqiong Li Jianjun Xie Zhijun Z2 李雪萍 许世洋 李敏权 王建喜 郭致杰 漆永红 荆卓琼 李建军 谢志军 TI Evolution regularity of degraded alpine meadow vegetation and soil characteristics at different degrees in Gannan Tibetan Autonomous Prefecture Z1 甘南州不同退化程度高寒草甸植被及土壤特性的演化规律 Z3 生态学报 SO Acta Ecologica Sinica VL 42 IS 18 BP 7541 EP 7552 AR 1000-0933(2022)42:18<7541:GNZBTT>2.0.TX;2-W PY 2022 DT Article AB The alpine meadow on Qinghai Tibet Plateau is an important component of alpine meadow ecosystem and grassland agroecosystem in the world,in which Gannan Prefecture alpine meadow plays a critical role in biodiversity conservation,ecosystems sustainable development,regulating the global climate and the carbon cycle process.But the degradation trend of it now is becoming severer and severer,18.08% of its total grassland acreage is in danger and continuous deteriorate.As a result,retrograde succession occurs and brings about a serious threat to the world ecological security,while there are few studies about the evolution process,especially in the synthesis of multi-ecological factors,and few refer to the managing role of microbiome.Furthermore,amount researches showed the complexes of vegetation,soil and microorganism is critical to study the evolution regular of the degraded alpine meadow.Therefore,there were 3 aspects for the investigation and analysis according to the principle,and all samples were collected from the alpine meadow with different degradation degrees,light,moderate and severe degrees,in Luqu County,Xiahe County and Hezuo City respectively.The vegetation characteristics were analyzed,and the soil samples were collected for determining soil physiochemical properties,enzyme activity and microbial quantity.The result showed that with the deepening of degradation,the vegetation height,coverage,grass yield,and diversity indexes decreased,while the poisonous weeds such as Cyperaceae,Rosaceae and Ranunculaceae gradually replaced the dominant position of high-quality forages of Gramineae,and the grass yield of severely degraded grassland decreased almost 2000 kg/hm~2 by comparing with the lightly degraded grassland,which signify the alpine meadow weakening feasibility for grazing.The physicochemical properties of soil changed greatly,the dominant components of soil nutrients and soil enzymes served for the circulation of matter and flow of energy in the system,as well as the particles related to the sub-composition of soil structure changed in different ways.The soil total phosphorus,total potassium,porosity and silt generally decreased,while soil pH value,total salt,bulk density and clay showed an opposite direction.The soil total phosphorus and total potassium content decreased by 0.67 g/kg,0.62 g/kg,respectively,when the degradation degree from light to severe.For the soil enzyme activities,soil urease activity,sucrase activity,alkaline phosphatase activity dropped,the decrease of sucrase activity from light to severe degradation degree was the largest,up to 0.45 mg/g/24h.The changing ways of soil physiochemical properties,enzyme activity could be concluded that the soil degradation was becoming more and more serious.Soil microorganisms were the most diverse community in the biosphere and the transition of their existence state was an indispensable driving force of biogeochemical cycle.The number of bacteria in soil microbial composition was the largest but its amount dropped significantly.The actinomycetes were also with the same trend along the degradation process,however,the number of fungi increased continuously.The number of bacteria,actinomycetes and fungi decreased by 5 * 10~6 cfu/g,5 * 10~5 cfu/g and 2 * 10~3 cfu/g,respectively,with the degradation trend from light to severe degree.Correlation analysis showed that each factor had a strong correlation with the degradation degree,and the correlation coefficient was above 0.92,most of which were 0.99 or even 1.Generally,with the deepening of degradation,the dominant grassland species disappeared,vegetation height,coverage,grass yield and diversity decreased,soil nutrients and activity decreased,and showed a trend of salinization and desertification.This study provides a theoretical support for the formulation of the prediction,management and restoration schemes of the alpine meadow ecosystem degradation in Gannan. Z4 为明确甘南州退化高寒草甸植被及土壤特性的演化规律,本研究以甘南藏族自治州碌曲县、夏河县和合作市不同退化程度高寒草甸为研究对象,调查其植被特征并采 集土壤样品,测定土壤理化性质、酶活性及微生物数量。结果表明,随退化程度加深,莎草科、蔷薇科和毛茛科等科属毒杂草逐渐代替禾本科优质牧草优势位,植被 高度、盖度、草产量、多样性指数降低,重度退化草地较轻度退化草地草产量降低了约2000kg/hm~2;土壤理化性质全氮、全磷、全钾、孔隙度、粉粒含 量下降,pH值、全盐、容重及黏粒含量升高,由轻度至重度退化草地土壤全磷含量下降了0.67g/kg,土壤全钾含量下降0.62g/kg;土壤脲酶活性 、蔗糖酶活性、碱性磷酸酶活性降低,蔗糖酶活性由轻度至重度退化草地降幅最大,可达0.45mg/g/24h;土壤细菌和放线菌数量降低,真菌数量增加, 重度退化草地较轻度而言细菌数量降低约5*10~6cfu/g,放线菌降低约5*10~5cfu/g,真菌增加约2*10~3cfu/g;相关性分析发现 各因子与退化程度的相关性性强,相关系数在0.92以上,多为0.99甚至1。因此,甘南州高寒草甸随退化程度加深,总体呈现出草地优势种消失,植被高度 、盖度、草产量、多样性下降,土壤养分及活性降低,并呈现向盐碱化、荒漠化演替的趋势。本研究为甘南州高寒草甸生态系统退化预测、管理、恢复等方案的制定 提供理论依据。 C1 Li Xueping, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Li Minquan, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Guo Zhijie, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Qi Yonghong, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Jing Zhuoqiong, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Li Jianjun, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Xu Shiyang, College of Prataculture,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Wang Jianxi, College of Prataculture,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Xie Zhijun, Institute of Pasture and Green Agriculture,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Z6 李雪萍, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 李敏权, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 郭致杰, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 漆永红, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 荆卓琼, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 李建军, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 许世洋, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 王建喜, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 谢志军, 甘肃省农业科学院畜草与绿色农业研究所, 兰州, 甘肃 730070, 中国. EM 109760028@qq.com Z7 109760028@qq.com Z8 0 Z9 0 UT CSCD:7313135 DA 2023-03-23 ER PT J AU Wang Ruijing Feng Qisheng Jin Zheren Liu Jie Zhao Yuting Ge Jing Liang Tiangang Z2 王瑞泾 冯琦胜 金哲人 刘洁 赵玉婷 葛静 梁天刚 TI A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau Z1 青藏高原退化草地的恢复潜势研究 Z3 草业学报 SO Acta Prataculturae Sinica VL 31 IS 6 BP 11 EP 22 AR 1004-5759(2022)31:6<11:QZGYTH>2.0.TX;2-C PY 2022 DT Article AB In recent years,the alpine grassland ecosystem on the Qinghai-Tibetan Plateau has shown an overall improvement,but some areas of grassland are still degenerating to various extents. It is very important to evaluate the grassland status and restoration potential in the Qinghai-Tibetan plateau to support policy-making relating to grassland restoration. Based on meteorological data and MODIS remote sensing images from 2001 to 2019,the Carnegie-Ames-Stanford-Approach(CASA)model and the Thornthwaite Memorial model were used to estimate values for the actual net primary productivity(NPP)and potential net primary productivity(PNPP)across the Qinghai-Tibetan Plateau. The difference between them was used to evaluate the potential benefit of grassland restoration. The main conclusions were as follows:1)The spatial distribution of NPP over the Qinghai-Tibetan Plateau from 2001 to 2019 was a gradient from high in the southeast to low in the northwest. On the Qinghai-Tibetan Plateau,41.0% of the grassland areas were being continuously restored,12.7% of the grassland areas were exhibiting a stable status,and only 3.5% were exhibiting ongoing degradation. Overall,the Plateau grassland is in a state of sustainable restoration. 2)Similarly,the spatial distribution pattern of maximum potential net primary productivity(PNPP_m)in the Qinghai-Tibet Plateau from 2001 to 2019 was significantly higher in the southeast and southwest,and lower in the north. The PNPP_m of individual grassland types was typically about 1000 g C·m~(-2). 3)From 2001 to 2019,the grassland recovery potential of the Qinghai-Tibet Plateau was higher in the southwest and southeast,and lower in the north. It was found that most grasslands in Shigatse,southern Ali,Aba Tibetan and Qiang Autonomous Prefecture and Gannan Tibetan Autonomous Prefecture regions have high restoration potential, so that the prospect of grassland restoration in these areas is better. The results of this study provide scientific and theoretical support for policy development relating to grassland restoration on the Qinghai-Tibet Plateau,and provide important data to guide grassland protection and ecosystem restoration on the Qinghai-Tibetan Plateau. Z4 近年来青藏高原高寒草地生态系统整体上呈现改善的状态,但仍有部分草地存在不同程度的退化,对青藏高原草地现状及恢复潜势进行评估对于青藏高原退化草地恢 复政策的制定具有重要意义。基于2001-2019年气象数据与MODIS遥感影像,选用CASA模型和Thornthwaite Memorial模型分别计算了青藏高原现实净初级生产力(actual net primary productivity,NPP)和潜在净初级生产力(potential net primary productivity,PNPP),并以其差值评估草地恢复潜势,主要结论如下:1)2001-2019年青藏高原NPP呈现东南部高,西北部低的分 布特征;青藏高原草地持续恢复区域占40.98%,持续稳定区域占12.72%,而持续退化区域仅占3.47%,青藏高原草地整体以可持续的恢复状态为主 。2)2001-2019年青藏高原潜在净初级生产力最大值(maximum potential net primary productivity, PNPP_m)呈现明显东南与西南部高,北部偏低的空间分布格局。各草地类型PNPP_m多在1000 g C·m~(-2)左右。3)2001-2019年青藏高原草地恢复潜势呈现西南与东南部较高,北部偏低的分布情况。由此可见日喀则地区、阿里南部地区、阿 坝藏族羌族自治州以及甘南藏族自治州等地的草地具有较高的恢复价值,在这些地区开展草地恢复的前景更好。研究结果为青藏高原退化草地恢复政策的制定提供科 学与理论支撑,对指导青藏高原草地保护与生态系统恢复具有重要意义。 C1 Wang Ruijing, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Feng Qisheng, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Jin Zheren, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Liu Jie, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Zhao Yuting, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Ge Jing, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Liang Tiangang, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Z6 王瑞泾, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 冯琦胜, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 金哲人, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 刘洁, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 赵玉婷, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 葛静, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 梁天刚, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. EM wangrj20@lzu.edu.cn; fengqsh@lzu.edu.cn Z7 wangrj20@lzu.edu.cn; fengqsh@lzu.edu.cn Z8 0 Z9 0 UT CSCD:7219895 DA 2023-03-23 ER PT J AU Wang Yonghong Tian Liming Ai Yi Chen Shiyong Mipam Tserang Donko Z2 王永宏 田黎明 艾鷖 陈仕勇 泽让东科 TI Effects of short-term yak grazing intensity on soil bacterial communities in an alpine meadow of the Northwest Sichuan Plateau Z1 短期牦牛放牧强度对川西北高原高寒草甸土壤细菌群落的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 42 IS 4 BP 1549 EP 1559 AR 1000-0933(2022)42:4<1549:DQMNFM>2.0.TX;2-4 PY 2022 DT Article AB As an important part of China,the Qinghai-Tibetan Plateau plays a vital role in the balance of global ecosystems.Climate change and human activities have led to grassland degradation on the Qinghai-Tibetan Plateau,especially overgrazing-induced grassland degradation.However,as one of the most dominated livestock on the Qinghai-Tibetan Plateau,the effects of different yak grazing intensities on soil physicochemical properties and microbial communities and structures still remain unclear.To address yak grazing effect on soil bacterial communities,we conducted a yak grazing intensity experiment in a typical alpine meadow of the Northwest Sichuan Plateau.According to local investigations and previous experiment,we set four grazing intensities,including control group(no grazing),light grazing(1 yak /hm~2), moderate grazing(2 yak /hm~2),and heavy grazing(3 yak /hm~2).After two years of grazing experiments,we found that heavy grazing significantly increased soil available phosphorus and short term grazing reduced the bulk density in the 0- 10cm soils,while other soil properties showed no responses to different grazing intensities.The possible reason may be that the effect of grazing on soil physicochemical properties was long-term,and the short-term grazing intensity of yak was difficult to change soil properties.The alpha diversity of soil bacteria increased firstly and then decreased with the increasing grazing intensity,but the changes were not statistically significant due to the short duration of grazing experiment.On the one hand,yak grazing could provide available nutrients for the growth of bacteria through dung and urine.On the other hand,high grazing intensity changed the root distribution and root exudates of plants,and increased ultraviolet radiation reduced the diversity of bacteria.In terms of the dominant bacteria,the Chloroflexi was significantly higher under no-grazing than that under heavy grazing,which has photosynthetic autotrophic bacteria.In contrast,other phylum had no significant differences among grazing intensities.With the increase of grazing intensity,the relative abundance of Actinobacteri and Firmicutes increased firstly and then decreased,while Acidobacteria and Gemmatimonadetes showed reverse trends.The beta diversity of soil bacteria showed that grazing intensity had no significant effect on bacterial community structure.Soil total nitrogen is positively correlated with Nitrospira.There was a significantly negative correlation between soil total phosphorus and Acidobacteria,but soil available phosphorus was also significantly positive related to Acidobacteria,indicating that grazing intensity indirectly affect soil bacteria may be through changing soil properties.This study provides basic data to grazing managements and a theoretical basis to the restoration of degraded grasslands. Z4 气候变化和人类干扰使青藏高原的草地退化日趋严重,特别是过度放牧导致的草地退化现象尤为突出;然而,牦牛作为青藏高原分布广且数量多的重要家畜,其不同 放牧强度对高寒草甸土壤理化性质与细菌群落的影响仍不明晰。在川西北高原典型高寒草甸开展牦牛放牧强度试验,设置了对照组(禁牧)、轻度放牧(1头牦牛/ hm~2)、中度放牧(2头牦牛/hm~2)和重度放牧(3头牦牛/hm~2)4个放牧强度,每个强度设置3个重复。两年放牧实验后的结果表明:短期的重 度放牧导致土壤有效磷显著增加,而其它土壤性质在各放牧强度变化不显著;随着放牧强度的增加,土壤细菌alpha多样性呈先增加后减少的趋势,其主要原因 是牦牛活动为细菌的生长繁殖提供了有利的营养条件,但由于放牧的持续时间较短,变化不显著;就优势菌而言,土壤绿弯菌门中存在光合自养细菌,在重度放牧下 显著高于对照组,其它各菌门在不同放牧强度下无显著差异;土壤氮与硝化螺旋菌门呈正相关,速效磷与酸杆菌门也呈显著正相关,均说明放牧强度对土壤细菌类群 的影响是通过土壤性质间接实现的。本实验通过研究不同牦牛放牧强度下的土壤细菌群落结构,为放牧策略的制定提供了基础数据支持,为草地退化的防治提供理论 依据。 C1 Wang Yonghong, Institute of Qinghai-Tibetan Plateau,Southwest Minzu University, Chengdu, Sichuan 610041, China. Ai Yi, Institute of Qinghai-Tibetan Plateau,Southwest Minzu University, Chengdu, Sichuan 610041, China. Mipam Tserang Donko, Institute of Qinghai-Tibetan Plateau,Southwest Minzu University, Chengdu, Sichuan 610041, China. Tian Liming, College of Life Sciences,Sichuan University, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Chengdu, Sichuan 610065, China. Chen Shiyong, College of Animal and Veterinary Sciences,Southwest Minzu University, Chengdu, Sichuan 610041, China. Z6 王永宏, 西南民族大学青藏高原研究院, 成都, 四川 610041, 中国. 艾鷖, 西南民族大学青藏高原研究院, 成都, 四川 610041, 中国. 泽让东科, 西南民族大学青藏高原研究院, 成都, 四川 610041, 中国. 田黎明, 四川大学生命科学学院, 成都, 四川 610065, 中国. 陈仕勇, 西南民族大学畜牧兽医学院, 成都, 四川 610041, 中国. EM tdmipam@163.com Z7 tdmipam@163.com Z8 1 Z9 3 UT CSCD:7164072 DA 2023-03-23 ER PT J AU Wang Suizi Zhang Yaxian Fan Jiangwen Zhang Haiyan Z2 王穗子 张雅娴 樊江文 张海燕 TI The study of diagnosis of alpine grassland condition in the Sanjiangyuan Nature Reserve Z1 三江源自然保护区高寒草地草情诊断研究 Z3 生态科学 SO Ecologic Science VL 41 IS 1 BP 100 EP 109 AR 1008-8873(2022)41:1<100:SJYZRB>2.0.TX;2-N PY 2022 DT Article AB The implementation of ecological protection and construction project has a positive impact on the ecological environment. Alpine grasslands are the main ecosystem type in the Three-River Headwaters Region, China. Accurately monitoring of the condition of grassland is important in guiding the ecological engineering construction and maintaining the balance of grassland ecosystem. Therefore, it is necessary to scientific evaluate the grassland condition. Based on the remote sensing and field sampling data, this paper firstly calculated the average grassland coverage and yield of 5 years before the implementation of the Eco-Project as the reference value of grassland condition, and then based on the weighted sum of grassland coverage and yield changes, the grassland condition index(GCI) was calculated to diagnose the growth status of grassland vegetation after the implementation of the Eco-Project. The results showed that the annual average GCI was 3.47 in the Three-River Headwater Region since the implementation of the Eco-Project. It had a good grassland condition, showing a pattern of getting better from southwest to northeast. The proportion of area with excellent, better and medium grass conditions was significantly higher than that with worse grass condition(P<0.05). The fluctuation of the GCI during 2005-2016 was relatively small, with a variation coefficient of 12.47%. 80.32% of the grassland showed no significant change(P>0.05), 14.61% showed a significant decline trend, and 5.07% showed a significant increase trend(P<0.05). The grassland in the Sanjiangyuan National Park was in good condition. The annual average GCI from high to low was the Yellow River Source Park(3.78), Yangtze River Source Park(3.61), and Lancang River Source Park(3.15). There was no significant change in the GCI of the grasslands above 2/3 in the three parks. The area with significant change in the GCI of the Yellow River Source Park had the highest proportion(17.74%), and the Lancang River Source Park had the lowest(13.49%). The highest percentage of GCI significantly improved area was the Yangtze River Source Park(6.46%), and the lowest was the Lancang River Source Park(3.46%). Since the implementation of the Eco-Protection, grassland has shown good conditions, but some areas have shown a downward trend. We should continue to strengthen the long-term monitoring of grassland condition in Sanjiangyuan Nature Reserve, conduct reasonable grassland condition diagnosis, and increase the ecological protection of areas with poor grass conditions. Z4 三江源生态保护和建设工程的实施对生态环境产生了积极的影响,草地是该地区最主要的生态系统类型,准确的草情诊断对该地区的生态稳定和畜牧业发展具重要意 义,可更好的指导三江源区生态环境的保护和发展。基于长时间序列的遥感观测资料和野外采样数据,通过构建草情诊断基准值,结合草地覆盖度和产草量的变化率 ,根据加权求和计算出草情指数,诊断分析三江源生态工程实施后草地植被生长变化状况。结果表明:自2005年工程实施后,三江源自然保护区多年平均草情指 数是3.47,草情状况较好,空间上呈现西南向东北方向变好的格局。草情状况极好、较好和中等的草地面积占比均显著高于草情极差和较差的草地面积占比。1 2年间草情指数变异系数为12.47%,草情年间变化呈现轻微波动。其中80.32%的草地草情状况无显著变化(P >0.05), 14.61%的草情状况下降趋势显著, 5.07%的草地草情状况上升趋势显著(P<0.05)。三江源国家公园的各园区的年均草情指数为黄河源园区(3.78)>长江源园区(3.61)>澜沧 江源园区(3.15),草情状况较好。三个园区2/3以上的草地的草情无显著变化趋势;黄河源园区变化趋势显著变差的面积占比最高(17.74%),澜沧 江源园区最低(13.49%);变化趋势显著变好的面积占比最高的为长江源园区(6.46%),最低的为澜沧江源园区(3.46%)。自生态保护工程实施 后,草情呈现较好状况,但部分区域呈现下降的趋势,应继续加强三江源自然保护区草情状况的长期监测,进行合理的草情诊断,加大草情状况较差区域的生态保护 。 C1 Wang Suizi, Institute of Geographical Sciences and Natural Resources Research, CAS, Key Laboratory of Land Surface Pattern and Simulation, Beijing 100101, China. Fan Jiangwen, Institute of Geographical Sciences and Natural Resources Research, CAS, Key Laboratory of Land Surface Pattern and Simulation, Beijing 100101, China. Zhang Haiyan, Institute of Geographical Sciences and Natural Resources Research, CAS, Key Laboratory of Land Surface Pattern and Simulation, Beijing 100101, China. Zhang Yaxian, Institute of Geographical Sciences and Natural Resources Research, CAS;;Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Key Laboratory of Land Surface Pattern and Simulation;;, ;;Chengdu, Beijing;; 100101;;610041. Z6 王穗子, 中国科学院地理科学与资源研究所, 陆地表层格局与模拟中国科学院重点实验室, 北京 100101, 中国. 樊江文, 中国科学院地理科学与资源研究所, 陆地表层格局与模拟中国科学院重点实验室, 北京 100101, 中国. 张海燕, 中国科学院地理科学与资源研究所, 陆地表层格局与模拟中国科学院重点实验室, 北京 100101, 中国. 张雅娴, 中国科学院地理科学与资源研究所;;西南民族大学青藏高原研究院, 陆地表层格局与模拟中国科学院重点实验室;;, ;;成都, 北京;; 100101;;610041, 中国. EM wangsz.16b@igsnrr.ac.cn; fanjw@igsnrr.ac.cn Z7 wangsz.16b@igsnrr.ac.cn; fanjw@igsnrr.ac.cn Z8 0 Z9 1 UT CSCD:7188854 DA 2023-03-23 ER PT J AU Wang Yingcheng Yao Shiting Jin Xin Yu Wenzhen Lu Guangxin Wang Junbang Z2 王英成 姚世庭 金鑫 俞文政 芦光新 王军邦 TI Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region Z1 三江源区高寒退化草甸土壤细菌多样性的对比研究 Z3 生态环境学报 SO Ecology and Environmental Sciences VL 31 IS 4 BP 695 EP 703 AR 1674-5906(2022)31:4<695:SJYQGH>2.0.TX;2-J PY 2022 DT Article AB In order to explore the structure and diversity of soil bacterial communities in the undegraded meadow and degraded meadow in the Sanjiangyuan Region,we systematically analyzed the soil bacterial diversity,community composition and structure,and their interactions with environmental factors,using the nested sampling method and high throughput sequencing technology.The results showed that the alpine meadow degradation had an impact on both vegetation and soil.Alpine meadow degradation reduced the vegetation coverage and richness,increased the soil pH value,and resulted in a transition to alkaline soil,while the contents of total nitrogen,organic matter,and electrical conductivity in soil decreased significantly (P<0.05).The high-throughput sequencing identified 2 168 457 effective bacterial sequences and 76 798 OTUs.The alpha-diversity and species composition of soil bacterial community were significantly affected by grassland degradation (P<0.05).The Observed Richness,Shannon Index,and Chao 1 Index were significantly higher in the undegraded alpine meadow than those in the degraded alpine meadow.Proteobacteria,Actinobacteria,Acidobacteria,Bacteroidetes,Verruco microbia,and Thaumarchaeota were the dominant phylum.Alpine meadow degradation increased the relative abundance of Actinobacteria and Bacteroidetes,but decreased the relative abundance of Verrucomicrobia.The PCoA and Dissimilarity tests showed that Alpine meadow degradation significantly changed the soil bacterial community structure.Soil heterogeneity had a certain effect on soil bacterial community.The main environmental factors driving the soil bacterial community were soil pH,soil organic matter content,and soil total nitrogen content.Our research systematically analyzed the variation of soil bacterial diversity in degraded alpine meadows,revealed the diversity and composition of soil bacterial communities,and provided a reference for the future research related to the regulation of soil microorganisms on meadow degradation. Z4 为探究三江源区未退化高寒草甸与退化高寒草甸土壤细菌群落结构及多样性,采用巢氏取样方法和高通量测序技术,系统地对土壤细菌群落多样性、群落组成和结构 及其与环境因子间的关系进行研究分析。结果表明,草地退化对植被和土壤都产生影响,草地退化降低了植被盖度和丰富度,使得土壤pH值增加,土壤向碱性化过 渡,而土壤全氮、有机质和电导率的含量显著降低(P<0.05)。高通量测序得到优质有效细菌序列2 168 457条和71 798个OTUs。草地退化对土壤细菌群落alpha多样性和物种组成都有显著影响(P<0.05)。其中,草甸退化导致土壤细菌物种指数(Observ ed Richness)、多样性指数(Shannon Index)和chao 1指数上升;变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门 (Bacteroidetes)、疣微菌门(Verrucomicrobia)、奇古菌门(Thaumarchaeota)为主要优势菌门;草甸退化提高 了放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)的相对丰度,但却降低了疣微菌门(Verrucomicrobia )的相对丰度。通过PCoA和Dissimilarity检验的方法表明草地退化显著改变了退化草地土壤细菌群落结构。土壤异质性对土壤细菌群落具有一定 的影响,其中,驱动土壤细菌群落的主要环境因子是土壤pH、有机质含量和总氮含量。该研究分析了细菌群落多样性和组成结构,揭示了退化高寒草甸土壤细菌群 落多样性变化规律,为土壤微生物对草地退化方面的研究提供了参考。 C1 Wang Yingcheng, Qinghai University, Xining, Qinghai 810016, China. Yao Shiting, Qinghai University, Xining, Qinghai 810016, China. Jin Xin, Qinghai University, Xining, Qinghai 810016, China. Lu Guangxin, Qinghai University, Xining, Qinghai 810016, China. Yu Wenzhen, School of Geographical Sciences, Nanjing, Jiangsu 210044, China. Wang Junbang, National Ecosystem Science Data Center,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Z6 王英成, 青海大学, 西宁, 青海 810016, 中国. 姚世庭, 青海大学, 西宁, 青海 810016, 中国. 金鑫, 青海大学, 西宁, 青海 810016, 中国. 芦光新, 青海大学, 西宁, 青海 810016, 中国. 俞文政, 南京信息工程大学, 南京, 江苏 210044, 中国. 王军邦, 中国科学院地理科学与资源研究所/生态系统大数据与模拟中心, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM 1343014868@qq.com Z7 1343014868@qq.com Z8 0 Z9 0 UT CSCD:7264124 DA 2023-03-23 ER PT J AU Wang Caie Huang Mei Wang Wenyin Li Zihao Zhang Tao Ma Lin Bai Yanfu Wang Yanlong Shi Jianjun Long Ruijun Liu Yu Wang Xiaoli Ma Yushou Shang Zhanhuan Z2 王采娥 黄梅 王文银 李子好 张涛 马林 白彦福 王彦龙 施建军 龙瑞军 刘玉 王晓丽 马玉寿 尚占环 TI Variation characteristics of plant community diversity and above-ground biomass in alpine degraded slopes along altitude gradients in the headwaters region of three-river on Tibetan plateau Z1 三江源区高寒坡地退化植物群落多样性和地上生物量沿海拔梯度的变化特征 Z3 生态学报 SO Acta Ecologica Sinica VL 42 IS 9 BP 3640 EP 3655 AR 1000-0933(2022)42:9<3640:SJYQGH>2.0.TX;2-R PY 2022 DT Article AB The impact of alpine ecosystem degradation to biodiversity and aboveground biomass and the two interaction patterns along with the gradient of elevation are critical for understanding the changes in natural ecosystems that induced by global climate change and human disturbance. This research focused on the degraded meadow and shrub of hillside in the headwaters region of three-river on Tibetan plateau and aimed to investigate their relationship between plant species diversity and above-ground biomass along an elevation gradient. We observed that: (1) the vegetation coverage on the upslope of degraded sloping alpine meadows and alpine shrubs was significantly greater than that on the downslope (P<0.05). Both degraded slopes of alpine meadows and alpine shrubs exhibited a unimodal pattern of plant species diversity over elevation gradients. Furthermore, the interpretation rate of the quadratic regression equations of the Shannon-wiener index and the Simpson index against elevation gradients on alpine meadow slopes achieved more than 80% and 70%, respectively (P< 0.05). (2) The above-ground biomass of degraded sloping alpine meadows and alpine shrubs was consistent with the altitude gradient, that is, the above-ground biomass of alpine meadows and alpine shrubs increased initially then declined with the increase of altitude. Interpretation rate of the quadratic regression equation indicated that the altitude gradient could accounted for more than 85% of the above-ground biomass in degraded alpine meadows and alpine shrubs (P<0.05). (3) The association between plant species diversity and above-ground biomass exhibited a similar pattern on both alpine meadows and alpine shrubs slopes, which proved to be a linear increasing trend. The interpretation rate of the regression between plant species diversity and above-ground biomass reached more than 70% on alpine meadow slopes and more than 60% on alpine shrub slopes (P <0.05). Also, the alpine shrubs on degraded slope land had higher plant community diversity and above-ground biomass than alpine meadow plant communities. The species diversity of plants in degraded alpine, alpine meadows, and alpine shrub slopes, as well as their relation with above-ground biomass, was consistent with the pattern of changes along elevation gradients in degraded alpine mountains. These findings suggest that environmental variations induced by altitude gradients continue to have a stronger influence on plant community species diversity and above-ground biomass. This study has important reference value for understanding the formation ecological mechanism of degraded alpine meadow and shrub of hillside in the headwaters region of three-river on Tibetan plateau and putting forward effective ecological restoration measures. Z4 山地生态系统退化对生物多样性和地上生物量,以及相互关系在海拔高度梯度上的格局影响,是认识全球变化和人类干扰引起自然生态系统变化的重要内容。以青藏 高原三江源区高寒坡地退化草甸和灌丛为研究对象,探讨退化草甸、灌丛群落物种多样性与地上生物量关系及其沿海拔梯度的变化规律。结果表明:(1)坡地退化 的上坡位植被盖度显著大于下坡位(P< 0.05)。坡地退化高寒草甸和高寒灌丛,植物物种多样性沿海拔梯度变化规律一致,均呈现单峰分布格局。坡地退化高寒草甸Shannon-wiener指 数和Simpson指数二次回归方程解释度达到80%和70%以上(P<0.05)。(2)坡地退化高寒草甸和高寒灌丛的地上生物量与海拔梯度的变化规律 一致,即随海拔升高高寒坡地地上生物量呈先增加后降低的变化趋势。海拔梯度对退化高寒山地地上生物量的解释度达到85%以上(P<0.05)。(3)物种 多样性和地上生物量的关系在两个坡地上表现出一致的规律,呈线性增加的变化趋势。高寒草甸坡地回归方程解释度达到70%,高寒灌丛坡地达到60%(P<0 .05)。坡地退化高寒灌丛植物群落多样性和地上生物量高于高寒草甸植物群落。高寒坡地退化草甸和灌丛植物群落物种多样性以及其与地上生物量之间的关系沿 海拔梯度的变化规律一致,海拔梯度造成的环境差异对植物群落物种多样性和地上生物量影响仍较大。该研究对认识三江源区退化山地形成生态学机制,及提出有效 的生态恢复措施具有重要参考价值。 C1 Wang Caie, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Huang Mei, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Wang Wenyin, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Li Zihao, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Ma Lin, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Bai Yanfu, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Long Ruijun, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Shang Zhanhuan, School of Life Sciences, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Zhang Tao, School of Life Sciences, Lanzhou University;;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Grassland Agro-ecosystems;;, Lanzhou;;Lanzhou, ;; 730000;;730000. Wang Yanlong, Academy of Animal and Veterinary, Qinghai University, Xining, Qinghai 810006, China. Shi Jianjun, Academy of Animal and Veterinary, Qinghai University, Xining, Qinghai 810006, China. Wang Xiaoli, Academy of Animal and Veterinary, Qinghai University, Xining, Qinghai 810006, China. Ma Yushou, Academy of Animal and Veterinary, Qinghai University, Xining, Qinghai 810006, China. Liu Yu, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Northwest Agriculture and Forestry University, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling, Shanxi 712100, China. Z6 王采娥, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 黄梅, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 王文银, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 李子好, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 马林, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 白彦福, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 龙瑞军, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 尚占环, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 张涛, 兰州大学生命科学学院;;中国科学院西北生态环境资源研究院, 草地农业生态系统国家重点实验室;;, 兰州;;兰州, ;; 730000;;730000. 王彦龙, 青海大学畜牧兽医科学院, 西宁, 青海 810006, 中国. 施建军, 青海大学畜牧兽医科学院, 西宁, 青海 810006, 中国. 王晓丽, 青海大学畜牧兽医科学院, 西宁, 青海 810006, 中国. 马玉寿, 青海大学畜牧兽医科学院, 西宁, 青海 810006, 中国. 刘玉, 西北农林科技大学水土保持研究所,中国科学院水利部水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室, 杨凌, 712100. EM shangzhh@lzu.edu.cn Z7 shangzhh@lzu.edu.cn Z8 1 Z9 1 UT CSCD:7218358 DA 2023-03-23 ER PT J AU Luo Fanglin Zhang Fawei Wang Chunyu Zhang Guangru Li Yingnian Z2 罗方林 张法伟 王春雨 张光茹 李英年 TI Response of community characteristics and representative plant living state to grassland degradation in alpine meadow of Qinghai-Tibet Plateau Z1 青藏高原高寒草甸群落特征和代表性植物生存状态对草地退化的响应 Z3 生态学杂志 SO Chinese Journal of Ecology VL 41 IS 1 BP 18 EP 24 AR 1000-4890(2022)41:1<18:QZGYGH>2.0.TX;2-K PY 2022 DT Article AB The living state of representative plants and plant community is one of the important indicators for grassland degradation. With a gradient of non-degraded, lightly degraded, moderately degraded, heavily degraded, and extremely degraded alpine meadows in Maqin County, Guoluo Prefecture, Qinghai Province, we analyzed the responses of plant communities, aboveground traits of representative plants and vegetation living state to degradation. Species composition transitioned from Gramineae and Cyperaceae to weeds with intensified degradation. The Shannon diversity index, Simpson dominance index, and Pielou evenness index changed steadily first and then decreased. The community average height and Patrick abundance increased first and then decreased. The total coverage of plant community decreased sequentially. The values of community characteristic indicators were the lowest when communities were extremely degraded (P<0.05). Compared with the lightly degraded plots, plant height of moderately degraded plots, heavily degraded plots, and extremely degraded plots decreased by 6.8%, 36.8%, and 31.6% respectively (P<0.05). The living state index of Kobresia pygmaea gradually decreased. The living state index of Elymus nutans was the highest in moderate degradation. The living state index of Poa orinosa was the highest in light degradation. The living state index of Lancea tibetica was the highest in heavy degradation, while Ligularia virgaurea grew best in the extremely degraded plot. Our results indicated that the degradation of alpine meadows resulted in the changes of community characteristics, the decrease of biodiversity, the decline of living state and dominant position of Cyperaceae and Gramineae, as well as the gradual increase of living state and dominant position of weeds. Z4 植物群落和代表性植物的生存状态是反映草地退化程度的重要标志之一。以青海省果洛州玛沁县的未退化、轻度退化、中度退化、重度退化和极度退化的高寒草甸为 研究对象,分析了植物群落特征、代表性植物地上性状及生存状态对退化程度的响应。结果表明:群落物种组成由禾本科、莎草科过渡到杂类草, Shannon多样性指数、Simpson优势度指数、Pielou均匀度指数先平稳变化后降低,群落平均高度、Patrick丰富度均先增加后降低,群 落盖度依次降低,群落特征指标均在极度退化时最低(P<0.05);总体来看,与轻度退化样地相比,中度退化、重度退化和极度退化样地的植物株高均显著降 低,分别降低了6.8%、36.8%和31.6%(P<0.05);生存状态指数表现为小嵩草(Kobresia pygmaea)逐渐降低,山地早熟禾(Poa orinosa)和垂穗披碱草(Elymus nutans)的生存状态指数分别在轻度退化和中度退化时最高,肉果草(Lancea tibetica)和黄帚橐吾(Ligularia virgaurea)的生存状态指数分别在重度退化和极度退化样地中最大。说明高寒草甸退化导致群落特征发生变化,生物多样性降低,莎草科和禾本科植物的 生存状态以及优势地位下降,而杂类草的生存状态和优势地位逐渐上升。 C1 Luo Fanglin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Wang Chunyu, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Zhang Guangru, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Zhang Fawei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Yingnian, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 罗方林, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 王春雨, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 张光茹, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李英年, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM 501966517@qq.com; fwzhang@nwipb.cas.cn Z7 501966517@qq.com; fwzhang@nwipb.cas.cn Z8 0 Z9 1 UT CSCD:7135210 DA 2023-03-23 ER PT J AU Xiao Hailong Ma Yuan Zhou Huicheng Zhang Chengjun Yao Yujiao Chen Jiangang Zhang Degang Z2 肖海龙 马源 周会程 张成君 姚玉娇 陈建纲 张德罡 TI Characteristics of Soil Trace Elements and Vegetation and Their Relationships in Degraded Alpine Steppe in Sanjiangyuan Region Z1 三江源退化高寒草原土壤微量元素与植被特征及其关系 Z3 草地学报 SO Acta Agrestia Sinica VL 30 IS 8 BP 1925 EP 1933 AR 1007-0435(2022)30:8<1925:SJYTHG>2.0.TX;2-# PY 2022 DT Article AB In order to explore soil trace elements and vegetation characteristics and their relationships in alpine steppe under different degradation degrees in Sanjiangyuan region,the alpine steppe at different degradation degrees in Maduo County of Qinghai Province were selected as the research areas to investigate.The vegetation community characteristics,the contents of soil trace elements(Fe,Mn,Cu,Zn,B,Mo,Se),and the key soil trace elements affecting the degradation of alpine grassland vegetation community were analyzed. The results showed that with the aggravation of alpine steppe degradation,the grassland coverage gradually decreased,and the diversity,richness and aboveground biomass first increased and then decreased. The content of trace elements in soil showed a downward trend;the characteristics of vegetation community were positively correlated with contents of iron,manganese,copper,zinc,boron and selenium in soil,especially with the contents of iron,copper and boron. Z4 为探究三江源不同退化程度高寒草原土壤微量元素与植被特征及其关系,以青海省玛多县地区不同退化程度高寒草原为研究对象,调查植被群落特征,测定土壤微量 元素(铁、锰、铜、锌、硼、钼、硒)含量,分析影响高寒草原植被群落退化的关键土壤微量元素。研究结果表明:随着高寒草原退化的加剧,草地盖度逐渐降低, 草地多样性、丰富度、地上生物量呈先升高后降低趋势;土壤中微量元素的含量均呈下降趋势;植被群落特征与土壤中铁、锰、铜、锌、硼、硒含量正相关,其中与 土壤铁、有效铜、有效硼的含量的关系最为密切。 C1 Xiao Hailong, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of Education Ministry;;China-US Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Zhou Huicheng, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of Education Ministry;;China-US Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Yao Yujiao, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of Education Ministry;;China-US Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Chen Jiangang, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of Education Ministry;;China-US Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Zhang Degang, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of Education Ministry;;China-US Center for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Ma Yuan, Qinghai Academy of Animal and Veterinary Sciences,Qinghai University, Xining, Qinghai 810016, China. Zhang Chengjun, Academy of Agricultural Sciences, Dingxi, Gansu 743000, China. Z6 肖海龙, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中美草地畜牧业可持续研究中心, 兰州, 甘肃 730070, 中国. 周会程, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中美草地畜牧业可持续研究中心, 兰州, 甘肃 730070, 中国. 姚玉娇, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中美草地畜牧业可持续研究中心, 兰州, 甘肃 730070, 中国. 陈建纲, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中美草地畜牧业可持续研究中心, 兰州, 甘肃 730070, 中国. 张德罡, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中美草地畜牧业可持续研究中心, 兰州, 甘肃 730070, 中国. 马源, 青海大学畜牧兽医科学院, 西宁, 青海 810016, 中国. 张成君, 甘肃省定西市农业科学研究院, 定西, 甘肃 743000, 中国. EM 1366378487@qq.com; zhangdg@gsau.edu.cn Z7 1366378487@qq.com; zhangdg@gsau.edu.cn Z8 0 Z9 0 UT CSCD:7304308 DA 2023-03-23 ER PT J AU Xu Shiyang Li Xueping Li Minquan Qi Yonghong Wang Xuemiao Zhang Yixin Li Jianjun Fan Yuxuan Z2 许世洋 李雪萍 李敏权 漆永红 汪学苗 张怡忻 李建军 范雨轩 TI Effects of Alpine Meadow Degradation on the Grassland Communities Diversity and Soil Properties on the Tibetan Plateau Z1 青藏高原高寒草甸退化对草地群落多样性及土壤特性的影响 Z3 中国草地学报 SO Chinese Journal of Grassland VL 44 IS 8 BP 20 EP 27 AR 1673-5021(2022)44:8<20:QZGYGH>2.0.TX;2-T PY 2022 DT Article AB The study aimed to clarify alpine meadow degradation effects on the grassland communities diversity and soil properties on the Tibetan Plateau by investigating vegetation conditions and analyzing the community diversity and dominant species in three areas in Gansu Province (Luqu County,Xiahe County,and Hezuo City of Gannan Tibetan Autonomous Prefecture) under different degradation (light,moderate and severe degeneration).Soil samples were collected to determine the contents of total nitrogen,total phosphorus,total potassium,and pH value,total salt,bulk density,porosity,particle size,enzyme activities(urease,sucrase,catalase,and alkaline phosphatase),and the number of bacteria,actinomycetes,and fungi.The result showed that the species diversity gradually decreased with the degradation of alpine meadows in the Tibetan Planteau.In addition,the vegetation height and coverage,grass yield,total soil nitrogen,phosphorus,potassium,porosity,and silt decreased,but soil pH value,total salt,bulk density,clay,and sand went opposite.For soil enzyme activities,urease and invertase activities decreased.For microorganisms,the number of soil bacteria and actinomycetes decreased while that of soil fungi increased. Z4 为了明确青藏高原高寒草甸退化对草地植被多样性及土壤特性的影响,通过调查甘肃省甘南藏族自治州碌曲县、夏河县和合作市3个地区不同退化程度(轻度退化、 中度退化和重度退化)的高寒草地的植被情况,分析其物种多样性及优势种,并采集土壤样品,测定其全氮、全磷、全钾、土壤pH值、全盐、容重、孔隙度、粒径 等理化性质,土壤脲酶、蔗糖酶、过氧化氢酶和碱性磷酸酶等4种酶活性,以及细菌、放线菌和真菌等微生物数量。结果表明:随着退化程度的加深,碌曲县、夏河 县高寒草甸物种多样性呈降低趋势,而合作市轻、中度退化草地的多样性较高,重度退化草地最低,同时,植被的高度、盖度及草产量降低;土壤全氮、全磷、全钾 、孔隙度及粉粒总体呈降低趋势,土壤pH值、全盐、容重、黏粒及砂粒呈升高趋势;土壤脲酶、蔗糖酶活性降低;土壤细菌、放线菌数量降低,真菌数量升高。 C1 Xu Shiyang, College of Prataculture,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Wang Xuemiao, College of Prataculture,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Zhang Yixin, College of Prataculture,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Fan Yuxuan, College of Prataculture,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Li Xueping, College of Prataculture,Gansu Agricultural University;;Institute of Plant Protection,Gansu Academy of Agricultural Sciences, ;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Li Minquan, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Qi Yonghong, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Li Jianjun, Institute of Plant Protection,Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China. Z6 许世洋, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 汪学苗, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 张怡忻, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 范雨轩, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 李雪萍, 甘肃农业大学草业学院;;甘肃省农业科学院植物保护研究所, ;;, 兰州;;兰州, 甘肃;;甘肃 730070;;730070, 中国. 李敏权, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 漆永红, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. 李建军, 甘肃省农业科学院植物保护研究所, 兰州, 甘肃 730070, 中国. EM xushiyang715@163.com; lixueping@gsagr.ac.cn Z7 xushiyang715@163.com; lixueping@gsagr.ac.cn Z8 0 Z9 0 UT CSCD:7282650 DA 2023-03-23 ER PT J AU Shao Jianxiang Liu Yuhong Ma Hui Wei Weidong Z2 邵建翔 刘育红 马辉 魏卫东 TI Meta-analysis of Physical and Chemical Properties of Shallow Soils in Degraded Alpine Grasslands Z1 退化高寒草地浅层土壤理化性质Meta分析 Z3 草地学报 SO Acta Agrestia Sinica VL 30 IS 6 BP 1370 EP 1378 AR 1007-0435(2022)30:6<1370:THGHCD>2.0.TX;2-# PY 2022 DT Article AB The ecological status of the Qinghai-Tibet Plateau is significant,and the degradation of grasslands affects regional ecological security.There are many studies on the physicochemical properties of degraded alpine grassland soils,but the results are highly heterogeneous.We searched 79papers related to the physicochemical properties of degraded alpine grassland soils and used Meta-analysis to quantitatively assess the effects and changes in the main physicochemical properties of shallow alpine grassland soils with different degrees of degradation.The results showed that:(1)In the 0~10cm and 10~20cm soil layer of alpine meadow,soil bulk density and pH increased,while soil water content,organic carbon,total N,total P,total K,available N,available P and available K decreased;(2)In the 0~10cm and 10~20cm soil layers of the alpine steppe,soil bulk density increased,while pH,water content,organic carbon and available P decreased. The results showed that different degradation levels had a negative impact on the main physical and chemical properties of soil in alpine grassland.The results could provide a basis for ecological protection of alpine grassland in Qinghai-Tibet Plateau. Z4 青藏高原生态地位显著,草地退化影响区域生态安全,针对退化高寒草地土壤理化性质的研究众多但结果存在较大异质性。通过检索纳入79篇与退化高寒草地土壤 理化性质相关的文献,采用整合分析方法用于定量述评不同退化程度高寒草地浅层土壤主要理化性质的效应及变化规律。结果表明:高寒草甸0~10cm、10~ 20cm土层内随着退化加剧土壤容重、pH上升,土壤含水量、有机碳、全氮、全磷、全钾、速效氮、速效磷、速效钾下降;高寒草原0~10cm、10~20 cm土层内随退化加剧,土壤容重上升,pH、含水量、有机碳、速效钾下降。总体反映出不同退化程度对高寒草地土壤主要理化性质产生较大负面影响,研究结果 可为青藏高原高寒草地生态保护提供依据。 C1 Shao Jianxiang, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai China. Liu Yuhong, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai China. Ma Hui, College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai China. Wei Weidong, College of Agriculture and Animal Husbandry, Qinghai University;;Qinghai Provincial Key Laboratory of Adaptability Management of Alpine Grassland, ;;Qinghai Provincial Key Laboratory of Adaptability Management of Alpine Grassland, Xining;;Xining, Qinghai;;Qinghai ;;. Z6 邵建翔, 青海大学农牧学院, 西宁, 青海 中国. 刘育红, 青海大学农牧学院, 西宁, 青海 中国. 马辉, 青海大学农牧学院, 西宁, 青海 中国. 魏卫东, 青海大学农牧学院;;青海省高寒草地适应性管理重点实验室, ;;青海省高寒草地适应性管理重点实验室, 西宁;;西宁, 青海;;青海 ;;, 中国. EM shaojianxianga@163.com; qhweidong@163.com Z7 shaojianxianga@163.com; qhweidong@163.com Z8 0 Z9 1 UT CSCD:7263351 DA 2023-03-23 ER PT J AU Huang Qian Ding Mingjun Chen Liwen Xie Kun Z2 黄倩 丁明军 陈利文 谢坤 TI Variations of Moisture in Surface Soil of Alpine Meadow with Different Degradation Degrees in the Three-River Source Region Z1 三江源区不同退化程度高寒草甸表土层的土壤水分变化特征 Z3 水土保持学报 SO Journal of Soil and Water Conservation VL 36 IS 1 BP 189 EP 195 AR 1009-2242(2022)36:1<189:SJYQBT>2.0.TX;2-8 PY 2022 DT Article AB Soil moisture is one of the key factors affecting the ecological processes and ecological carrying capacity of alpine meadows in the Qinghai-Tibet Plateau.Mastering its change characteristics is of great significance for ecological protection and restoration in alpine region.Based on the soil moisture data monitored by hobo soil temperature and humidity instrument(HOBO Data Loggers-Onset Corporation of USA),soil moisture change characteristics during August 2019 and August 2020 of three layers L1(0-5 cm),L2(5-15 cm)and L3(15-30 cm)of alpine meadow topsoil under different degradation stage sites,which were non-degradation(ND),light to moderate degradation(LMD),highly degradation(HD),in the Three-River Source Region were analyzed.The results showed that:(1)There were significant seasonal variations in soil water content under different degradation stages.The high values mainly distributed in summer,while the low values distributed in winter and spring.The intra-annual mean values of topsoil water content under different degradation types followed the order of LMD(0.320 cm~3/cm~3)>ND(0.284 cm~3/cm~3)>HD (0.211 cm~3/cm~3).(2)After continuous rainfall in summer,the soil water content began to decrease significantly after 24 hours.Among them,the change range of L1 layer was the largest and that of L3 layer was the smallest.(3)The soil depth of 0-5 cm in ND and LMD alpine meadows,and the 5-15 cm of HD alpine meadows corresponded to a higher water content layer,because that the soil water content was significantly negatively correlated to soil water content and soil capacity,and significantly positively correlated to C/N and organic carbon. Z4 土壤水分是影响青藏高原高寒草甸生态过程和生态承载能力关键因素之一,掌握其变化特征对于高寒地区生态保护和修复具有重要意义。基于HOBO土壤温湿度仪 器监测数据,分析2019年8月至2020年8月三江源区不同退化程度(未退化(ND)、轻中度退化(LMD),重度退化(HD))下高寒草甸表土层土壤 3个层级L1(0-5 cm)、L2(5-15 cm)、L3(15-30 cm)土壤水分变化特征。结果表明:(1)不同退化程度下土壤含水量季节差异明显。高值区主要分布在夏季,低值区分布在冬春季。不同退化程度下土壤表层含 水量年内均值大小依次为LMD(0.320 cm~3/cm~3)、ND(0.284 cm~3/cm~3)和HD(0.211cm~3/cm~3)。(2)夏季降水事件结束后,土壤含水量24h后开始明显减小,其中,L1层变化幅度最大, L3层变化幅度最小。(3) ND和LMD高寒草甸0-5 cm土层,HD高寒草甸5-15 cm土层对应的是相对较高含水层,这是由于土壤含水量与土壤容重呈显著负相关,与C/N、有机碳呈显著正相关。 C1 Huang Qian, School of Geography and Environment,Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Chen Liwen, School of Geography and Environment,Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Xie Kun, School of Geography and Environment,Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Ding Mingjun, School of Geography and Environment,Jiangxi Normal University;;Key Laboratory of Poyang Lake Wetland and Watershed Research,Ministry of Education, ;;Key Laboratory of Poyang Lake Wetland and Watershed Research,Ministry of Education, Nanchang;;Nanchang, ;; 330022;;330022. Z6 黄倩, 江西师范大学地理与环境学院, 南昌, 江西 330022, 中国. 陈利文, 江西师范大学地理与环境学院, 南昌, 江西 330022, 中国. 谢坤, 江西师范大学地理与环境学院, 南昌, 江西 330022, 中国. 丁明军, 江西师范大学地理与环境学院;;鄱阳湖湿地与流域研究教育部重点实验室, ;;鄱阳湖湿地与流域研究教育部重点实验室, 南昌;;南昌, ;; 330022;;330022. EM huangqian1997@126.com; dingmingjun1128@163.com Z7 huangqian1997@126.com; dingmingjun1128@163.com Z8 0 Z9 0 UT CSCD:7157575 DA 2023-03-23 ER PT J AU Xue Juan Wei Xue Guo Haiyan Wang Changting Wu Pengfei TI Soil macrofaunal communities develop a habitat-specific trophic structure dependent on the degree of degradation of alpine wetlands Z3 土壤生态学快报 SO Soil Ecology Letters VL 4 IS 4 BP 416 EP 428 AR 2662-2289(2022)4:4<416:SMCDAH>2.0.TX;2-P PY 2022 DT Article AB The alpine wetlands in the Qinghai-Tibetan Plateau have degraded in recent decades. However, the response of the soil food web to the degradation is still unclear. Four habitats including a wet meadow (WM), a grassland meadow (GM), a moderately degraded meadow (MDM) and a severely degraded meadow (SDM) (sandy meadows) were selected along the degrees of degradation. The soil macrofaunal biomass and the environmental factors of vegetation and soil were investigated. The soil macrofaunal community biomass increased significantly from WM to MDM and decreased to a very small amount in SDM, with most taxa disappearing. The biomass of the trophic groups of detritivores, herbivores and predators exhibited similar responses to soil macrofaunal communities. The relative biomass of detritivores increased from WM to MDM, but herbivores responded in an opposite manner, resulting in the dominant trophic group and trophic structure varying progressively from WM to GM to MDM. Soil properties but not vegetation determined the changes in trophic groups and trophic structure. The results implied that the higher trophic levels (carnivores or omnivores) responded more sensitively than the lower trophic levels (herbivores) to alpine wetland degradation. Our results also suggested that soil macrofauna have a habitat-specific characteristic trophic structure and can be used as indicators of soil health conditions. C1 Xue Juan, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China. Wei Xue, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China. Wang Changting, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China. Wu Pengfei, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610041, China. Guo Haiyan, Sichuan Climate Center, Chengdu, Sichuan 610071, China. EM wupf@swun.edu.cn Z8 0 Z9 1 UT CSCD:7311254 DA 2023-03-23 ER PT J AU Fu Mengdi Tang Wenjia Liu Weiwei He Yuejun Zhu Yanpeng Z2 付梦娣 唐文家 刘伟玮 何跃君 朱彦鹏 TI Ecological risk assessment and spatial identification of ecological restoration from the ecosystem service perspective: a case study in source region of Yangtze River Z1 基于生态系统服务视角的生态风险评估及生态修复空间辨识---以长江源区为例 Z3 生态学报 SO Acta Ecologica Sinica VL 41 IS 10 BP 3846 EP 3855 AR 1000-0933(2021)41:10<3846:JYSTXT>2.0.TX;2-E PY 2021 DT Article AB Identification of ecological restoration space is an important prerequisite for ecological restoration and reconstruction.At the watershed scale, the Source Region of Yangtze River(SRYR) was thoroughly studied by quantitative method combining with qualitative method aiming at establishing an identification framework for ecological restoration space.The ecological restoration priority areas were identified and recommendations for systematic protection and restoration were proposed according to assessment of the dominated ecosystem service, ecological risk, and vegetation degradation, respectively.The results indicated that ① ecosystem services increased from northwest to southeast in the SRYR in 2000 and 2015.The amount of water conservation and soil retention per unit area decreased by 18.06% and 22.9%, respectively;while the amount of wind and sand fixation per unit area increased by 8.84%, and the Net Primary Productivity(NPP) did not change significantly.② The ecological risks based on ecosystem services were mainly medium to low levels listed in grade 1, 2 and 3,accouning for 74.41%.The area in grade 4 accounted for 19.35% of the whole region.The grade 5 ecological risk was concentrated in Chindu county, Yushu city and Tanggula Mountain, accounting for only 6.24%.The distribution pattern of different risk levels was a decreasing circle.③ The Normalized Difference Vegetation Index(NDVI) increased by 0.013% annually from 2000 to 2015.The majority of grassland did not degrade.The area of mildly degraded grassland accounted for 0.82%.The area of moderately and severely degraded grassland accounted for 1.09%.④ In order to control black soil, sandy land and soil erosion, natural restoration and supplemented by artificial restoration was insisted via strict management of rotational grazing and forage-livestock balance.Grazing was strictly prohibited in nine plots(393.75 km~2), i.e.Angriqu, the north of Maduo village, Jiaqiaoqu, Dawanglu, Quguomaxia, Duocaiqu, the north of Chindu county, and Zhaqu.The manual intervention and protection measures were pertinently implemented for restoration of sandy land, black soil beach and grassland pest control project.The results provide theoretical basis and technical support for the maintenance and improvement of ecosystem service function and restoration and governance of the degraded ecosystem in Qinghai Tibet Plateau. Z4 辨识生态修复空间是进行生态恢复与重建的重要前提。在流域尺度,以长江源区为研究对象,构建了青藏高原生态修复空间辨识框架,以定量方法为主、定性方法为 辅,依次开展了区域主导生态系统服务评估、生态风险评估、植被退化评价,识别了生态修复优先区,提出了系统保护与修复建议。结果表明:①2000年、20 15年长江源区生态系统服务呈现从西北部向东南部增加的趋势,单位面积水源涵养量、土壤保持量分别下降18.06%、22.9%,单位面积防风固沙量增加 8.84%,NPP未发生显著变化。 ②生态风险以1、2、3级中低风险为主,面积占比共计74.41%;4级区面积占比19.35%;5级区面积占比仅6.24%,集中分布于称多、玉树和唐 古拉山。不同风险等级呈圈层递减的分布格局。③2000-2015年NDVI增长率为0.013%/ a。绝大部分草地未发生退化,轻度退化草地面积占比0.82%;中重度退化草地面积占比1.09%;④严格施行划区轮牧和草畜平衡管理,坚持以自然修复为 主、辅以人工修复,治理黑土滩、沙化土地、水土流失。对于昂日曲、麻多乡北、加巧曲等9个地块(393.75 km~2),严格封禁,针对性地实施沙化地修复、黑土滩修复、草原有害生物防控工程等人工干预和保护措施。研究结果能为青藏高原生态系统服务功能维护和提 升、退化生态系统的修复治理提供理论依据和技术支撑。 C1 Fu Mengdi, Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco-Process and Function Assessment and State Environment Protection, Beijing 100012, China. Liu Weiwei, Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco-Process and Function Assessment and State Environment Protection, Beijing 100012, China. Zhu Yanpeng, Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco-Process and Function Assessment and State Environment Protection, Beijing 100012, China. Tang Wenjia, Qinghai Ecological Environment Monitoring Center, Xining, Qinghai 810007, China. He Yuejun, North China Institute of Aerospace Engineering, Langfang, Hebei 065000, China. Z6 付梦娣, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 刘伟玮, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 朱彦鹏, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 唐文家, 青海省生态环境监测中心, 西宁, 青海 810007, 中国. 何跃君, 北华航天工业学院, 廊坊, 河北 065000, 中国. EM zhuyp@craes.org.cn Z7 zhuyp@craes.org.cn Z8 4 Z9 5 UT CSCD:6982637 DA 2023-03-23 ER PT J AU Ren Qiang Ai Yi Hu Jian Tian Liming Chen Shiyong Mipam Tserang Donko Z2 任强 艾鷖 胡健 田黎明 陈仕勇 泽让东科 TI Effects of different yak grazing intensities on soil and plant biomass in an alpine meadow on the Qinghai-Tibetan Plateau Z1 不同强度牦牛放牧对青藏高原高寒草地土壤和植物生物量的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 41 IS 17 BP 6862 EP 6870 AR 1000-0933(2021)41:17<6862:BTQDMN>2.0.TX;2-A PY 2021 DT Article AB As one of the most importance ways for supporting herds of domesticated ungulates,grazing is the simplest and most effective way of grassland utilization.The effects of grazing on grassland ecosystem are also one of the classic topics of animal ecology.In recent decades,overgrazing has caused serious grassland degradation.Although some studies have focused on the effects of grazing on grassland ecosystems on the Qinghai-Tibetan Plateau,little information on the effects of yak grazing intensity on alpine grasslands are revealed based on long-term in situ field observations,especially for experiments with more than 4 years.In this study,we selected a typical alpine meadow in the eastern of the Qinghai-Tibetan Plateau and used yaks as our large herbivorous livestock because yaks are unique and most widely distributed on the Qinghai-Tibetan Plateau.According to local investigations and pre-experiment,we set up four yak grazing intensities(no grazing;light grazing,1 yak/hm~2;moderate grazing,2 yaks/hm~2;and heavy grazing,3 yaks/hm~2)to examine their effects on soil properties and plant growth in a typical alpine meadow of the Qinghai-Tibetan Plateau.After continuously conducting four-years experiment,we found that soil water content increased significantly under grazing treatments.Soil bulk density,total phosphorus(P)content and organic matter content showed no significant responses to grazing intensities.Soil total nitrogen(N)content was significantly higher under light and heavy grazing than that under moderate grazing at the top soil of 020 cm.Conversely,soil pH was significantly higher under moderate grazing than light grazing at the top soil of 020 cm.Soil total potassium(K)content under no grazing was significantly higher than that under grazing treatments.Soil available N and K contents were only significantly higher under moderate grazing than those under no grazing.Grazing also significantly reduced aboveground biomass of plants.In short,yak grazing intensities significantly altered soil water content,soil available N and K contents,and plant aboveground biomass,while they had weak effects on soil organic matter,total N,and total K contents.This study reveals the effects of grazing on soil physiochemical properties and plant aboveground biomass in a typical alpine meadow,though further study should be required to investigate the influences of long-term grazing experiments on the interactions of plants and soil and determine appropriate grassland managements in a long term based on our yak grazing experiments.Overall,this study provides basic data for the protection,sustainable management and reasonable grazing rate of alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Z4 放牧作为家畜饲养方式之一,是草地最简单、有效的利用方式,放牧中的家畜对草地生态系统的影响是全球畜牧生态学研究的焦点。过度放牧导致草地退化严重,虽 然在青藏高原地区已有较多放牧对草地影响的研究,但探究连续4年放牧对高寒草地生态系统影响的定位实验却鲜见报道。本研究在青藏高原东缘选取典型高寒草地 ,使用高原特有且分布最广的牦牛作为大型草食放牧家畜,设置了4个牦牛放牧强度(禁牧:无放牧、轻牧:1头/hm~2、中牧:2头/hm~2和重牧:3头 /hm~2)以研究其对高寒草地土壤和植物功能的影响。开展4年试验后的结果表明:放牧条件下土壤含水率显著增加;而土壤容重、全磷和有机质含量对放牧强 度均无显著性响应;土壤全氮和pH的响应主要在表层020 cm,其中全氮为轻牧和重牧处理分别显著高于中牧,中牧处理下的土壤pH为显著高于轻牧;土壤全钾含量在禁牧处理中显著高于放牧处理;而土壤有效氮和速效 钾均为中牧处理显著高于禁牧;放牧可以显著降低植物地上生物量。牦牛放牧强度显著影响土壤含水率、有效养分和植物地上生物量,而对其它土壤理化性质影响较 弱。本研究结果揭示放牧对高寒草地土壤理化性质和植物地上生物量的影响,为青藏高原高寒草甸生态系统保护、可持续管理和合理放牧率提供理论依据。 C1 Ren Qiang, Institute of Qinghai-Tibetanan Plateau,Southwest Minzu University, Chengdu, Sichuan 610041, China. Ai Yi, Institute of Qinghai-Tibetanan Plateau,Southwest Minzu University, Chengdu, Sichuan 610041, China. Hu Jian, Institute of Qinghai-Tibetanan Plateau,Southwest Minzu University, Chengdu, Sichuan 610041, China. Mipam Tserang Donko, Institute of Qinghai-Tibetanan Plateau,Southwest Minzu University, Chengdu, Sichuan 610041, China. Tian Liming, College of Life Sciences,Sichuan University, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Chengdu, Sichuan 610065, China. Chen Shiyong, College of Animal and Veterinary Sciences,Southwest Minzu University, Chengdu, Sichuan 610041, China. Z6 任强, 西南民族大学青藏高原研究院, 成都, 四川 610041, 中国. 艾鷖, 西南民族大学青藏高原研究院, 成都, 四川 610041, 中国. 胡健, 西南民族大学青藏高原研究院, 成都, 四川 610041, 中国. 泽让东科, 西南民族大学青藏高原研究院, 成都, 四川 610041, 中国. 田黎明, 四川大学生命科学学院, 成都, 四川 610065, 中国. 陈仕勇, 西南民族大学畜牧兽医学院, 成都, 四川 610041, 中国. EM tdmipam@163.com Z7 tdmipam@163.com Z8 0 Z9 0 UT CSCD:7056230 DA 2023-03-23 ER PT J AU Liu Tianyuan Zhou Tiancai Sun Jian Wang Yi Ye Chongchong Z2 刘天源 周天财 孙建 王毅 叶冲冲 TI Distribution and coupling characteristics of plant nitrogen and phosphorus along desertification gradients in alpine meadows, eastern Tibet Plateau Z1 青藏高原东缘沙化草甸植物氮磷的分配和耦合特征 Z3 草业科学 SO Pratacultural Science VL 38 IS 2 BP 209 EP 220 AR 1001-0629(2021)38:2<209:QZGYDY>2.0.TX;2-O PY 2021 DT Article AB Analyses of plant nitrogen and phosphorus and their coupling relationships are important for determining the dynamics and functions of plant communities, as well as ecosystem processes. In this study, we analyzed the characteristics, patterns, and drivers of above- and belowground nitrogen and phosphorus contents and nitrogen: phosphorus ratios along desertification gradients in alpine grassland on the eastern Tibetan Plateau. Our results revealed that plant nitrogen content (mean value: 15.3 mg·g~(-1)) and the ratio of nitrogen to phosphorus (mean value: 5.2) in aboveground vegetation were lower than those in belowground parts (mean value: 28.2 mg·g~(-1) and 12.5, respectively). With an increase in landscape degradation, nitrogen contents in the above- and belowground portions of plants initially increased and subsequently decreased, whereas there was no clear variation in the phosphorus contents of above- and belowground vegetation. Moreover, it was found that the above- and belowground portions of plants were generally limited by nitrogen, and the relationship between plant nitrogen and phosphorus showed virtually no correlation with desertification stress. Notably, soil water content was found to be a key factor affecting nitrogen and phosphorus contents in the above- and belowground parts of vegetation, with plants enhancing nitrogen and phosphorus contents to adapt to the soil water stress. Our findings will provide a theoretical reference for examining the survival strategies and mechanisms of plants in degraded alpine grassland ecosystems. Z4 植物氮、磷元素及其耦合关系对揭示植物群落变化乃至生态系统的功能与过程具有重要意义。本研究以青藏高原东部高寒草甸为研究对象,分析沙化胁迫下植物地上 、地下部分的氮、磷含量与氮磷比的变化特征、分配差异及影响因素。结果表明:(1)植物地上部分的氮含量(平均值为15.3 mg·g~(-1))和氮磷比(平均值为5.2)整体低于地下部分的氮含量(平均值为28.2 mg·g~(-1))和氮磷比(平均值为12.5);随着沙化程度加剧,植物地上和地下部分的氮含量呈先升高后下降的趋势,而植物地上和地下部分的磷含量 无明显变化趋势。(2)植物地上和地下部分普遍受到氮限制,氮、磷元素之间耦合关系在沙化胁迫下几乎没有协同性。(3)土壤含水量是影响植物地上和地下部 分氮、磷含量的关键因素,植物地上和地下部分都会提高自身氮、磷含量以应对土壤水分降低的胁迫。在全球草地沙化的严峻形势下,本研究将为环境胁迫下植物的 生存策略及其驱动机制提供理论参考。 C1 Liu Tianyuan, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;College of Resources and Environment, University of Chinese Academy of Sciences, ;;, ;;, Beijing;;Beijing 100101;;100190. Zhou Tiancai, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;College of Resources and Environment, University of Chinese Academy of Sciences, ;;, ;;, Beijing;;Beijing 100101;;100190. Sun Jian, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;College of Resources and Environment, University of Chinese Academy of Sciences, ;;, ;;, Beijing;;Beijing 100101;;100190. Wang Yi, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;College of Earth Sciences, Chengdu University of Technology, ;;, ;;Chengdu, Beijing;;Sichuan 100101;;610059. Ye Chongchong, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;School of Civil Engineering and Architecture, Southwest Petroleum University, ;;, ;;Chengdu, Beijing;;Sichuan 100101;;610500. Z6 刘天源, 中国科学院地理科学与资源研究所;;中国科学院大学资源与环境学院, ;;, ;;, 北京;;北京 100101;;100190, 中国. 周天财, 中国科学院地理科学与资源研究所;;中国科学院大学资源与环境学院, ;;, ;;, 北京;;北京 100101;;100190, 中国. 孙建, 中国科学院地理科学与资源研究所;;中国科学院大学资源与环境学院, ;;, ;;, 北京;;北京 100101;;100190, 中国. 王毅, 中国科学院地理科学与资源研究所;;成都理工大学地球科学学院, ;;, ;;成都, 北京;;四川 100101;;610059, 中国. 叶冲冲, 中国科学院地理科学与资源研究所;;西南石油大学土木工程与建筑学院, ;;, ;;成都, 北京;;四川 100101;;610500, 中国. EM Lty2991603619@163.com; sunjian@igsnrr.ac.cn Z7 Lty2991603619@163.com; sunjian@igsnrr.ac.cn Z8 2 Z9 3 UT CSCD:6938987 DA 2023-03-23 ER PT J AU Liu Minxia Li Bowen Sun Ruidi Zhang Yaya Song Jiaying Zhang Guojuan Xu Lu Mu Ruolan Z2 刘旻霞 李博文 孙瑞弟 张娅娅 宋佳颖 张国娟 徐璐 穆若兰 TI Characteristics of culturable microbial communities in rhizosphere/nonrhizosphere soil of Ligularia virgaurea in alpine meadow elevation gradient Z1 高寒草甸黄帚橐吾种群根际/非根际土壤可培养微生物群落特征 Z3 生态学报 SO Acta Ecologica Sinica VL 41 IS 12 BP 4853 EP 4863 AR 1000-0933(2021)41:12<4853:GHCDHZ>2.0.TX;2-A PY 2021 DT Article AB Ligularia virgaurea is a common poisonous weed in alpine meadows,which is considered to be an important species indicating grassland vegetation degradation in an area.It is of great significance to study the community distribution characteristics of rhizosphere soil microorganisms at different altitude gradients.As one of the main types of soil microdomain structure,rhizosphere has high biological enzyme activity and plays an important role in maintaining regional ecosystem cycle due to the influence of plant roots,environmental factors and microbial activities.Soil microorganisms are the most important biological driving force of soil nutrient cycling,organic degradation and other biological processes.A wide variety of soil microorganisms and a large number of characteristics also maintain the functional integrity of the ecosystem.At the same time,its biodiversity is also affected by soil enzyme activities and physical and chemical properties,so the study of soil microorganisms is also an effective means to maintain ecosystem services.In this study,the cultivable microorganisms in rhizosphere/non-rhizosphere soil of Ligularia virgaurea at different altitudes in Maqu County of Gannan Prefecture were studied.The number of soil microorganisms and changes in soil physical and chemical factors were measured by the spread plate method and the maximum possible number method (MPN).The results showed that bacteria accounted for the largest proportion of the total number of microorganisms.The number of rhizosphere microorganisms increased first and then decreased with elevation,while the non-rhizosphere showed an increasing trend.The microbial functional groups gradually increased in both rhizosphere and non-rhizosphere.The number of microorganisms and functional groups in rhizosphere soil was higher than that in non-rhizosphere soil.Redundancy analysis (RDA) shows that the quantity changes are significantly correlated with soil temperature,organic carbon,electrical conductivity,pH,total nitrogen,total phosphorus,available nitrogen,and soil urease.Path analysis shows that in rhizosphere soil,bacteria and fungi are most affected by available nitrogen and organic carbon.Actinomycetes are mainly affected by soil temperature and electrical conductivity.Rhizosphere soil azotobacter and ammonifier decision coefficient available nitrogen>organic carbon>total nitrogen.The influencing factors of nitrifier in rhizosphere and non-rhizosphere soil are different.The largest and smallest decision coefficients of rhizosphere soil are total phosphorus and total nitrogen,and those of the non-rhizosphere are pH and urease.This study is helpful to understand the response mechanism of soil microorganisms in alpine meadows on Qinghai-Tibet Plateau to the invasion of poisonous weeds,and to provide theoretical basis and technical support for ecological environment protection and highquality development of Qinghai-Tibet Plateau. Z4 黄帚橐吾(Ligularia virgaurea)是高寒草甸常见的毒杂草,被认为是指示一个地区草地植被退化的重要物种,研究其根际/非根际土壤微生物在不同海拔梯度上的群落特征具 有重要意义。以甘南州高寒草甸不同海拔梯度黄帚橐吾根际/非根际土壤可培养微生物为研究对象,采用稀释涂布平板法和最大可能数法(MPN)测定了土壤微生 物的数量及土壤理化因子的变化。结果表明:细菌在微生物总数中占比最大,根际微生物数量随海拔升高呈先增加后减小的变化,非根际则表现为递增的趋势,微生 物功能群在根际和非根际土壤中均逐渐增加;根际土壤的微生物和功能群数量均高于非根际土壤。RDA分析发现,土壤温度、有机碳、电导率、pH、全氮、全磷 、速效氮及脲酶对根际/非根际土壤微生物数量及功能群变化影响较大。通径分析可知:根际土壤中,细菌和真菌受速效氮和有机碳影响较大,放线菌主要受土壤温 度和电导率的影响;根际土壤固氮菌和氨化细菌决策系数速效氮>有机碳>全氮;根际和非根际土壤中硝化细菌的影响因子各不相同,根际土壤决策系数最大和最小 分别为全磷和全氮,非根际则是pH和脲酶。 C1 Liu Minxia, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Li Bowen, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Sun Ruidi, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Zhang Yaya, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Song Jiaying, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Zhang Guojuan, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Xu Lu, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Mu Ruolan, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Z6 刘旻霞, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 李博文, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 孙瑞弟, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 张娅娅, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 宋佳颖, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 张国娟, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 徐璐, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 穆若兰, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. EM xiaminl@163.com Z7 xiaminl@163.com Z8 1 Z9 2 UT CSCD:7001191 DA 2023-03-23 ER PT J AU Zhang Wantong Li Chaoqun Yu Lu Shao Xinqing Z2 张万通 李超群 于露 邵新庆 TI Study on the Effect of the Plant Growth-Promoting Rhizobacteria Bio-fertilizer Instead of Chemical Fertilizer in Alpine Meadow Z1 植物根际促生菌菌肥在高寒草甸替代化肥效应研究 Z3 草地学报 SO Acta Agrestia Sinica VL 29 IS 7 BP 1423 EP 1429 AR 1007-0435(2021)29:7<1423:ZWGJCS>2.0.TX;2-T PY 2021 DT Article AB In order to explore the degradation of alpine meadow ecosystem in Qinghai-Tibet Plateau,in terms of fertilization improving the condition of grassland degradation,alpine meadow in Qinghai Province was selected as research object in this study,control without fertilization(CK),applied nitrogen fertilizer 250 kg·hm~(-2)(N),phosphorus fertilizer 400 kg·hm~(-2)(P),nitrogen and phosphorus fertilizer 300 kg·hm~(-2) (NP),organic fertilizer 2 000 kg·hm~(-2)(O),PGPR bio-fertilizer 7.5 kg·hm~(-2)(J1),15 kg·hm~(-2)(J2), 22.5 kg·hm~(-2)(J3),J1+70%nitrogen fertilizer(J1+N),J1+70%phosphate fertilizer(J1+P)were conducted. The improvement effects of different fertilization treatments on alpine meadow the applicability of PGPR bio-fertilizer in alpine meadow and to what extent the bio-fertilizer can replace chemical fertilizers were analyzed.The results showed that,NP significantly increased the aboveground biomass(P<0.05). J1+N treatment could increase the aboveground biomass,alleviate the decline of species richness caused by N fertilizer application,as well as increase soil moisture and total nitrogen content(P<0.05)without causing salinization.In summary,J1+N treatment can partially replace chemical fertilizer and reduce the harm of inorganic fertilizer to ecological environment,so it is recommended to be applied in alpine meadow. Z4 为探究青藏高原高寒草甸退化问题,从施肥可以改良草地退化的角度出发,本研究以青海省高寒草甸为研究对象,通过设置不同施肥处理,即对照不施肥(CK)、 施加氮肥250 kg·hm~(-2)(N)、磷肥400 kg·hm~(-2)(P)、氮磷肥300 kg·hm~(-2)(NP)、有机肥2 000 kg·hm~(-2)(O)、植物根际促生菌(Plant growth-promoting rhizobacteria,PGPR)菌肥7.5 kg·hm~(-2)(J1),15 kg·hm~(-2)(J2),22.5 kg·hm~(-2)(J3)、PGPR菌肥+70%氮肥(J1+N)、PGPR菌肥+ 70%磷肥(J1+P),对不同施肥处理高寒草甸的改良效果、PGPR菌肥的适用性以及菌肥替代化肥的效果进行分析。结果表明:NP显著提高地上生物量( P<0.05),J1+N处理不仅增加了地上生物量,还可缓解施用N肥造成的物种丰富度下降,同时增加土壤水分和全氮含量(P<0.05),又不会引起盐 渍化。综上所述,J1+N处理能够部分替代化肥,减少无机化肥对生态环境的危害,推荐在高寒草甸施用。 C1 Zhang Wantong, College of Grassland Science and Technology China Agriculture University, Beijing 100193, China. Li Chaoqun, College of Grassland Science and Technology China Agriculture University, Beijing 100193, China. Yu Lu, College of Grassland Science and Technology China Agriculture University, Beijing 100193, China. Shao Xinqing, College of Grassland Science and Technology China Agriculture University, Beijing 100193, China. Z6 张万通, 中国农业大学草业科学与技术学院, 北京 100193, 中国. 李超群, 中国农业大学草业科学与技术学院, 北京 100193, 中国. 于露, 中国农业大学草业科学与技术学院, 北京 100193, 中国. 邵新庆, 中国农业大学草业科学与技术学院, 北京 100193, 中国. EM wt20200909@163.com; shaoxinqing@163.com Z7 wt20200909@163.com; shaoxinqing@163.com Z8 5 Z9 5 UT CSCD:7035895 DA 2023-03-23 ER PT J AU Zhang Mengdi Zhang Lifeng Chen Zhiguang Zhang Xiang Zhao Liang Li Qi Tang Yanhong Gu Song Z2 张梦迪 张立锋 陈之光 张翔 赵亮 李奇 唐艳鸿 古松 TI Effects of evaporation and transpiration on evapotranspiration of degraded meadow in the Three-River Source Region Z1 土壤蒸发和植被蒸腾对三江源退化高寒草甸蒸散的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 41 IS 18 BP 7138 EP 7152 AR 1000-0933(2021)41:18<7138:TRZFHZ>2.0.TX;2-U PY 2021 DT Article AB Evapotranspiration (ET) is mainly composed of evaporation (E) and transpiration (T), however it is often difficult to separate E and T from ET in a terrestrial ecosystem. To better understand the effects of E and T on ET of alpine meadow in the Three-River Source Region (TRSR) (89°24′102°23′E, 31°39′36°16′N) in Qinghai Province, lysimeter and micrometeorological measurements were used to quantitatively study the variations of ET, E and T, and effects of vegetation and environmental factors on evapotranspiration processes. The results showed that the ET in 2017 and 2018 was 467.7 mm and 479.2 mm, respectively, and ET during the growing season (May-September) accounted for about 72% of annual total ET, while the contribution of E to ET (56%) was greater than that of T (44%). Furthermore, more than 90% of annual precipitation was returned to the atmosphere through the ET processes (ET/P > 90%). Based on the results from lysimeters with different vegetation coverages during the growing season, it was found that ET increased with the decreasing of vegetation coverage. The results of stepwise regression analysis indicated that net radiation (R_n) was the most important factor driving ecosystem ET, E and T; in addition, the response of E to vapor pressure deficit (VPD) was more sensitive than T, while the air temperature (T_a) was more significantly associated with T in comparison to the E. The effect of soil water content (SWC_5) on ET was relatively small maybe due to the precipitation was relatively abundant in this alpine meadow. The results suggested that the degradation of alpine meadow would lead to the increase of E, as a result more water is lost from the ecosystem through evapotranspiration. Z4 蒸散(ET)主要由土壤蒸发(E)和植被蒸腾(T)组成,然而难以把E与T从陆地生态系统ET中区分开。为阐明位于青海省境内的三江源区(89°24′1 02°23′E, 31°39′36°16′N)高寒草甸E和T对生态系统ET的影响,利用小型蒸渗仪和微气象系统定量研究了三江源退化高寒草甸ET、E和T的变化,以及植 被和环境因子对其的影响。结果表明:2017和2018年的ET分别为467.7 mm和479.2 mm,其中生长季(59月)约占72%,且E对生态系统ET的贡献(56%)大于T(44%),年降水量(P)的90%以上通过ET返回大气(ET/P > 90%)。根据生长季中不同植被覆盖度的蒸渗仪观测结果发现,ET随植被覆盖度的降低而增加。逐步回归分析表明,净辐射(R_n)是驱动生态系统ET、E 、T最主要的因子;另外,E对饱和水汽压差(VPD)的响应更敏感,而T受空气温度(T_a)的影响更大;土壤含水量(SWC_5)对蒸散的影响相对较小 ,可能由于研究区降水相对较多的原因。结果说明,草甸退化将加剧土壤蒸发,进而导致生态系统散失更多的水分。 C1 Zhang Mengdi, College of Life Sciences, Nankai University, Tianjin 300071, China. Zhang Lifeng, College of Life Sciences, Nankai University, Tianjin 300071, China. Chen Zhiguang, College of Life Sciences, Nankai University, Tianjin 300071, China. Gu Song, College of Life Sciences, Nankai University, Tianjin 300071, China. Zhang Xiang, School of Life Science and Technology, Ce ntral South University of Forestry and Technology, Changsha, Hunan 410004, China. Zhao Liang, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Qi, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Tang Yanhong, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Z6 张梦迪, 南开大学生命科学学院, 天津 300071, 中国. 张立锋, 南开大学生命科学学院, 天津 300071, 中国. 陈之光, 南开大学生命科学学院, 天津 300071, 中国. 古松, 南开大学生命科学学院, 天津 300071, 中国. 张翔, 中南林业科技大学生命科学与技术学院, 长沙, 湖南 410004, 中国. 赵亮, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李奇, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 唐艳鸿, 北京大学城市与环境学院, 北京 100871, 中国. EM songgu@nankai.edu.cn Z7 songgu@nankai.edu.cn Z8 0 Z9 0 UT CSCD:7061510 DA 2023-03-23 ER PT J AU Zhang Fan Li Yuanchun Wang Xin Zhu Jianxiao Z2 张帆 李元淳 王新 朱剑霄 TI Effect of rangeland degradation on biomass allocation in alpine meadows on the Qinghai-Tibet Plateau, China Z1 青藏高原高寒草甸退化对草地群落生物量及其分配的影响 Z3 草业科学 SO Pratacultural Science VL 38 IS 8 BP 1451 EP 1458 AR 1001-0629(2021)38:8<1451:QZGYGH>2.0.TX;2-V PY 2021 DT Article AB Rangeland degradation has serious impacts on grassland community structure and productivity in alpine meadows across the Qinghai-Tibet Plateau, China. In order to reveal the impact of rangeland degradation on the community structure and aboveground/underground biomass distribution in alpine meadows, we selected three blocks near the Haibei Alpine Meadow Ecosystem Research Station in Qinghai Province that were within the random block design. There were four types of degradation in each block, which were intact, slightly degraded, moderately degraded, and severely degraded. In August 2020, plant sampling and a community survey were carried out at the same time. Our results showed that as the degradation got worse: 1) the grassland coverage, height, and aboveground biomass significantly decreased; 2) there was a significant change in the proportion of aboveground biomass allocated to different functional groups and the dominance species gradually changed from grasses into forbs; and 3) the underground biomass significantly decreased, but the proportion of biomass in deep soil increased. These results indicated that as the degradation intensified, the community structure underwent subversive changes, and the aboveground and underground biomass severely declined. Therefore, restoration plans for degraded grassland in this area should consider the grassland species composition, and corresponding measures for restoring aboveground and underground biomass should occur simultaneously. Z4 青藏高原高寒草甸退化严重影响了草地群落结构与生产力。为揭示草地退化对高寒草甸群落结构和生物量地上/地下分配的影响,采用随机区组设计,在青海省海北 州选择3个小区,每个小区设置完整的未退化、轻度退化、中度退化和重度退化4个退化梯度,于2020年8月对样地进行群落调查,同时采集植物样品。结果表 明,随着退化程度加剧:1)草地的盖度、高度和地上植物生物量均显著下降;2)地上生物量在不同功能群的分配发生显著变化,物种逐步从以禾草类为优势转变 为以杂类草为优势的群落;3)地下生物量显著下降,深层土壤根系生物量占比增加。研究结果表明:随着退化加剧群落结构发生颠覆性变化,且地上和地下生物量 同步出现严重衰退。因此,针对该区域退化草地的植被恢复应考虑草地物种组配以及地上和地下生物量同步恢复的相应措施。 C1 Zhang Fan, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Li Yuanchun, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Wang Xin, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Zhu Jianxiao, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Z6 张帆, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 李元淳, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 王新, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 朱剑霄, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM zhangf2018@lzu.edu.cn; jxzhu@lzu.edu.cn Z7 zhangf2018@lzu.edu.cn; jxzhu@lzu.edu.cn Z8 4 Z9 6 UT CSCD:7051532 DA 2023-03-23 ER PT J AU Zhang Lu Wang Jie Wang Xiangtao Liao Lirong Wan Qian Liu Guobin Zhang Chao Z2 张路 王杰 王向涛 廖李容 宛倩 刘国彬 张超 TI Effect of restoration types on the community structure of microbes harboring nifH and chiA genes in alpine meadow Z1 不同恢复方式对退化高寒草甸土壤nifH和chiA微生物群落结构的影响 Z3 应用生态学报 SO Chinese Journal of Applied Ecology VL 32 IS 12 BP 4349 EP 4358 AR 1001-9332(2021)32:12<4349:BTHFFS>2.0.TX;2-9 PY 2021 DT Article AB Biological nitrogen(N)fixation and organic N degradation are the main sources of soil available N,while microorganisms driving such processes play an important role in soil N supply and the maintenance of soil fertility.In this study,real-time quantitative PCR and amplicon sequencing technology were used to examine the effects of restoration types on the community structure of N_2-fixing and chitin-degrading bacteria harboring nifH and chiA genes,respectively,and the gene abundance under four meadows(undisturbed,grazing,fencing,and fencing + reseeding meadows)in Qinghai-Tibet Plateau.The results showed that the abundance of nifH and chiA in the four meadows followed the order of undisturbed meadow >grazed meadow >fencing meadow >fencing + reseeding meadow.The abundance of nifH and chiA in the undisturbed meadow was 3.4-6.3 times and 3.3-8.3 times of that in the other three meadows.The alpha diversity of N_2-fixing bacteria in grazing,fencing,and fencing + reseeding meadows was significantly higher than that in the undisturbed meadow,while the alpha diversity of chitin-degrading bacteria was higher in the undisturbed and grazing meadows.Grazing significantly increased the relative abundance of Proteobacteria,but decreased the relative abundance of Cyanobacteria and Actinobacteria.The abundance of nifH and chiA was significantly affected by soil moisture,nutrients,and vegetation characteristics,while the community structure of nifH and chiA was affected by soil moisture,soil organic carbon content,and soil pH.Compared with undisturbed meadow,grazing reduced the potential of N fixation and organic N degradation.The improvement of 10 years grazing prohibition with fencing and reseeding measures on the function of N fixation and organic N degradation was not obvious.The characteristics of functional microbes and their influencing factors should be comprehensively considered during meadow restoration,which might take longer time or take reasonable management measures to restore grazing meadow to undisturbed level. Z4 生物固氮和有机氮降解是土壤有效氮的主要来源,固氮和有机氮降解微生物对土壤氮素供应和地力维持具有重要作用。本研究以青藏高原4种不同利用方式的高寒草 甸(未扰动、放牧、围封和围封+补播草甸)为对象,结合荧光实时定量和扩增子测序技术,研究了不同恢复方式对nifH固氮菌和chiA几丁质降解菌基因丰 度及其微生物群落结构的影响。结果表明:4种草甸的nifH和chiA基因丰度大小排序为:未扰动草甸>放牧草甸>围封草甸>围封+补播草甸,其中未扰动 草甸的nifH和chiA基因丰度分别是其他3种草甸的3.4 ~ 6.3倍和3.3~8.3倍;固氮菌alpha多样性在放牧、围封和围封+补播草甸中显著高于未扰动草甸,而几丁质降解菌的alpha多样性在未扰动和放 牧草甸中最高;放牧显著提高了变形菌的丰度而降低了蓝细菌和放线菌丰度;土壤含水量、养分和植被特征对nifH和chiA的基因丰度和群落结构均有显著影 响。与未扰动草甸相比,放牧降低了高寒草甸的固氮和有机氮降解潜力,而10年的围封禁牧和补播植草措施对固氮和有机氮降解功能的改善作用不明显。草甸恢复 时应综合考虑功能微生物特征及其影响因素,放牧草甸恢复至未扰动水平可能需要更长的封育时间或者采用更加合理的管护措施。 C1 Zhang Lu, Institute of Soil and Water Conservation,Chinese Academy of Sciences& Ministry of Water Resources;;University of Chinese Academy of Sciences, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau;;, Yangling;;, Shaanxi;;Beijing 712100;;100049. Liao Lirong, Institute of Soil and Water Conservation,Chinese Academy of Sciences& Ministry of Water Resources;;University of Chinese Academy of Sciences, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau;;, Yangling;;, Shaanxi;;Beijing 712100;;100049. Wang Jie, Institute of Soil and Water Conservation,Northwest A&F University, Yangling, Shaanxi 712100, China. Wan Qian, Institute of Soil and Water Conservation,Northwest A&F University, Yangling, Shaanxi 712100, China. Wang Xiangtao, College of Animal Science,Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet 860000, China. Liu Guobin, Institute of Soil and Water Conservation,Chinese Academy of Sciences& Ministry of Water Resources;;Institute of Soil and Water Conservation,Northwest A&F University, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau;;, Yangling;;Yangling, Shaanxi;;Shaanxi 712100;;712100. Zhang Chao, Institute of Soil and Water Conservation,Chinese Academy of Sciences& Ministry of Water Resources;;Institute of Soil and Water Conservation,Northwest A&F University, State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau;;, Yangling;;Yangling, Shaanxi;;Shaanxi 712100;;712100. Z6 张路, 中国科学院水利部水土保持研究所;;中国科学院大学, 黄土高原土壤侵蚀与旱地农业国家重点实验室;;, 杨凌;;, 陕西;;北京 712100;;100049, 中国. 廖李容, 中国科学院水利部水土保持研究所;;中国科学院大学, 黄土高原土壤侵蚀与旱地农业国家重点实验室;;, 杨凌;;, 陕西;;北京 712100;;100049, 中国. 王杰, 西北农林科技大学水土保持研究所, 杨凌, 陕西 712100, 中国. 宛倩, 西北农林科技大学水土保持研究所, 杨凌, 陕西 712100, 中国. 王向涛, 西藏农牧学院动物科学学院, 林芝, 西藏 860000, 中国. 刘国彬, 中国科学院水利部水土保持研究所;;西北农林科技大学水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室;;, 杨凌;;杨凌, 陕西;;陕西 712100;;712100, 中国. 张超, 中国科学院水利部水土保持研究所;;西北农林科技大学水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室;;, 杨凌;;杨凌, 陕西;;陕西 712100;;712100, 中国. EM zhanglu99516@163.com; zhangchaolynn@163.com Z7 zhanglu99516@163.com; zhangchaolynn@163.com Z8 2 Z9 2 UT CSCD:7114978 DA 2023-03-23 ER PT J AU Ming Jiao Sheng Yu Jin Huijun Zhang Ze Du Yuxia Z2 明姣 盛煜 金会军 张泽 杜玉霞 TI The impact of the biological soil crusts on the frozen soil properties in the frozen ground region Z1 高寒冻土区生物结皮对土壤理化属性的影响 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 43 IS 2 BP 601 EP 609 AR 1000-0240(2021)43:2<601:GHDTQS>2.0.TX;2-G PY 2021 DT Article AB BSCs(biological soil crusts),as ubiquitous living covers on soil surface of the enclosure grassland in the frozen ground region of the Qinghai-Tibet Plateau.However,studies on the influence of biocrusts on soil properties in the frozen ground region were fresh.Objective of the paper was to determine the influence of the bi-ological soil crusts on soil physicochemical properties of the surface forzen soil.Field investigation was conducted and physicochemical properties of two kinds of BSCs from this region was analyzed.The results showed that BSCs occupy 37.3%~51.7% of the soil surface and the cyanobacteria crust is dominant across the study area,with a thickness of up to 12.6 mm,which was higher than the hot arid desert regions.At the same time,BSCs increase the silt particle content of 5~20 cm,but the impact is not significant,while it had remarkable effect on water holding capacity and soil bulk density.Water holding capacity of the BSCs layers increased by 10.0%~ 40.0% compared to the bare soils,while soil bulk density of the BSCs layer was 30.0% lower than bare soils. Both types of BSCs(dark cyanobacteria crusts and light cyanobacteria crusts)remarkably increased soil organic carbon content(TOC)of BSC layer and 0~20 cm soil layers.While both BSCs have different impact on soil to-tal nitrogen(TN)content,dark cyanobacteria crusts had significant increase on TN in the BSCs layers and be-low 20 cm soil layers,but light cyanobacteria crusts only increased BSCs layer TN had no impact on the below 20 cm soil layers.Meanwhile the BSCs have no significant impact on the soil pH.Biological crust is very impor-tant in the process of vegetation degradation in alpine ecosystem.The research results provide a theoretical basis for revealing the ecological functions of biological crust in alpine ecosystem. Z4 生物结皮是高寒地区地被层的重要组分之一。其作为地表特殊的结构层,能够改变地表结构及土壤理化属性,从而影响冻土环境。迄今为止,关于青藏高原高寒生态 系统中生物结皮对土壤理化属性的影响尚不清楚。以青藏高原高寒冻土区生物结皮为研究对象,初步研究了生物结皮的特征及其对土壤理化属性的影响。结果表明: 生物结皮在高寒草甸退化过程中广泛发育,主要以藻结皮为主,其盖度可达37.3%~51.7%,结皮层平均厚度为12.6 mm。由于生物结皮的发育,高寒地区5~20 cm土层粉粒含量有所增加,但差异不显著,而结皮层土壤田间持水量相比于裸地表层(2 cm)增加了10%~40%,结皮层容重较裸地降低了30%;两种类型藻结皮均显著增加了结皮层及其下0~20 cm土层土壤有机质,而深色藻结皮增加了结皮层及其下0~20 cm土层土壤全氮含量,浅色藻结皮仅增加了结皮层土壤全氮含量,对其下0~20 cm土层土壤全氮含量没有显著影响;生物结皮对土壤pH没有显著影响;生物结皮是高寒生态系统植被退化过程中的关键环节。研究结果为揭示生物结皮在高寒生 态系统中发挥重要生态功能提供依据。 C1 Ming Jiao, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Frozen Soil Engineering, Lanzhou, Gansu 730000, China. Sheng Yu, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Frozen Soil Engineering, Lanzhou, Gansu 730000, China. Jin Huijun, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Frozen Soil Engineering, Lanzhou, Gansu 730000, China. Zhang Ze, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Frozen Soil Engineering, Lanzhou, Gansu 730000, China. Du Yuxia, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Frozen Soil Engineering, Lanzhou, Gansu 730000, China. Z6 明姣, 中国科学院西北生态环境资源研究院, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 盛煜, 中国科学院西北生态环境资源研究院, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 金会军, 中国科学院西北生态环境资源研究院, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 张泽, 中国科学院西北生态环境资源研究院, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 杜玉霞, 中国科学院西北生态环境资源研究院, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. EM mingjiaowodeshijie@126.com Z7 mingjiaowodeshijie@126.com Z8 0 Z9 1 UT CSCD:6972497 DA 2023-03-23 ER PT J AU Fang Zhen Li Yaoming Ji Baoming Tsechoedorji Jiang Lili Wang Shiping Z2 方震 李耀明 纪宝明 斯确多吉 姜丽丽 汪诗平 TI Potential Feedback Effects of Soil Pathogenic Microorganisms on Grassland Degradation on the Qinghai Tibet Plateau Z1 土壤病原微生物对青藏高原草地退化的潜在反馈影响 Z3 中国草地学报 SO Chinese Journal of Grassland VL 43 IS 11 BP 105 EP 112 AR 1673-5021(2021)43:11<105:TRBYWS>2.0.TX;2-W PY 2021 DT Article AB The Qinghai Tibetan Plateau is an important ecological security shelter zone for China and even the whole Asian region.Due to the climate change and overgrazing,the alpine grassland ecosystem on the Qinghai-Tibetan plateau is under significant degradation,resulting in considerable ecological problems in China,and affecting its shelter function.Although plenty of studies focusing on the grassland ecosystem on the Qinghai-Tibetan Plateau have been conducted from different perspectives,there are still knowledge gaps in our understanding of the current situation of grassland degradation on the plateau and the corresponding mechanisms.In addition,we still know little about the impacts of grassland degradation on ecosystem processes,especially the response of soil pathogenic microorganisms to degradation and their feedback effects.Therefore,this paper summarized the current understanding of grassland degradation on the Qinghai-Tibetan Plateau from different aspects,including current situation of grassland degradation and the corresponding mechanisms,the effects of degradation on plants,soil,and microorganisms,especially the plant pathogenic microorganisms,to further promote the research on grassland restoration and construction of the national ecological security shelter zone in China. Z4 青藏高原是我国甚至整个亚洲地区重要的生态安全屏障。由于气候变化、过度放牧等原因,青藏高原高寒草地生态系统退化显著,严重影响了青藏高原生态安全屏障 功能的发挥。尽管国内外很多学者从不同角度开展了青藏高原草地生态系统相关研究,但是,目前对青藏高原草地退化的现状、形成机制和对生态系统各要素影响等 的认识还存在不足,尤其是草地退化过程中土壤病原微生物的变化过程及其对草地退化的反馈影响还处于起步阶段。因此,通过从青藏高原草地退化现状及形成机制 ,退化对植物、土壤和微生物的影响,尤其是植物演替-病原微生物以及土壤退化-病原微生物的相互关系层面,扼要综述当前对青藏高原草地退化的认识,以便进 一步推动我国退化草地恢复的相关研究,服务国家生态安全屏障战略。 C1 Fang Zhen, College of Grassland Science of Beijing Forestry University, Beijing 100083, China. Li Yaoming, College of Grassland Science of Beijing Forestry University, Beijing 100083, China. Ji Baoming, College of Grassland Science of Beijing Forestry University, Beijing 100083, China. Tsechoedorji, Institute of Tibetan Plateau Research, Chinese Academy of Sciences;;Naqu Alpine Grassland Ecosystem National Field Scientific Observation and Research Station, Kaima Station, State Key Laboratory of Tibetan Plateau Earth System Science;;Naqu Alpine Grassland Ecosystem National Field Scientific Observation and Research Station, Kaima Station, ;;Naqu, Beijing;; 100101;;852000. Jiang Lili, Institute of Tibetan Plateau Research, Chinese Academy of Sciences;;Naqu Alpine Grassland Ecosystem National Field Scientific Observation and Research Station, Kaima Station, State Key Laboratory of Tibetan Plateau Earth System Science;;Naqu Alpine Grassland Ecosystem National Field Scientific Observation and Research Station, Kaima Station, ;;Naqu, Beijing;; 100101;;852000. Wang Shiping, Institute of Tibetan Plateau Research, Chinese Academy of Sciences;;Naqu Alpine Grassland Ecosystem National Field Scientific Observation and Research Station, Kaima Station, State Key Laboratory of Tibetan Plateau Earth System Science;;Naqu Alpine Grassland Ecosystem National Field Scientific Observation and Research Station, Kaima Station, ;;Naqu, Beijing;; 100101;;852000. Z6 方震, 北京林业大学草业与草原学院, 北京 100083, 中国. 李耀明, 北京林业大学草业与草原学院, 北京 100083, 中国. 纪宝明, 北京林业大学草业与草原学院, 北京 100083, 中国. 斯确多吉, 中国科学院青藏高原研究所;;西藏那曲高寒草地生态系统国家野外科学观测研究站凯玛村子站, 青藏高原地球系统科学国家重点实验室;;西藏那曲高寒草地生态系统国家野外科学观测研究站凯玛村子站, ;;那曲, 北京;;西藏 100101;;852000, 中国. 姜丽丽, 中国科学院青藏高原研究所;;西藏那曲高寒草地生态系统国家野外科学观测研究站凯玛村子站, 青藏高原地球系统科学国家重点实验室;;西藏那曲高寒草地生态系统国家野外科学观测研究站凯玛村子站, ;;那曲, 北京;;西藏 100101;;852000, 中国. 汪诗平, 中国科学院青藏高原研究所;;西藏那曲高寒草地生态系统国家野外科学观测研究站凯玛村子站, 青藏高原地球系统科学国家重点实验室;;西藏那曲高寒草地生态系统国家野外科学观测研究站凯玛村子站, ;;那曲, 北京;;西藏 100101;;852000, 中国. EM wailianbu_fz@163.com; yaomingli@bjfu.edu.cn Z7 wailianbu_fz@163.com; yaomingli@bjfu.edu.cn Z8 0 Z9 0 UT CSCD:7097574 DA 2023-03-23 ER PT J AU Yang Dan Zhou Bo Cheng Shouming Z2 杨丹 周波 成受明 TI Dynamic Evaluation and Driving Factors of Natural Capital in High-Frigid Ecological Vulnerable Region: A Case of Lhasa Z1 高寒生态脆弱区自然资本动态评估及驱动因素研究--以拉萨市为例 Z3 西部人居环境学刊 SO Journal of Human Settlements in West China VL 36 IS 3 BP 89 EP 97 AR 2095-6304(2021)36:3<89:GHSTCR>2.0.TX;2-W PY 2021 DT Article AB Ecological civilization construction and ecological environment protection in alpine ecologically fragile areas have long been the focus of national and local government departments.Lhasa is located in Qinghai-Tibet Plateau with fragile ecosystem and is a typical ecologically fragile city in alpine areas.Taking Lhasa as a typical case,this paper constructs a footprint account with Lhasa characteristics,selects the yield factor and equilibrium factor in Tibet,uses the improved 3D ecological footprint model to dynamically analyze the utilization of natural capital from 2009 to 2018,and uses the partial least square method to explore its driving factors,which is helpful to provide reference for the coordinated development of ecological civilization construction and social economy in Lhasa and similar alpine ecologically fragile areas.The results show that: 1)From 2009 to 2018,the per capita ecological footprint of Lhasa decreased first and then fluctuated and increased.The per capita ecological carrying capacity continued to decline,and the contradiction between supply and demand of natural capital in Lhasa increased and gradually changed from profit to loss.This shows that the production and life of Lhasa's population are exerting increasing pressure on Lhasa's ecosystem.Among them,the biological resources account is the main driving force of Lhasa's ecological footprint growth,but the proportion of energy consumption account is on the rise.From the internal composition of each account,there are obvious differences among different resource accounts.In the biological resources account,agricultural products account for the largest proportion,followed by forest products and grass products,and aquatic products account for the smallest proportion.In the energy consumption account,the per capita ecological footprint of liquefied petroleum gas accounts for the largest proportion,with the passage of time,the proportion gradually decreases the proportion of natural gas increases significantly,and the energy use structure is optimized.2)The changing trend of footprint depth and footprint breadth indicates that the flow capital can no longer meet the needs of production and living,and the development of Lhasa is increasingly dependent on the stock capital.Up to 2018,14.058 times of cultivated land area and 1.138 times of forest land area are needed to basically maintain and realize the ecological environment balance and sustainable development of Lhasa.The per capita ecological footprint breadth of different land types is analyzed,which shows that woodland and grassland are important natural capital land types in Lhasa,and cultivated land resources are in short supply,and the development and utilization degree of water and construction land is not high.3)From the perspective of land use types,cultivated land is the main way of capital stock consumption,and the sustainability of resource utilization is weak.The ecological pressure of forest land is increasing,and it is in the transition stage from occupying capital flow to consuming capital stock.Grassland,water area and construction land are occupied by flow capital. Z4 拉萨市地处高寒地区,自身生态环境脆弱,文章通过改进的三维生态足迹模型测度拉萨市2009-2018年自然资本的动态变化,并用偏最小二乘回归法对变化 的驱动因素进行分析,为拉萨市正确处理资源利用与经济社会发展之间的关系提供科学依据。结果表明:一、2009-2018年,拉萨市人均生态足迹呈先下降 后波动上升的变化趋势,人均生态承载力持续下降,拉萨市自然资本供需矛盾增加,逐渐由盈转亏;二、足迹深度与足迹广度表明流量资本已经无法满足生产生活需 求,拉萨市发展对存量资本的依赖性增强;三、从用地类型来看,草地、水域与建筑用地处于流量资本占用状态,耕地是资本存量消耗的主要方式,林地处于两者之 间的过渡阶段;四、社会投资、消费水平以及产业结构中的第三产业发展对自然资本的利用有显著的驱动作用。 Z6 杨丹, 四川大学建筑与环境学院. 周波, 四川大学建筑与环境学院. 成受明, 四川大学建筑与环境学院. EM zxt001@163.com Z7 zxt001@163.com Z8 0 Z9 0 UT CSCD:7089385 DA 2023-03-23 ER PT J AU Lin Li Cao Guangmin Fan Bo Ke Xun Li Qian Lan Yuting Peng Cuoji Dai Licong Li Yikang Zhou Chunli Z2 林丽 曹广民 樊博 柯浔 李茜 兰玉婷 朋措吉 戴黎聪 李以康 周春丽 TI Effects of grazingon mini-patch and their component characteristics in alpine grassland Z1 放牧对高寒草地微尺度斑块及其构件特征的影响 Z3 草原与草坪 SO Grassland and Turf VL 41 IS 4 BP 143 EP 153 AR 1009-5500(2021)41:4<143:FMDGHC>2.0.TX;2-J PY 2021 DT Article AB The alpine grassland is the main pasture on the Qinghai-Tibetan Plateau,with the worst climatic environment to plant communities and a long history of livestock grazing.In the recent years,the alpine grasslands have been disturbed due to overgrazing and climate change,which damaged the function of ecosystem,influenced soil nutrients,water conservation and threatened the living condition of the herdsmen.Mini-patches are the basic material for carrying out research on the structural characteristics of ecosystems,the function of components of ecosystems,and the organizational pattern of alpine grassland.Meanwhile it provides useful tool in understanding the mechanisms of ecosystem succession and stability.In this article we used mini-patches as tool to understand the succession process of alpine grassland ecosystem,organizational pattern and mechanisms of ecosystems for maintaining stability.It would provide guidelines on understanding the processes and mechanisms of the alpine grassland associated with degradation process.More researches would be required using mini-patch as a tool on the assessment of ecosystem health and the restoration of damaged ecosystems. Z4 斑块是放牧生态系统景观的固有组分,是草地生态系统结构与功能体现的基础单元,是生态系统过程、稳定性维持和退化生态系统恢复研究的核心内容。以高寒草地 生态系统研究的重要工具之一微斑块为论述基础,从微斑块属性特性、构件特征及动态特征3个角度阐述了高寒草地演替中微斑块及其构件(植物群落、植物根系、 土壤养分及土壤微生物)与干扰的响应及变化过程,梳理了微斑块镶嵌体空间资源配置与生态系统稳定性维持之间的耦合关系。对相关研究结果的概述有助于深刻理 解草地生态系统维持机制、自组织形式及对干扰的应对策略,以期为受损高寒草地的恢复提供理论依据。 C1 Lin Li, Northwest Institution of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Ke Xun, Northwest Institution of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Peng Cuoji, Northwest Institution of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Dai Licong, Northwest Institution of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Zhou Chunli, Northwest Institution of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Cao Guangmin, Northwest Institution of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Fan Bo, Northwest Institution of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Qian, Northwest Institution of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Lan Yuting, Northwest Institution of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Yikang, Northwest Institution of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 林丽, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 柯浔, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 朋措吉, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 戴黎聪, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 周春丽, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 樊博, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李茜, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 兰玉婷, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM linli@nwipb.cas.cn; caogm@nwipb.cas.cn Z7 linli@nwipb.cas.cn; caogm@nwipb.cas.cn Z8 0 Z9 0 UT CSCD:7053298 DA 2023-03-23 ER PT J AU Chai Yu Wei Weidong Li Xilai Li Chengyi Yang Xinguang Ma Panpan Xu Wenyin Z2 柴瑜 魏卫东 李希来 李成一 杨鑫光 马盼盼 徐文印 TI Effect of Freezing-thawing on Organic Carbon in Soil Aggregates in Degraded Alpine Steppe Z1 冻融作用对退化高寒草原土壤团聚体有机碳的影响 Z3 西北农业学报 SO Acat Agriculturae Boreali-Occidentalis Sinica VL 30 IS 11 BP 1685 EP 1694 AR 1004-1389(2021)30:11<1685:DRZYDT>2.0.TX;2-7 PY 2021 DT Article AB Sample research plots were set up in the alpine grasslands with typical degradation characteristics in the Sanjiangyuan source region,soil samples were collected for freeze-thaw treatment,and the effect of freeze-thaw cycles on the organic carbon of soil aggregates in degraded alpine grasslands was explored.The results showed the content of soil organic carbon decreased with the increase of the number of freeze-thaw cycles;the content of organic carbon in soil aggregates of <0.25 mm,0.5-1 mm,1-2 mm,2-10 mm size decreased with the increase of the number of freeze-thaw cycles,which was positively correlated with soil organic carbon content,correlation coefficient was 0.991- 0.344;the change trend of organic carbon content in soil aggregates of 0.25-0.5 mm grain size was opposite,which was negatively correlated with soil organic carbon content,the correlation coefficient was -0.226--0.547;the content of organic carbon in soil aggregates increased from 14 freeze-thaw cycles to 0 cycles with the increase of the aggregate size;when the degree of degradation was intensified,the organic carbon content of soil aggregates of 2-10 mm grain size decreased by 57.6%,64.9%,61.4%,and 75.2%,respectively.The increases in the number of soil freeze-thaw cycles and grassland degradation are factors that lead to change the organic carbon of aggregates at all particle levels in the soil,which is not conducive to the stability of the alpine grassland ecosystem. Z4 在三江源区具有典型退化特征的高寒草原设置研究样地,采集土样进行冻融处理,探讨冻融循环对退化高寒草原土壤团聚体有机碳的影响。结果表明:土壤有机碳含 量与<0.25 mm、0.5~1 mm、1~2 mm、2~10 mm粒级土壤团聚体有机碳含量均随冻融循环次数的增加而减少,且各粒级土壤团聚体有机碳含量与土壤有机碳含量间正相关,相关系数0.991~0.344。 0.25~0.5 mm粒级土壤团聚体有机碳含量的变化随冻融循环次数的增加而增加,且与土壤有机碳含量呈负相关关系,相关系数-0.226~-0.547;与未冻融处理相 比,冻融循环14次土壤团聚体有机碳含量随团聚体粒级的增大而增大;随高寒草原退化程度加剧,2~10 mm粒级土壤团聚体有机碳含量分别减少57.6%、64.9%、61.4%、75.2%。土壤冻融循环次数增加与草地退化等是导致土壤各粒级团聚体有机碳 变化的因素,不利于高寒草原草地生态系统的稳定。 C1 Chai Yu, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Li Xilai, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Li Chengyi, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Ma Panpan, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Xu Wenyin, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Wei Weidong, College of Agriculture and Animal Husbandry,Qinghai University;;Qinghai Provincial Key Laboratory of Adaptability Management of Alpine Grassland, ;;Qinghai Provincial Key Laboratory of Adaptability Management of Alpine Grassland, Xining;;Xining, ;; 810016;;810016. Yang Xinguang, College of Eco-environment and Resources,Qinghai Nationalities University, Xining, Qinghai 810016, China. Z6 柴瑜, 青海大学农牧学院, 西宁, 青海 810016, 中国. 李希来, 青海大学农牧学院, 西宁, 青海 810016, 中国. 李成一, 青海大学农牧学院, 西宁, 青海 810016, 中国. 马盼盼, 青海大学农牧学院, 西宁, 青海 810016, 中国. 徐文印, 青海大学农牧学院, 西宁, 青海 810016, 中国. 魏卫东, 青海大学农牧学院;;青海省高寒草地适应性管理重点实验室, ;;青海省高寒草地适应性管理重点实验室, 西宁;;西宁, ;; 810016;;810016. 杨鑫光, 青海民族大学生态环境与资源学院, 西宁, 青海 810016, 中国. EM chaiyu0731@163.com; qhweidong@163.com Z7 chaiyu0731@163.com; qhweidong@163.com Z8 0 Z9 0 UT CSCD:7096129 DA 2023-03-23 ER PT J AU Zhu Ling Li Yi Yang Wanqiu Gao Yongheng Z2 朱灵 李易 杨婉秋 高永恒 TI Effect of Desertification on Soil Carbon and Nitrogen,Enzyme Activity and Bacterial Diversity in Alpine Grassland Z1 沙化对高寒草地土壤碳、氮、酶活性及细菌多样性的影响 Z3 水土保持学报 SO Journal of Soil and Water Conservation VL 35 IS 3 BP 350 EP 358 AR 1009-2242(2021)35:3<350:SHDGHC>2.0.TX;2-H PY 2021 DT Article AB Alpine grassland desertification is a serious threat to the ecological security of the Tibetan Plateau. Studying the variations in soil carbon,nitrogen and microorganisms during desertification processes is helpful to reveal the biological mechanism driving the desertification of alpine grassland.In this study,the variations of soil carbon and nitrogen,enzyme activity,and bacterial community diversity under the conditions of non-desertification, light desertification,medium desertification and heavy desertification were analyzed.The results showed that the medium and heavy desertification decreased soil organic carbon,dissolved organic carbon,microbial biomass carbon,total nitrogen,soluble total nitrogen,soluble organic nitrogen,microbial biomass nitrogen,nitrate nitrogen and ammonium nitrogen;while light desertification had no significant impacts on soil organic carbon, microbial biomass nitrogen,nitrate nitrogen and ammonium nitrogen.Thebeta-D-Glucosidase,Sucrase, Chitinase,Urease and Peroxidase activities decreased with the increasing desertification,and the most drastic decline occurred at the stage from light to medium desertification.Soil bacterial diversity increased under light desertification,and then decreased under medium and heavy desertification,but there was no significant difference in soil bacterial community structure under different degrees of desertification.RDA showed that there was a significant positive correlation between soil enzyme activity and bacterial diversity.PCA showed that soil organic carbon,microbial biomass nitrogen,peroxidase,and chitinase had great impact on dominant bacteria species.Therefore,the protection measures taken at the light desertification stage could effectively prevent soil attributes from becoming a more severe condition in alpine grassland,in addition,the role of key bacterial communities also should be concerned during the restore process of desertificated soil. Z4 高寒草地沙化是青藏高原生态安全的严峻威胁,研究沙化过程中土壤碳氮和微生物变化有助于揭示驱动高寒草地沙化演替的生物学机制。以川西北沙化高寒草地为研 究对象,分析了未沙化、轻度沙化、中度沙化和重度沙化程度下土壤碳氮、酶活性以及细菌多样性的变化。结果表明:中度和重度沙化显著降低了土壤有机碳、溶解 性有机碳、微生物量碳、全氮、可溶解性总氮、可溶解性有机氮、微生物量氮、硝态氮和铵态氮含量(P<0.05),但轻度沙化下的土壤有机碳、微生物量碳、 硝态氮和铵态氮含量没有显著变化;土壤beta-葡萄糖苷酶、蔗糖酶、几丁质酶、脲酶和过氧化物酶活性通常随沙化的加剧而降低,下降速率最大的阶段出现在 轻度沙化向中度沙化过渡的阶段;土壤细菌多样性随着沙化的加剧先增加后降低,最高细菌多样性出现在轻度沙化阶段,但不同沙化程度下土壤细菌群落结构并无显 著差异。冗余分析表明,土壤碳、氮、酶活性与细菌多样性呈正相关关系;主成分分析表明,土壤有机碳、微生物量氮、过氧化物酶和几丁质酶对土壤优势菌的影响 最大。因此,在轻度沙化阶段及时采取治理措施更能有效阻止土壤性质的恶化,在沙化土壤恢复过程中还需要关注少数菌群的重建作用。 C1 Zhu Ling, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences and Ministry of Water Resources;;University of Chinese Academy of Sciences, ;;, Chengdu;;, ;;Beijing 610041;;100049. Li Yi, Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Yang Wanqiu, Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Gao Yongheng, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences and Ministry of Water Resources;;Chengdu Institute of Biology,Chinese Academy of Sciences, ;;, Chengdu;;Chengdu, ;; 610041;;610041. Z6 朱灵, 中国科学院、水利部成都山地灾害与环境研究所;;中国科学院大学, ;;, 成都;;, ;;北京 610041;;100049. 李易, 中国科学院成都生物研究所, 成都, 四川 610041, 中国. 杨婉秋, 中国科学院成都生物研究所, 成都, 四川 610041, 中国. 高永恒, 中国科学院、水利部成都山地灾害与环境研究所;;中国科学院成都生物研究所, ;;, 成都;;成都, ;; 610041;;610041. EM 1165612297@qq.com; yhgao@imde.ac.cn Z7 1165612297@qq.com; yhgao@imde.ac.cn Z8 2 Z9 3 UT CSCD:6993878 DA 2023-03-23 ER PT J AU Li Chengyang Zhang Wenjuan Lai Chimin Peng Fei Chen Xiaojie Xue Xian Wang Tao You Quangang Du Heqiang Z2 李成阳 张文娟 赖炽敏 彭飞 陈小杰 薛娴 王涛 尤全刚 杜鹤强 TI Plant productivity,species diversity,soil properties,and their relationships in an alpine steppe under different degradation degrees at the source of the Yellow River Z1 黄河源区不同退化程度高寒草原群落生产力、物种多样性和土壤特性及其关系研究 Z3 生态学报 SO Acta Ecologica Sinica VL 41 IS 11 BP 4541 EP 4551 AR 1000-0933(2021)41:11<4541:HHYQBT>2.0.TX;2-K PY 2021 DT Article AB In recent years,overgrazing and an increasingly warm and dry climate have resulted in significant degradation of the alpine grasslands in the source region of the Yellow River,which has seriously harmed both the sustainable development of local animal husbandry and the environment.After degradation,the interaction between vegetation productivity,species diversity,and soil nutrients can aggravate the degradation of alpine grasslands.Most previous studies have focused on community productivity,species diversity,and their relationships after degradation;however,the change in soil elements in the process of degradation is often neglected.Exploring the relationship between vegetation community productivity,species diversity,and soil nutrients has important practical significance to understand the degradation process of alpine grasslands and their restoration.In this study,the method of spatial distribution or temporal succession was used in the source region of the Yellow River.Five degraded gradients from intact to very severely degraded alpine steppes were selected based on the vegetation cover and the dominant species to explore the relationship between vegetation community productivity,species diversity,and soil nutrients.Our results showed:1) with the aggravation of the degradation degree,the aboveground and belowground biomasses of the community showed a non-significant trend towards a decrease,reaching the maximum in the slightly degraded stage,and was significantly reduced in the severely and very severely degraded stages;2) the Shannon-Wiener diversity index increased by 20% and 15% in the slightly and moderately degraded stage,respectively (P=0.025 and P=0.039,respectively);the evenness index showed a no-significant change from the intact to severely degraded stage,and the species diversity index decreased significantly in the very severely degraded stage;3) soil moisture,organic carbon,total nitrogen,ammonium nitrogen,and nitrate nitrogen at first showed a trend towards non-significant change and then decreased,and soil bulk density increased significantly with the aggravation of degradation;4) community biomass and species diversity were positively correlated to soil nutrient levels and was negatively correlated to the soil bulk density;redundancy analysis results showed that soil bulk density,nitrate nitrogen,and organic carbon were the main soil factors driving changes in vegetation factors during degradation.Therefore,different restoration and management measures should be adopted for different degradation stages,especially to improve soil nutrients and physical properties in the severely degraded and very severely degraded stages.At the same time,more attention should be paid to the two key stages of moderate and severe degradation. Z4 近些年来,气候暖干化和过度放牧导致黄河源区高寒草原发生明显退化,严重影响了当地畜牧业和环境的可持续发展。退化后,植被群落生产力、物种多样性和土壤 因子之间相互作用、相互影响,使生态系统持续恶化。以往的研究中研究人员对退化后群落生产力和物种多样性关系关注较多,但对退化过程中土壤要素变化的重视 程度往往不够。因此,探究不同退化程度下高寒草原群落生产力、物种多样性和土壤特性及其关系对于认识高寒草地退化过程及退化草地恢复具有重要现实意义。在 黄河源区采用空间分布代替时间演替的方法,根据植被和土壤特征选取了未退化到严重退化5个退化梯度,探讨不同退化程度下高寒草原群落生产力、物种多样性和 土壤特性及其关系。结果表明:1)随着退化程度的加剧,群落地上和地下生物量均呈先稳定后降低的趋势,在轻度退化阶段达到最大值,重度和严重退化阶段显著 降低;2)Shannon-Wiener多样性指数在轻度和中度退化阶段显著增加了20%和15%(P=0.025和P=0.039),均匀度指数从未退 化到重度退化变化不明显,严重退化阶段物种多样性指数均显著降低;3)土壤水分、各深度土壤有机碳、全氮、铵态氮和硝态氮均呈先稳定后降低的变化规律,土 壤容重随着退化程度的加剧而显著增加;4)群落生物量、物种多样性与土壤养分呈正相关关系,与土壤容重呈负相关关系,冗余分析结果显示土壤容重、硝态氮、 有机碳是退化过程中驱动植被因子变化的主要因素。因此,针对不同退化阶段采取不同的恢复治理措施,尤其是改善土壤养分和物理性质,同时对中度和重度退化两 个关键阶段应该给予更多的关注。 C1 Li Chengyang, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences;;, Lanzhou;;, ;;Beijing 730000;;100049. Zhang Wenjuan, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences;;, Lanzhou;;, ;;Beijing 730000;;100049. Lai Chimin, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences;;, Lanzhou;;, ;;Beijing 730000;;100049. Chen Xiaojie, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences;;, Lanzhou;;, ;;Beijing 730000;;100049. Peng Fei, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Xue Xian, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Wang Tao, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. You Quangang, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Du Heqiang, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 李成阳, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, ;;北京 730000;;100049. 张文娟, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, ;;北京 730000;;100049. 赖炽敏, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, ;;北京 730000;;100049. 陈小杰, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, ;;北京 730000;;100049. 彭飞, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 薛娴, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 王涛, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 杜鹤强, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. EM pengfei@lzb.ac.cn Z7 pengfei@lzb.ac.cn Z8 3 Z9 4 UT CSCD:6991636 DA 2023-03-23 ER PT J AU Wen Yangxue Zhao Bo Luo Qiaoyu Jia Yunlong Feng Tao Wang Qiang Z2 温杨雪 赵博 罗巧玉 贾云龙 冯涛 王强 TI Distribution and ecological role in close-to-nature restoration of arbuscular mycorrhizal fungi in Tibetan Plateau alpine grassland Z1 青藏高原高寒草地AM真菌分布及其对近自然恢复的生态作用 Z3 菌物学报 SO Mygosystema VL 40 IS 10 BP 2562 EP 2578 AR 1672-6472(2021)40:10<2562:QZGYGH>2.0.TX;2-4 PY 2021 DT Article AB Overgrazing and global climate change have caused most of the Tibetan Plateau alpine grasslands to show a continuous degradation trend. The degradation of the alpine grasslands has led to the gradual replacement of aboveground plant communities, and changes in the diversity and richness of underground soil microbial communities. This review aims at exploring the distribution characteristics and physiological and ecological effects on close-to-nature restoration of arbuscular mycorrhizal (AM) fungi in the alpine grasslands. In the alpine grasslands, 61 species of 14 genera in 4 orders of AM fungi have been reported, accounting for about 20% of the known AM fungal species. In the rhizosphere of grasses, the species abundance of AM fungi is the highest in alpine grassland; while in the sedge rhizosphere, the AM fungal spore density is the highest. Among the three alpine grassland vegetation types, AM fungi were the most abundant in alpine steppe with 33 species, secondarily in mountain shrub steppe with 32 species and only 22 species in alpine meadow. At species level, Acaulospora laevis and Pacispora scintillans are dominant in the alpine steppe, Funneliformis mosseae is dominant in the montane scrub, and A. laevis, Glomus claroideum, and P. scintillans dominate the alpine meadow. The mycorrhizal networks of indigenous AM fungi in alpine grassland can promote plant establishment and growth by regulating the absorption and allocation of nutrient elements; but the invasion of poisonous weeds can change the indigenous AM species diversity and common mycorrhizal networks, limiting the actual niche expansion of native grass species. AM fungal community has high environmental adaptability and resilience in the degraded alpine grassland. AM fungal community restoration not only regulates the establishment and diversity of aboveground plant community, but also increases the production of AM fungal product, glomalin-related soil protein, thereby synergistically improving the underground soil micro-ecosystem, shaping soil habitat for the early vegetation restoration. Therefore, AM fungi have great application potential in the close-to-nature restoration of degraded alpine grasslands. Z4 超载过牧以及全球气候变化等导致大部分青藏高原高寒草地呈现持续退化态势。青藏高原高寒草地退化致使地上植物群落逐渐发生更替,地下土壤微生物群落多样性 和丰富度发生改变。本文旨在探析青藏高原高寒草地丛枝菌根(arbuscular mycorrhizal,AM)真菌的分布特征、对近自然恢复的生理生态效应及其作用机制。青藏高原高寒草地中已报道4目14属61种AM真菌,约占已知 AM真菌物种的20%。高寒草地禾本科植物根围AM真菌物种丰度最高,而莎草科植物根围AM真菌孢子密度最高。3种高寒草地植被类型中,高寒草原AM真菌 丰度最高(33种),山地灌丛草原次之(32种),高寒草甸最低(22种)。高寒草原以光壁无梗囊霉Acaulospora laevis和闪亮和平囊霉Pacispora scintillans为优势种,山地灌丛草原以摩西斗管囊霉Funneliformis mosseae为优势种,高寒草甸以光壁无梗囊霉A. laevis、近明球囊霉Claroideoglomus claroideum和闪亮和平囊霉P. scintillans为优势种。高寒草地土著AM真菌与植物构建的菌根网络可以通过调节营养元素吸收、分配,促进植物建植和生长;但是毒杂草入侵可以改 变土著AM真菌物种多样性和菌根网络,限制本地植被的实际生态位扩张。退化高寒草地中,AM真菌群落具有高的环境适应性和恢复力,其不仅调控地上植物群落 建植和多样性,同时AM真菌建植也增加了代谢产物-球囊霉素相关土壤蛋白产生,进而协同改善地下土壤微生态系统,为退化高寒草地早期植被恢复塑造土壤生境 。因此,AM真菌在退化高寒草地近自然恢复中具有较大的应用潜力。 C1 Wen Yangxue, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou, Gansu 730020, China. Zhao Bo, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou, Gansu 730020, China. Jia Yunlong, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou, Gansu 730020, China. Feng Tao, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou, Gansu 730020, China. Wang Qiang, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou, Gansu 730020, China. Luo Qiaoyu, School of Life Sciences, Qinghai Normal University, Academy of Plateau Science and Sustainability, Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Xining, Qinghai 810008, China. Z6 温杨雪, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 赵博, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 贾云龙, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 冯涛, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 王强, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 罗巧玉, 青海师范大学生命科学学院高原科学与可持续发展研究院, 青海省青藏高原药用动植物资源重点实验室, 西宁, 青海 810008, 中国. EM wqiang@lzu.edu.cn Z7 wqiang@lzu.edu.cn Z8 0 Z9 0 UT CSCD:7085191 DA 2023-03-23 ER PT J AU Wang Xiaofen Ma Yuan Zhang Gefei Lin Dong Zhang Degang Z2 王晓芬 马源 张格非 林栋 张德罡 TI Relationship between Plant Community Diversity and Ecosystem Multifunctionality During Alpine Meadow Degradation Z1 高寒草甸退化阶段植物群落多样性与系统多功能性的联系 Z3 草地学报 SO Acta Agrestia Sinica VL 29 IS 5 BP 1053 EP 1060 AR 1007-0435(2021)29:5<1053:GHCDTH>2.0.TX;2-L PY 2021 DT Article AB The system functions of alpine grasslands in terms of carbon storage,productivity,nutrient cycling,and water conservation are closely related to the community biodiversity.However,most studies at this stage have been conducted only on the relationship between a few or single ecosystem functions and community diversity.Based on this, this study used redundancy analysis and factor analysis to evaluate the multifunctionality of degraded alpine meadow communities on the eastern edge of the Qinghai-Tibet Plateau and to explore the relationship between the multifunctionality of grassland ecosystems and plant community diversity.The results showed that the multifunctional evaluation indexes with the increase of grassland degradation were ND(86.61)>MD(25.86)>LD(23.98)>SD(-7.51);the multifunctionality of grassland ecosystem was significantly and positively correlated with Margalef index,and significantly correlated with Pielou index and Shannon-Wiener index.The distribution and community structure of degraded alpine meadows were mainly influenced by functional soil indicators such as BP,SMC,CMC and AP,but not affected by pH,C∶N and Ext-P.In summary,vegetation degradation in alpine meadows regions had a significant impact on ecosystem multifunctionality,which provided a certain theoretical basis and important reference value for further research on the multifunctionality of alpine meadows and the rational conservation and utilization of grasslands. Z4 高寒草地在碳储量、生产力、养分循环以及涵养水源等方面的系统功能与群落生物多样性紧密相关,但现阶段大多数研究仅从少数的或单一生态系统功能与群落多样 性之间的关系展开。基于此,本研究采用冗余分析和因子分析对青藏高原东缘退化高寒草甸群落进行了多功能性评价,探讨草地生态系统多功能性与植物群落多样性 之间的关系。结果表明:随草地退化程度加剧,土壤多功能评价指标表现为未退化(86.61)>中度退化(25.86)>轻度退化(23.98)>极度退化 (-7.51);草地生态系统多功能性与Margalef丰富度成显著正相关关系,与Pielou均匀度指数和Shannon-Wiener指数呈显著负 相关关系;退化高寒草甸植物的分布和群落结构的变化主要受到土壤总孔隙度、土壤含水量、毛管持水量和通气孔隙度等土壤功能性状的影响。综上所述,高寒地区 植被退化对于生态系统的多功能性影响显著,本研究为进一步研究高寒草甸多功能性及合理保护和利用草地提供一定的理论依据和参考价值。 C1 Wang Xiaofen, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Lin Dong, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Zhang Degang, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Ma Yuan, Qinghai Academy of Animal and Veterinary Sciences,Qinghai University, Xining, Qinghai 810016, China. Zhang Gefei, North Institute of Eco-Environment and Resources,CAS, Lanzhou, Gansu 730070, China. Z6 王晓芬, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 林栋, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 张德罡, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 马源, 青海大学畜牧兽医科学院, 西宁, 青海 810016, 中国. 张格非, 中国科学院西北生态资源研究院, 兰州, 甘肃 730070, 中国. EM wangxf@gsau.edu.cn; zhangdg@gsau.edu.cn Z7 wangxf@gsau.edu.cn; zhangdg@gsau.edu.cn Z8 4 Z9 7 UT CSCD:6988955 DA 2023-03-23 ER PT J AU Xing Xuegang Yan Changzhen Lu Junfeng Zhai Xiaohui Jia Haowei Xie Jiali Z2 邢学刚 颜长珍 逯军峰 翟晓慧 贾浩巍 谢家丽 TI Response of vegetation index to degraded succession of alpine meadow in Qinghai,China Z1 青海高寒草甸退化演替中的植被指数 Z3 中国沙漠 SO Journal of Desert Research VL 41 IS 3 BP 203 EP 213 AR 1000-694X(2021)41:3<203:QHGHCD>2.0.TX;2-6 PY 2021 DT Article AB With the climate change and disturbance of human activities,the degradation of Qinghai-Tibet plateau meadow has become a serious ecological and environmental problem.It is of great significance to accurately identify the degradation degree of meadow and formulate the corresponding strategies for restoration of degraded meadow to realize the sustainable development of alpine meadow.Currently,low spatial resolution MODIS data is the main data source for remote sensing monitoring of grassland degradation,but it is difficult to meet the application in areas with strong landscape fragmentation or heterogeneity.Based on field survey data,this study uses multi-source remote sensing data(MODIS,Landsat,and Sentinel-2)to study the response of the normalized vegetation index(NDVI)at different scales to the degraded succession of alpine meadows,and provides a basis for accurately assessing the degree of meadow degradation.The results showed that:(1)With the degradation of alpine meadows,the evolution trend of dominant species in the vegetation community was from gramineae grass,kobresia humilis,kobresia pygmaea to forbs community;vegetation height and biomass first declined rapidly,then slowly declined or tended to stable,while the vegetation coverage and NDVI changes have opposite characteristics.(2)With the drought of wetland meadows,the dominant species of vegetation community changes from kobresia tibetica to kobresia humilis or kobresia pygmaea.The average vegetation height,biomass and coverage of wetland are slightly lower than that of the original wetland at the initial stage of drought.NDVI is slightly larger than the original wetland,and the difference is not significant.(3)The correlation between meadow height,coverage and biomass and NDVI of Sentinel-2 or Landsat was better than MODIS,indicating that NDVI of Sentinel-2 and Landsat was more sensitive to degradation succession of alpine meadow,and the data could be used to evaluate the degradation degree of alpine meadow more accurately. Z4 随着气候变化和人为活动干扰,高寒草甸退化已成为青藏高原严重的生态环境问题,精准识别其退化程度并制定相应恢复策略,对实现高寒草甸可持续发展具有重要 意义。目前,低空间分辨率MODIS数据为草地遥感监测的主要数据源,但难以满足景观破碎度或异质性较强地区的应用。本研究基于野外调查资料,利用多源遥 感数据(MODIS、Landsat、Sentinel-2)研究不同空间分辨率归一化植被指数(NDVI)对高寒草甸退化演替的响应,为准确评估青藏高 原高寒草甸退化程度提供依据。结果表明:(1)随着高寒草甸退化,植被群落优势种演化趋势为禾草矮嵩草小嵩草杂草群落;植被高度和生物量先快速下降,然后 缓慢下降或趋于稳定,植被覆盖度和NDVI的变化呈相反特征。(2)随着湿地草甸旱化,植被群落优势种从藏嵩草演变为矮嵩草或小嵩草,湿地旱化初期植被高 度、生物量和覆盖度平均值略低于原生湿地,NDVI略大于原生湿地,差异不显著。(3)植被高度、覆盖度和生物量与Sentinel-2或Landsat 的NDVI相关性均优于MODIS,说明Sentinel-2和Landsat的NDVI对高寒草甸退化演替过程更加敏感,采用该数据能更准确评估高寒草 甸退化程度。 C1 Xing Xuegang, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Lanzhou;;, ;;Beijing 730000;;100049. Zhai Xiaohui, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Lanzhou;;, ;;Beijing 730000;;100049. Jia Haowei, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Lanzhou;;, ;;Beijing 730000;;100049. Yan Changzhen, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;National Earth System Science Data Center, ;;, Lanzhou;;, ;;Beijing 730000;;100020. Lu Junfeng, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Xie Jiali, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 邢学刚, 中国科学院西北生态环境资源研究院;;中国科学院大学, ;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 翟晓慧, 中国科学院西北生态环境资源研究院;;中国科学院大学, ;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 贾浩巍, 中国科学院西北生态环境资源研究院;;中国科学院大学, ;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 颜长珍, 中国科学院西北生态环境资源研究院;;国家地球系统科学数据中心, ;;, 兰州;;, 甘肃;;北京 730000;;100020, 中国. 逯军峰, 中国科学院西北生态环境资源研究院, 兰州, 甘肃 730000, 中国. 谢家丽, 中国科学院西北生态环境资源研究院, 兰州, 甘肃 730000, 中国. EM xingxuegang@lzb.ac.cn; yancz@lzb.ac.cn Z7 xingxuegang@lzb.ac.cn; yancz@lzb.ac.cn Z8 3 Z9 3 UT CSCD:6981195 DA 2023-03-23 ER PT J AU Gao Erliang Bi Cheng Li Xinwei Yang Lili Liu Le Yao Ming Zhao Zhigang Lu Ningna Z2 高二亮 毕柽 李昕蔚 杨丽莉 刘乐 姚明 赵志刚 路宁娜 TI Effects of grazing in growing seasons on pollination networks in alpine meadow based on data of three consecutive years Z1 生长季放牧对高寒草甸传粉网络的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 41 IS 4 BP 1472 EP 1481 AR 1000-0933(2021)41:4<1472:SZJFMD>2.0.TX;2-C PY 2021 DT Article AB Plant-pollinator interactions are threatened by human activities. In the Tibetan Plateau,grazing is one of the main anthropic disturbances,and overgrazing has led to degradation of alpine meadow. However,it is still unclear how grazing affects plant-pollinator interaction network of alpine meadows. Here we collected data from two locations in the eastern Tibetan Plateau to evaluate the effects of grazing on the pollination networks in alpine meadow. Each location comprised one ungrazed plot (fenced during growing season) and one grazed plot (grazed all year). We conducted surveys during growing seasons (July and August) in three consecutive years (20162018),and constructed 16 pollination networks in total. The plants-pollinators interactions were surveyed using timed observation method by cameras. We found that the pollinator communities of alpine meadow were dominated by Diptera species. The richness of Diptera,Lepidoptera and Coleoptera pollinators were decreased after grazing,while the richness of Hymenoptera pollinators was unaffected by grazing. Grazing reduced the diversity of plants,pollinators and their interactions. The generalism of plants was also decreased by grazing,but the nestedness and specialization (H2 ') of networks were similar between treatments,indicated that the stability and resilience of pollination networks are unaffected by grazing. Furthermore,the network metrics were similar between different months,and grazing had similar impacts on pollination networks in July and August. Our study firstly investigated the effect of the grazing on the pollination networks of alpine meadows in the Tibetan Plateau. The results highlighted that the grazing intensity of study area is exceeded the optimum intensity as it decreased the diversity of pollinators and pollination networks. Further studies should focus on how pollination networks response to grazing intensity in alpine meadow to find a reasonable grazing regime. Z4 植物-传粉者相互作用面临人类活动的威胁。在青藏高原地区,放牧是一项主要的人类活动干扰,过度放牧导致高寒草甸植被严重退化。然而在该区域放牧如何影响 植物-传粉者相互作用网络还不得而知。在青藏高原东部的高寒草甸选取了两个研究样点,每个样点包括一块禁牧样地(生长季禁牧)和放牧样地(全年放牧) 。在2016年至2018年每年的生长季(7月和8月)进行了连续3年观测,共构建16个传粉网络。结果发现,在研究区域的高寒草甸生态系统中,传粉者群 落的物种组成以双翅目昆虫为主。放牧后双翅目、鳞翅目以及鞘翅目传粉者的种类数减少,但膜翅目传粉者的种类数未受到放牧的影响。放牧干扰显著降低了群落中 植物、传粉者以及它们之间相互作用的多样性,但对传粉网络的嵌套性和特化程度(H2 ')没有显著影响,说明网络的稳定性和恢复力没有受到放牧的影响。探讨了放牧对传粉网络的影响,发现区域放牧强度过大,降低了传粉昆虫和传粉网络的多样性 。未来需要进一步深入研究高寒草甸生态系统中放牧强度对传粉网络的影响模式,以期为合理的放牧制度模式提供理论依据。 C1 Gao Erliang, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, Gansu 730000, China. Bi Cheng, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, Gansu 730000, China. Li Xinwei, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, Gansu 730000, China. Yang Lili, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, Gansu 730000, China. Liu Le, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, Gansu 730000, China. Yao Ming, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, Gansu 730000, China. Zhao Zhigang, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou, Gansu 730000, China. Lu Ningna, School of Life Sciences,Northwest Normal University, Lanzhou, Gansu 730000, China. Z6 高二亮, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 毕柽, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 李昕蔚, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 杨丽莉, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 刘乐, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 姚明, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 赵志刚, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 路宁娜, 西北师范大学生命科学学院, 兰州, 甘肃 730000, 中国. EM zhaozhg@lzu.edu.cn Z7 zhaozhg@lzu.edu.cn Z8 0 Z9 0 UT CSCD:6923078 DA 2023-03-23 ER PT J AU Gao Zhixiang Liang Defei Li Honglin Li Xilai Z2 高志香 梁德飞 李宏林 李希来 TI Effect of non-woven fabric coverage on plant vegetation and soil characteristics of steep-gentle slope degraded grassland in Qinghai-Tibet Plateau Z1 无纺布对不同坡度高寒退化草甸地上植被和土壤理化特征的影响 Z3 生态科学 SO Ecologic Science VL 40 IS 5 BP 8 EP 15 AR 1008-8873(2021)40:5<8:WFBDBT>2.0.TX;2-1 PY 2021 DT Article AB In recent years,climate change and human activities have aggravated the degradation of alpine meadow in Qinghai Tibetan,in which had the characteristic of complex terrain and large slope span.Multiple restoration measures for degraded grassland were set in this area.Among these methods,the technology of relatively low interference to grassland-non woven fabric coverage could reduce the loss of water,and stabilize the fluctuation of soil temperature,which was more widely used in restoration of degraded grassland.However,the research for this technology was rare in alpine degraded meadow,especially on the habitat of different slopes.The study tested the effect of non-woven fabric coverage on the plant vegetation and soil physicochemical characteristics of alpine degraded meadow in gentle and steep slope.The result suggested that the plant above-ground biomass,average height,and the content of soil water in gentle slope were lower than in steep slope.Moreover,above-ground biomass,vegetation coverage,the sum of species coverage,soil water,and the content of soil carbon and nitrogen were promoted on non-woven fabric coverage.The interaction between non-woven fabric and slope significantly promoted the plant above-ground biomass,the sum of species coverage and the content of soil water,and the magnitude of positive effect was higher in gentle slope.These findings suggested that the non-woven fabric coverage was a suitable way for restoration of alpine degraded meadow,especially in gentle slope. Z4 当前三江源区高寒草甸在气候变化和人类活动作用下已经大面积退化。由于该区域地势复杂,除滩地之外,不同坡度的退化草地治理技术研究亟待加强。针对退化草 地恢复已有大量研究,然而对草地干扰相对较低的无纺布覆盖技术研究薄弱。基于以上,在三江源区不同坡度的高寒退化草甸通过铺设无纺布,来探讨无纺布对不同 坡度退化草地植被及土壤理化性质的影响。结果发现:缓坡地地上生物量、植被高度、土壤水分显著低于陡坡地;无纺布覆盖能显著提升植被地上生物量、盖度、物 种分盖度和、含水量以及碳、氮积累;且对缓坡地植被地上生物量、物种分盖度和及土壤水分的促进幅度更大。因此无纺布覆盖对植被及土壤提升效应说明这是一项 适宜于高寒退化草甸的恢复技术,特别对水热条件相对较差的缓坡退化草地治理中,此项技术适宜推广。 C1 Gao Zhixiang, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Liang Defei, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Li Honglin, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Li Xilai, College of Agriculture and Animal Husbandry,Qinghai University;;Qinghai University, ;;State Key Laboratory of Plateau Ecology and Agriculture, Xining;;Xining, ;; 810016;;810016. Z6 高志香, 青海大学农牧学院, 西宁, 青海 810016, 中国. 梁德飞, 青海大学, 青海省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 李宏林, 青海大学, 青海省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 李希来, 青海大学农牧学院;;青海大学, ;;青海省部共建三江源生态与高原农牧业国家重点实验室, 西宁;;西宁, ;; 810016;;810016. EM 2047581599@qq.com; liangdefei-go@163.com Z7 2047581599@qq.com; liangdefei-go@163.com Z8 0 Z9 1 UT CSCD:7125725 DA 2023-03-23 ER PT J AU Gao Chengfen Zhang Degang Wang Guodong Z2 高成芬 张德罡 王国栋 TI Effects of different intensityof short-term grazingon vegetation characteristics of alpine meadow Z1 不同强度短期放牧对高寒草甸植被特征的影响 Z3 草原与草坪 SO Grassland and Turf VL 41 IS 5 BP 9 EP 15 AR 1009-5500(2021)41:5<9:BTQDDQ>2.0.TX;2-3 PY 2021 DT Article AB This study explored the effects of short-term grazing with different intensity on the vegetation characteristics of alpine meadow,which had prohibited from grazing for five years and located at Jiacang Village, Luqu County,Gansu,China.The results showed that the aboveground biomass was highest in the non-grazed control(1 084g/m~2),and decreased gradually along with the increasing grazing intensity.The species richness and Shannon Wiener diversity index were the highest under moderate grazing,and lowest under heavy grazing, which was consistent withthe moderate disturbance theory.The density of grasses and sedges was the highest under moderate grazing.Heavy grazing significantly reduced the species richness and plant height of grasses compared with the control group(P<0.05).With the increasing grazing intensity,the species richness of poisonous weeds and edible weeds decreased significantly.In response to the increasing grazing intensity,the density of poisonous weeds increased but not significantly(P>0.05),while the density of edible weeds was significantly higher than that of the control group and light grazing(P<0.05).Most Ranunculaceae plants in the experimental area were poisonous weeds,and their species richness and density showed a similar trend with poisonous grass.Plant height of the control group was significantly higher than that of the three grazing treatments (P<0.05).Therefore,yak grazing with appropriate intensity could improve the structure and function of grassland vegetation and alleviate grassland degradation.In face of severe grassland degradation such as the sharp decrease of biomass and the loss of biodiversity,fencing could be used as an effective way to stop grazing. Z4 为探索不同强度短期放牧对高寒草甸植被特征的影响,在碌曲县加仓村选择禁牧5年的高寒草甸草地作为试验样地,通过不同强度放牧试验,探究其地上生物量变化 规律及其相互之间的关系,结果表明:对照组禁牧的地上生物量值最大,为1 084g/m~2,当放牧强度不断增大时,地上生物量逐步减小;重度放牧物种丰富度、Shannon-Wiener多样性指数最低,中度放牧最高,与中度 干扰理论相契合;禾草和莎草在中度放牧条件下密度最大,重度放牧使禾草物种丰富度和株高减小,与禁牧差异显著(P <0.05);杂类草在重度放牧条件下所占比重最高,其中,当放牧强度逐渐增大时,毒草和可食杂草物种丰富度明显减小,毒草密度随着放牧强度增大而增加, 但差异不显著(P>0.05),重度放牧可食杂草密度与禁牧、轻度放牧差异显著(P<0.05);试验区出现的毛茛科植物绝大多数为毒草,其物种丰富度和 密度表现出了和毒草相似的变化趋势,即物种丰富度逐渐下降,密度逐渐增加,禁牧株高与三个放牧实验组差异显著(P<0.05)。因此适宜强度的牦牛放牧可 使草地植被结构与功能得以改善,当高寒草甸发生退化时,可利用围栏禁牧作为有效恢复手段。 C1 Gao Chengfen, Sino- U·S·Centers for Grazingland Ecosystem Sustainability,College of Pratacultural Science,Gansu Agricultural University;;Gansu Grassland Technical Extension Station, Key Laboratory of Grassland Ecosystem,Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;;Gansu 730070;;730010. Zhang Degang, Sino- U·S·Centers for Grazingland Ecosystem Sustainability,College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem,Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Wang Guodong, Animal Husbandry,Pasture and Green Agriculture Institute, Lanzhou, Gansu 730070, China. Z6 高成芬, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心;;甘肃省草原技术推广总站, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, 甘肃;;甘肃 730070;;730010, 中国. 张德罡, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 王国栋, 甘肃省农业科学院畜草与绿色农业研究所, 兰州, 甘肃 730070, 中国. EM 1770987028@qq.com; zhangdg@gsau.edu.cn Z7 1770987028@qq.com; zhangdg@gsau.edu.cn Z8 0 Z9 0 UT CSCD:7121773 DA 2023-03-23 ER PT J AU Chen Ying Han Mengguang Yuan Xia Cao Guangmin Zhu Biao TI Seasonal changes in soil properties, microbial biomass and enzyme activities across the soil profile in two alpine ecosystems Z3 土壤生态学快报 SO Soil Ecology Letters VL 3 IS 4 BP 383 EP 394 AR 2662-2289(2021)3:4<383:SCISPM>2.0.TX;2-X PY 2021 DT Article AB Microbial biomass and extracellular enzyme activities control the rate of soil organic carbon decomposition, thereby affecting soil carbon pool. However, seasonal dynamics of soil microbial properties at different depths of the soil profile remain unclear. In this study, we sampled soils in the early, middle and late growing season at different soil depths (0-100 cm) in two alpine ecosystems (meadow and shrubland) on the Tibetan Plateau. We measured plant belowground biomass, soil properties, microbial biomass and extracellular enzyme activities. We found that soil properties changed significantly with sampling time and soil depth. Specifically, most of soil properties consistently decreased with increasing soil depth, but inconsistently varied with sampling time. Moreover, root biomass and microbial biomass decreased with increasing soil depth and increased with sampling time during the growing season. However, microbial extracellular enzyme activities and their vector properties all changed with depth, but did not vary significantly with time. Taken together, these results show that soil properties, microbial biomass and extracellular enzyme activities mostly decline with increasing depth of the soil profile, and soil properties and microbial biomass are generally more variable during the growing season than extracellular enzyme activities across the soil profile in these alpine ecosystems. Further studies are needed to investigate the changes in soil microbial community composition and function at different soil depths over the growing season, which can enhance our mechanistic understanding of whole-profile soil carbon dynamics of alpine ecosystems under climate change. C1 Chen Ying, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Key Laboratory for Earth Surface Processes of the Ministry of Education, Beijing 100871, China. Han Mengguang, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Key Laboratory for Earth Surface Processes of the Ministry of Education, Beijing 100871, China. Yuan Xia, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Key Laboratory for Earth Surface Processes of the Ministry of Education, Beijing 100871, China. Zhu Biao, Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Key Laboratory for Earth Surface Processes of the Ministry of Education, Beijing 100871, China. Cao Guangmin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, Qinghai 810008, China. EM biaozhu@pku.edu.cn Z8 0 Z9 6 UT CSCD:7185267 DA 2023-03-23 ER PT J AU Zhang Xiao Wang Jun Gao Yan Wang Lixin TI Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years Z3 地理学与可持续性 SO Geography and Sustainability VL 2 IS 1 BP 74 EP 85 AR 2096-7438(2021)2:1<74:VACFOV>2.0.TX;2-P PY 2021 DT Article AB The impacts of climate change and human activities on vegetation dynamics have attracted wide attention, especially in sensitive and vulnerable areas such as the Qingzang Plateau of China. In this region, a series of ecological restoration projects have been launched while the effectiveness of these projects requires evaluation and further improvements. Remote sensing with high temporal resolution and spatial coverage is an effective way for the vegetation dynamics research in this region. In this study, the spatial and temporal distribution of climate factors and vegetation coverage as well as the influencing factors such as air temperature, precipitation, land use, slope,slope direction, soil and altitude were analyzed. The geographical detector was used to analyze the influence of climate factors on vegetation coverage and the interaction among factors in different eco-geographical regions. The results showed that: 1) the average values from the 20 years of normalized difference vegetation index (NDVI) decreased gradually from southeast ( >0.61) to northwest (0.12). The overall average of NDVI increased 0.02 per year from 1998 to 2018 and the impact factors varied among different eco-geographical regions;2) some controlling factors showed nonlinear enhancement such as altitude and slope;3) land use was an important factor affecting the distribution of vegetation especially in humid, semi-arid and arid areas, but the impacts of elevation and temperature were stronger than land use types in semi-humid and humid areas. The design and construction of ecological protection and restoration projects on the Qingzang Plateau required scientific and detailed demonstration as well as monitoring and evaluation. In addition, new tools and theories were also needed in the selection of ecosystem restoration strategies. Based on the findings, this study also provides suggestions for the sustainable ecological restoration on the Qingzang Plateau. C1 Zhang Xiao, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China. Wang Jun, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China. Gao Yan, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China. Wang Lixin, Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, 46202, USA. EM zhangxiao@lcrc.org.cn; wangjun@lcrc.org.cn; gaoyan@lcrc.org.cn; lxwang@iupui.edu Z8 1 Z9 24 UT CSCD:7184777 DA 2023-03-23 ER PT J AU Ding Luming Hu Changsheng Jiang Cuixia Henkin Zalmen Z2 丁路明 胡长胜 姜翠霞 Zalmen Henkin TI Improving the grassland management strategies of Qinghai-Tibetan Plateau based on Israeli Noy-Meir's grazing-system dynamics model Z1 基于以色列Noy-Meir放牧系统动态模型提升青藏高原草地放牧管理决策 Z3 科学通报 SO Chinese Science Bulletin VL 65 IS 34 BP 3867 EP 3872 AR 0023-074X(2020)65:34<3867:JYYSLN>2.0.TX;2-9 PY 2020 DT Article AB Grassland is one of the important natural ecosystems in the world, which not only play an important ecological role, but is also the main source for livestock production. Because of overgrazing in many of these lands, degradation is extending, which is an overall key issue in China. The Qinghai-Tibetan Plateau, which is often called the roof of the world, is known for its high altitude, low temperature and oxygen content, strong ultraviolet radiation and for its short-term grass growing season. This makes it a vulnerable system, while once damaged, it is very hard to recover. Therefore, it is essential to sustain the eco-function of this alpine grassland system. Reasonable grassland management practice is important for maintaining a sustainable healthy ecosystem. As overgrazing is one of the main causes for degradation of grassland, the proper management should take it account the balance between livestock and vegetation components, and it is essential to select an appropriate stocking rate strategy. Optimal production from pastures is gained only when animal needs and the productive capacity of the pasture are balanced. Stocking rate is usually defined as the number of animals per unit area for a given time period, but is affected by a series of factors, such as animal breeds, animal size and weight, animal performance, animal physiological state, climate environment, resources, grass growing rate and biomass and grass grazing tolerance. Therefore, it is challenging to select the optimal stocking rate, and as so it restricts the planning of reasonable grassland management strategies. In addition, forage biomass and its nutritive quality are dynamic and there is no constant stocking rate that is best for all situations. With the fast development of innovative technology and knowledge, models make possible the attempt to determine proper stocking rates and grazing strategies, while taking in account the balance between livestock and vegetation. But most models are complex while using highly detailed simulations input of many parameters, including grassland, climate, forage, animal physiology and weight, cost and policy, which restrict their use and extension. And so, most farmers are not skilled to use these complicated models in practice. The grassland grazing management model, which was developed by an Israeli researcher, Prof. Imnauel Noy-Meir, is simple, which focusing only two basic processes that determine biomass dynamics, including plant growth and animal consumption of herbage, with a second fundamental management tool, grazing deferment at the start of the green season. The two basic factors are adjusted to be conformed to herbage mass to obtain optimum animal production. This current paper tested Noy-Meir's model in a yak grazing system of Qinghai-Tibetan Plateau. The parameters in Noy-Meir's model in this paper were adjusted, based on published and empirical data from the Qinghai-Tibetan yak grazing system in order to analyze the feasibility of using this model for helpful decision making for improving grazing management strategies in alpine grassland in China. The outcome shows that Noy-Meir's model is easier and helpful for planning grazing practices in Qinghai-Tibetan Plateau grassland. In order to improve the precision of Noy-Meir's model, the parameters still need better adjustment based on the specific pasture conditions. Z4 我国北方主要的放牧区位于青藏高原高寒草原以及黄土高原的干旱草原区.青藏高原不仅是我国重要的牧区之一,也是非常重要的生态屏障.家畜作为草地生态系统 的重要组成部分,对维系草地生态系统功能、健康、保持生物多样性(地上植被、昆虫、土壤微生物和动物等)起着重要的作用.适宜的家畜数量、合理的放牧管理 策略对于维系草地生态系统的生态和生产功能具有重要意义.草畜平衡一直是草地管理的核心议题,是家畜营养需求和草地牧草供给达到协调一致的理想化要求.在 实际制定草畜平衡管理策略时,需要面对多种多样的因素,例如家畜种类、生理状态,以及复杂多变的草场类型、可食牧草种类、牧草数量和质量等,同时还需要考 虑野生动物的需求、生态维持等诸多因素,给精准制定和实施草畜平衡带来诸多挑战.草地载畜量(carrying capacity)是草畜平衡管理的核心概念.草地载畜量多表述为草地适宜承载家畜的数量,由草地、家畜和放牧时间三要素构成. C1 Zalmen Henkin, Newe-Ya'ar Research Center,Agricultural Research Organization, Yishay, 30095, Israel. Henkin Zalmen, Newe-Ya'ar Research Center,Agricultural Research Organization, Yishay, 30095, Israel. Ding Luming, School of Life Sciences,Lanzhou University;;Qinghai University, State Key Laboratory of Grassland Agro-ecosystems;;Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Lanzhou;;Xining, ;; 730000;;810016. Hu Changsheng, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Jiang Cuixia, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Z6 丁路明, 兰州大学生命科学学院;;青海大学, 草地农业生态系统国家重点实验室;;青海省高寒草地适应性管理重点实验室, 兰州;;西宁, ;; 730000;;810016. 胡长胜, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 姜翠霞, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. EM dinglm@lzu.edu.cn Z7 dinglm@lzu.edu.cn Z8 0 Z9 0 UT CSCD:6874778 DA 2023-03-23 ER PT J AU Hou Mengjing Gao Jinlong Ge Jing Li Yuanchun Liu Jie Yin Jianpeng Feng Qisheng Liang Tiangang Z2 侯蒙京 高金龙 葛静 李元春 刘洁 殷建鹏 冯琦胜 梁天刚 TI An analysis of dynamic changes and their driving factors in marsh wetlands in the eastern Qinghai-Tibet Plateau Z1 青藏高原东部高寒沼泽湿地动态变化及其驱动因素研究 Z3 草业学报 SO Acta Prataculturae Sinica VL 29 IS 1 BP 13 EP 27 AR 1004-5759(2020)29:1<13:QZGYDB>2.0.TX;2-1 PY 2020 DT Article AB Wetland degradation and ecosystem structural degeneration caused by climate change and unsustainable human activity have become more common since the middle of the 20 th century.It is difficult to carry out aground-based investigation because of complex spatial mosaic of grassland interspersed with bodies of water and marsh wetlands in the eastern part of the Qinghai-Tibet Plateau.We therefore used remote sensing technology to monitor real-time dynamic change in wetland distribution,to enhance understanding of the changes in the ecological environment of the Qinghai-Tibet Plateau.Using Landsat TM/ETM+/OLI images,the areas of marsh wetlands in the eastern Qinghai-Tibet Plateau were extracted by visual interpretation from 1991, 2000,2010,and 2016 records.The area change of marsh wetlands,and direction and rate of movement were analyzed based on a dynamic transfer matrix methodology.Landscape indices at the patch level were used to quantify the spatial and temporal dynamics of the marsh wetlands.We also used the grey correlation method together with meteorological data and statistical information to analyze the factors driving marsh wetland change. It was found that:1)The marsh wetlands are mainly distributed in the northeast of the study region.For the 1991,2000,2010 and 2016 analyses,the total marsh wetland areas were 6739.89,6231.39,5849.59 and 5649.35 km~2,respectively,meaning that a reduction in total area of 1090.54 km~2 was recorded during the 26 year study period;2)The annual rate of wetland loss decreased gradually during the 26 years from -7.54%to-3.42%,and the lost marsh wetlands were mainly transformed into alpine grassland;3)The number of patches increased initially and then decreased,while patch density continued to increase,indicating an increasing degree of fragmentation of the marsh wetlands.The largest patch index decreased initially and then increased slightly, while the landscape shape index increased initially and then decreased slightly,reflecting the decreasing dominance of marsh wetlands and the complexity of landscape shape.The splitting index increased initially and then decreased slightly,while the aggregation index decreased throughout the study period,reflecting a tendency for marsh wetlands to be fragmented and discrete;4)Human factors are the primary reason for reduction of marsh wetland area in the eastern Qinghai-Tibet Plateau,followed by climatic factors.Specifically,the factors in order of influence were:Gross output value of animal product,gross domestic product,population increase,temperature and precipitation. Z4 20世纪中后期以来,在全球气候变化和人类活动的影响下,青藏高原湿地生态系统变的极其敏感和脆弱。运用遥感与地理信息系统技术,以Landsat TM/ETM+/OLI遥感影像为主要数据源,解译了青藏高原东部甘南和川西北地区1991、2000、2010和2016年4个时期的沼泽湿地;利用转 移矩阵和湿地动态度,分析了沼泽湿地的空间变化、转移方向和变化速率;采用景观指数,分析了沼泽湿地景观格局变化;结合气象数据和相关统计资料并利用灰色 关联度法,分析了沼泽湿地变化的驱动因素。结果表明:1)研究区沼泽湿地主要分布在东北部,1991-2016年4个时期的面积分别为6739.89、6 231.39、5849.59和5649.35 km~2,处于持续减少的状态,26年间面积共减少了1090.54 km~2。2)26年来,研究区沼泽湿地的动态度从-7.54%减小至-3.42%,面积变化速率持续减慢,高寒草地是沼泽湿地转出和转入的主要类型。3 )沼泽湿地的斑块数量先增加后减少,斑块密度持续增大,反映了沼泽湿地的破碎程度增高;最大斑块指数先降低后小幅升高,斑块形状指数先升高后小幅下降,反 映了沼泽湿地的优势度降低,景观形状趋于复杂化;分离度指数先增大后小幅减小,聚集度持续降低,反映了沼泽湿地从单独紧凑的状态趋向离散化发展。4)人为 因素是影响青藏高原东部沼泽湿地面积变化的首要原因,其次受到气候因素的影响,各因子影响力大小依次是牧业生产总值>国民生产总值(GDP)>人口数量> 温度>蒸发量。沼泽湿地面积与各因子呈明显的负相关关系,面积随牧业生产总值、GDP、人口数量、温度和蒸发量的增加而减小。 C1 Hou Mengjing, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Gao Jinlong, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Ge Jing, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Li Yuanchun, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Liu Jie, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Yin Jianpeng, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Feng Qisheng, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Liang Tiangang, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystem;;Key Laboratory of Grassland Livestock Industry Innovation,Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry,Ministry of Education, Lanzhou, Gansu 730020, China. Z6 侯蒙京, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 高金龙, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 葛静, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 李元春, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 刘洁, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 殷建鹏, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 冯琦胜, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 梁天刚, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. EM houmj17@lzu.edu.cn; tgliang@lzu.edu.cn Z7 houmj17@lzu.edu.cn; tgliang@lzu.edu.cn Z8 9 Z9 12 UT CSCD:6652980 DA 2023-03-23 ER PT J AU Liu Min Sun Jingguo Xu Xingliang Z2 刘敏 孙经国 徐兴良 TI Imbalance of soil elements drives the degradation of alpine grasslands Z1 土壤元素失衡是导致高寒草甸退化的重要诱因 Z3 生态学杂志 SO Chinese Journal of Ecology VL 39 IS 8 BP 2574 EP 2580 AR 1000-4890(2020)39:8<2574:TRYSSH>2.0.TX;2-# PY 2020 DT Article AB Imbalance of soil elements is one of the major factors driving alpine grassland degradation.Clarifying the processes and mechanisms for the imbalance of soil elements is important for the restoration and sustainable use of degraded alpine grasslands.To achieve this,we analyzed basic soil physicochemical properties across a chronosequence:a 1-year enclosed site as shortterm restoration stage,a 6-year enclosed site as medium restoration stage,and a 15-year enclosed plot as long-term restoration stage in typical alpine grasslands in the Qinghai-Tibet Plateau.Restoration of degraded grassland did not change soil pH,but increased soil water-holding capacity and electricity.Soil organic C and total N contents changed greatly across the restoration stage,while soil P content remains unchanged.With increasing restoration duration,C ∶ N,C ∶ P and N ∶ P ratios and available N(especially ammonium)in soil remarkably increased.The ammonium content at long-term restoration stage was 3.1 times higher than that after one-year restoration.The restoration of degraded grasslands greatly increased aboveground biomass,resulting in the increased soil C and N inputs through plant litter and rhizodeposition.Increased C and N inputs by plants triggered rapid C and N turnover in soil.Such a strong positive feedback help restore the degraded alpine grasslands.These findings indicate that imbalance of soil elements should be responsible for the degradation of alpine grasslands,providing an important basis for the restoration of degraded alpine grasslands and sustainable use of alpine grasslands. Z4 土壤元素失衡是造成高寒草甸退化的关键诱因,明晰其过程与机制是高寒草甸生态系统可持续利用和退化草地恢复的重要内容。以我国典型青藏高原高寒草甸生态系 统为研究对象,选取围封1年样地作为短期恢复、围封6年样地作为中期恢复及围封15年样地作为长期恢复阶段,分析了这些样地的土壤基本理化性质。研究发现 ,退化高寒草甸的恢复未改变土壤pH,但增大了土壤保水能力和电导率。土壤有机碳和全氮含量随恢复进程变化敏感,而磷含量的变化并不明显,随着恢复时间的 增加土壤C ∶ N,C ∶ P和N ∶ P显著升高,土壤可利用氮素特别是铵态氮的供应能力得到显著提升,长期恢复阶段的土壤铵态氮含量为短期恢复阶段的3.1倍。退化草地的恢复大幅度增加了高 寒草甸生态系统地上生物量,这进一步增加了植物对土壤中的碳和氮输入,使土壤中的碳氮周转变快,诱发了植物-土壤之间的正反馈,形成良性循环,使退化草甸 得以改善。本研究从退化高寒草甸恢复角度初步证实,土壤碳氮与磷元素比例失衡是造成高寒草地退化的重要诱因,研究结果对高寒草地的养护管理以及退化高寒草 地的恢复工作具有重要意义。 C1 Liu Min, Institute of Geographic Sciences and Natural Resources Research;;University of Chinese Academy of Sciences, ;;, ;;, Beijing;;Beijing 100101;;101408. Sun Jingguo, Beijing Forestry University, Beijing 100083, China. Xu Xingliang, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China. Z6 刘敏, 中国科学院地理科学与资源研究所;;中国科学院大学资源与环境学院, ;;, ;;, 北京;;北京 100101;;101408, 中国. 孙经国, 北京林业大学林学院, 北京 100083, 中国. 徐兴良, 中国科学院地理科学与资源研究所, 北京 100101, 中国. EM liumin_bj@qq.com; xuxingl@hotmail.com Z7 liumin_bj@qq.com; xuxingl@hotmail.com Z8 4 Z9 4 UT CSCD:6778305 DA 2023-03-23 ER PT J AU Liu Xin Wang Yibo Yang Wenjing Z2 刘鑫 王一博 杨文静 TI Study on soil quality evaluation methods under the background of vegetation degradation in Qinghai-Tibet Plateau Z1 青藏高原植被退化背景下土壤质量评价方法研究 Z3 兰州大学学报. 自然科学版 SO Journal of Lanzhou University. Natural Science VL 56 IS 2 BP 143 EP 153 AR 0455-2059(2020)56:2<143:QZGYZB>2.0.TX;2-S PY 2020 DT Article AB 154 soil samples were collected according to the degree of vegetation degradation in the Xidatan to Anduo area of the hinterland thereof. The minimum data set affecting soil quality under the background of alpine grassland degradation in the permafrost regions was determined by the principal component analysis: alkali nitrogen, salt, total phosphorus and organic matter. According to the minimum data set in this respect, the soil quality of alpine grassland was evaluated, and the soil quality index (SQI) under vegetation degradation was obtained. The research showed that, with the increase of vegetation coverage, SQI also presented an increasing trend, i.e., when the vegetation coverage was less than 30%, the average value of the SQI was 0.300-0.442; when the vegetation coverage was 30%-50%, the average value of the SQI was 0.308-0.457; when the vegetation coverage was 50%-70%, the average value of the SQI was 0.328-0.491; and when the vegetation coverage was $ > 70\% $, the average value of the SQI was 0.327-0.532. Different soil quality indices were calculated by linear and nonlinear scoring functions respectively. The linear regression analysis of different soil quality indexes showed that the soil quality index based on minimum data set could express the soil quality under the background of vegetation degradation. Compared with the ${\rm{SQ}}{{\rm{I}}_{{\rm{L - A}}}}$, ${\rm{SQ}}{{\rm{I}}_{{\rm{L - WA}}}}$, ${\rm{SQ}}{{\rm{I}}_{{\rm{N - A}}}}$ methods, the non-linearly weighted soil quality index (${\rm{SQ}}{{\rm{I}}_{{\rm{N - WA}}}}$) based on minimum data set could accurately evaluate $\left( {{R^2} = 0.686\;4} \right)$ the soil under the vegetation degradation in permafrost regions of the Qinghai-Tibet Plateau. Z4 在青藏高原西大滩至安多地区,根据植被退化的不同程度采集了154个土壤样品.通过主成分分析法确定了影响青藏高原多年冻土区高寒草地植被退化背景下土壤 质量的最小数据集:碱解氮、盐分、全磷和有机质.根据影响土壤质量的最小数据集对青藏高原多年冻土区高寒草地土壤质量进行了评价,得出了植被退化下的土壤 质量指数(SQI).结果表明,随着植被盖度的增加, SQI呈增加趋势,即植被盖度$ < 30\% $时, SQI平均值为0.300~0.442;植被盖度30%~50%时, SQI平均值为0.308~ 0.457;植被盖度50%~70%时, SQI平均值为0.328~0.491;植被盖度$ > 70\% $时, SQI平均值为0.327~ 0.532.分别采用线性与非线性得分函数计算得到不同的SQI,通过线性回归分析发现,基于最小数据集的SQI可以较详尽地表达出植被退化背景下土壤的 质量变化,相较于${\rm{SQ}}{{\rm{I}}_{{\rm{L - A}}}}$、${\rm{SQ}}{{\rm{I}}_{{\rm{L - WA}}}}$、${\rm{SQ}}{{\rm{I}}_{{\rm{N - A}}}}$方法,基于最小数据集的非线性加权${\rm{SQ}}{{\rm{I}}_{{\rm{N - WA}}}}$能够对青藏高原多年冻土区高寒草地植被退化影响下的土壤做出更准确地评价$\left( {{R^2} = 0.686\;4} \right)$. C1 Liu Xin, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Yang Wenjing, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Wang Yibo, College of Earth and Environmental Sciences, Lanzhou University;;Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, ;;State Key Laboratory of Frozen Soil Engineering, Lanzhou;;Lanzhou, ;; 730000;;730000. Z6 刘鑫, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 杨文静, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 王一博, 兰州大学资源环境学院;;中国科学院西北生态环境资源研究院, ;;冻土工程国家重点实验室, 兰州;;兰州, ;; 730000;;730000. EM wangyib@lzu.edu.cn Z7 wangyib@lzu.edu.cn Z8 0 Z9 2 UT CSCD:6804902 DA 2023-03-23 ER PT J AU Liu Shujuan Wei Xinghu Zheng Qianqian Lin Qixia Luo Xiaolan Chen Yizhe Liang Zhaoxiong Guan Gongcou Z2 刘淑娟 魏兴琥 郑倩倩 林啟霞 罗小兰 陈毅哲 梁钊雄 关共凑 TI Soil organic carbon contents characteristics in the alpine desert area of Ali,Tibet,China Z1 西藏阿里高寒荒漠区土壤有机碳含量特征 Z3 中国沙漠 SO Journal of Desert Research VL 40 IS 4 BP 234 EP 240 AR 1000-694X(2020)40:4<234:XZALGH>2.0.TX;2-R PY 2020 DT Article AB Ali alpine desert zone in Qinghai-Tibet Plateau were selected as the investigation regions,vegetation and soil profiles in 30 sample plots were surveyed,soil organic carbon,size composition,and other index were measured. The results show:(1)The Ali alpine desert zone main distribute in spread over lake basin,broad valley,the foot of the slope,alluvial-proluvial fan with altitude of 4 000-5 000 m,soil there are thin soil thickness, high gravel proportion in soil surface,severe desertification and low soil organic carbon. The contents of soil organic carbon demonstrate the reduction tendency from subalpine prairie soil,alpine prairie soil,subalpine desert steppe soil,subalpine desert steppe soil to alpine desert soil. The contents of soil organic carbon had the significance reduction from alpine prairie soil to subalpine desert steppe soil,subalpine desert steppe soil,and alpine desert soil.(2)The contents of soil organic carbon in 8 kinds of plant association showed a reduction tendency from steppe to desert steppe and desert. The contents of soil organic carbon of stipa spp-Orinus thoroldii steppe and Stipa purpurea steppe higher highly significance than Stipa caucasica steppe,Artemisia wellbyi bushwood, Ajania fruticulosa desert,Ceratoides latens desert,and Ceraloides compacta desert. The contents of soil organic carbon of Stipa caucasica steppe,Ajania fruticulosa desert,Ceratoides latens desert higher significance than Krascheninnikovia compacta desert.(3)Correlation analysis of soil organic carbon with altitude,gravel concentration in surface and soil thickness showed the reducation of soil organic carbon and increase of gravel proportion in soil surface with the rise altitude. Overgraze of livestock and wild animal maybe is the principal factor that bring about vegetation degradation and lead to the reducation of soil organic carbon in alpine desert zone. Z4 调查了西藏阿里高寒荒漠区30个高寒荒漠样地土壤剖面发生层,分层采集土壤样品,测定有机碳、全氮、全磷、全钾含量和粒度。结果表明:(1)阿里高寒荒漠 区主要分布在海拔4 000~5 000 m的湖盆、宽谷、沟谷坡麓、冲洪积扇,土层薄、地表粗砾化、沙化严重,有机碳含量低,从亚高山草原土、高山草原土、亚高山荒漠草原土、亚高山荒漠土至高山 荒漠土,土壤有机碳含量呈逐渐下降的趋势,高山草原土有机碳含量显著高于亚高山荒漠草原土、亚高山荒漠土和高山荒漠土,从草原到荒漠土壤退化明显。(2) 8种植物群丛的土壤有机碳含量表现出按草原-荒漠草原-荒漠-砾漠逐渐降低的指数关系,针茅(Stipa spp.)-固沙草(Orinus thoroldii)草原和紫花针茅(Stipa purpurea)草原的土壤有机碳含量均极显著高于沙生针茅(Stipa caucasica subsp. glareosa)草原、沙蒿(Artemisia wellbyi)灌丛草原、灌木亚菊(Ajania fruticulosa)荒漠、驼绒藜(Ceratoides latens)砾漠和垫状驼绒藜(Ceratoides compacta)砾漠;沙生针茅草原、灌木亚菊荒漠、驼绒藜砾漠土壤有机碳又显著高于垫状驼绒藜砾漠。(3)土壤有机碳含量与海拔、土层厚度、表层砾石 含量之间具微相关性,但随海拔升高,土壤有机碳含量降低、地表粗砾化有加重的趋势,家畜超载、野生动物数量增加造成植被退化可能是导致高寒荒漠土壤有机碳 降低的主要原因。 C1 Liu Shujuan, Foshan University, Foshan, Guangdong 528000, China. Wei Xinghu, Foshan University, Foshan, Guangdong 528000, China. Zheng Qianqian, Foshan University, Foshan, Guangdong 528000, China. Lin Qixia, Foshan University, Foshan, Guangdong 528000, China. Luo Xiaolan, Foshan University, Foshan, Guangdong 528000, China. Chen Yizhe, Foshan University, Foshan, Guangdong 528000, China. Liang Zhaoxiong, Foshan University, Foshan, Guangdong 528000, China. Guan Gongcou, Foshan University, Foshan, Guangdong 528000, China. Z6 刘淑娟, 佛山科学技术学院, 佛山, 广东 528000, 中国. 魏兴琥, 佛山科学技术学院, 佛山, 广东 528000, 中国. 郑倩倩, 佛山科学技术学院, 佛山, 广东 528000, 中国. 林啟霞, 佛山科学技术学院, 佛山, 广东 528000, 中国. 罗小兰, 佛山科学技术学院, 佛山, 广东 528000, 中国. 陈毅哲, 佛山科学技术学院, 佛山, 广东 528000, 中国. 梁钊雄, 佛山科学技术学院, 佛山, 广东 528000, 中国. 关共凑, 佛山科学技术学院, 佛山, 广东 528000, 中国. EM liujuan_407@163.com; weixinghu1964@163.com Z7 liujuan_407@163.com; weixinghu1964@163.com Z8 3 Z9 3 UT CSCD:6798883 DA 2023-03-23 ER PT J AU Zhou Fufei Wang Hong Zhang Feiyu Zhou Riu Hua Xianze Ye Guohiu Hua Limin Z2 周富斐 王宏 张飞宇 周睿 华铣泽 叶国辉 花立民 TI Evaluation on the effect of rodent control measures on alpine meadow in Maqu Countyof Qinghai-Tibet Plateau Z1 玛曲县高寒草甸鼠害地治理措施效果评价 Z3 草原与草坪 SO Grassland and Turf VL 40 IS 4 BP 80 EP 87 AR 1009-5500(2020)40:4<80:MQXGHC>2.0.TX;2-J PY 2020 DT Article AB It is of great significance to scientifically evaluate the effects of different control measures on rodent damage areas for the prevention and control of alpine meadow degradation.For mild and moderate rodent damage in the alpine meadow area of Maqu County,Gansu Province,the control measures were respectively adopted, including rodent control+one-year ban grazing+one-year light grazing,and rodent control+ban grazing with reseeding annual ryegrass+light grazing,and the plant species number,height,coverage,the functional group of aboveground biomass,and number of available pika hole number were investigated.The results showed that:1)after rodent control and ban grazing in mild rodent damage area,Menhinick index,Evenness_e^ H/S index and Simpson_1-d index of plant community increased by 154.9%,41.1%,and 52.8%,respectively. The total aboveground biomass and available hole number significantly increased,in which the hay yield increased to 3758.19kg/hm~2.After light grazing for one year,the total aboveground biomass of plant community and available hole number significantly decreased(P<0.05).2)after reseeding annual ryegrass for one year in moderate rodent damaged area,Menhinick index,Evenness_e^H/S index,and Simpson_1 -D index of plant community significantly increased by 71%,31%,and 18%,respectively(P<0.05),while the dominance index decreased significantly(P<0.05).The aboveground biomass increased significantly,and the available hole number decreased significantly(P<0.05).After light grazing for one year,the plant species number significantly increased by 47.75%,Evenness_e^H/S index significantly reduced by 24.2%,and available hole number increased significantly(P<0.05). Z4 对甘肃省玛曲县高寒草甸区轻度和中度鼠害地分别采取控鼠+封育1年+适度放牧1年,控鼠+封育补播一年生黑麦草+适度放牧1年的治理措施,调查了不同治理 措施下鼠害地植物种类、高度、盖度、各功能群(禾本科、莎草科、杂类草)地上生物量以及有效鼠洞数目等指标。结果表明:1)轻度鼠害地经过灭鼠封育后,植 物群落Menhinick指数、Evenness_e^H/S指数和Simpson_1-D指数分别增加154.9%、41.1%、52.8%,植物群落 总地上生物量和有效洞口数均显著增加,干草产量可达3 758.19 kg/hm~2;适度放牧1年后植物群落总地上生物量和有效洞口数均显著降低(P<0.05);2)中度鼠害地采取封育1年后植物群落Menhinick 指数、Evenness_e^H/S指数和Simpson_1-D指数分别增加了71%、 31%、18%(P<0.05),而Dominance_D指数显著降低(P<0.05)。植物群落总地上生物量显著增加,有效洞口显著降低(P<0.0 5)。适度放牧1年后,植物种类增加了47.75%,Evenness_e^H/S降低了24.2%,有效洞口数显著增加(P<0.05)。 C1 Zhou Fufei, College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, Gansu 730070, China. Wang Hong, College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, Gansu 730070, China. Zhang Feiyu, College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, Gansu 730070, China. Zhou Riu, College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, Gansu 730070, China. Hua Xianze, College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, Gansu 730070, China. Ye Guohiu, College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, Gansu 730070, China. Hua Limin, College of Grassland Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Lanzhou, Gansu 730070, China. Z6 周富斐, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 王宏, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 张飞宇, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 周睿, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 华铣泽, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 叶国辉, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 花立民, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. EM m17899315787@163.com; hualm@gsau.edu.cn Z7 m17899315787@163.com; hualm@gsau.edu.cn Z8 1 Z9 1 UT CSCD:6822566 DA 2023-03-23 ER PT J AU Yu Lanhui Wang Jie Liao Lirong Zhang Chao Liu Guobin Z2 喻岚晖 王杰 廖李容 张超 刘国彬 TI Soil Microbial Biomass,Enzyme Activities and Ecological Stoichiometric Characteristics and Influencing Factors along Degraded Meadows on the Qinghai-Tibet Plateau Z1 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素 Z3 草地学报 SO Acta Agrestia Sinica VL 28 IS 6 BP 1702 EP 1710 AR 1007-0435(2020)28:6<1702:QZGYTH>2.0.TX;2-B PY 2020 DT Article AB Revealing the changes in soil microbial biomass and enzymes and their stoichiometric characteristics is of great significance to understand the degradation mechanism of degraded grassland.In the present study,we surveyed the soil in Qinghai-Tibetan alpine meadows and classified the extent of degradation as undegraded,lightly degraded,moderately degraded,and severely degraded to evaluate the changes in stoichiometric characteristics of microbial biomass and enzymes activities.Results showed that as the meadow degraded,the contents of soil organic carbon(SOC),total nitrogen(TN),available potassium (AK),microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)decreased significantly.Activities ofbeta-1,4-Glucosidase(BG)andbeta-N-Acetylglucosaminidase(NAG)of the degraded grasslands were significantly higher than that of the undegraded meadow.The ratios of N/P and MBN/MBP in severely degraded meadow were significantly lower than those in undegraded meadow,and ln(NAG+LAP)/lnALP ranged from 0.77to 0.83,which was higher than the 0.44(global average value),indicating that the degradation aggravated the soil nitrogen limitation in the studied area.The correlation analysis showed soil microbial biomass,enzyme activities and ecological stoichiometric ratio were positively correlated with SOC and TN. In summary,soil microbial biomass,enzyme activities and ecological stoichiometric ratio were sensitive to soil nutrient change and could reflect soil nutrient limitations. Z4 探明草地退化过程中土壤微生物量和酶的变化趋势及其化学计量学特征,对理解草地的退化机理有重要意义。本研究以青藏高原高寒草甸4种不同退化程度(未退化 、轻度退化、中度退化、重度退化)草甸为研究对象,分析了土壤微生物量和酶化学计量学特征及其影响因素。结果表明,随草甸退化程度的加剧,土壤有机碳(S oil organic carbon,SOC)、全氮(Total nitrogen,TN)、速效钾(Available potassium,AK)、微生物量碳(Microbial biomass carbon,MBC)和微生物量氮(Microbial biomass nitrogen,MBN)含量显著降低;未退化草甸beta-1,4-葡萄糖苷酶(beta-1, 4-Glucosidase,BG)和beta-N-乙酰氨基葡萄糖苷酶(beta-N-Acetylglucosaminidase,NAG)活性显著 低于轻度、中度和重度退化;重度退化草甸土壤氮/磷、MBN/MBP显著低于未退化,ln(NAG+LAP)/lnALP取值范围为0.77~0.83, 高于全球均值0.44,说明退化引起了该地区的土壤氮限制;相关分析表明微生物量和酶的化学计量比受有机碳和全氮的影响显著。综上,微生物量和酶的化学计 量学特征对土壤养分变化响应敏感且能反映土壤养分限制情况。 C1 Yu Lanhui, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry Education;;University of Chinese Academy of Sciences, ;;, Yangling;;, Shaanxi;;Beijing 712100;;100049. Liao Lirong, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry Education;;University of Chinese Academy of Sciences, ;;, Yangling;;, Shaanxi;;Beijing 712100;;100049. Wang Jie, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China. Zhang Chao, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry Education;;Institute of Soil and Water Conservation, Northwest A&F University, ;;, Yangling;;Yangling, Shaanxi;;Shaanxi 712100;;712100. Liu Guobin, Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry Education, Yangling, Shaanxi 712100, China. Z6 喻岚晖, 中国科学院教育部水土保持与生态环境研究中心;;中国科学院大学, ;;, 杨凌;;, 陕西;;北京 712100;;100049, 中国. 廖李容, 中国科学院教育部水土保持与生态环境研究中心;;中国科学院大学, ;;, 杨凌;;, 陕西;;北京 712100;;100049, 中国. 王杰, 西北农林科技大学水土保持研究所, 杨凌, 陕西 712100, 中国. 张超, 中国科学院教育部水土保持与生态环境研究中心;;西北农林科技大学水土保持研究所, ;;, 杨凌;;杨凌, 陕西;;陕西 712100;;712100, 中国. 刘国彬, 中国科学院教育部水土保持与生态环境研究中心, 杨凌, 陕西 712100, 中国. EM 18581722736@163.com; zhangchaolynn@163.com Z7 18581722736@163.com; zhangchaolynn@163.com Z8 11 Z9 11 UT CSCD:6882743 DA 2023-03-23 ER PT J AU 宋明华 李猛 霍佳娟 吴良 张宪洲 Z2 Song Minghua Li Meng Huo Jiajuan Wu Liang Zhang Xianzhou TI Multifunctionality and Thresholds of Alpine Grassland on the Tibetan Plateau Z1 西藏高原高寒草地的多功能性及其阈值 Z3 资源与生态学报 SO Journal of Resources and Ecology VL 11 IS 3 BP 263 EP 271 AR 1674-764X(2020)11:3<263:MATOAG>2.0.TX;2-L PY 2020 DT Article AB Ecosystems can simultaneously provide multiple functions and services. Knowledge on the combinations of such multi-dimensional functions is critical for accurately assessing the carrying capacity and implementing sustainable management. However, accurately quantify the multifunctionality of ecosystems remains challenging due to the dependence and close association among individual functions. Here, we quantified spatial patterns in the multifunctionality of alpine grassland on the Tibetan Plateau by integrating four important individual functions based on data collected from a field survey and remote sensing NDVI. After mapping the spatial pattern of multifunctionality, we extracted multifunctionality values across four types of grassland along the northern Tibet Plateau transect. Effects of climate and grazing intensity on the multifunctionality were differentiated. Our results showed that the highest values of multifunctionality occurred in the alpine meadow. Low values of multifunctionality were comparable in different types of grassland. Annual precipitation explained the large variation of multifunctionality across the different types of grassland in the transect, which showed a significantly positive effect on the multifunctionality. Grazing intensity further explained the rest of the variation in the multifunctionality (residuals), which showed a shift from neutral or positive to negative effects on multifunctionality across the different types of grassland. The consistently rapid declines of belowground biomass, SOC, and species richness resulted in the collapse of the multifunctionality as bare ground cover amounted to 75%, which corresponded to a multifunctionality value of 0.233. Our results are the first to show the spatial pattern of grassland multifunctionality. The rapid decline of the multifunctionality suggests that a collapse in the multifunctionality can occur after the vegetation cover decreases to 25%, which is also accompanied by rapid losses of species and other individual functions. Our results are expected to provide evidence and direction for the sustainable development of alpine grassland and restoration management. Z4 生态系统可以同时提供多种功能和服务。对生态系统多功能性的认知有助于我们准确评估系统承载能力,并对维持系统可持续发展至关重要。但是,由于单个功能之 间往往存在显著的相关性,且彼此非独立,使得准确量化生态系统多功能性具有很大的挑战。我们根据实地调查和遥感收集的NDVI数据,通过整合四个重要的单 个功能,量化了青藏高原高寒草地多功能性的空间格局。在此基础上,对沿青藏高原北部样带分布的四种主要草地类型的多功能性值进行提取,区分了气候和放牧强 度对多功能性的影响。结果表明多功能性在高寒草甸具有很高的值。多功能性的低值在不同草地类型中是具有可比性的。年降水量可以解释多功能性沿四种不同草地 类型的较大变异,即对多功能性有显著正向影响。放牧强度可以进一步解释多功能性的变化,即对四种草地类型的多功能性有显著负向影响。地下生物量、有机碳以 及物种丰富度的持续快速下降导致了多功能性的急剧衰退,此时,裸土覆盖率达到了75%,对应的多功能性值为0.233。我们的研究结果首次展示了高寒草地 多功能性的空间格局。多功能性的迅速下降表明,在植被覆盖率降低到25%之后,多功能性可能会崩溃,还会伴随着物种和其他个别功能的快速丧失。本研究可为 高寒草地的可持续发展和退化草地恢复提供依据和指导。 C1 Song Minghua, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Science, Beijing 100101, China. Li Meng, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Science, Beijing 100101, China. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Science, Beijing 100101, China. Huo Jiajuan, Department of Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China. Wu Liang, Center for World Geography and Resources Research, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Z6 宋明华, 中国科学院地理科学与资源研究所, 生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 李猛, 中国科学院地理科学与资源研究所, 生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 张宪洲, 中国科学院地理科学与资源研究所, 生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 霍佳娟, 内蒙古大学, 生态与环境学院生态学系, 呼和浩特, 内蒙古 010021, 中国. 吴良, 中国科学院地理科学与资源研究所, 世界地理与资源研究中心, 北京 100101, 中国. EM songmh@igsnrr.ac.cn Z7 songmh@igsnrr.ac.cn Z8 1 Z9 2 UT CSCD:6728950 DA 2023-03-23 ER PT J AU Song Meiling Wang Yuqin Bao Gensheng Wang Hongsheng Z2 宋梅玲 王玉琴 鲍根生 王宏生 TI Effect of Stellera chamaejasme removal on the nutrient resorption of plants in an alpine grassland community Z1 狼毒防除对高寒草地群落植物养分重吸收的影响 Z3 草业学报 SO Acta Prataculturae Sinica VL 29 IS 10 BP 47 EP 57 AR 1004-5759(2020)29:10<47:HDFCDG>2.0.TX;2-Y PY 2020 DT Article AB Control of Stellera chamaejasme is one of the main methods used to promote recovery of degraded grasslands in the Qinghai-Tibetan Plateau.Limited studies have been conducted on the nutrient resorption of plants during this recovery period.This study investigated the effects of S.chamaejasme removal(SR)on the nutrient resorption efficiency(NuR)from species level,to functional group level,and to community level of the alpine grassland ecosystem.It was found that:At the species level,SR decreased NuR (Nirogen,N)of Poa alpigena and Festuca ovina;SR decreased NuR (Phosphorus,P)of P.alpigena and Stipa aliena,but increased NuR (P)of Koeleria litvinowii,Kobresia capillifolia and Kobresia humilis.At the functional group level,SR induced increased N content in green and senesced leaves of forbs,and the decline of NuR(N) in forbs.The NuR(N)and NuR(P)of Poaceae and Fabaceae all decreased after SR treatment,however,the NuR(P)of sedges increased after SR.At the community level,N content of green leaves and P content of senesced leaves were significantly lower,but the NuR (P)was significantly higher in the SR treatment,compared to CK.In conclusion,different species and functional groups have different NuR responses to SR,but SR promoted P use efficiency at the plant community level.These results may provide basic data for the study of nutrient utilization mechanisms in the recovery of degraded grassland,and provide a theoretical framework for developing effective and sustainable measures for S.chamaejasme control in the Qinghai-Tibetan Plateau. Z4 狼毒防除是青藏高原狼毒型退化草地恢复的主要措施之一,在此过程中高寒草地群落的养分重吸收的变化未见报道。本研究从物种水平、功能群水平和群落水平比较 狼毒防除以后高寒退化草地植物的氮(N)、磷(P)养分含量和重吸收效率的变化,结果如下:从物种水平来说,狼毒防除造成高原早熟禾和羊茅N重吸收效率的 降低,也引起了高原早熟禾和异针茅P重吸收效率的降低,以及芒洽草、线叶蒿草和矮蒿草P重吸收效率的升高;从功能群水平来说,狼毒防除升高了杂类草绿色叶 片和枯黄叶片中的N含量,但降低了其中的P含量,同时,狼毒防除降低了禾本科、豆科植物和杂类草对N和P的重吸收效率,但是提高了莎草科植物的P重吸收效 率;从整个群落水平来说,狼毒防除以后,绿色叶片中的N含量和枯黄叶片中的P含量显著低于对照,对P的重吸收效率则显著高于对照(P<0.05)。因此, 狼毒防除对不同物种和不同功能群植物的养分重吸收的影响不同,但是提高了该草地生态系统群落的P的利用效率。此研究结果可以为揭示狼毒型退化草地恢复过程 中的养分利用机制提供基础数据,为提高高寒草地毒杂草治理的有效性与持续性提供理论依据。 C1 Song Meiling, Qinghai University,Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Wang Yuqin, Qinghai University,Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Bao Gensheng, Qinghai University,Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Wang Hongsheng, Qinghai University,Qinghai Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Z6 宋梅玲, 青海大学畜牧兽医科学院,青海省畜牧兽医科学院, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 王玉琴, 青海大学畜牧兽医科学院,青海省畜牧兽医科学院, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 鲍根生, 青海大学畜牧兽医科学院,青海省畜牧兽医科学院, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 王宏生, 青海大学畜牧兽医科学院,青海省畜牧兽医科学院, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. EM meilings@163.com; wanghs1967@aliyun.com Z7 meilings@163.com; wanghs1967@aliyun.com Z8 3 Z9 3 UT CSCD:6826645 DA 2023-03-23 ER PT J AU Zhang Qian Yang Jing Yao Baohui Cai Zhiyuan Sun Xiaomei Wang Chan Guo Huailiang Tan Yuchen Su Junhu Z2 张倩 杨晶 姚宝辉 蔡志远 孙小妹 王缠 郭怀亮 谭宇尘 苏军虎 TI Effects of different grazing strategies on zokor mounds plant community succession in alpine meadow Z1 放牧管理模式对高寒草甸鼢鼠鼠丘群落演替的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 40 IS 8 BP 2802 EP 2811 AR 1000-0933(2020)40:8<2802:FMGLMS>2.0.TX;2-A PY 2020 DT Article AB The rodent damage by plateau zokor in the process of alpine meadow grazing is a key problem in its utilization and management. Grazing is one of the most important ways of using grassland. The grazing system is used as a utilization system in grazing management. It regulates the use of livestock in the time and space of grazing land,and adjusts the grazing intensity and grazing frequency to balance vegetation grow and livestock. A reasonable grazing system can improve the diversity of grassland plant communities and the stability of grassland ecosystems,and is of great significance for promoting the healthy development and sustainable use of grassland. Plateau zokor is one of the dominant mounds of alpine grassland on the Qinghai-Tibet Plateau. It mainly feeds 320 cm of plant roots and stems below the surface. Excavation and hillbuilding activities of plateau zokor is one of the important driving factors for grassland degradation. The zokor mound is one of the important ways to affect grassland. It is mainly reflected in the coverage of grassland original vegetation,the reduction of species diversity in the community and affecting the productivity of grassland vegetation and the composition of aboveground vegetation. Vegetation community succession of zokor mounds under different grazing management models can provide important basis for grassland management. To analyze the effects of different grazing management models on the vegetation community characteristics and biomass of the rodent mound,four different grazing management models were selected in this study: rotational grazing ( RG),growing season grazing ( GSG),continuous grazing ( CG) and prohibition grazing ( PG),with different ages of zokor mounds in each model including one-year ( ZM1),two-year ( ZM2),three-year ( ZM3),multi-year ( ZMM) zokor mounds,and control meadow ( CM). The results showed that under PG and GSG,the vegetation height and aboveground biomass of zokor mounds in all ages were higher than those of RG and CG. The Shannon- Werner index of ZM1 and ZM2 species under RG and GSG was higher than the species of control meadow. The results of principal component analysis ( PCA) showed that aboveground biomass and species richness under RG,while aboveground biomass,coverage,Shannon-Wiener diversity index,and uniformity under PG were important factors of vegetation community succession on zokor mounds. Species richness and important value under CG and Shannon-Wiener diversity index,coverage and height under GSG were critical indicators affecting the vegetation community succession of zokor mounds. In conclusion,different grazing modes have different effects on vegetation community succession of zokor mounds. It can be effectively restored under PG and GSG. Z4 高寒草甸放牧利用下高原鼢鼠( Eospalax baileyi)等危害的发生是草地管理的关键难题,分析放牧管理模式对鼢鼠鼠丘植被群落演替的影响能为草地管理提供重要依据。研究选择划区轮牧( RG) 、生长季休牧( GSG) 、连续放牧( CG)和禁牧( PG) 4种放牧管理模式,以及各模式下不同年限鼠丘(一年( ZM1) 、两年( ZM2) 、三年( ZM3)和多年鼠丘( ZMM) )与对照( CM)草地。分析不同放牧管理模式对鼠丘植被群落特征和生物量等的影响,结果发现: PG和GSG下所有年限鼠丘的植被高度、地上生物量均高于RG和CG; RG和GSG下ZM1和ZM2物种Shannon-wiener指数均高于对照样地物种Shannon-wiener指数。主成分分析表明: RG下地上生物量和物种丰富度指数是影响鼠丘植被群落演替的重要因子,PG下地上生物量、盖度、Shannon-wiener指数和均匀度指数是鼠丘植被 群落演替的重要因子,CG下物种丰富度和重要值是影响鼠丘植被群落演替的重要指标,GSG下Shannon-wiener指数、盖度和高度是影响鼠丘植被 群落演替的重要指标。可见,不同放牧制度对鼠丘植被群落演替的影响不同,禁牧和生长季休牧管理模式能够较好地恢复鼠丘植被群落演替。 C1 Zhang Qian, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Yang Jing, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Yao Baohui, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Cai Zhiyuan, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Wang Chan, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Guo Huailiang, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Tan Yuchen, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Su Junhu, Sino-U. S. Centers for Grazing land Ecosystem Sustainability,Gansu Agricultural University,College of Grassland Science;;Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem ( Ministry of Education);;Pratacultural Engineering Laboratory of Gansu Province;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Sun Xiaomei, Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity,Gansu Agricultural University;;College of Resource and Environmental Science,Gansu Agricultural University, ;;, Lanzhou;;Lanzhou, ;; 730070;;730070. Z6 张倩, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 杨晶, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 姚宝辉, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 蔡志远, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 王缠, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 郭怀亮, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 谭宇尘, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 苏军虎, 甘肃农业大学草业学院/中美草地畜牧业可持续发展研究中心;;甘肃农业大学新西兰梅西大学草地生物多样性研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室;;, 兰州;;兰州, ;; 730070;;730070. 孙小妹, 甘肃农业大学新西兰梅西大学草地生物多样性研究中心;;甘肃农业大学资源与环境学院, ;;, 兰州;;兰州, ;; 730070;;730070. EM sujh@gsau.edu.cn Z7 sujh@gsau.edu.cn Z8 1 Z9 1 UT CSCD:6723004 DA 2023-03-23 ER PT J AU Zhang Guangru Zhang Fawei Yang Yongsheng He Huidan Zhu Jingbin Luo Jin Wang Chunyu Luo Fanglin Wang Junbang Li Yingnian Z2 张光茹 张法伟 杨永胜 贺慧丹 祝景彬 罗谨 王春雨 罗方林 王军邦 李英年 TI Vegetation and soil respiration at different degradation stages of an alpine meadow in the Sanjiangyuan region Z1 三江源高寒草甸不同退化阶段植被和土壤呼吸特征 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 42 IS 2 BP 662 EP 670 AR 1000-0240(2020)42:2<662:SJYGHC>2.0.TX;2-L PY 2020 DT Article AB Vegetation community,soil respiration characteristics and their relationships at different degradation stages were explored,and the temperature sensitivity of soil respiration was analyzed by monitoring the vegetation and soil respiration at different degradation stages of an alpine meadow in Maqen County,Sanjiangyuan region in 2017. The results show that:As the degree of degradation increase,the Gramineae decreases,but poisonous weed increases significantly(P<0.05);vegetation coverage,species index,and diversity index decrease significantly (P<0.05). The aboveground biomass under the condition of heavy degradation has decreased by 25.36% and 22.37% in comparison with light and moderate degradation(P<0.05). Under the condition of moderate degradation,evenness index and underground biomass increased significantly(P<0.05). Soil respiration at each degradation stage has a unimodal change during the year,showing high in growing season and low in non-growing season,especially in a highest peak growth period(July - August)of the vegetation and a significant exponential relationship with soil temperature at 5 cm depth(P<0.05);total soil respiration emissions in 2017 under light,moderate and heavy degradation are 626.89 gC·m~(-2),386.66 gC·m~(-2) and 393.81 gC· m~(-2),respectively. Soil respiration rate decreases with the degree of degradation. Temperature sensitivity coefficients(Q10) of soil respiration at light degradation,moderate degradation and heavy degradation stages are 2.82,3.54,and 2.35,respectively,indicating that the temperature sensitivity is the highest under moderate degradation and the lowest under heavy degradation. These results would be useful for understanding the vegetation and soil respiration characteristics at different degradation stages of alpine meadows on the Tibetan Plateau. Z4 通过监测三江源玛沁县高寒草甸2017年度植被特征及土壤呼吸通量,探讨了不同退化阶段植被群落、土壤呼吸特征及其协同关系,并分析了土壤呼吸的温度敏感 性。结果表明:随着高寒草甸退化程度加剧,禾本科植物重要值降低,毒杂草显著增加(P<0.05);植被盖度、物种数、多样性指数显著下降(P<0.05 ),重度退化阶段的地上生物量比轻度、中度退化阶段降低了25.36%、22.37%(P<0.05);在中度退化条件下,均匀度指数和地下生物量显著增 多(P<0.05)。在各退化阶段,土壤呼吸年内均呈单峰式变化过程,表现出生长季高、非生长季低的特征,植物生长旺季(7 - 8月)最高,且与5 cm深度处土壤温度之间呈显著指数关系(P<0.05);2017年轻度退化、中度退化和重度退化阶段的土壤呼吸碳排放总量分别为626.89 gC·m~(-2)、386.66 gC·m~(-2)、393.81 gC·m~(-2);同时,土壤呼吸与植被群落演替具有显著的协同性,随着退化程度加剧土壤呼吸速率下降。轻度退化、中度退化、重度退化阶段土壤呼吸的温 度敏感性系数(Q10)分别为2.82、3.54和2.35,表明中度退化条件下的温度敏感性最强,重度退化条件下最弱。 C1 Zhang Guangru, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Zhu Jingbin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Wang Chunyu, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Luo Fanglin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Zhang Fawei, College of Life Sciences,Luoyang Normal University, Luoyang, Henan 471934, China. Yang Yongsheng, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810008;;810008. Li Yingnian, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, ;;Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining;;Xining, ;; 810008;;810008. He Huidan, Zaozhuang University, Zaozhuang, Shandong 277100, China. Luo Jin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Wang Junbang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100101. Z6 张光茹, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 祝景彬, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 王春雨, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 罗方林, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 张法伟, 洛阳师范学院生命科学学院, 洛阳, 河南 471934, 中国. 杨永胜, 中国科学院西北高原生物研究所;;中国科学院高原生物适应与进化重点实验室, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, 青海;;青海 810008;;810008, 中国. 李英年, 中国科学院西北高原生物研究所;;中国科学院高原生物适应与进化重点实验室, ;;中国科学院高原生物适应与进化重点实验室, 西宁;;西宁, 青海;;青海 810008;;810008, 中国. 贺慧丹, 枣庄学院, 枣庄, 山东 277100, 中国. 罗谨, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 王军邦, 中国科学院西北高原生物研究所;;中国科学院地理科学与资源研究所, ;;, 西宁;;, 青海;;北京 810008;;100101, 中国. EM 18404967849@163.com; ynli@nwipb.cas.cn Z7 18404967849@163.com; ynli@nwipb.cas.cn Z8 0 Z9 0 UT CSCD:6809907 DA 2023-03-23 ER PT J AU Zhang Guangru Li Wenqing Zhang Fawei Cui Xiaoyong He Huidan Yang Yongsheng Zhu Jingbin Wang Chunyu Luo Fanglin Li Yingnian Z2 张光茹 李文清 张法伟 崔骁勇 贺慧丹 杨永胜 祝景彬 王春雨 罗方林 李英年 TI Responses of key ecological attributes to multi-path restoration measures of degraded alpine meadows Z1 退化高寒草甸关键生态属性对多途径恢复措施的响应特征 Z3 生态学报 SO Acta Ecologica Sinica VL 40 IS 18 BP 6293 EP 6303 AR 1000-0933(2020)40:18<6293:THGHCD>2.0.TX;2-Q PY 2020 DT Article AB Alpine meadows are the key vegetation types of the Qinghai-Tibet Plateau and played critical roles in waterholding, carbon sequestration,and biodiversity conservations for China and Asian.Under the combinations of climate change and over-grazing practices,the alpine meadows have been widely experiencing degradation,which have seriously threatened the strategic status of the ecological barrier of the Plateau.Because of the frigid climate and fragile ecosystem, the rehabilitation of degraded alpine meadows has been a worldwide problem.And the restoration effects of degraded alpine meadow ecosystems also vary with the degraded gradations,restoration measures,and natural climatic conditions.The typical multi-path restoration measures such as grazing time management(spring rest-grazing and autumn rest-grazing), grazing intensity management(grazing livestock community optimization,rotation-reduction grazing,and fence enclosure)and tillage reconstructions were surveyed to explore the responses of key ecological variables and their underlying ecological processes of the degraded alpine meadows.The results showed that aboveground biomass,belowground biomass,soil organic carbon,and soil saturated water contents of degraded alpine meadows were clearly promoted under the multi-path restoration measures.The restoration effects varied with treatment durations and specific measures.Comparing with autumn restgrazing, spring rest-grazing could be a better option of grazing time management for lightly and heavily degraded alpine meadows.The ecological functions of soil carbon sequestration and water holding capacity under fence enclosure and tillage reconstruction showed a positive but saturating logarithmic relationship with treatment durations.And their appropriate durations in ecological restoration of the degraded meadows was about 6-10 years.For heavily degraded alpine meadows, the fence enclosure should be first adopted for 6-10 years and then grazing livestock community optimization and rotationreduction grazing could be later used for the balance between ecological function and stockbreeding development.Therefore, the restoration measures of grazing time and intensity management should be mainly applied to alpine meadows with lightly and heavily degradation.As for extremely degraded alpine meadows,generally referred to asblack soil beach,the tillage reconstruction would be an appropriate measure.Soil carbon sequestration and water holding capacity was significantly promoted after 6-year tillage planting treatment.Due to the different initial targets of multi-path restoration measures,future researches should focus on the scientific combinations and comprehensive assessments of restoration measures.Those countermeasures should take the restoration staff and time costs and ecological rehabilitation efforts into full considerations and balance the function of ecology,production,and livelihood of alpine meadow ecosystems. Z4 高寒草甸是青藏高原的主体植被类型,但退化态势较为严峻,严重威胁青藏高原生态屏障的战略地位。退化高寒草甸的复健是世界性难题,治理效果也因退化状态、 恢复措施及气候环境而异。以春季休牧、秋季休牧、畜群结构优化、减畜轮牧、围栏封育及翻耕改建等典型多途径恢复措施下的退化高寒草甸为对象,系统探讨主要 生态要素和生态功能的响应特征及潜在过程。结果表明,典型恢复措施下退化高寒草甸的植被生产力、土壤有机碳密度及土壤饱和持水量等生态要素都得到一定程度 的提升,而恢复效果与实施年限及恢复措施密切相关。围栏封育和翻耕改建下土壤有机碳密度及饱和持水量随恢复年限均表现为对数饱和型的响应特征,退化高寒草 甸固碳持水功能的基本恢复年限约为6-10年。春季休牧、秋季休牧、畜群结构优化、减畜轮牧、围栏封育等放牧管理恢复措施应适用于轻度退化至重度退化的高 寒草甸,而翻耕改建则是极度退化高寒草甸的适宜治理措施。由于多途径恢复措施的关注目标不同,今后研究应集中在恢复措施的组合优化和综合评价等方面。 C1 Zhang Guangru, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Zhu Jingbin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Wang Chunyu, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Luo Fanglin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Li Wenqing, College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China. Zhang Fawei, College of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China. Cui Xiaoyong, University of Chinese Academy of Sciences, Beijing 100049, China. He Huidan, College of Tourism, Resources and Environment, Zaozhuang University, Zaozhuang, Shandong 277100, China. Yang Yongsheng, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Yingnian, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 张光茹, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 祝景彬, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 王春雨, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 罗方林, 中国科学院西北高原生物研究所;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 李文清, 洛阳师范学院生命科学学院, 洛阳, 河南 471934, 中国. 张法伟, 洛阳师范学院生命科学学院, 洛阳, 河南 471934, 中国. 崔骁勇, 中国科学院大学, 北京 100049, 中国. 贺慧丹, 枣庄学院旅游与资源环境学院, 枣庄, 山东 277100, 中国. 杨永胜, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李英年, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM ynli@nwipb.cas.cn Z7 ynli@nwipb.cas.cn Z8 2 Z9 2 UT CSCD:6825323 DA 2023-03-23 ER PT J AU Zhang Jiang Yuan Minshu Zhang Jing Li Hanwei Wang Jieyi Zhang Xian Ju Peijun Jiang Haibo Chen Huai Zhu Qiuan Z2 张江 袁旻舒 张婧 李函微 王洁仪 张贤 鞠佩君 蒋海波 陈槐 朱求安 TI Responses of the NDVI of alpine grasslands on the Qinghai-Tibetan Plateau to climate change and human activities over the last 30 years Z1 近30年来青藏高原高寒草地NDVI动态变化对自然及人为因子的响应 Z3 生态学报 SO Acta Ecologica Sinica VL 40 IS 18 BP 6269 EP 6281 AR 1000-0933(2020)40:18<6269:J3NLQZ>2.0.TX;2-J PY 2020 DT Article AB Grassland ecosystem,one of the key component of terrestrial ecosystems,performs critical functions in climate regulation,soil and water conservation,windbreak and sand fixation,and the maintenance of biological diversity.The Qinghai-Tibetan Plateau(QTP),also known as theThird Poleof the Earth,is the largest and highest plateau in the world,with an average altitude of about 4000 m.As the important ecological security barrier in China,the QTP is regard as a sensitive and fragile area under global climate change.In recent years,the regional climate and environment of the QTP have changed dramatically due to intensified climate change and human activities,such as global warming,water pollution, grassland degradation and desertification,which have seriously hindered the sustainable development of local society and economy.Alpine grassland is the dominant plant functional type on the QTP and its vegetation dynamics in response to climate change and intensified human activities has been widely concerned.Normalized difference vegetation index(NDVI)has been widely applied in the study of vegetation dynamics because it can effectively reflect the vegetation coverage and growth status.Temperature and precipitation are considered to be the primary climatic factors affecting vegetation dynamics, while grazing intensity and human population are considered as the dominant anthropogenic factors.Therefore, understanding the mechanisms of the responses of alpine grassland to climate change and human activities is of great significance to predict the future of grassland under these disturbances.In this study,we analyzed the spatio-temporal changes of the NDVI of alpine grassland,temperature,precipitation,human population and grazing intensity by trend analysis from 1982 to 2013 on the county-scale.Besides,we used the panel data model to investigate the effect of climate changes and human activities on the NDVI in 143 counties of the QTP in the past 32 years.The results showed that:(1)the NDVI increased generally,and the plant growth increased in most of the areas but decreased in some specific areas.(2)there was an increasing tendency for the mean temperature(i.e.,warmer)and total precipitation(i.e.,more humid)over the growing season.(3)in the long-term,climate factors dominated the change of NDVI in alpine grassland on the QTP.The increase of precipitation and temperature increased the NDVI,whereas the continuously increasing grazing intensity decreased the NDVI in alpine grassland. Z4 草地生态系统是陆地生态系统的重要组成部分,在调节气候、水土保持、防风固沙、保护生物多样性等方面发挥着重要作用。青藏高原是全球海拔最高的独特地域单 元,平均海拔超过4000 m,素有世界第三极之称,亦是我国重要的生态安全屏障,其对气候变化敏感且易受人类活动的影响,属于气候变化敏感区和生态脆弱带。近年来,由于气候变化和 人类活动的不断加剧,青藏高原区域气候和环境发生了重大变化,气候变暖、水污染、草地退化和沙化等问题已严重阻碍了当地社会经济的可持续发展。高寒草地是 青藏高原主要的植被类型,在气候变化和人类活动加剧的背景下,青藏高原高寒草地植被的动态变化受到人们的广泛关注。归一化植被指数(Normalized difference vegetation index,NDVI)因能有效地反映植被覆盖程度和生长状况而被广泛应用于植被动态的研究中。气温与降水被认为是影响青藏高原植被动态的主要气候因子, 放牧强度与人口数量则是主要人为因子。因此,研究高寒草地植被对气候变化和人类活动的响应机制对预测未来草地变化有着重要的意义。基于青藏高原生长季草地 的NDVI、气温、降水、放牧强度及人口数量等数据,在县区尺度上,采用趋势分析法探究了1982-2013年青藏高原143个县区生长季草地NDVI动 态变化、气候变化及人类活动的变化,同时采用面板数据模型分析了32年来青藏高原143个县区气候、人为因子变化对草地NDVI变化的相对贡献。研究结果 显示:(1)青藏高原高寒草地生长季NDVI总体呈增长趋势,草地植被生长状态呈现整体改善、局部退化趋势;(2)青藏高原生长季平均气温与降水量整体增 加,气候呈现暖湿化趋势;(3)在长时间尺度上,气候因子主导了青藏高原高寒草地NDVI的变化,降雨和气温的增加促进草地NDVI的增加,放牧强度的持 续增加则导致草地NDVI的减少。 C1 Zhang Jiang, Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, Shanxi 712100, China. Yuan Minshu, Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, Shanxi 712100, China. Zhang Jing, Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, Shanxi 712100, China. Li Hanwei, Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, Shanxi 712100, China. Wang Jieyi, Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, Shanxi 712100, China. Zhang Xian, Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling, Shanxi 712100, China. Ju Peijun, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization;;Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China. Jiang Haibo, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization;;Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China. Chen Huai, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization;;Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China. Zhu Qiuan, Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University;;College of Hydrology and Water Resources Hohai University;;National Earth System Science Data Center, National Science & Technology Infrastructure of China, ;;;;, Yangling;;Nanjing;;, ;;;;Beijing 712100;;210098;;100101. Z6 张江, 西北农林科技大学林学院, 生态预测与全球变化研究中心, 杨凌, 712100. 袁旻舒, 西北农林科技大学林学院, 生态预测与全球变化研究中心, 杨凌, 712100. 张婧, 西北农林科技大学林学院, 生态预测与全球变化研究中心, 杨凌, 712100. 李函微, 西北农林科技大学林学院, 生态预测与全球变化研究中心, 杨凌, 712100. 王洁仪, 西北农林科技大学林学院, 生态预测与全球变化研究中心, 杨凌, 712100. 张贤, 西北农林科技大学林学院, 生态预测与全球变化研究中心, 杨凌, 712100. 鞠佩君, 中国科学院成都生物研究所, 中国科学院山地生态恢复与生物资源利用重点实验室, 成都, 四川 610041, 中国. 蒋海波, 中国科学院成都生物研究所, 中国科学院山地生态恢复与生物资源利用重点实验室, 成都, 四川 610041, 中国. 陈槐, 中国科学院成都生物研究所, 中国科学院山地生态恢复与生物资源利用重点实验室, 成都, 四川 610041, 中国. 朱求安, 西北农林科技大学林学院, 生态预测与全球变化研究中心;;河海大学水文水资源学院;;国家地球系统科学数据中心, 国家科技基础条件平台, ;;;;, 杨凌;;南京;;, ;;;;北京 712100;;210098;;100101. EM qiuan.zhu@gmail.com Z7 qiuan.zhu@gmail.com Z8 22 Z9 25 UT CSCD:6825321 DA 2023-03-23 ER PT J AU Xu Tianwei Zhao Xinquan Zhang Xiaoling Wang Xungang Geng Yuanyue Hu Linyong Zhao Na Mao Shaojuan Liu Hongjin Kang Shengping Ma Li Han Xueping Jia Gongxue Zhao Liang Dong Quanmin Chai Shatuo Xu Shixiao Z2 徐田伟 赵新全 张晓玲 王循刚 耿远月 胡林勇 赵娜 毛绍娟 刘宏金 康生萍 马力 韩学平 贾功雪 赵亮 董全民 柴沙鸵 徐世晓 TI Sustainable development of ecological grass-based livestock husbandry in Qinghai- Tibet Plateau alpine area:principle,technology and practice Z1 青藏高原高寒地区生态草牧业可持续发展:原理、技术与实践 Z3 生态学报 SO Acta Ecologica Sinica VL 40 IS 18 BP 6324 EP 6337 AR 1000-0933(2020)40:18<6324:QZGYGH>2.0.TX;2-1 PY 2020 DT Article AB Qinghai-Tibet Plateau plays an important role in ensuring nationally ecological security,developing alpine ecological grass-based livestock husbandry,and improving plateau people's livelihood.Therefore,realizing the sustainable development of alpine grass-based livestock husbandry is of great significance to promote the plateau ecological construction and the regional high quality development.However,the production efficiency and economic benefit of traditional grassland livestock husbandry are quite low,and the situation of grassland degradation is serious,largely attributed to the low carrying capacity of alpine grassland,the contradiction between herbage supply and livestock requirement,and the extensive management of livestock husbandry.The traditional grassland livestock husbandry should be transformed and upgraded to promote the coordinated development of plateau ecological protection,national park construction and people' s livelihood improvement.In recent years,with the support of science and technology projects from the state and Qinghai Province, aiming at the bottlenecks of low efficiency,high resources consumption and poor benefit of traditional livestock system,we have carried out the technology research and demonstration of ecological grass-based livestock husbandry in Guinan County of Qinghai Province.After years' research and practice,we integrated a technology system for alpine ecological grass-based livestock husbandry, which containsrational utilizing alpine grassland-establishing high yield artificial grasslandprocessing high quality silage and grass products-precisely allocating and utilizing forage-livestock nutrition balanced feeding-intensive processing plateau livestock products-developing integrated industries-regional function coupling development.The newly production system has actively promoted the transformation of the traditional grazing livestock management to ecological grass-based livestock husbandry, and promoted the coordinated development of ecology, production and livelihood in Qinghai-Tibet Plateau alpine area.The works provide science and technology support for plateau ecological protection,improving grass-based livestock husbandry efficiency,and increasing local people's economic income.Meanwhile,these works have certain enlightenment on the adaptive management for typically ecological fragile areas in Western China,and the ecological protection and high-quality development of the upper reaches of the Yellow River. Z4 青藏高原在保障国家生态安全、发展高寒生态草牧业和改善当地民生等方面具有重要战略意义。实现高寒地区生态草牧业可持续发展,对推动青藏高原生态保护和区 域高质量发展具有重要推动作用。由于高寒草地承载力低、草畜供需时空失衡和畜牧业经营方式粗放等原因,导致草地畜牧业生产效率低,牧民经营效益差,高寒草 地退化严重。为了协调推动高原生态保护、国家公园建设和区域民生改善,传统草地畜牧业亟待转型升级。近年来在国家和地方科技项目支持下,针对高寒草地畜牧 业系统效率低、资源消耗大和经营效益差的瓶颈,在位于青藏高原东缘农牧交错区的青海省贵南县系统开展了生态草牧业关键技术研发、应用和示范,集成了以高寒 草地适度利用-优质高产人工草地建植-优良牧草青贮-系列草产品加工-饲草料精准配置-家畜营养均衡饲养-高原特色畜产品精深加工-一二三产业融合-区域 功能耦合等为一体的高寒地区生态草牧业提质增效技术体系,积极推动了传统草地畜牧业向生态草牧业发展转变,促进了高寒地区生态-生产-生活协调发展,为青 藏高原生态保护、草牧业可持续发展和高寒地区牧民持续增收提供重要科技支撑,同时对我国西部典型生态脆弱区适应性管理,黄河上游生态保护和高质量发展具有 一定的启示作用。 C1 Xu Tianwei, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhao Xinquan, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Hu Linyong, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhao Na, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Jia Gongxue, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhao Liang, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Xu Shixiao, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhang Xiaoling, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Wang Xungang, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Geng Yuanyue, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Liu Hongjin, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Kang Shengping, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Ma Li, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Han Xueping, Northwest Institute of Plateau Biology, Institute of Sanjiangyuan National Park, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Xining;;, ;;Beijing 810008;;100049. Mao Shaojuan, College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai 810016, China. Dong Quanmin, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, Qinghai 810016, China. Chai Shatuo, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, Qinghai 810016, China. Z6 徐田伟, 中国科学院西北高原生物研究所/三江源国家公园研究院, 西宁, 青海 810008, 中国. 赵新全, 中国科学院西北高原生物研究所/三江源国家公园研究院, 西宁, 青海 810008, 中国. 胡林勇, 中国科学院西北高原生物研究所/三江源国家公园研究院, 西宁, 青海 810008, 中国. 赵娜, 中国科学院西北高原生物研究所/三江源国家公园研究院, 西宁, 青海 810008, 中国. 贾功雪, 中国科学院西北高原生物研究所/三江源国家公园研究院, 西宁, 青海 810008, 中国. 赵亮, 中国科学院西北高原生物研究所/三江源国家公园研究院, 西宁, 青海 810008, 中国. 徐世晓, 中国科学院西北高原生物研究所/三江源国家公园研究院, 西宁, 青海 810008, 中国. 张晓玲, 中国科学院西北高原生物研究所/三江源国家公园研究院;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 王循刚, 中国科学院西北高原生物研究所/三江源国家公园研究院;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 耿远月, 中国科学院西北高原生物研究所/三江源国家公园研究院;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 刘宏金, 中国科学院西北高原生物研究所/三江源国家公园研究院;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 康生萍, 中国科学院西北高原生物研究所/三江源国家公园研究院;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 马力, 中国科学院西北高原生物研究所/三江源国家公园研究院;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 韩学平, 中国科学院西北高原生物研究所/三江源国家公园研究院;;中国科学院大学, ;;, 西宁;;, ;;北京 810008;;100049. 毛绍娟, 青海大学生态环境工程学院, 西宁, 青海 810016, 中国. 董全民, 青海省畜牧兽医科学院, 西宁, 青海 810016, 中国. 柴沙鸵, 青海省畜牧兽医科学院, 西宁, 青海 810016, 中国. EM sxxu@nwipb.cas.cn Z7 sxxu@nwipb.cas.cn Z8 14 Z9 17 UT CSCD:6825326 DA 2023-03-23 ER PT J AU 曹亚楠 武建双 张宪洲 牛犇 何永涛 Z2 Cao Yanan Wu Jianshuang Zhang Xianzhou Niu Ben He Yongtao TI Comparison of Methods for Evaluating the Forage-livestock Balance of Alpine Grasslands on the Northern Tibetan Plateau Z1 藏北高原高寒草地草畜平衡评估方法比较 Z3 资源与生态学报 SO Journal of Resources and Ecology VL 11 IS 3 BP 272 EP 282 AR 1674-764X(2020)11:3<272:COMFET>2.0.TX;2-F PY 2020 DT Article AB Livestock grazing is one of primary way to use grasslands throughout the world, and the forage-livestock balance of grasslands is a core issue determining animal husbandry sustainability. However, there are few methods for assessing the forage-livestock balance and none of those consider the dynamics of external abiotic factors that influence forage yields. In this study, we combine long-term field observations with remote sensing data and meteorological records of temperature and precipitation to quantify the impacts of climate change and human activities on the forage-livestock balance of alpine grasslands on the northern Tibetan Plateau for the years 2000 to 2016. We developed two methods: one is statical method based on equilibrium theory and the other is dynamic method based on non-equilibrium theory. We also examined the uncertainties and shortcomings of using these two methods as a basis for formulating policies for sustainable grassland management. Our results from the statical method showed severe overgrazing in the grasslands of all counties observed except Nyima (including Shuanghu) for the entire period from 2000 to 2016. In contrast, the results from the dynamic method showed overgrazing in only eight years of the study period 2000-2016, while in the other nine years alpine grasslands throughout the northern Tibetan Plateau were less grazed and had forage surpluses. Additionally, the dynamic method found that the alpine grasslands of counties in the northeastern and southwestern areas of the northern Tibetan Plateau were overgrazed, and that alpine grasslands in the central area of the plateau were less grazed with forage surpluses. The latter finding is consistent with field surveys. Therefore, we suggest that the dynamic method is more appropriate for assessment of forage-livestock management efforts in alpine grasslands on the northern Tibetan Plateau. However, the statical method is still recommended for assessments of alpine grasslands profoundly disturbed by irrational human activities. Z4 放牧是世界各国利用草地的主要方式之一,其中草畜平衡又是畜牧业可持续发展的核心问题。然而,草畜平衡评估方面的方法相对较少,而且往往忽略了非生物因素 对牧草产量的动态影响。本研究将长期的野外数据与遥感数据以及温度和降水的气候记录相结合,量化了2000-2016年期间气候变化和人类活动对藏北高原 高寒草地草畜平衡的影响。我们采用了两种不同的方法,分别是基于平衡理论的静态方法和基于非平衡理论的动态方法,同时还讨论了这两种方法在制定草地可持续 管理潜在政策时的不确定性和缺陷。静态算法的结果表明,2000-2016年,除尼玛县(包括双湖县)外,所有县的草地都存在严重的过度放牧现象。相比之 下,动态方法结果显示,2000-2016年仅有8年过度放牧,其余9年整个藏北高原高寒草地有盈余。此外,动态方法还发现藏北高原东南和西南地区县域的 高寒草地过度放牧,而中部地区县域的高寒草地放牧较少,草地有盈余,这与实地调查结果一致。然而,对于受到人类不合理活动严重干扰的高寒草地,静态方法仍 然值得推荐。 C1 Cao Yanan, School of Earth Science and Engineering, Hebei University of Engineering, Handan, Hebei 056038, China. Wu Jianshuang, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Zhang Xianzhou, Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;College of Resources and Environment, University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modelling, Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100049. He Yongtao, Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;College of Resources and Environment, University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modelling, Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100049. Niu Ben, Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modelling, Chinese Academy of Sciences, Beijing 100101, China. Z6 曹亚楠, 河北工程大学, 地球科学与工程学院, 邯郸, 河北 056038, 中国. 武建双, 中国农业科学院, 农业环境与可持续发展研究所, 北京 100081, 中国. 张宪洲, 中国科学院地理科学与资源研究所, 拉萨高原生态试验站;;中国科学院大学, 资源与环境学院, 生态系统网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. 何永涛, 中国科学院地理科学与资源研究所, 拉萨高原生态试验站;;中国科学院大学, 资源与环境学院, 生态系统网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. 牛犇, 中国科学院地理科学与资源研究所, 拉萨高原生态试验站, 生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM caoyanan@hebeu.edu.cn; zhangxz@igsnrr.ac.cn Z7 caoyanan@hebeu.edu.cn; zhangxz@igsnrr.ac.cn Z8 3 Z9 8 UT CSCD:6728951 DA 2023-03-23 ER PT J AU Cao Pengxi Liu Yixuan Xu Guoqi Ji Yali Li Jingke Li Xiaoyan Liu Xing Z2 曹鹏熙 刘怡萱 许国琪 姬亚丽 李敬科 李小燕 刘星 TI Bacterial diversity in the root system soil of Oxytropis glacialis Z1 冰川棘豆(Oxytropis glacialis)根系土壤细菌多样性特征 Z3 生态学报 SO Acta Ecologica Sinica VL 40 IS 14 BP 4954 EP 4965 AR 1000-0933(2020)40:14<4954:BCJDOG>2.0.TX;2-W PY 2020 DT Article AB Oxytropis glacialis is one of the main poisonous weeds in the alpine grassland and desert grassland of the Qinghai- Tibet Plateau(QTP).It has a serious impact on the grassland degradation and the development of animal husbandry in the QTP.In this paper,the bacterial 16S rRNA in the root system soil of Oxytropis glacialis was sequenced by high-throughput sequencing and analyzed by bioinformatics methods.Combining with the physical and chemical properties of soil samples,the bacterial diversity and its relationship with soil physical and chemical factors was analyzed.The possible influence on root system soil bacteria of Oxytropis glacialis to form dominant species in alpine ecosystem was discussed.The results showed that the diversity of root system soil bacteria of Oxytropis glacialis was rich in different ecological environments,and was most affected by soil pH and organic matter.Meanwhile,the stable core microbiota network could be maintained,which could promote the formation of Oxytropis glacialis becoming dominant species in the alpine ecosystem. Z4 冰川棘豆是青藏高原高寒草原和荒漠草原主要伴生毒草之一,对青藏高原草地退化及畜牧业的发展产生严重影响。对4种不同生态环境中冰川棘豆根系土壤细菌的1 6S rRNA进行高通量测序及生物信息学分析,结合土壤的理化性质,分析了不同生态环境下冰川棘豆根系土壤细菌群落多样性及其与土壤理化因子的关系,探讨了根 系土壤细菌对冰川棘豆在高寒生态系统中形成优势种可能的影响。结果表明,在不同生态环境下冰川棘豆根系土壤细菌多样性丰富,且受土壤pH和有机物影响最大 ,同时,能够保持稳定的核心菌群网络,对冰川棘豆在高寒生态系统中形成优势种具有促进作用。 C1 Cao Pengxi, College of Science,Tibet University, Lhasa, Tibet 850000, China. Liu Yixuan, College of Science,Tibet University, Lhasa, Tibet 850000, China. Xu Guoqi, College of Science,Tibet University, Lhasa, Tibet 850000, China. Ji Yali, College of Science,Tibet University, Lhasa, Tibet 850000, China. Li Jingke, College of Science,Tibet University, Lhasa, Tibet 850000, China. Li Xiaoyan, College of Life Science,Wuhan University, Wuhan, Hubei 430072, China. Liu Xing, College of Science,Tibet University;;College of Life Science,Wuhan University, ;;, Lhasa;;Wuhan, ;; 850000;;430072. Z6 曹鹏熙, 西藏大学理学院, 拉萨, 西藏 850000, 中国. 刘怡萱, 西藏大学理学院, 拉萨, 西藏 850000, 中国. 许国琪, 西藏大学理学院, 拉萨, 西藏 850000, 中国. 姬亚丽, 西藏大学理学院, 拉萨, 西藏 850000, 中国. 李敬科, 西藏大学理学院, 拉萨, 西藏 850000, 中国. 李小燕, 武汉大学生命科学学院, 武汉, 湖北 430072, 中国. 刘星, 西藏大学理学院;;武汉大学生命科学学院, ;;, 拉萨;;武汉, ;; 850000;;430072. EM xingliu@whu.edu.cn Z7 xingliu@whu.edu.cn Z8 2 Z9 3 UT CSCD:6777804 DA 2023-03-23 ER PT J AU Li Chengyi Li Xilai Sun Huafang Li Deqin Zhang Feng Lin Chunying Zhang Jing Ma Chengbiao Z2 李成一 李希来 孙华方 李得琴 张锋 林春英 张静 马程彪 TI Drought Processes of Alpine Wetland and Their Influences on CO_2Exchange Z1 高寒湿地旱化过程及其对CO_2交换的影响 Z3 草地学报 SO Acta Agrestia Sinica VL 28 IS 3 BP 750 EP 758 AR 1007-0435(2020)28:3<750:GHSDHH>2.0.TX;2-H PY 2020 DT Article AB Effects of drought processes of alpine wetland on carbon flux on the Qinghai-Tibetan Plateau were analyzed to discuss the changes of carbon flux during the drought processes of alpine wetland.Alpine wetland,swamp meadow and alpine meadow were selected in this study.The TARGAS-1static box method was used to perform a carbon flux dynamic detection test so as to explore the differences of carbon exchange in the drought processes in alpine wetland at the peak of plant growth in July and August.The results showed that photosynthetic rate,ecosystem respiration rate and net ecosystem carbon exchange of vegetation community in swamp meadow and alpine meadow were significantly increased(P<0.05),compared within alpine wetland;There were significant differences in soil temperature and moisture,and vegetation community biomass at different degradation stages(P<0.05),but there was no significant difference in soil electrical conductivity;Compared with soil moisture and soil conductivity, soil temperature had the greatest effect on CO_2exchange,and the temperature had a significantly negative relationship with net ecosystem carbon exchange(P<0.05).The carbon exchange in alpine meadow was more sensitive to soil temperature than that in alpine wetland and swamp meadow;With the drought processes of alpine wetland at the peak of plant growth,the soil temperature increased significantly,and wetland soil moisture and plant community biomass decreased.The functions of carbon sink in alpine wetland presented as a downward trend. Z4 为研究青藏高原高寒湿地旱化对碳通量的影响,探讨高寒湿地旱化碳通量变化规律,本研究于7-8月生长高峰期以高寒湿地、沼泽化草甸和高寒草甸为研究对象, 利用TARGAS-1静态箱法,比较高寒湿地不同退化阶段碳交换的动态差异。结果表明:与高寒湿地相比,沼泽化草甸与高寒草甸植被群落光合速率、生态系统 呼吸速率、净生态系统碳交换显著提高(P<0.05);不同退化阶段土壤温湿度及植被群落生物量存在显著差异(P<0.05),土壤电导率差异不显著;相 比于土壤湿度和土壤电导率,土壤温度对CO_2交换的影响更大,其与净生态系统碳交换呈显著负相关(P<0.05),高寒草甸的碳交换对土壤温度的敏感性 要大于高寒湿地和沼泽化草甸的碳交换对土壤温度的敏感性;在植物生长高峰期,高寒湿地旱化过程土壤温度显著上升,土壤湿度和植物群落生物量显著下降,导致 其碳汇功能呈下降趋势。 C1 Li Chengyi, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Sun Huafang, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Zhang Feng, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Lin Chunying, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Li Xilai, College of Agriculture and Animal Husbandry,Qinghai University;;Qinghai-Guangdong Joint Key Laboratory of Natural Resources Monitoring and Evaluation, ;;Qinghai-Guangdong Joint Key Laboratory of Natural Resources Monitoring and Evaluation, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Zhang Jing, College of Agriculture and Animal Husbandry,Qinghai University;;Qinghai-Guangdong Joint Key Laboratory of Natural Resources Monitoring and Evaluation, ;;Qinghai-Guangdong Joint Key Laboratory of Natural Resources Monitoring and Evaluation, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Li Deqin, Agriculture,Rural and Science and Technology Bureau,Ping'an District,Haidong City,Qinghai Province, Haidong, Qinghai 810600, China. Ma Chengbiao, Geographical State Monitoring Institute of Qinghai Province, Xining, Qinghai 810007, China. Z6 李成一, 青海大学农牧学院, 西宁, 青海 810016, 中国. 孙华方, 青海大学农牧学院, 西宁, 青海 810016, 中国. 张锋, 青海大学农牧学院, 西宁, 青海 810016, 中国. 林春英, 青海大学农牧学院, 西宁, 青海 810016, 中国. 李希来, 青海大学农牧学院;;青海-广东自然资源监测与评价联合实验室, ;;青海-广东自然资源监测与评价联合实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 张静, 青海大学农牧学院;;青海-广东自然资源监测与评价联合实验室, ;;青海-广东自然资源监测与评价联合实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 李得琴, 青海省海东市平安区农业农村和科技局, 海东, 青海 810600, 中国. 马程彪, 青海省地理国情监测院, 西宁, 青海 810007, 中国. EM 1527523489@qq.com; xilai-li@163.com Z7 1527523489@qq.com; xilai-li@163.com Z8 4 Z9 7 UT CSCD:6785140 DA 2023-03-23 ER PT J AU Li Xinxing Liu Guimin Wu Xiaoli Ji Genghao Li Lisha Mao Nan Xu Haiyan Wu Xiaodong Z2 李新星 刘桂民 吴小丽 纪庚好 李莉莎 毛楠 徐海燕 吴晓东 TI Soil C,N and P Contents in Thaw Slump-affected Areas on the Northeastern Tibetan Plateau Z1 青藏高原东北部热融滑塌区土壤碳氮磷含量 Z3 环境科学与技术 SO Environmental Science and Technology VL 43 IS 1 BP 37 EP 44 AR 1003-6504(2020)43:1<37:QZGYDB>2.0.TX;2-X PY 2020 DT Article AB Thaw slump caused by permafrost degradation can affect landform under global warming scenarios,further changes soil physical and chemical properties.However,little is known about the effects of thaw slump on the physical and chemical properties.In order to examine the effects of thaw slumps on the physical and chemical properties of soil,this study selected three micro-geomorphologies(control area,slump area,subsidence area)of three thaw slump-affected areas in the alpine meadow on the northeastern Tibetan Plateau.Soil samples at 0~15 cm,15~30 cm were collected and used to measure soil organic carbon(SOC),total nitrogen(TN),total phosphorus(TP),dissolved organic carbon(DOC),total dissolved nitrogen(TDN),phosphate(physicochemical properties such as P-PO_4),pH and water content.The results show that the detachment areas caused by the permafrost thaw had significantly lower contents of C,N and P in the surface soil layers.In the 0~15 cm layer,SOC,TN and TP contents decreased by 42%,38% and 22%,respectively.DOC,TDN and P-PO_4 decreased by 60%,24% and 44%,respectively.In the 15~30 cm layer,SOC,TN and TP contents decreased by 16%,23% and 21%,respectively.SOC,TN,and TP contents decreased by 33%,30% and 38%,respectively.pH and water contents were closely associated with C,N and P contents.In the thaw slump-affected areas,C,N and P contents decreased,while pH increased and water content decreased.The results indicated that the thaw slump can decrease soil C,N and P contents in permafrost regions. Z4 全球变暖加剧多年冻土退化,导致地表沉降等热喀斯特现象,进而会改变土壤理化性质,但热融滑塌对土壤理化性质的影响还不清楚。该研究选择青藏高原东北部高 寒草甸区3条热融滑塌沟的3种微地貌(对照区、滑塌区、沉降区)样地,采集0~15cm、15~ 30cm的土壤,测定其有机碳(SOC)、全氮(TN)、全磷(TP)、溶解有机碳(DOC)、总溶解氮(TDN)、磷酸盐(P-PO_4)、pH、含水 率等理化性质,分析热融滑塌对土壤理化性质的影响。结果发现:(1)热融滑塌导致表层土壤C、N、P含量大幅降低,其中0~15cm层土壤SOC、TN、 TP含量在0~15cm层分别减少42%、38%、22%,土壤可溶性DOC、TDN、P-PO_4分别减少60%、24%、44%;15~30cm层土 壤中,SOC、TN、TP含量分别减少16%、23%、21%,土壤可溶性DOC、TDN、P-PO_4分别减少33%、30%、38%。(2)pH与土 壤含水率与土壤C、N、P含量密切相关,滑塌后土壤pH升高、含水率降低,同时土壤C、N、P含量降低。结果表明热融滑塌会降低多年冻土区土壤C、N、P 的含量。 C1 Li Xinxing, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China. Liu Guimin, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China. Wu Xiaoli, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China. Ji Genghao, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China. Li Lisha, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China. Mao Nan, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China. Xu Haiyan, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730000, China. Wu Xiaodong, Northwest Institute of the Eco-environment and Resources,Chinese Academy of Sciences, Cryosphere Research Station on the Qinghai-Tibetan Plateau;;State Key Laboratory of Cryospheric Science, Lanzhou, Gansu 730000, China. Z6 李新星, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730000, 中国. 刘桂民, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730000, 中国. 吴小丽, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730000, 中国. 纪庚好, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730000, 中国. 李莉莎, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730000, 中国. 毛楠, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730000, 中国. 徐海燕, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730000, 中国. 吴晓东, 中国科学院西北生态环境资源研究院, 冰冻圈国家重点实验室;;中国科学院青藏高原冰冻圈观测研究站, 兰州, 甘肃 730000, 中国. EM lixinxing2017@163.com; liuguimin@mail.lzjtu.cn Z7 lixinxing2017@163.com; liuguimin@mail.lzjtu.cn Z8 1 Z9 1 UT CSCD:6779511 DA 2023-03-23 ER PT J AU Liang Jun Quan Xiaolong Zhang Jiexue Shi Huilan Duan Zhonghua Qiao Youming Z2 梁军 全小龙 张杰雪 史惠兰 段中华 乔有明 TI Potential allelopathic effects of water extracts of three grasses on germination of their own seeds and seedling growth Z1 3种禾草水提取液对其种子发芽和幼苗生长的潜在化感作用 Z3 草业学报 SO Acta Prataculturae Sinica VL 29 IS 7 BP 81 EP 89 AR 1004-5759(2020)29:7<81:3ZHCST>2.0.TX;2-K PY 2020 DT Article AB Knowledge of the allelopathic potential of grass species is of great theoretical and practical significance for unraveling the degradation mechanisms in sown perennial pastures in alpine regions.The purpose of this study was to explore the potential allelopathic effects of Elymus nutans,Poa crymophila,and Festuca sinensis.Water extracts were prepared from whole plants and from plant powder of the perennial grass species. The effects of water extract on seed germination and seedling growth were investigated by laboratory bioassay. The whole plant extract of E.nutans significantly reduced the germination rate of E.nutans,P.crymophila and F.sinensis by 10.6,7.0 and 21.4 percentage points(P<0.05),respectively,compared with the control. Seedling growth of the three grass species was also inhibited by the extract.The whole plant extract of P.crymophilainhibited the root length of E.nutans,P.crymophilaand F.sinensis seedlings,the inhibition rates were 41.9%,61.5%and 32.1%,respectively.The whole plant extract of F.sinensis significantly inhibited the dry weight of P.crymophilaand E.nutans seedlings(P<0.05)by 51.2%and 46.4%,respectively.The powder extracts of E.nutans,P.crymophila,and F.sinensis significantly reduced(P<0.05)the germination rate,germination index,seedling height and root length of their own seeds and seedlings and those of other species.The different extracts of the three grasses had autotoxic and allelopathic effects on the germination and seedling growth of their own seeds and the those of other species,and the allelopathic effect of the powder extracts on the three grasses was stronger than that of whole plant extracts.A multivariate evaluation of the allelopathic effects of different extracts of the three grasses on their own seed germination and seedling growth of the other grass species ranked the allelopathic activity in the order:P.crymophila>E.nutans>F.sinensis.It is recommended to consider the inter-species allelopathic effect when establishing mixed seeding pasture in the Tibetan plateau area. Z4 研究禾草的化感潜力对于揭示高寒地区多年生人工草地的退化机理具有重要的理论和现实意义。目的是探讨垂穗披碱草、冷地早熟禾和中华羊茅的潜在化感作用。利 用3种植物的整株和粉末分别制备了水提取液,采用室内生物测试法研究了3种多年生禾草水提取液对其种子发芽和幼苗生长的影响。结果表明:垂穗披碱草整株浸 提液显著降低了垂穗披碱草、冷地早熟禾和中华羊茅的发芽率(P<0.05),较对照分别下降了10.6、7.0和21.4个百分点,对3种禾草幼苗生长均 有抑制作用;冷地早熟禾整株浸提液显著抑制了垂穗披碱草、冷地早熟禾和中华羊茅幼苗的根长,抑制率分别为41.9%,61.5%和32.1%;中华羊茅整 株浸提液显著抑制了冷地早熟禾和垂穗披碱草幼苗干重(P<0.05),抑制率分别为51.2%和46.4%;垂穗披碱草、冷地早熟禾和中华羊茅粉末浸提液 均能显著降低自身及其他植物的发芽率、发芽指数、苗高、根长以及干重(P<0.05)。3种禾草不同浸提液对自身及其他植物种子发芽和幼苗生长均具有自毒 作用和化感效应,且粉末浸提液对3禾草的化感效应强于整株浸提液。3种禾草不同处理的浸提液对其种子发芽和幼苗生长的综合化感效应强弱表现为:冷地早熟禾 >垂穗披碱草>中华羊茅。采用混播方式在高寒地区建立人工草地时要考虑种间的化感作用。 C1 Liang Jun, Qinghai University;;College of Agriculture and Animal Husbandry,Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture;;, Xining;;Xining, ;; 810016;;810016. Zhang Jiexue, Qinghai University;;College of Agriculture and Animal Husbandry,Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture;;, Xining;;Xining, ;; 810016;;810016. Quan Xiaolong, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Duan Zhonghua, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Qiao Youming, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Shi Huilan, College of Ecol-Environmental Engineering,Qinghai University, Xining, Qinghai 810016, China. Z6 梁军, 青海大学;;青海大学农牧学院, 青海省省部共建三江源生态与高原农牧业国家重点实验室;;, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 张杰雪, 青海大学;;青海大学农牧学院, 青海省省部共建三江源生态与高原农牧业国家重点实验室;;, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 全小龙, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 段中华, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 乔有明, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 史惠兰, 青海大学生态环境工程学院, 西宁, 青海 810016, 中国. EM liangjun0104@126.com; ymqiao@aliyun.com Z7 liangjun0104@126.com; ymqiao@aliyun.com Z8 1 Z9 2 UT CSCD:6761027 DA 2023-03-23 ER PT J AU Li Chengyi Li Xilai Yang Yuanwu Li Honglin Liang Defei Z2 李成一 李希来 杨元武 李宏林 梁德飞 TI Effect of nitrogen addition on soil bacterial diversity in alpine degraded gras slands of differing slope Z1 氮添加对不同坡度退化高寒草甸土壤细菌多样性的影响 Z3 草业学报 SO Acta Prataculturae Sinica VL 29 IS 12 BP 161 EP 170 AR 1004-5759(2020)29:12<161:DTJDBT>2.0.TX;2-Q PY 2020 DT Article AB The aim of this study was to determine the effects of nitrogen addition on the bacterial community in soils in degraded alpine meadows with different slopes in Guoluo Prefecture,in the Sanjiangyuan Region.Degraded grasslands with different slopes were supplemented with nitrogen at three levels:low nitrogen(LN,2 g N·m~(-2)),medium nitrogen(MN,5 g N·m~(-2)),high nitrogen(HN,10 g N·m~(-2)),and the effects on soil bacterial diversity were determined.The 16s rDNA region of soil bacteria was sequenced and analyzed using Miseq PE250 sequencing technology.Actinomycota and Proteobacteria were the two main bacterial classes in the grassland soil in the study area.Individual phyla with extremely low abundance in soil and those with high abundance(>61.4%),including unidentified bacterial genera,differed significantly between gentle slope and steep slope regions (P<0.05).Different nitrogen addition levels did not significantly effect on the relative abundance of bacterial phyla and most bacterial genera in degraded alpine grassland,but had significant effects on some less abundant genera(P<0.05).On both gentle and steep slopes,the overall soil microbial richness and diversity tended to initially decrease and then increase with increasing nitrogen addition.The HN treatment inhibited the decrease of soil bacterial richness and diversity.The effect of nitrogen addition on bacterial diversity was threshold-limited.Among the three treatments,the MN treatment significantly reduced soil bacterial richness and diversity(P<0.05). Z4 选取三江源区果洛州不同坡度退化程度相近的高寒草甸,进行氮添加试验,运用Miseq PE250测序技术对土壤细菌16s rDNA进行序列测定和分析,探讨3个氮添加水平低等量氮添加(LN,2 g N·m~(-2))、中等量氮添加(MN,5 g N·m~(-2))、高等量氮添加(HN,10 g N·m~(-2))对不同坡度退化草地土壤细菌多样性的影响。结果表明:放线菌门(Actinobacteria)、变形菌门(Proteobacter ia)是研究区草地土壤中最主要的两大类群。缓坡地与陡坡地土壤细菌个别丰度极低的门以及61.4% 以上(包括未鉴定的细菌属)细菌属存在显著差异(P<0.05)。不同施氮水平对退化高寒草地各细菌门以及大部分细菌属影响不显著,对一些丰度较低的属的 影响显著(P<0.05),且在不同坡度所响应的细菌属不同。无论是缓坡地还是陡坡地,氮添加对退化高寒草甸土壤细菌群落结构存在显著差异(P<0.05 ),土壤微生物丰富度和多样性整体上呈现出随着施氮量增加先减少后增加的趋势,中等量氮添加显著降低了土壤细菌丰富度和多样性,高水平氮添加显著抑制了土 壤细菌的丰富度和多样性的下降(P<0.05),说明氮添加对细菌多样性的影响具有阈值限制性。 C1 Li Chengyi, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Yang Yuanwu, College of Agriculture and Animal Husbandry,Qinghai University, Xining, Qinghai 810016, China. Li Xilai, College of Agriculture and Animal Husbandry,Qinghai University;;Qinghai University;;Qinghai-Guangdong Joint Laboratory of Natural Resources Monitoring and Evaluation, ;;State Key Laboratory of Plateau Ecology and Agriculture;;Qinghai-Guangdong Joint Laboratory of Natural Resources Monitoring and Evaluation, Xining;;Xining;;Xining, ;;;; 810016;;810016;;810016. Li Honglin, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Liang Defei, Qinghai University, State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai 810016, China. Z6 李成一, 青海大学农牧学院, 西宁, 青海 810016, 中国. 杨元武, 青海大学农牧学院, 西宁, 青海 810016, 中国. 李希来, 青海大学农牧学院;;青海大学;;青海-广东自然资源监测与评价联合实验室, ;;青海省省部共建三江源生态与高原农牧业国家重点实验室;;青海-广东自然资源监测与评价联合实验室, 西宁;;西宁;;西宁, 青海;;青海;;青海 810016;;810016;;810016, 中国. 李宏林, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 梁德飞, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. EM 1527523489@qq.com; xilai-li@163.com Z7 1527523489@qq.com; xilai-li@163.com Z8 5 Z9 8 UT CSCD:6864716 DA 2023-03-23 ER PT J AU Li Shaoyu Sun Jian Wang Yi Qin Xiaojing Ye Chongchong Z2 李邵宇 孙建 王毅 秦小静 叶冲冲 TI Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau Z1 青藏高原不同退化梯度草地土壤酶活性特征 Z3 草业科学 SO Pratacultural Science VL 37 IS 12 BP 2389 EP 2402 AR 1001-0629(2020)37:12<2389:QZGYBT>2.0.TX;2-7 PY 2020 DT Article AB Soil enzymes are important in nutrient cycling,material circulation,energy flow,and metabolism in the ecosystem.We determined the soil physical and chemical properties,and enzyme stoichiometry,and explored the driving mechanism along a degraded gradient on Tibetan Plateau alpine meadow and steppe.The results showed that:1) Soil total nitrogen,total carbon,total phosphorus,organic carbon,compactness,moisture content,beta-1,4-N-acetylglucosaminidase,leucine aminopeptidase,and beta-1,4-glucosidase exhibited a decreasing trend,while soil temperature and pH increased with the aggravation of degradation in both alpine meadow and steppe;2) Pearson correlation analysis showed that pH was significantly negatively correlated with beta-1,4-glucosidase activity and lignin peroxidase,while organic carbon and total carbon were positively correlated with beta-1,4-glucosidase and lignin peroxidase in alpine meadow.The moisture content and compactness in alpine steppe were positively correlated with leucine aminopeptidase,alkaline phosphatase,urease,and beta-1,4-N-acetylglucosaminidase.The study provides a theoretical basis for exploring the variation mechanism of soil physical and chemical properties and enzyme activity under different degradation gradients,and grassland ecosystem restoration in Tibetan Plateau. Z4 土壤酶是土壤生态系统物质循环和能量流动的重要参与者,也是草地生态系统代谢的重要动力之一,其活性大小对土壤养分储量和生化反应过程有明显指示作用。本 研究以青藏高原高寒草甸和高寒草原为研究对象,通过对土壤理化性质和土壤酶化学计量特征进行分析,探究不同退化梯度下土壤酶特征及作用机理。结果表明:1 )随着退化程度加剧,两种草地类型土壤全氮、全碳、全磷、有机碳、紧实度、含水量、N-乙酰-beta-D-葡萄糖苷酶、亮氨酸氨基肽酶和beta-葡萄 糖苷酶均呈降低趋势,土壤温度和pH呈增加趋势;2)高寒草甸土壤pH与beta-葡萄糖苷酶活性和木质素过氧化物酶呈负相关关系,有机碳、全碳与bet a-葡萄糖苷酶、木质素过氧化酶呈正相关关系;高寒草原含水量和紧实度与亮氨酸氨基肽酶、碱性磷酸酶、脲酶和N-乙酰-beta-D-葡萄糖苷酶呈正相关 关系。本研究为探索青藏高原不同草地类型退化过程中土壤理化性质和酶活性变化机理以及草地生态系统修复提供了理论依据。 C1 Li Shaoyu, College of Grassland,Resource and Environment,Inner Mongolia Agricultural University;;Institute of Geographic Science and Nature Resources Research,Chinese Academy of Science, ;;, Hohhot;;, Inner Mongolia;;Beijing 010011;;100101. Sun Jian, Institute of Geographic Science and Nature Resources Research,Chinese Academy of Science, Beijing 100101, China. Wang Yi, Institute of Geographic Science and Nature Resources Research,Chinese Academy of Science;;College of Earth Sciences,Chengdu University of Technology, ;;, ;;Chengdu, Beijing;;Sichuan 100101;;610059. Qin Xiaojing, Surveying and Land Information Engineering,Henan Polytechnic University, Jiaozuo, Henan 454150, China. Ye Chongchong, Institute of Geographic Science and Nature Resources Research,Chinese Academy of Science;;School of Civil Engineering and Architecture,Southwest Petroleum University, ;;, ;;Chengdu, Beijing;;Sichuan 100101;;610500. Z6 李邵宇, 内蒙古农业大学草原与资源环境学院;;中国科学院地理科学与资源研究所, ;;, 呼和浩特;;, 内蒙古;;北京 010011;;100101, 中国. 孙建, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 王毅, 中国科学院地理科学与资源研究所;;成都理工大学地球科学学院, ;;, ;;成都, 北京;;四川 100101;;610059, 中国. 秦小静, 河南理工大学测绘与国土信息工程学院, 焦作, 河南 454150, 中国. 叶冲冲, 中国科学院地理科学与资源研究所;;西南石油大学土木工程与建筑学院, ;;, ;;成都, 北京;;四川 100101;;610500, 中国. EM lsy199769@163.com; sunjian@igsnrr.ac.cn Z7 lsy199769@163.com; sunjian@igsnrr.ac.cn Z8 7 Z9 7 UT CSCD:6877213 DA 2023-03-23 ER PT J AU Duan Peng Zhang Yongchao Wang Jingui Wang Ting Zhao Zhizhong Z2 段鹏 张永超 王金贵 王婷 赵之重 TI Functional Diversity of Soil Microbial Communities during Degradation of Alpine Wetlands in Qinghai-Tibet Plateau Z1 青藏高原高寒湿地退化过程中土壤微生物群落功能多样性特征 Z3 草地学报 SO Acta Agrestia Sinica VL 28 IS 3 BP 759 EP 767 AR 1007-0435(2020)28:3<759:QZGYGH>2.0.TX;2-5 PY 2020 DT Article AB In order to provide scientific basis for the restoration of wetland in the Qinghai-Tibet Plateau,the degraded alpine river wetlands were selected in the source area of the Yellow River in Sanjiangyuan,and the spatial replacement time was adopted to select the different wetland degradation stages.In our study,microbial community functional diversity of different stand types in the reverse succession of alpine wetlands was analyzed by conventional laboratory analysis and Biolog-Eco micro plate method.Our results showed that the microbial flora similarity of alpine wetland,swamp meadow and degraded meadow was higher than that of severely degraded meadow and degraded steppe.The order of soil microbial activity from high to low in the reverse succession of alpine wetlands was swamp meadow>degraded meadow>alpine wetland> severely degraded meadow>degraded grassland.During the degradation process,the soil microorganisms had the strongest metabolic capacity for ester carbon sources,and the soil microorganisms had a lower utilization of acid carbon sources in the early stages of degradation.In addition,the AWCD value of soil microorganisms were mainly affected by soil total nitrogen contents,soil organic carbon contents,total nitrogen vs total phosphorus,plant cover,soil water contents and underground biomass. Z4 为给高寒湿地的退化监测和恢复治理提供科学理论依据,本试验在三江源黄河源区选取退化高寒湿地,采用空间代替时间的方法,选取不同退化阶段并利用常规实验 室分析法和Biolog-Eco微平板法研究其土壤微生物群落结构及功能的变化特征。结果表明,高寒湿地、沼泽化草甸和退化草甸样地微生物群系相似性更高 。不同退化程度的土壤微生物活性从高到低排序依次为:沼泽化草甸>退化草甸>湿地>重度退化草甸>退化草原。整个退化过程土壤微生物对酯类碳源代谢能力均 为最强,在退化早期土壤微生物对酸类碳源的利用率较低。土壤微生物平均颜色变化率(Average well color development,AWCD)主要受到土壤全氮含量、土壤有机碳含量、全氮/全磷、植物盖度、土壤含水量和地下生物量的影响。 C1 Duan Peng, Qinghai University, Xining, Qinghai 810016, China. Wang Jingui, Qinghai University, Xining, Qinghai 810016, China. Wang Ting, Qinghai University, Xining, Qinghai 810016, China. Zhang Yongchao, Qinghai Academy of Animal Science and Veterinary Medicine, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining, Qinghai 810016, China. Zhao Zhizhong, Qinghai University;;Qinghai Nationalities University, ;;, Xining;;Xining, Qinghai;;Qinghai 810016;;810007. Z6 段鹏, 青海大学, 西宁, 青海 810016, 中国. 王金贵, 青海大学, 西宁, 青海 810016, 中国. 王婷, 青海大学, 西宁, 青海 810016, 中国. 张永超, 青海省畜牧兽医科学院, 青海省青藏高原优良牧草种质资源利用重点实验室, 西宁, 青海 810016, 中国. 赵之重, 青海大学;;青海民族大学, ;;, 西宁;;西宁, 青海;;青海 810016;;810007, 中国. EM 734011925@qq.com; qdwjm@126.com Z7 734011925@qq.com; qdwjm@126.com Z8 4 Z9 7 UT CSCD:6785141 DA 2023-03-23 ER PT J AU Wang Xiangtao Zhang Chao Liao Lirong Wang Jie Yu Lanhui Zhang Xianzhou Z2 王向涛 张超 廖李荣 王杰 喻岚辉 张宪洲 TI Effects of Degradation of Alpine Meadow on Soil Microbial Genes in Nitrogen Transformation in Qinghai-Tibet Plateau Z1 青藏高原高寒草甸退化对土壤氮素转化微生物基因的影响 Z3 水土保持通报 SO Bulletin of Soil and Water Conservation VL 40 IS 3 BP 8 EP 13 AR 1000-288X(2020)40:3<8:QZGYGH>2.0.TX;2-Z PY 2020 DT Article AB [Objective]The characteristics of nitrogen(N)transformation in degraded alpine meadows and identify the effects of meadow degradation on the gene abundance of soil nitrogen-transforming microorganisms were studied thoroughly,in order to provide a basis for understanding the degradation mechanism and scientific management of alpine meadows.[Methods]A soil survey along a degraded gradient,including undegraded, lightly degraded,moderately degraded,and severely degraded meadows,in the Qinghai-Tibetan alpine region was conducted.The changes in soil physicochemical properties and genes in N transformation(including nif H,amoA-AOA,amoA-AOB,narG,nir K,nirS,and nosZ)were investigated by using real-time quantitative PCR method,and the drivers of these functional genes were clarified.[Results]① The contents of soil organic carbon (SOC),total N,nitrate N,and ammonium N decreased along the degradation gradient. ② Degradation led to a significant reduction in the abundance of nif H,amoA-AOA,and amoA-AOB genes, whereas it caused an increase in the abundance of nar G,nirS,and nir K genes,which was the maximum in the severely degraded meadow soils.③ The abundance of the nif H,amoA-AOA,and amoA-AOB genes was significantly positively correlated with the contents of SOC,nitrate N,ammonium N,and soil moisture.The abundance of the nar G,nirS,and nir K genes was significantly negatively correlated with the contents of SOC,nitrate N,and ammonium N,whereas it was positively correlated with the pH value.[Conclusion] The degradation of the alpine meadows had an important influence on the microorganisms involved in N transformation.The SOC,pH value,and moisture were the significant drivers of the functional genes in soil nitrogen-transforming microorganisms in alpine meadow soils. Z4 [目的]深入分析高寒草甸退化过程中土壤氮素转化特征,明确草甸退化对土壤氮素转化微生物基因丰度的影响,为认识高寒草甸的退化机理以及科学治理高寒退化 草甸提供重要依据。[方法]以青藏高原不同退化程度高寒草甸(未退化、轻度退化、中度退化、重度退化)为研究对象,利用实时定量PCR法分析退化过程中土 壤理化性质及与氮素转化相关基因(nif H,amoA-AOA,amoA-AOB,nar G,nir K,nirS和nosZ)丰度的变化,明确影响高寒草甸氮素转化基因的关键因子。[结果]①随退化程度的加剧,高寒草甸土壤有机碳、全氮、硝态氮及铵态氮 含量逐渐降低;②高寒草甸退化降低了与氮素转化相关的固氮nif H基因、氨氧化amoA-AOA和amoA-AOB基因丰度,但增加了反硝化nar G,nirS和nir K基因丰度,且在重度退化草甸丰度最高;③nif H,amoA-AOA和amoA-AOB基因与土壤有机碳、硝态氮、铵态氮及水分呈显著正相关,nar G,nirS和nir K基因与土壤有机碳、硝态氮及铵态氮含量呈显著负相关,与pH值呈显著正相关。[结论]高寒草甸退化对氮素转化微生物具有重要影响,土壤有机碳、pH值及 水分是影响土壤氮素转化微生物基因的主要因素。 C1 Wang Xiangtao, College of Animal Science,Tibet Agriculture and Animal Husbandry College;;Lhasa National Ecological Research Station,Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;Key Laboratory of Ecosystem Network Observation and Modelling, Chinese Academy of Sciences;;, Linzhi;;;;, Tibet;;Beijing;;Beijing 860000;;100101;;100049. Zhang Chao, Institute of Soil and Water Conservation,Northwest A&F University, Yangling, Shaanxi 712100, China. Wang Jie, Institute of Soil and Water Conservation,Northwest A&F University, Yangling, Shaanxi 712100, China. Liao Lirong, University of Chinese Academy of Sciences;;Institute of Soil and Water Conservation,Northwest A&F University, ;;, ;;Yangling, Beijing;;Shaanxi 100049;;712100. Yu Lanhui, University of Chinese Academy of Sciences;;Institute of Soil and Water Conservation,Northwest A&F University, ;;, ;;Yangling, Beijing;;Shaanxi 100049;;712100. Zhang Xianzhou, Lhasa National Ecological Research Station,Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;University of Chinese Academy of Sciences;;College of Resources and Environment,University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modelling, Chinese Academy of Sciences;;;;, ;;;;, Beijing;;Beijing;;Beijing 100101;;100049;;100190. Z6 王向涛, 西藏农牧学院动物科学学院;;中国科学院地理科学与资源研究所,拉萨高原生态试验站;;中国科学院大学, ;;中国科学院生态系统网络观测与模拟重点实验室;;, 林芝;;;;, 西藏;;北京;;北京 860000;;100101;;100049, 中国. 张超, 西北农林科技大学水土保持研究所, 杨凌, 陕西 712100, 中国. 王杰, 西北农林科技大学水土保持研究所, 杨凌, 陕西 712100, 中国. 廖李荣, 中国科学院大学;;西北农林科技大学水土保持研究所, ;;, ;;杨凌, 北京;;陕西 100049;;712100, 中国. 喻岚辉, 中国科学院大学;;西北农林科技大学水土保持研究所, ;;, ;;杨凌, 北京;;陕西 100049;;712100, 中国. 张宪洲, 中国科学院地理科学与资源研究所;;中国科学院大学;;中国科学院大学资源与环境学院, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;;;, ;;;;, 北京;;北京;;北京 100101;;100049;;100190, 中国. EM wangxt.16b@igsnrr.ac.cn; zhangxz@igsnrr.ac.cn Z7 wangxt.16b@igsnrr.ac.cn; zhangxz@igsnrr.ac.cn Z8 0 Z9 1 UT CSCD:6768592 DA 2023-03-23 ER PT J AU Wang Shu Qin Jihong Xie Bingxin Liu Chen Chen Yuwen Tang Xiangyu Sun Hui Z2 王姝 秦纪洪 谢冰心 刘琛 陈玉雯 唐翔宇 孙辉 TI Spectroscopic Characteristics of Dissolved Organic Matter(DOM)in Zoige Alpine Peatland Soils along A Soil Moisture Gradient Z1 水分梯度下若尔盖高寒泥炭地土壤可溶性有机质光谱特征 Z3 生态环境学报 SO Ecology and Environmental Sciences VL 29 IS 4 BP 676 EP 685 AR 1674-5906(2020)29:4<676:SFTDXR>2.0.TX;2-Y PY 2020 DT Article AB The alpine peatland in Western Sichuan is one of the largest roles as soil carbon pools in China and even in the world,and currently undergoes aridification and vegetation degradation.Water soluble organic matter(DOM)is a highly active component of soil organic carbon,which is of great significance to the dynamic balance of soil carbon as well as the source-sink conversion.DOM is also the main carrier of carbon exchange between terrestrial soil and aquatic ecosystem,and has an important impact on the quality of water environment.DOM extracted from the surface layer(0-10 cm)of the peatland along a soil moisture gradient in Zoige County,Aba Tibetan and Qiang Autonomous Prefecture,Sichuan Province was characterized to understand the impact of aridification on the content and structural characteristics of DOM.By use of the three-dimensional excitation emission matrix fluorescence coupled with parallel factor analysis(EEM-PARAFAC)and fluorescence regional integration(FRI)method,the quantity and spectroscopic characteristics of DOM were compared.The results showed that: with increase of the soil aridity,the total organic carbon and dissolved organic carbon content of Zoige peatland soils significantly decreased by 55.36% and 28.77%,respectively;According to the characteristic parameters of fluorescence spectra of DOM in the Western Sichuan alpine peatland,the aromaticity and humification degree of DOM decreased with the increase of water content,the stability and the microbial availability of soil DOM also decreased;The results of parallel factor analysis showed that the small molecule humus component had the highest loading in the Zoige peatland soil DOM,while the protein-like component that was related to the microbial activity and transformation had the lowest loading;the proportion of fulvic acid-like and humic acid-like components in the DOM of plateau peatland soil was the highest,the proportion of humic acid-like components in the meadow soil was higher than that in the wetland soil,while the proportion of fulvic acid-like in the wetland soil was higher than that in the meadow soil.Overall,the aridification of Zoige wetland will lead to the significant decrease of soil carbon content in peatland soils,which may result in a large-scale emission of soil organic carbon. Z4 川西高寒泥炭地是中国乃至全球最大的高寒土壤碳库之一,目前正经历着干旱化和植被退化的影响。水溶性有机质(DOM)是有机碳中活性较高的组分,对土壤碳 动态平衡乃至源汇转换具有重要意义,同时也是联系陆地土壤和水生生态系统之间碳交换的主要载体,对水环境质量有重要影响。为了解干旱化对若尔盖高寒泥炭地 土壤可溶性有机质含量及结构特征的影响,以四川省阿坝藏族羌族自治州若尔盖县高寒泥炭地不同水分环境下表层土壤(0-10 cm)水溶性有机质(DOM)为对象,采用三维激发发射矩阵荧光光谱、平行因子分析(EEM-PARAFAC)以及荧光区域积分(FRI)等方法,对其数 量和光谱学特征进行了比较研究。结果表明:(1)随着土壤干旱化程度加深,若尔盖泥炭地土壤总有机碳和水溶性有机碳含量而显著降低,降低程度分别为55. 36%、28.77%;(2)川西高寒泥炭地DOM的荧光光谱特征参数表明,DOM的芳香性与腐殖化程度随着水分的增加而降低,土壤DOM稳定性降低,微 生物可利用性降低;(3)平行因子分析结果显示若尔盖泥炭地土壤DOM中以小分子类腐殖质组分载荷最高,微生物活动和转化过程中蛋白物质类组分最低;(4 )高原泥炭地土壤DOM中富里酸类有机质和腐殖酸类有机质占比最高,漫岗草甸土壤中腐殖酸占比高于湿地土壤,而湿地土壤富里酸组分占比高于漫岗草甸土壤。 总之,若尔盖湿地干旱化将导致泥炭地土壤碳含量显著性降低,可能导致土壤有机碳将大规模排放。 C1 Wang Shu, Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, Sichuan 610065, China. Xie Bingxin, Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, Sichuan 610065, China. Chen Yuwen, Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, Sichuan 610065, China. Sun Hui, Department of Environmental Science and Engineering, Sichuan University, Sichuan Research Center for Soil Environment Protection Engineering and Technology, Chengdu, Sichuan 610065, China. Qin Jihong, Department of Environmental Engineering, Chengdu University, Chengdu, Sichuan 610106, China. Liu Chen, Institute of Mountain Hazard and Engineering, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Tang Xiangyu, Institute of Mountain Hazard and Engineering, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Z6 王姝, 四川大学环境科学与工程系, 四川省土壤环境保护工程技术中心, 成都, 四川 610065, 中国. 谢冰心, 四川大学环境科学与工程系, 四川省土壤环境保护工程技术中心, 成都, 四川 610065, 中国. 陈玉雯, 四川大学环境科学与工程系, 四川省土壤环境保护工程技术中心, 成都, 四川 610065, 中国. 孙辉, 四川大学环境科学与工程系, 四川省土壤环境保护工程技术中心, 成都, 四川 610065, 中国. 秦纪洪, 成都大学环境工程系, 成都, 四川 610106, 中国. 刘琛, 中国科学院水利部成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 唐翔宇, 中国科学院水利部成都山地灾害与环境研究所, 成都, 四川 610041, 中国. EM w.dashu@foxmail.com; sunhuifiles@gmail.com Z7 w.dashu@foxmail.com; sunhuifiles@gmail.com Z8 2 Z9 3 UT CSCD:6762836 DA 2023-03-23 ER PT J AU Wang Ting Yang Siwei Hua Rui Chu Bin Ye Guohui Niu Yujie Tang Zhuangsheng Hua Limin Z2 王婷 杨思维 花蕊 楚彬 叶国辉 牛钰杰 唐庄生 花立民 TI Response characteristics of composition of plant functional groups to various grassland degradation conditions in alpine steppe on the Tibetan Plateau,China Z1 高寒草原植物功能群组成对退化程度的响应 Z3 生态学报 SO Acta Ecologica Sinica VL 40 IS 7 BP 2225 EP 2233 AR 1000-0933(2020)40:7<2225:GHCYZW>2.0.TX;2-1 PY 2020 DT Article AB Alpine steppe is one of the dominant grassland types on Tibetan Plateau. It plays an important role in global carbon cycle,nitrogen cycle,biodiversity conservation,soil and water conservation,and animal husbandry development. This study selected five sampling plots with different degradation levels on the degraded alpine steppe in Maduo county, Guoluo Prefecture,Qinghai Province. The composition of plant functional groups and soil physical and chemical properties were investigated in the sampling plots. We used the multivariate analysis to analyze the relationship between plant functional composition and soil physical and chemical properties. The results showed that: (1) with the steppe degradation increasing,the richness and the important value of Gramineae functional group increased firstly and then decreased,but the coverage of Gramineae functional group was decreasing. The richness,coverage and important value of forbs functional group increased firstly and then decreased,while the important value of forbs functional group was increasing. (2) The content of soil organic matter was decreasing with the soil depth increasing. The content of soil organic matter and total soil nitrogen were decreasing with the steppe degradation increasing. (3) As the steppe degradation increasing,the soil bulk density, soil porosity at the depth of 0 ― 30 cm were increasing,while the soil moisture content decreased firstly and then increased. (4) The important value of each plant functional group was positively correlated with soil porosity and negatively correlated with soil bulk density. Through redundancy analysis,the grassland degradation firstly affected soil physical properties and then affected the composition of plant functional groups. Z4 高寒草原作为青藏高原区主要的草地类型,在全球碳、氮循环、生物多样性维护、水土保持、畜牧业发展等方面发挥着重要的作用。在青海省果洛州玛多县高寒草原 选取5块不同退化程度的样地,调查植物功能群组成和土壤理化性质,并采用多元排序法分析不同退化程度下植物功能群组成与土壤因子的关系,以期明确高寒草原 功能群组成对草原退化的响应。结果表明:(1)禾本科功能群丰富度和重要值均随退化程度增加呈先增后降趋势,盖度表现为降低趋势;杂类草功能群的丰富度、 盖度和重要值均随退化程度增加呈先增加后降低的趋势。而杂类草功能群的相对重要值随退化程度增加而增加。(2)土壤有机质含量随土层深度的增加而降低;随 退化程度加剧,土壤有机质和全氮呈降低的趋势。(3)随退化程度加剧,030 cm各土层深度的容重均增加,土壤通气孔隙度降低。(4)各功能群重要值与土壤通气孔隙度呈正相关关系,与土壤容重呈负相关关系;通过冗余分析,草地退化 首先影响土壤物理属性进而影响草地功能群组成。 C1 Wang Ting, College of Grassland Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Hua Rui, College of Grassland Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Chu Bin, College of Grassland Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Ye Guohui, College of Grassland Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Niu Yujie, College of Grassland Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Tang Zhuangsheng, College of Grassland Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Hua Limin, College of Grassland Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Yang Siwei, College of Grassland Science,Gansu Agricultural University;;Institute of Animal and Veterinary Science, ;;, Lanzhou;;Bijie, ;; 730070;;551700. Z6 王婷, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 花蕊, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 楚彬, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 叶国辉, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 牛钰杰, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 唐庄生, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 花立民, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 杨思维, 甘肃农业大学草业学院;;毕节市畜牧兽医科学研究所, 草业生态系统教育部重点实验室;;, 兰州;;毕节, ;; 730070;;551700. EM hualm@gsau.edu.cn Z7 hualm@gsau.edu.cn Z8 3 Z9 3 UT CSCD:6705763 DA 2023-03-23 ER PT J AU 石培礼 张宪洲 Z2 Shi Peili Zhang Xianzhou TI Towards Regional Synergy: Reconciling Rangeland Ecological Functioning with Forage Production of Cultivated Pasture Z1 走向区域协同:协调草地生态功能与牧草生产服务 Z3 资源与生态学报 SO Journal of Resources and Ecology VL 11 IS 3 BP 247 EP 252 AR 1674-764X(2020)11:3<247:TRSRRE>2.0.TX;2-K PY 2020 DT Article AB Animal husbandry and crop farming are specialized for development in separate areas on the Tibetan Plateau. Such a pattern of isolation has led to current concerns of rangeland and farming system degradation due to intensive land use. The crop-livestock integration, however, has been proven to increase food and feed productivity thorough niche complementarity, and is thereby especially effective for promoting ecosystem resilience. Regional synergy has emerged as an integrated approach to reconcile rangeland livestock with forage crop production. It moves beyond the specialized sectors of animal husbandry and intensive agriculture to coordinate them through regional coupling. Therefore, crop-livestock integration (CLI) has been suggested as one of the effective solutions to forage deficit and livestock production in grazing systems. But it is imperative that CLI moves forward from the farm level to the regional scale, in order to secure regional synergism during agro-pastoral development. The national key R & D program, Technology and Demonstration of Recovery and Restoration of Degraded Alpine Ecosystems on the Tibetan Plateau, aims to solve the problems of alpine grassland degradation by building up a grass-based animal husbandry technology system that includes synergizing forage production and ecological functioning, reconciling the relationship between ecology, forage production and animal husbandry, and achieving the win-win goals of curbing grassland degradation and changing the development mode of animal husbandry. It is imperative to call for regional synergy through integrating ecological functioning with ecosystem services, given the alarming threat of rangeland degradation on the Tibetan Plateau. The series of papers in this issue, together with those published previously, provide a collection of rangeland ecology and management studies in an effort to ensure the sustainable use and management of the alpine ecosystems. Z4 畜牧业和种植业在西藏高原不同地区长期处于分离发展状态,这种分离的格局导致了土地利用强度加剧和草场与农田生态系统的退化。农牧结合可通过行业间生态位 互补提高粮食和饲料生产力,并有效提升复合生态系统的弹性,因此,通过协调畜牧业和饲料作物生产,走向区域协同成为农牧业发展和退化生态系统恢复的综合解 决途径。通过区域耦合,协调专业化畜牧业和集约化农业,是解决放牧系统牧草不足和畜牧业生产瓶颈的有效办法。目前,要实现农牧业发展的区域协同,还必须从 局域农场向区域层面推进。为此,从2016年起,国家重点研发计划项目青藏高原退化高寒生态系统恢复与重建与技术示范开始实施,旨在通过建立生产和生态功 能相协调的草牧业技术体系,协调生态-草-牧关系,实现遏制草地退化和转变畜牧业发展方式的双赢目标。面对青藏高原草地退化的严峻威胁,迫切需要通过生态 功能与生产功能相协调的方式实现区域协同。本专辑组织发表草地生态和管理的相关论文,以期促进高寒生态系统的管理和可持续利用。 C1 Shi Peili, Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research;;College of Resources and Environment, University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Zhang Xianzhou, Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research;;College of Resources and Environment, University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Z6 石培礼, 中国科学院地理科学与资源研究所,拉萨高原生态研究中心;;中国科学院大学,资源与环境学院, 生态系统网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100190, 中国. 张宪洲, 中国科学院地理科学与资源研究所,拉萨高原生态研究中心;;中国科学院大学,资源与环境学院, 生态系统网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100190, 中国. EM shipl@igsnrr.ac.cn; zhangxz@igsnrr.ac.cn Z7 shipl@igsnrr.ac.cn; zhangxz@igsnrr.ac.cn Z8 4 Z9 5 UT CSCD:6728948 DA 2023-03-23 ER PT J AU He Jinsheng Bu Haiyan Hu Xiaowen Feng Yanhao Li Shouli Zhu Jianxiao Liu Guohua Wang Yanrong Nan Zhibiao Z2 贺金生 卜海燕 胡小文 冯彦皓 李守丽 朱剑霄 刘国华 王彦荣 南志标 TI Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach Z1 退化高寒草地的近自然恢复: 理论基础与技术途径 Z3 科学通报 SO Chinese Science Bulletin VL 65 IS 34 BP 3898 EP 3908 AR 0023-074X(2020)65:34<3898:THGHCD>2.0.TX;2-J PY 2020 DT Review AB The alpine grasslands on the Tibetan Plateau, which account for about 40% of the total grassland area in China, serve as an important ecological barrier to protect China's water resources and for ecological security. Although the vegetation activity of alpine grasslands on the Tibetan Plateau has been overall improving during the past decades, most of the grasslands are still suffering from varying degrees of degradation, with some part even deteriorating. In the present protection and construction of ecological barriers on the Tibetan Plateau, the restoration of the degraded alpine grasslands through current technical approaches often end up with low stability and sustainability, and the ecosystem multifunctionality and multiserviceability of the grasslands are often difficult to be fully recovered. This is mainly because the present approaches rarely draw support from the natural restoration processes, along with the technical limitations of optimizing the assembly and supplementary sowing with appropriate native grass species that are often rare, and of improving soil quality using microbial fertilizer and nutrients. Therefore, it is urgent to develop an effective and sustainable restoration approach of the degraded alpine grasslands. The primary tasks of close-to-nature restoration with ecological conservation as its premise focuses on maintaining biodiversity and enhancing ecosystem multifunctionality and multiserviceability. Close-to-nature restoration adopts traditional artificial restoration approaches and relies on natural ecological processes to achieve sustainable ecological restoration. It focuses on based on nature and return to nature, and realizes sustainable restoration through the selfregulating function of natural ecosystem. Therefore, ecosystems that are restored through close-to-nature restoration may maintain higher biodiversity, provide more ecosystem functions and services, and increase resilience to natural disasters. This paper proposes to apply the close-to-nature restoration to recover degraded alpine grasslands on the Tibetan Plateau, and addresses why it is a natural choice on the basis of ecological theories with respect to biodiversity and the multifunctionality and multiserviceability of ecosystems, as well as the uniqueness of alpine grasslands on the Tibetan Plateau. Based on this, this paper further proposes that seed multiplication, and assembly and supplementary sowing technology of native grassland species are the bottlenecks to the close-to-nature restoration of alpine grasslands, and that the combination of soil nutrients and microbial regulation is an essential supplementary measure. This study, which integrates the theory of close-to-nature restoration and the corresponding techniques, hopefully can provide a nature-based solution for the restoration of the degraded alpine grassland ecosystems on the Tibetan Plateau. Z4 近几十年来,青藏高原高寒草地植被活动整体上趋于向好,但大部分草地仍然存在不同程度的退化,局部有恶化的态势.在青藏高原生态屏障保护与建设过程中,由 于建植或改良的草地草种单一、优良乡土草种少,加之受高寒气候的限制,群落稳定性和可持续性不强,使得生态系统多功能性和多服务性往往难以完全恢复.因此 ,探索行之有效的可持续恢复模式迫在眉睫.本文提出了对青藏高原高寒草地实施近自然恢复(close-to-nature restoration)的理念,从生物多样性、生态系统多功能性和多服务性、生态系统稳定性的理论出发,结合青藏高原高寒生态系统的特点,论述了近自然 恢复是退化高寒草地生态恢复的必然选择.据此,本文提出优良乡土草种扩繁、组配及其补播技术是高寒草地近自然恢复技术亟须解决的瓶颈,土壤养分及微生物调 控相结合是近自然恢复技术的重要辅助措施.该理论与技术途径为青藏高原退化高寒草地生态系统恢复提供了一个基于自然的解决方案. C1 He Jinsheng, College of Pastoral Agriculture Science and Technology,Lanzhou University;;College of Urban and Environmental Science,Peking University, State Key Laboratory of Grassland Agro-ecosystems;;, Lanzhou;;, ;;Beijing 730020;;100871. Bu Haiyan, School of Life Science,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Hu Xiaowen, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Feng Yanhao, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Li Shouli, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Zhu Jianxiao, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Wang Yanrong, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Nan Zhibiao, College of Pastoral Agriculture Science and Technology,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Liu Guohua, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences, State Key Laboratory of Urban and Regional Ecology, Beijing 100085, China. Z6 贺金生, 兰州大学草地农业与科技学院;;北京大学城市与环境学院, 草地农业生态系统国家重点实验室;;, 兰州;;, ;;北京 730020;;100871. 卜海燕, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 胡小文, 兰州大学草地农业与科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 冯彦皓, 兰州大学草地农业与科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 李守丽, 兰州大学草地农业与科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 朱剑霄, 兰州大学草地农业与科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 王彦荣, 兰州大学草地农业与科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 南志标, 兰州大学草地农业与科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 刘国华, 中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085, 中国. EM jshe@pku.edu.cn Z7 jshe@pku.edu.cn Z8 11 Z9 15 UT CSCD:6874782 DA 2023-03-23 ER PT J AU Qian Dawen Yan Changzhen Xiu Lina Z2 钱大文 颜长珍 修丽娜 TI Land cover change and landscape pattern vulnerability response in Muli mining and its surrounding areas in the Qinghai-Tibet Plateau Z1 青藏高原木里矿区及其周边土地覆被变化及景观格局脆弱性响应 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 42 IS 4 BP 1334 EP 1343 AR 1000-0240(2020)42:4<1334:QZGYML>2.0.TX;2-B PY 2020 DT Article AB Mining area development will lead to dramatic changes in the surrounding land cover and landscape pattern,but at present there is a lack of dynamic monitoring of the long-term sequence changes of the typical mining area in the Qinghai-Tibet Plateau and its surrounding land cover,especially the lack of in-depth understanding of the response characteristics of the landscape pattern vulnerability. So it is impossible to provide effective scientific guidance on rational development and ecological restoration of mining areas. Based on the method of remote sensing technology and land change science,as well as the concept of landscape pattern vulnerability, the changes of land cover and the response of regional landscape pattern vulnerability of Muli coal mine in the northern Qinghai-Tibet Plateau were analysed from 1975 to 2016. The results showed that the mining area was increasing in size,especially after 2000,and this caused shrinkage of the surrounding lands,including alpine meadow wetland,other and alpine meadow. The indirect effect of the mining expansion on the surrounding ecosystem was increasing,which concluded from the decrease of water area,the degradation of alpine meadow wetland and the slight reserve of the mining area. The development of Muli mining area has led to the increase of the regional landscape pattern vulnerability,which might have a negative impact on the surrounding ecosystem service function. Therefore,the landscape pattern optimization should be considered in the ecological restoration and mining planning in order to reduce the vulnerability of landscape pattern. The research results of this paper can provide some reference for the rational development planning and ecological restoration of mining areas on the Qinghai-Tibet Plateau and other ecologically fragile areas. Z4 矿区开发会导致周边土地覆被及景观格局发生剧烈变化,但目前对青藏高原典型矿区及其周边土地覆被长时间序列变化缺乏动态监测,尤其缺乏对景观格局脆弱性响 应特征的深入认识,因此无法针对矿区合理开发和生态修复等提出有效的科学指导。通过遥感技术和土地变化科学研究手段,以及景观格局脆弱性概念,对青藏高原 北部木里矿区及周边1975-2016年土地覆被时空变化和景观格局脆弱性进行分析和评估。结果表明:木里矿区在2000年后剧烈扩张,导致周边土地覆被 面积缩减,其中高寒草甸湿地面积损失最大,其次为其他和高寒草甸。矿区开发对周边生态系统的间接影响效应在逐渐增大,表现为水域面积减少,高寒草甸湿地出 现退化以及矿区发生少量逆转。受矿区扩张影响,区域景观格局脆弱性不断增强,可能对周边生态系统服务功能产生负面影响。因此,未来矿区的生态修复和规划过 程中,应当优化景观格局,降低景观格局脆弱性。研究成果可为青藏高原及其他生态脆弱地区的矿区合理开发规划及生态修复等工程提供一定参考。 C1 Qian Dawen, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Lanzhou;;, ;;Beijing 730000;;100049. Xiu Lina, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, ;;, Lanzhou;;, ;;Beijing 730000;;100049. Yan Changzhen, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 钱大文, 中国科学院西北生态环境资源研究院;;中国科学院大学, ;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 修丽娜, 中国科学院西北生态环境资源研究院;;中国科学院大学, ;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 颜长珍, 中国科学院西北生态环境资源研究院, 兰州, 甘肃 730000, 中国. EM qiandawen@lzb.ac.cn Z7 qiandawen@lzb.ac.cn Z8 3 Z9 5 UT CSCD:6886218 DA 2023-03-23 ER PT J AU Hao Aihua Xue Xian Peng Fei You Quangang Liao Jie Duan Hanchen Huang Cuihua Dong Siyang Z2 郝爱华 薛娴 彭飞 尤全刚 廖杰 段翰晨 黄翠华 董斯扬 TI Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau Z1 青藏高原典型草地植被退化与土壤退化研究 Z3 生态学报 SO Acta Ecologica Sinica VL 40 IS 3 BP 964 EP 975 AR 1000-0933(2020)40:3<964:QZGYDX>2.0.TX;2-H PY 2020 DT Article AB This study used a field sampling survey and laboratory analysis to investigate the different characteristics of community structure,above/belowground biomass,plant composition and diversity,root proportions in different soil layers,and soil physiochemical properties between alpine steppes and alpine meadows in the Qinghai-Tibetan Plateau.Five degradation stages were identified including non-degradation (ND),light degradation (LD),moderate degradation (MD),severe degradation (SD),and extreme degradation (ED).The results are as follows:(1) as degradation level increased,graminoid dominance in alpine steppes remained unchanged,but sedges in alpine meadows were gradually replaced by the subdominant forb species.(2) With increased alpine steppe degradation,there was a significant decrease in aboveground biomass (P<0.05).The grassland degradation did not affect significantly aboveground biomass with the exception of ED alpine meadows (P<0.05).The response of underground biomass to degradation in alpine meadows was more sensitive compared with alpine steppes.(3) The aboveground sedge biomass exhibited invisible trends with the increase of alpine steppe degradation.The proportion of aboveground graminoid biomass decreased from 88.12% (ND) to 53.54% (ED),while that of forbs increased from 0.08% (ND) to 42.81% (ED).In the process of the ecological succession of alpine meadow degradation,the aboveground graminoid and forb biomass significantly increased except a decrease in ED areas.The contribution of aboveground sedge biomass decreased from 69.15% (ND) to 0.04% (ED),while that of forbs increased from 12.56% (ND) to 92.61% (ED).(4) The alpine steppe root systems showed the increased shallowness as degradation levels increased.However,the alpine meadows showed an opposite trend.(5) The study determined that soil water content (theta),soil organic carbon (SOC),total nitrogen (TN),and bulk density (BD) of alpine meadows were more intensively influenced by degradation compared to those of alpine steppes.The results could provide a valuable reference for the restoration of the degraded grassland in the Qinghai-Tibetan Plateau. Z4 采用野外样方调查和室内分析法,探讨了青藏高原不同退化程度高寒草原和高寒草甸植被群落结构、植物多样性、地上-地下生物量、根系分配及土壤理化特性差异 。研究表明:(1)随着退化程度加剧,高寒草原禾草优势地位未改变,高寒草甸优势种莎草逐渐被杂类草取代。(2)随着退化程度加剧,高寒草原地上生物量显 著降低(P<0.05),高寒草甸地上生物量先保持稳定再下降。高寒草甸地下生物量较高寒草原地下生物量对退化响应更敏感。(3)高寒草原退化过程中,莎 草地上物生量变化不明显(P>0.05),禾草地上生物量贡献率由88.12%减少至53.54%,杂类草地上生物量贡献率由0.08%增加至42.81 %;高寒草甸退化过程中,禾草和杂类草地上生物量先增加后减小,莎草地上生物量占比由69.15%减少至0.04%,杂类草地上生物量占比由12.56% 增加至92.61%。(4)随着退化程度加剧,高寒草原根系向浅层迁移,高寒草甸根系向深层迁移。(5)退化对高寒草甸土壤含水量(theta)、土壤有 机碳(SOC)、总氮(TN)及土壤容重(BD)影响均比高寒草原更强烈。本研究对青藏高原退化草地恢复治理具有重要的参考价值。 C1 Hao Aihua, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences;;, Lanzhou;;, ;;Beijing 730000;;100049. Xue Xian, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Peng Fei, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. You Quangang, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Liao Jie, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Duan Hanchen, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Huang Cuihua, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Dong Siyang, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 郝爱华, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, ;;北京 730000;;100049. 薛娴, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 彭飞, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 廖杰, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 段翰晨, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 黄翠华, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 董斯扬, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. EM xianxue@lzb.ac.cn Z7 xianxue@lzb.ac.cn Z8 20 Z9 28 UT CSCD:6674545 DA 2023-03-23 ER PT J AU Chen Huai Ju Peijun Zhang Jiang Wang Yuanyun Zhu Qiu'an Yan Liang Kang Xiaoming He Yixin Zeng Yuan Hao Yanbin Wang Yanfen Z2 陈槐 鞠佩君 张江 王元云 朱求安 颜亮 康晓明 何奕忻 曾源 郝彦宾 王艳芬 TI Attribution analyses of changes in alpine grasslands on the Qinghai-Tibetan Plateau Z1 青藏高原高寒草地生态系统变化的归因分析 Z3 科学通报 SO Chinese Science Bulletin VL 65 IS 22 BP 2406 EP 2418 AR 0023-074X(2020)65:22<2406:QZGYGH>2.0.TX;2-I PY 2020 DT Article AB Alpine grasslands are one of the major ecosystem types on the Qinghai-Tibetan Plateau. In the past decades, the ecological structure and function of alpine grasslands have undergone great changes with intensified climate change and human activities. However, the relative contributions of natural and human factors to such changes are controversial. Based on the optimized residual method, this study evaluated the relative anthropogenic contribution to the changes in alpine grasslands on the Qinghai-Tibetan Plateau in the past twenty years (1990-2013). The Lund-potsdam-jena model (LPJ), Integrated Biosphere Simulator model (IBIS) and Terrestrial ecosystem model (TEM) were selected to simulate grassland productivity driven by climate factors. We found that the temperature on the plateau was on the rise at a rate of about 0.5°C per decade. Precipitation increased slightly, but with a large spatial difference. The population of the Tibetan Plateau increased sharply during the study period. During the two score years (1990-2013), the productivity of alpine grasslands on the Qinghai-Tibetan Plateau increased greatly, mainly (up to 74.0%) contributed by human activities. Where the change was dominated by human activities, the area with increased grassland net primary product (NPP) was greater than that with decreased NPP, indicating that the over-utilization of alpine grasslands has been effectively contained and reversed into moderate protection. For five out of the first ten years (1990-1999), human activities dominated the change of alpine grasslands (relative anthropogenic contribution around 60.1%), the NPP increased for 3 years and decreased for 2 years. After 2000, the impact of human activities increased sharply (up to 84.6%) and the anthropogenic dominating area expanded substantially, indicating that the large ecological restoration project implemented may have increased the productivity of alpine grasslands in the same period (9 out of 13 years for NPP increase). Spatial analyses comparing the two periods showed that 36.7% of areas with changed grassland NPP was dominated first by climate change and then by human activities, among which 10.1% had increased NPP and 26.6% had decreased NPP. In one word, the Qinghai-Tibetan Plateau may be approaching the turning point of the Environmental Kuznets Curve. Therefore, with further strengthened construction of ecological civilization, the ecological function of alpine grasslands would continue to be improved on the Plateau. However, we should also pay attention to the ever larger areas of human activity-induced NPP decrease. Therefore, the restoration and treatment of degraded grasslands is still pivotal to the construction of ecological security barriers and adaptative ecosystem management of grasslands on the Qinghai-Tibetan Plateau. Z4 高寒草地生态系统是青藏高原主要生态系统类型之一,其结构和功能对全球变化敏感.过去几十年,随着气候变化与人类活动加剧,高寒草地生态系统结构和功能发 生了巨大变化,然而其变化的自然及人为相对贡献率存在较大争议.本研究基于优化的模型差值法评估了1990~2013年青藏高原高寒草地变化的人为相对贡 献率.研究结果表明,这一时期青藏高原高寒草地生产力显著增加,人类活动主导了草地生态系统净初级生产力的变化,人为相对贡献率达到74.0%,人类活动 主导草地生产力增加的面积占比大于主导草地生产力减少的面积占比,青藏高原草地可能已由过度利用转变为适度保护,但其特征呈现复杂性. 2000年后人类活动影响急剧增强,表明同期实施的大型生态恢复工程可能增加了高寒草地生产力.空间结果表明,两个时期相比有36.7%的草地生产力变化 由气候变化主导转为人类活动主导,其中主导草地生产力减少是增加的两倍以上.随着我国生态文明建设的不断推进,青藏高原高寒草地生态功能总体上开始呈恢复 趋势,但人类活动主导草地生产力减少的区域也在增加,该区域可能已趋于人地关系发生转变的临界点.因此,退化草地的恢复与治理仍是青藏高原生态安全屏障建 设的重要支点,青藏高原草地适应性管理已刻不容缓. C1 Chen Huai, Chengdu Institute of Biology,Chinese Academy of Sciences;;Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization;;Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province;;Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences, Chengdu;;, ;;Beijing 610041;;100101. Ju Peijun, Chengdu Institute of Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization;;Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province;;, Chengdu;;, ;;Beijing 610041;;100049. Wang Yuanyun, Chengdu Institute of Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization;;Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province;;, Chengdu;;, ;;Beijing 610041;;100049. Zhang Jiang, Center for Ecological Forecasting and Global Change,College of Forestry,Northwest A&F University, Yangling, Shanxi 712100, China. Zhu Qiu'an, Center for Ecological Forecasting and Global Change,College of Forestry,Northwest A&F University, Yangling, Shanxi 712100, China. Yan Liang, Institute of Wetland Research,Chinese Academy of Forestry, Beijing 100091, China. Kang Xiaoming, Institute of Wetland Research,Chinese Academy of Forestry, Beijing 100091, China. He Yixin, Chengdu Institute of Biology,Chinese Academy of Sciences, Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization;;Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China. Zeng Yuan, Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences, Beijing 100094, China. Hao Yanbin, University of Chinese Academy of Sciences, Beijing 100049, China. Wang Yanfen, Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100049. Z6 陈槐, 中国科学院成都生物研究所;;中国科学院青藏高原地球科学卓越创新中心, 山地生态恢复与生物资源利用四川省重点实验室;;中国科学院青藏高原地球科学卓越创新中心, 成都;;, ;;北京 610041;;100101. 鞠佩君, 中国科学院成都生物研究所;;中国科学院大学, 山地生态恢复与生物资源利用四川省重点实验室;;, 成都;;, ;;北京 610041;;100049. 王元云, 中国科学院成都生物研究所;;中国科学院大学, 山地生态恢复与生物资源利用四川省重点实验室;;, 成都;;, ;;北京 610041;;100049. 张江, 西北农林科技大学林学院,生态预测与全球变化研究中心, 杨凌, 712100. 朱求安, 西北农林科技大学林学院,生态预测与全球变化研究中心, 杨凌, 712100. 颜亮, 中国林业科学院湿地研究所, 北京 100091, 中国. 康晓明, 中国林业科学院湿地研究所, 北京 100091, 中国. 何奕忻, 中国科学院成都生物研究所, 山地生态恢复与生物资源利用四川省重点实验室, 成都, 四川 610041, 中国. 曾源, 中国科学院遥感与数字地球研究所, 北京 100094, 中国. 郝彦宾, 中国科学院大学, 北京 100049, 中国. 王艳芬, 中国科学院青藏高原地球科学卓越创新中心;;中国科学院大学, 中国科学院青藏高原地球科学卓越创新中心;;, ;;, 北京;;北京 100101;;100049, 中国. EM chenhuai@cib.ac.cn; yfwang@ucas.ac.cn Z7 chenhuai@cib.ac.cn; yfwang@ucas.ac.cn Z8 13 Z9 24 UT CSCD:6803635 DA 2023-03-23 ER PT J AU Huang Bo Yi Shuhua Zhang Xinyu Ma Qingshan Xiang Bo Du Jiaxing Ma Jianhai Sun Yi Z2 黄波 宜树华 张欣雨 马青山 向波 杜嘉星 马建海 孙义 TI Distribution of Ligularia virgaurea in the source region of the Yellow River based on BIOMOD Z1 基于BIOMOD的黄河源区黄帚橐吾分布 Z3 草业科学 SO Pratacultural Science VL 37 IS 11 BP 2198 EP 2210 AR 1001-0629(2020)37:11<2198:JYBDHH>2.0.TX;2-7 PY 2020 DT Article AB The source region of the Yellow River (SRYR) lies in the northeastern Qinghai-Tibetan Plateau.The SRYR is a typical alpine region that is fragile and vulnerable.Ligularia virgaurea,one of the main toxic weeds,is widely distributed in the SRYR.There are few studies on the spatial-temporal distribution of L.virgaurea at a regional scale,and the most important limiting factor is the lack of broad scale,precise,and efficient monitoring methods.We proposed a practical method based on unmanned aerial vehicles (UAVs) and a widely used species distribution model,BIOdiversity MODelling(BIOMOD),and tested it to determine the distribution of L.virgaurea in the SRYR.During the growing season of 2018,we set 208 working points using the self-developed software-fragmentation monitoring and analysis with aerial photography(FragMAP) and obtained more than 5 000 aerial photographs in the SRYR.Based on the data,we simulated the distribution of L.virgaurea using the 10 models in BIOMOD.The results showed that:1) BIOMOD could reduce the uncertainty and improve the prediction performance of L.virgaurea distribution;2) the generalized boosting model exhibited the best performance in predicting the potential distribution of L.virgaurea in SRYR,while the random forest model was the best at predicting its distribution in the future;the main factors affecting its distribution were the microhabitat (maximum value,average value,and ranges of normalized difference vegetation index),annual average radiation,radiation in cold and wet season,and precipitation in the wet season;and 3) climate warming may increase the distribution of L.virgaurea in SRYR,especially in the southeastern central area.This study described the spatial-temporal distribution of L.virgaurea,which provides basic data for estimating the damage rating and for implementing prevention measures in a rational and timely manner.Furthermore,it could provide a scientific basis for the sustainable development of grassland ecosystems and animal husbandry in the SRYR.Meanwhile,the UAVs-based monitoring featured with long-time,large scale and high precision,provided abundant data and a new method for biodiversity research and conservation in the alpine grassland ecosystem. Z4 黄河源区位于青藏高原东北部,属生态环境脆弱的高寒区。黄帚橐吾(Ligularia virgaurea)广泛分布于黄河源区,是限制该区域草地畜牧业发展、导致该区域系统稳定性和服务功能下降的最主要毒杂草之一。目前鲜有黄帚橐吾区域尺 度时空分布的研究,而缺乏大尺度、高精度、高效率的监测手段是其主要限制因素。本研究利用团队自主开发的基于无人机的协同航拍和分析系统(Fragmen tation Monitoring and Analysis with Aerial Photography,FragMAP)对黄河源区黄帚橐吾的分布进行基础调查,获取有效样本(航拍照片) 5 000余个并提取黄帚橐吾存在/不存在数据。基于生物多样性模拟(biodiversity modelling,BIOMOD)模型集成平台,采用10种不同模型模拟该区域的黄帚橐吾潜在分布格局及其对气候变化的响应。结果表明:1) BIOMOD能降低预测的不确定性和误差,提高预测精度;2)广义增强回归模型(generalised boosting model,GBM)预测黄河源区黄帚橐吾当前潜在分布效果最好,而随机森林(random forest model,RF)模型则能更好地预测其未来分布,决定黄帚橐吾空间分布的主要因素有小生境[归一化植被指数(normalized difference vegetation index,NDVI)最大值、平均值和范围]、年平均辐射、最冷季辐射、最湿季辐射、最湿期降水等;3)气温升高会导致黄帚橐吾分布范围增加,尤其是源 区中部偏东南区域。本研究模拟了黄河源区黄帚橐吾的时空分布特征,为进一步开展其致害等级评价、合理利用和适时防控等工作提供数据支撑,也为该区域草地生 态系统和畜牧业的可持续发展提供科学依据。同时,本研究利用FragMAP系统获取大量标准统一、时间序列长、尺度大、精度高的航拍照片,可为BIOMO D模型提供充足、有效的数据基础,从而为草地生态系统生物多样性的研究和保护提供了新方法和新手段。 C1 Huang Bo, Institute of Fragile Eco-environment,School of Geographic Science,Nantong University, Nantong, Jiangsu 226007, China. Yi Shuhua, Institute of Fragile Eco-environment,School of Geographic Science,Nantong University, Nantong, Jiangsu 226007, China. Zhang Xinyu, Institute of Fragile Eco-environment,School of Geographic Science,Nantong University, Nantong, Jiangsu 226007, China. Sun Yi, Institute of Fragile Eco-environment,School of Geographic Science,Nantong University, Nantong, Jiangsu 226007, China. Ma Qingshan, Grassland Station of Huangnan Tibetan Autonomous Prefecture of Qinghai Province, Longwu, Qinghai 81I300, China. Xiang Bo, Chongqing Climate Center, Chongqing 401147. Du Jiaxing, PLA Dalian Naval Academy, Dalian, Liaoning 116018, China. Ma Jianhai, Enforcement and supervisory bureau of agriculture and animal husbandry of Huangnan Tibetan Autonomous Prefecture of Qinghai Province, Longwu, Qinghai 811300, China. Z6 黄波, 南通大学脆弱生态环境研究所/地理科学学院, 南通, 江苏 226007, 中国. 宜树华, 南通大学脆弱生态环境研究所/地理科学学院, 南通, 江苏 226007, 中国. 张欣雨, 南通大学脆弱生态环境研究所/地理科学学院, 南通, 江苏 226007, 中国. 孙义, 南通大学脆弱生态环境研究所/地理科学学院, 南通, 江苏 226007, 中国. 马青山, 青海省黄南州草原站, 隆务, 青海 81I300, 中国. 向波, 重庆市气候中心, 重庆 401147, 中国. 杜嘉星, 中国人民解放军海军大连舰艇学院, 大连, 辽宁 116018, 中国. 马建海, 青海省黄南州农牧综合行政执法监督局, 隆务, 青海 811300, 中国. EM 1722021010@stmail.ntu.edu.cn; sunyi@ntu.edu.cn Z7 1722021010@stmail.ntu.edu.cn; sunyi@ntu.edu.cn Z8 1 Z9 2 UT CSCD:6863410 DA 2023-03-23 ER PT J AU Sun Jian Zhang Zhenchao Dong Shikui Z2 孙建 张振超 董世魁 TI Adaptive management of alpine grassland ecosystems over Tibetan Plateau Z1 青藏高原高寒草地生态系统的适应性管理 Z3 草业科学 SO Pratacultural Science VL 36 IS 4 BP 933 EP 938 AR 1001-0629(2019)36:4<933:QZGYGH>2.0.TX;2-2 PY 2019 DT Article AB Around one third of grasslands in Tibetan Plateau are in different extent of degradation, which is severely harmful for the production, livelihood and ecological security. Degradations of grassland, including structural imbalance and function receding of plant community and deterioration of soil physicochemical properties, are usually caused by natural factors like climate change or human activities like overgrazing. At present, the main measures for grassland restoration include fence enclosure, artificial vegetation cultivation and control of rodent, pest and weed, but all of these measures should be adopted according to degradation stage of the particular grasslands. Restoring the degraded grasslands, balancing the ecological, economic and social functions of alpine grasslands, and achieving the sustainable utilization of alpine grasslands are essential for ecological security, region stabilization and economic development, and the measures should be taken from macrofunctions division, scientific development of stockbreeding and education of policies. In order to achieve the sustainable utilization of grassland resources and protection of grassland ecosystems, the adaptive management of alpine grassland ecosystems should be based on ecological theories. This special issue embodies the recent researches on the key processes and mechanisms of grassland degradation and restoration, all of which would provide valuable information for protection and regulation of alpine grassland ecosystem. Z4 青藏高原约有1/3的草地经历着不同程度退化,严重危害区域生产、生活和生态安全。草地退化是气候变化等自然因素和过度放牧等人为因素综合作用的结果,主 要表现为植被群落结构失调、功能减弱、土壤理化性质恶化。目前,草地恢复的主要措施有围栏封育、人工建植、鼠虫害及毒杂草防除等,需根据不同草地退化情况 ,因地制宜,采取合理有效的治理方案。对退化草地进行恢复治理,协调高寒草地生态系统生态、经济和社会功能的关系,实现高寒草地的可持续利用,关系到生态 安全、区域稳定和经济发展,主要应从宏观功能区划,畜牧业科学发展、政策法规和教育落实3个方面进行。高寒草地生态系统的适应性管理应以生态学理论为基础 ,实现草地资源的可持续利用和草地生态系统的保护与恢复。作为青藏高原高寒草地生态系统适应性管理的前期探索和阶段性总结,本专辑收录了关于青藏高原草地 退化和恢复关键生态过程和机制等方面的研究成果,以期为高寒草地生态系统的保护和管理提供科学依据。 C1 Sun Jian, Synthesis Research Centre of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modelling, Beijing 100101, China. Zhang Zhenchao, Synthesis Research Centre of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;School of Water and Soil Conservation, Beijing Forestry University, Key Laboratory of Ecosystem Network Observation and Modelling;;, ;;, Beijing;;Beijing 100101;;100083. Dong Shikui, School of Environment, Beijing Normal University, Beijing 100875, China. Z6 孙建, 中国科学院地理科学与资源研究所, 中国科学院生态网络观测与模拟重点实验室, 北京 100101, 中国. 张振超, 中国科学院地理科学与资源研究所;;北京林业大学水土保持学院, 中国科学院生态网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100083, 中国. 董世魁, 北京师范大学环境学院, 北京 100875, 中国. EM sunjian@igsnrr.ac.cn; dsk03037@bnu.edu.cn Z7 sunjian@igsnrr.ac.cn; dsk03037@bnu.edu.cn Z8 18 Z9 26 UT CSCD:6500194 DA 2023-03-23 ER PT J AU Zhang Qian Ma Li Zhang Zhonghua Xu Wenhua Zhou Bingrong Song Minghua Qiao Anhai Wang Fang She Yandi Yang Xiaoyuan Guo Jing Zhou Huakun Z2 张骞 马丽 张中华 徐文华 周秉荣 宋明华 乔安海 王芳 佘延娣 杨晓渊 郭婧 周华坤 TI Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: Degradation status,restoration measures, effects and prospects Z1 青藏高寒区退化草地生态恢复:退化现状、恢复措施、效应与展望 Z3 生态学报 SO Acta Ecologica Sinica VL 39 IS 20 BP 7441 EP 7451 AR 1000-0933(2019)39:20<7441:QZGHQT>2.0.TX;2-R PY 2019 DT Review AB The Qinghai-Tibet alpine region is a typical plateau ecosystem with unique features. As an important part of the grassland ecosystem,it plays an important role in the ecological security of the alpine region and the livelihood of farmers and herdsmen. At present, the grassland ecosystem in the Qinghai-Tibet alpine region is seriously degraded. Therefore, ecological restoration of degraded grasslands is the main priority in this area. In recent years,a large number of studies proposed various effective recovery methods,but there is no systematic summary and discussion of local conditions. Based on these findings as well as on the relevant literature,this paper explains the status of degraded grasslands in the alpine region of Qinghai-Tibet in detail,summarizes the main ecological problems of various ecological types in this region, and clarifies the scope of application of different integration technologies and models. We analyzed and discussed the recovery mechanisms of these technologies, measures, and models. Future research of the alpine grassland ecosystem is necessary in order to provide a systematic theoretical basis and technical support for the restoration and control of degraded grasslands in alpine and cold regions of Qinghai and Tibet, as well as to ensure the structural and functional stability of the alpine grassland ecosystem. Z4 青藏高寒区属于独特而典型的高原生态系统,草地生态系统作为其重要组成部分,在对高寒区生态安全以及农牧民生计的维系中,占有举足轻重的地位。目前,青藏 高寒区的草地生态系统退化严重,因此该区退化草地的生态恢复工作是国家生态工作的重中之重。近年来,已有大量研究提出了各种有效的恢复手段,但缺乏因地制 宜的系统性总结和论述。基于此,在已有研究的基础上,阐述了青藏高寒区退化草地现状,总结了高寒区各生态类型分区的主要生态问题,明确了不同集成技术与模 式的适用区域和范围,同时对这些技术、措施和模式的恢复效果和恢复机制进行分析和讨论。并对未来高寒草地生态系统的研究进行了展望,以期为青藏高寒区退化 草地的恢复治理、高寒草地生态系统结构和功能稳定性维系提供系统的理论基础与技术支撑。 C1 Zhang Qian, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Ma Li, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Zhang Zhonghua, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Xu Wenhua, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Wang Fang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. She Yandi, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Yang Xiaoyuan, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Guo Jing, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Zhou Huakun, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Xining, Qinghai 810001, China. Zhou Bingrong, Institute of Meteorological Science of Qinghai Province, Xining, Qinghai 810001, China. Song Minghua, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Qiao Anhai, Qinghai Provincial Grassland Station, Xining, Qinghai 810001, China. Z6 张骞, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 马丽, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 张中华, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 徐文华, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 王芳, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 佘延娣, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 杨晓渊, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 郭婧, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 周华坤, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 周秉荣, 青海省气象科学研究所, 西宁, 青海 810001, 中国. 宋明华, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 乔安海, 青海省草原总站, 西宁, 青海 810001, 中国. EM hkzhou@nwipb.cas.cn Z7 hkzhou@nwipb.cas.cn Z8 33 Z9 41 UT CSCD:6607192 DA 2023-03-23 ER PT J AU Cao Xujuan Hasbagan Ganjurjav Hu Guozheng Gao Qingzhu Z2 曹旭娟 干珠扎布 胡国铮 高清竹 TI Characteristics of Grassland Degradation in the Qinghai Tibetan Plateau,Based on NDVI3g Data Z1 基于NDVI3g数据反演的青藏高原草地退化特征 Z3 中国农业气象 SO Chinese Journal of Agrometeorology VL 40 IS 2 BP 86 EP 95 AR 1000-6362(2019)40:2<86:JYNSJF>2.0.TX;2-V PY 2019 DT Article AB The Qinghai-Tibetan Plateau is an important ecological security barrier and animal husbandry base in China.Alpine grassland is the largest ecosystem in the Qinghai-Tibetan Plateau,accounting for more than 60% of the total area of the plateau.In recent years,the alpine grasslands in the Qinghai-Tibetan Plateau are experienced large area of degradation,which is restricting the ecological services of the plateau and the sustainable development of animal husbandry.To date,however,it is remaining unclear in the status of grassland degradation on the Qinghai-Tibetan Plateau.In this study,the degradation status was presented by the grassland degradation index,which was retrieved from vegetation coverage,based on NDVI3g data.The results showed that the current situation(2011-2013)of average grassland degradation index in the Qinghai-Tibetan Plateau was 1.76,which indicated light degradation level.The area of degraded grassland reached 41% and has no change compared with the historical average(1986-2010),but the areas of moderate,severe,and extra severe degradation has been increased in the Qinghai-Tibetan Plateau.The areas of slight,moderate,severe,and extra severe degraded grassland were 22%,8%,6% and 5%,respectively during 2011 to 2013,while they reached 28%(slight),7%(moderate),4%(severe)and 1%(extra severe)during 1986 to 2010.The degradation index in alpine desert was 3.23 during 2011 to 2013,which reached an extremely degradation level.The degradation index in the alpine meadow and alpine grassland steppe were 1.49 and 1.57,respectively during 2011 to 2013,which were characterized as light degradation level.In the Qinghai-Tibetan Plateau,the degraded area of grassland in Xinjiang reached 71%,higher than that in Qinghai and Tibet,which reached 42% and 41%,respectively.The degraded area of grassland in Gansu,Sichuan and Yunnan were relatively small,reached 25%,10% and 12%,respectively,in the Qinghai-Tibetan Plateau.In summary,there exist spatiotemporal variations in grassland degradation in the Qinghai-Tibetan Plateau.There is no significant change in current grassland degradation status compared with the historical average.However,in some regions on the plateau,i.e.alpine region,the grasslands showed a continuously degrading trend. Z4 利用NDVI3g数据反演青藏高原1986-2013年高寒草地植被盖度,并计算草地退化指数,以了解青藏高原高寒草地退化状况及其分布特征。结果表明, 2011-2013年青藏高原草地退化指数为1.76,属轻度退化等级;退化面积达到41%,与历史平均水平(1986-2010)相比无显著变化,但中 等以上退化面积有所增加。其中,轻度退化面积为22%、中度退化面积为8%、重度和极重度退化面积分别为6%和5%,而历史平均分别为28%、7%、4% 和1%。从不同草地类型来看,高寒荒漠退化程度最严重,退化面积78%,退化指数为3.23,达到重度退化等级且表现出持续恶化趋势;而高寒草甸和高寒草 原退化面积分别为31%和38%,退化指数分别为1.49和1.57,均属于轻度退化状态。从不同省域看,2011-2013年青藏高原新疆自治区范围内 草地退化程度最为严重,退化草地面积所占比例为71%;青海省和西藏自治区草地退化比例也较大,分别达到42%和41%;甘肃、四川和云南草地退化比例较 小,分别为25%、10%和12%。总体来看,青藏高原草地退化存在空间差异,与历史平均相比无显著变化,但局部有恶化趋势,尤其是高寒荒漠退化状况较为 严重。 C1 Cao Xujuan, Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences;;Shanxi Research Academy of Environmental Sciences, Key Laboratory for Agro-Environment,Ministry of Agriculture;;, ;;Taiyuan, Beijing;; 100081;;030027. Hasbagan Ganjurjav, Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment,Ministry of Agriculture, Beijing 100081, China. Hu Guozheng, Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment,Ministry of Agriculture, Beijing 100081, China. Gao Qingzhu, Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences, Key Laboratory for Agro-Environment,Ministry of Agriculture, Beijing 100081, China. Z6 曹旭娟, 中国农业科学院农业环境与可持续发展研究所;;山西省环境科学研究院, 农业部农业环境重点实验室;;, ;;太原, 北京;; 100081;;030027, 中国. 干珠扎布, 中国农业科学院农业环境与可持续发展研究所, 农业部农业环境重点实验室, 北京 100081, 中国. 胡国铮, 中国农业科学院农业环境与可持续发展研究所, 农业部农业环境重点实验室, 北京 100081, 中国. 高清竹, 中国农业科学院农业环境与可持续发展研究所, 农业部农业环境重点实验室, 北京 100081, 中国. EM caoxujuan@sina.com; ganjurjav@foxmail.com Z7 caoxujuan@sina.com; ganjurjav@foxmail.com Z8 5 Z9 6 UT CSCD:6419537 DA 2023-03-23 ER PT J AU Li Junxiang Zhang Yangjian Zhu Juntao Zeng Hui Chang Wenjing Cong Nan Liu Yaojie Zu Jiaxing Huang Ke Zhu Yixuan Wang Li Tang Ze Chen Ning Z2 李军祥 张扬建 朱军涛 曾辉 常文静 丛楠 刘瑶杰 俎佳星 黄珂 朱艺旋 王荔 唐泽 陈宁 TI Responses of community characteristics and productivity to a warming gradient in a Kobresia pygmaea meadow of Tibetan Plateau Z1 藏北高山嵩草草甸群落特征及生产力对模拟增温幅度的响应 Z3 生态学报 SO Acta Ecologica Sinica VL 39 IS 2 BP 474 EP 485 AR 1000-0933(2019)39:2<474:ZBGSSC>2.0.TX;2-6 PY 2019 DT Article AB The community characteristics and productivity of alpine ecosystems are extremely sensitive to climate change in Qinghai-Tibet Plateau owing to harsh climatic environments.To explore the effects of warming on ecosystem productivity and their inter-annual differences in an alpine meadow,field experiments with temperature-gradient treatments(W1,W2,W3,and W4)using open top chambers(OTCs)were conducted in Tibetan Plateau.The results showed that the warming effect decreased the total coverage of the plant community(W1,W2,W3,and W4 significantly reduced plant community coverage by 28%,23%,59%,and 60% in 2015(P <0.05),respectively;W4 significantly reduced plant community coverage by 83% in 2016(P<0.05))and the coverage of Kobresia pygmaea(W1,W2,W3,and W4 significantly reduced the coverage of K.pygmaea by 26%,33%,61%,and 64% in 2015(P<0.05),respectively;W4 significantly reduced the coverage of K.pygmaea by 85% in 2016(P<0.05))compared with control treatment.The lower warming treatments(W1 and W2)had no significant effects on the coverage of Potentilla,whereas the higher warming treatments(W3 and W4)significantly reduced the coverage of Potentilla(W3,W4 significantly reduced the coverage of Potentilla by 58% and 60% in 2015(P<0.05),respectively;W4 significantly reduced the coverage of Potentilla by 71% in 2016(P <0.05).The warming treatments with a lower temperature range promoted growth and biomass accumulation of the community,whereas weakened the promotion effects or even inhibited growth and biomass accumulation when the temperature increased above a certain degree(W4 significantly reduced the aboveground biomass by 69% in 2015(P<0.05);W4 significantly reduced the aboveground biomass by 82% in 2016(P<0.05)).There were significant differences in the coverage of K.pygmaea and other species in the growth season between 2015 and 2016,but no significant changes were observed for Potentilla coverage.This study indicated that moderate warming is conducive for plant growth,but excessive warming can lead to declined grassland productivity and the deterioration of alpine meadows.Furthermore,Potentilla species from local communities are more resistant to global change,indicating their strong competitiveness in facing future climate warming. Z4 青藏高原气候严酷,陆地表层生态系统脆弱,其高寒植物群落特征及生态系统生产力对气候变化的响应极其敏感。利用开顶箱(OTCs,Open Top Chambers)式装置在藏北高山嵩草(Kobresia pygmaea)草甸设置不同增温梯度实验(W1、W2、W3、W4),探究增温对高寒草甸植物群落特征及地上生产力的影响。研究结果表明:1)与对照样 地相比,增温减少了植物群落总盖度(2015年,W1、W2、W3、W4分别显著减少了28%、23%、59%、60%;2016年,W4显著减少了83 %)和高山嵩草盖度(2015年,W1、W2、W3、W4分别显著减少了26%、33%、681%、64%;2016年,W4显著减少了85%),而低幅 度增温(W1、W2)对委陵菜属植物盖度无显著影响,高幅度增温(W3、W4)显著减少了委陵菜属植物盖度(2015年,W3、W4分别显著减少了58% 和60%;2016年,W4显著减少了71%);2)对整个植物群落而言,增温幅度较低时,增温对群落的生长和生物量的积累有促进作用,当温度升高超过一 定程度,这种促进作用会逐渐减弱甚至变成抑制作用(2015年,W4显著减少了地上生物量69%;2016年,W4显著减少了地上生物量82%);3)高 山嵩草盖度和其他物种总盖度存在显著的年际差异,而委陵菜属植物盖度无明显的年际变化。研究结果预示着,一定程度的升温会促进高寒草甸植物群落的生长,但 温度升高超过一定幅度时,会导致草地生产力下降,草地退化加剧,同时当地群落中委陵菜属植物在全球变化背景下相对稳定,这类物种在未来气候变暖的背景下可 能具有更强的竞争力。 C1 Li Junxiang, Peking University Shenzhen Graduate School;;Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, ;;Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Shenzhen;;, ;;Beijing 518055;;100101. Wang Li, Peking University Shenzhen Graduate School;;Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, ;;Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Shenzhen;;, ;;Beijing 518055;;100101. Zhang Yangjian, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences;;College of Resources and Environmental,University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;Center for Excellence in Tibetan Plateau Earth Sciences,Chinese Academy of Sciences;;, ;;;;, Beijing;;Beijing;;Beijing 100101;;100101;;100190. Zhu Juntao, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Cong Nan, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Zeng Hui, Peking University Shenzhen Graduate School;;College of Urban and Environmental Sciences,Peking University, ;;, Shenzhen;;, ;;Beijing 518055;;100871. Chang Wenjing, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China. Liu Yaojie, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Zu Jiaxing, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Huang Ke, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Zhu Yixuan, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Tang Ze, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Chen Ning, Lhasa Station,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100190. Z6 李军祥, 北京大学深圳研究生院;;中国科学院地理科学与资源研究所, ;;中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站, 深圳;;, ;;北京 518055;;100101. 王荔, 北京大学深圳研究生院;;中国科学院地理科学与资源研究所, ;;中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站, 深圳;;, ;;北京 518055;;100101. 张扬建, 中国科学院地理科学与资源研究所;;中国科学院青藏高原地球科学卓越创新中心;;中国科学院大学资源与环境学院, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;中国科学院青藏高原地球科学卓越创新中心;;, ;;;;, 北京;;北京;;北京 100101;;100101;;100190, 中国. 朱军涛, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站, 北京 100101, 中国. 丛楠, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站, 北京 100101, 中国. 曾辉, 北京大学深圳研究生院;;北京大学城市与环境学院, ;;, 深圳;;, ;;北京 518055;;100871. 常文静, 北京大学深圳研究生院, 深圳, 广东 518055, 中国. 刘瑶杰, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;, ;;, 北京;;北京 100101;;100190, 中国. 俎佳星, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;, ;;, 北京;;北京 100101;;100190, 中国. 黄珂, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;, ;;, 北京;;北京 100101;;100190, 中国. 朱艺旋, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;, ;;, 北京;;北京 100101;;100190, 中国. 唐泽, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;, ;;, 北京;;北京 100101;;100190, 中国. 陈宁, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;中科院拉萨高原生态试验站;;, ;;, 北京;;北京 100101;;100190, 中国. EM changwj@pkusz.edu.cn Z7 changwj@pkusz.edu.cn Z8 8 Z9 10 UT CSCD:6418987 DA 2023-03-23 ER PT J AU Li Chengyang Lai Chimin Peng Fei Xue Xian You Quangang Zhang Wenjuan Liu Feiyao Z2 李成阳 赖炽敏 彭飞 薛娴 尤全刚 张文娟 刘斐耀 TI Alpine meadows at different stages of degradation in the Beiluhe Basin of the Qinghai-Tibet Plateau: Productivity and community structure characteristics Z1 青藏高原北麓河流域不同退化程度高寒草甸生产力和群落结构特征 Z3 草业科学 SO Pratacultural Science VL 36 IS 4 BP 1044 EP 1052 AR 1001-0629(2019)36:4<1044:QZGYBL>2.0.TX;2-4 PY 2019 DT Article AB In recent years, alpine grassland has become severely degraded in parts of the Qinghai-Tibet Plateau (QTP). This has had a negative effect on livestock production in the region. At some point in the process of the degradation of the grassland, there is a point beyond which it is extremely difficult to restore the grassland. Determining this point in the grassland degradation is an important question for restoration of the grassland. We selected five areas along a gradient from intact to extremely degraded alpine meadows in the permafrost region of the Beiluhe Basin on the QTP to explore the effects of degradation on the above-ground and below-ground biomass of vegetation, and the relative coverage of different plant functional groups (grasses, sedges and forbs). The results showed: 1) as the severity of grassland degradation increased, the relative coverage of grasses and forbs increased while the relative coverage of sedges decreased; 2) there was no significant change in aboveground biomass in the slightly degraded area, and it began to decrease in the moderately degraded area; 3) both belowground biomass and belowground net primary productivity (BNPP) decreased significantly from the moderate degradation stage, and the BNPP moved to deeper layers as the severity of degradation increased; and 4) the relative coverage of sedges and the proportion of BNPP at 0 -10 cm soil depth showed a positive correlation with degree of degradation, no significant correlation at 10-20 cm soil depth, and a negative correlation at 20-30 cm and 30-50 cm soil depth. While the relative coverage of forbs at different degrees of degradation and the proportion of BNPP at each soil depth showed an opposite trend to that of sedges, the moderate degradation stage is the critical stage of grassland degradation. Z4 近年来,青藏高原高寒草甸部分地区退化严重,对生态环境及牧民畜牧业生产造成了不利的影响。在草地不同退化阶段中存在着关键阶段,超过了这个阶段,极难恢 复。因此,确定草地退化的关键阶段是草地可持续恢复的基础。研究样地设在青藏高原北麓河流域多年冻土区,根据植被和土壤特征选取了未退化到极度退化的5个 退化梯度,探讨不同退化程度对植被地上、地下生物量以及群落中各功能群相对盖度的影响,为揭示多年冻土区高寒草甸植被退化关键阶段提供依据。结果表明:1 )随着退化程度加剧,禾本科和杂草类植物相对盖度显著增加(P < 0.05),而莎草科植物相对盖度则显著降低(P < 0.05);2)地上生物量在轻度退化阶段无显著变化(P > 0.05),中度退化阶段开始显著降低(P < 0.05);3)地下生物量和地下净初级生产力均在中度退化阶段后显著降低(P < 0.05),地下净初级生产力在各土壤深度比例有向深处增加的趋势;4)不同退化程度莎草科植物相对盖度和地下净初级生产力在0-10 cm土壤深度所占比例极显著正相关(P < 0.01),但与10-20 cm土壤深度地下净初级生产力所占比例无显著相关(P > 0.05),与20-30 cm和30-50 cm土壤深度地下净初级生产力所占比例均显著负相关(P < 0.05),而杂草相对盖度和地下净初级生产力在各土壤深度所占比例则表现出与莎草科植物相反的趋势。中度退化是草地退化的关键阶段。 C1 Li Chengyang, Northwest institute of Eco-Environment and Resources, Chinese Academy Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, Gansu;;Beijing 730000;;100049. Zhang Wenjuan, Northwest institute of Eco-Environment and Resources, Chinese Academy Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, Gansu;;Beijing 730000;;100049. Liu Feiyao, Northwest institute of Eco-Environment and Resources, Chinese Academy Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, Gansu;;Beijing 730000;;100049. Lai Chimin, Northwest institute of Eco-Environment and Resources, Chinese Academy Sciences;;College of Forestry, Fujian Agriculture and Forestry University, Key Laboratory of Desert and Desertification;;, Lanzhou;;Fuzhou, Gansu;;Fujian 730000;;350000. Peng Fei, University of Chinese Academy of Sciences, Beijing 100049, China. Xue Xian, Northwest institute of Eco-Environment and Resources, Chinese Academy Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. You Quangang, Northwest institute of Eco-Environment and Resources, Chinese Academy Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. Z6 李成阳, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 张文娟, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 刘斐耀, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 赖炽敏, 中国科学院西北生态环境资源研究院;;福建农林大学林学院, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;福州, 甘肃;;福建 730000;;350000, 中国. 彭飞, 中国科学院大学, 北京 100049, 中国. 薛娴, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. EM lichengyang@lzb.ac.cn; pengfei@lzb.ac.cn; xianxue@lzb.ac.cn Z7 lichengyang@lzb.ac.cn; pengfei@lzb.ac.cn; xianxue@lzb.ac.cn Z8 6 Z9 7 UT CSCD:6500205 DA 2023-03-23 ER PT J AU Duan Cheng Shi Peili Zhang Xianzhou Zong Ning Z2 段呈 石培礼 张宪洲 宗宁 TI Suitability analysis for sown pasture planning in an alpine rangeland of the northern Tibetan Plateau Z1 藏北高原牧区人工草地建设布局的适宜性分析 Z3 生态学报 SO Acta Ecologica Sinica VL 39 IS 15 BP 5517 EP 5526 AR 1000-0933(2019)39:15<5517:ZBGYMQ>2.0.TX;2-9 PY 2019 DT Article AB Sown pasture development is an effective means to relieve rangeland degradation and improve grassland productivity.However,sown pasture development requires effective planning,planting,and management.Particularly,there are still many scientific questions and challenges in the sown pasture development of the alpine rangeland on the northern Tibetan Plateau.Therefore,based on field investigations of current sown pasture distribution,in combination with analyses of climate,soil,topography,land use and remote sensing data,we analyzed the site conditions of sown pasture planning and identified potential areas suitable for sown pasture development in the northern Tibetan Plateau.We compared the distribution location and area of potential sown pasture with the existing one to provide scientific insight into future sown pasture planning in the region.The results showed that the suitable area for sown pasture development is very limited,with an area about 15333 hm~2 in Ngari Prefecture on the northern Tibetan Plateau.Altitude and hydrothermal conditions are the main factors restricting the construction of sown pasture in the region.Especially,in Nagqu Prefecture,most areas cannot meet the demand of accumulated temperature for forage growth activities.Therefore,the biological characteristics of forage varieties should be taken into account in regional sown pasture planning in the future.We concluded that caution should be taken into developing sown pasture in the alpine rangeland above an average altitude of 4500 m.Further study on the cold and drought resistance of forage varieties should also be strengthened.For effective management,the sustainability and stability of sown pasture should be considered to prevent rangeland degradation and desertification. Z4 人工草地是缓解天然草地退化和提升草地生产力的一种有效途径,但人工草地建设发展需注重区域布局、种植区划、经营管理等战略问题,尤其是在高寒牧区建立人 工草地,目前还存在诸多值得探讨的科学问题。为此,选取藏北高原高寒牧区为研究区,基于遥感数据,土壤数据,气象数据,地形和土地利用数据,结合野外实地 调查,从可利用土地资源角度考虑,通过分析藏北现有人工草地建设的立地条件,识别出区域适宜人工草地建设的潜在分布区,并与现有人工草地分布位置及其面积 进行对比分析和验证,以期为区域未来人工草地建设布局提供科学指导。研究结果表明:在各种约束因子的限制下,藏北满足人工草地建设条件的适宜区域极其有限 ,难以发展大面积的人工草地建设工程。水热条件和海拔是限制区域人工草地建设的主要地理因素,尤其是那曲地区,绝大部分区域无法满足人工牧草生长活动的积 温需求。因此,区域牧草种植规划中需重点考虑牧草品种的生物学特性。另一方面,在藏北高寒牧区建立人工草地必须慎重,今后人工草地种植规划还需要加强牧草 的抗寒性和抗旱性研究,在人工草地的管理方面要特别关注已建人工草地的可持续性和稳定性,防止出现草地退化和沙化等问题。 C1 Duan Cheng, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100049. Shi Peili, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100049. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences;;, ;;, Beijing;;Beijing 100101;;100049. Zong Ning, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Z6 段呈, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. 石培礼, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. 张宪洲, 中国科学院地理科学与资源研究所;;中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. 宗宁, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM shipl@igsnrr.ac.cn Z7 shipl@igsnrr.ac.cn Z8 10 Z9 14 UT CSCD:6557175 DA 2023-03-23 ER PT J AU Wang Ting Hua Rui Chu Bin Zhou Rui Ye Guohui Niu Yujie Tang Zhuangsheng Hua Limin Z2 王婷 花蕊 楚彬 周睿 叶国辉 牛钰杰 唐庄生 花立民 TI Effects of alpine steppe degradation on plant communities and soil physical and chemical properties Z1 高寒草原退化对植物群落及土壤理化性质的影响 Z3 草原与草坪 SO Grassland and Turf VL 39 IS 4 BP 65 EP 71 AR 1009-5500(2019)39:4<65:GHCYTH>2.0.TX;2-Z PY 2019 DT Article AB The alpine steppe is an important part of the grassland ecosystem in the Qinghai-Tibet Plateau.It is important to understand the effects of alpine grassland degradation on plant community and soil physical and chemical properties.In this study,spatial distribution was used instead of time succession to investigate the changes of plant community characteristics and soil physical and chemical properties during the degradation of alpine steppe in Maduo County,Yellow River source area,and to explore the response of plant community and soil physical and chemical properties to degradation.The results showed:(1)The dominant species of plants under different degradation gradients changed significantly,from mild to severely degraded.The dominant species of grassland changed from the genus Stipabreviflora and Kobresia to the heterotic grass,and the dominant species became sandy plants under extreme degradation.(2)With the increase of grassland degradation,the importance value,richness,diversity,evenness and aboveground biomass of plant species increased first and then decreased,but the aboveground biomass of slightly degraded grassland was 21.5% higher than that of non-degraded grassland.The reason may be closely related to the change of growth and decline of different species in the process of degraded succession.(3)Soil organic matter,total nitrogen,total phosphorus and pH showed a significant decrease(P<0.05)with the degree of degradation;soil bulk density increased significantly with the degree of degradation;soil aeration porosity decreased significantly with the degree of degradation.Through redundant analysis,grassland degradation first affects the physical properties of the soil and then affects the species composition of the grassland community,resulting in a significant decrease in grassland productivity. Z4 以空间分布代替时间演替的方法,调查黄河源区玛多县高寒草原退化过程中植物群落特征和土壤理化特性的变化,探讨植物群落与土壤理化特性对退化的响应。结果 表明:(1)不同退化梯度下植物优势种变化明显,从轻度退化到重度退化,草地优势种由紫花针茅和矮嵩草逐渐向杂类草转变,极度退化下变为沙生植物为主;( 2)随着草地退化加剧,植物物种重要值、丰富度、多样性、均匀度以及地上生物量均呈先增加后降低的趋势,但轻度退化草地地上生物量比未退化草地高21.5 %,其与不同物种在退化演替过程中的消长变化密切相关;(3)土壤有机质、全氮、全磷以及pH表现出随退化程度加剧呈显著降低(P<0.05)的趋势。土 壤容重随退化程度加剧而显著增加,土壤通气孔隙度随退化程度加剧而显著降低。通过分析,草地退化首先影响土壤物理属性,进而影响草地群落物种组成,导致草 地生产力明显降低。 C1 Wang Ting, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Hua Rui, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Chu Bin, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Zhou Rui, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Ye Guohui, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Niu Yujie, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Tang Zhuangsheng, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Hua Limin, College of Grassland Science,Gansu Agricultural University/Sino-U.S., Key Laboratory for Grassland Ecosystem of Ministry of Education;;Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Z6 王婷, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 花蕊, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 楚彬, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 周睿, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 叶国辉, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 牛钰杰, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 唐庄生, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 花立民, 甘肃农业大学草业学院/中-美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. EM wangting921221@163.com; hualm@gsau.edu.cn Z7 wangting921221@163.com; hualm@gsau.edu.cn Z8 8 Z9 9 UT CSCD:6578785 DA 2023-03-23 ER PT J AU Wang Qi Wu Chengyong Chen Kelong Badingqiuying Zhao Shuangkai Wei Yalan Liu Juan Su Xiaoyi Zhang Xiao Z2 王琪 吴成永 陈克龙 巴丁求英 赵爽凯 魏亚兰 刘娟 苏小艺 张肖 TI Estimating Topsoil Organic Matter in Qinghai Lake Basin Using Multi-Spectral Remote Sensing Images Z1 基于多光谱遥感图像的青海湖流域土壤有机质估算初探 Z3 土壤 SO Soils VL 51 IS 1 BP 160 EP 167 AR 0253-9829(2019)51:1<160:JYDGPY>2.0.TX;2-5 PY 2019 DT Article AB Soil organic matter (SOM) is an important component of soil solid phase, and it is also an important carbon pool of terrestrial ecosystem. At regionalscale, rapidly and accurately determining SOM content is critical for production activities of agriculture-animal husbandry and the efficiency for obtaining the key parameters of earth surface processes. To explore the remote sensing (RS) bands containing SOM information in multi-spectral RS data and to estimate SOM with RS technology over Qinghai-Tibet Plateau (QTP), the Landsat-8 OLI multi-spectral RS data and the actual sample data were used to construct SOM estimation model with regression analysis method. The results showed that the characteristic bands of SOM in Landsat8-OLI image were band 5, band 6 and band 7. Based on these three bands, the model forestimating SOM was constructed (R2= 0.704, P<0.001). Through precision analysis of actual measured points (RMSE=8.66) and previous study results (RMSE = 8.85), this model was proved with high precision and strong stability. This study provides not only the technical support for rapid determination SOM over QTP, but also the reference for soil fertility evaluation, carbon pool calculation, soil carbon cycle, crop yield estimation and grassland degradation monitoring in alpine region. Z4 土壤有机质是土壤固相部分的重要组成成分,也是陆地表层重要的碳库,其含量的快速、准确测定关乎农牧业生产活动安排与地表过程研究中关键参数的获取效率。 为了探寻适合青藏高原高寒地区土壤有机质遥感反演的响应波段及遥感模型,实现区域像元尺度上的土壤表层有机质估算,本文利用Landsat8-OLI多光 谱遥感数据与实地采样数据对青海湖流域表层(0~ 20 cm)土壤进行了有机质含量反演研究。结果表明:Landsat8-OLI影像的第5 、 6和7波段是青海湖流域土壤有机质含量的特征波段,基于这3个波段构建的土壤有机质遥感反演三元回归模型(R2=0.704,P<0.001),经实测点 验证(RMSE=8.66)与相关文献研究结果验证(RMSE=8.85),精度高、稳定性强、预测趋势平稳。本研究不仅为高寒地区土壤有机质含量快速测 定提供了一定的技术支持,也为高寒地区的碳库计算、土壤肥力评价、土壤碳循环、农作物估产、草地退化监测等提供了参考。 C1 Wang Qi, College of Geography, Qinghai Normal University;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, ;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Xining;;Xining;;Xining, ;;;; 810008;;810008;;810008. Wu Chengyong, College of Geography, Qinghai Normal University;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, ;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Xining;;Xining;;Xining, ;;;; 810008;;810008;;810008. Zhao Shuangkai, College of Geography, Qinghai Normal University;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, ;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Xining;;Xining;;Xining, ;;;; 810008;;810008;;810008. Wei Yalan, College of Geography, Qinghai Normal University;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, ;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Xining;;Xining;;Xining, ;;;; 810008;;810008;;810008. Liu Juan, College of Geography, Qinghai Normal University;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, ;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Xining;;Xining;;Xining, ;;;; 810008;;810008;;810008. Su Xiaoyi, College of Geography, Qinghai Normal University;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, ;;Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Xining;;Xining;;Xining, ;;;; 810008;;810008;;810008. Chen Kelong, Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Key Laboratory of Environment and Ecology, Ministry of Education, Qinghai-Tibet Plateau;;Key Laboratory of Natural Geography and Environmental Processes of Qinghai Province, Xining;;Xining, ;; 810008;;810008. Badingqiuying, College of Geography, Qinghai Normal University, Xining, Qinghai 810008, China. Zhang Xiao, College of Geography and Resource Science, Sichuan Normal University, Chengdu, Sichuan 610101, China. Z6 王琪, 青海师范大学地理科学学院;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, ;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 西宁;;西宁;;西宁, ;;;; 810008;;810008;;810008. 吴成永, 青海师范大学地理科学学院;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, ;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 西宁;;西宁;;西宁, ;;;; 810008;;810008;;810008. 赵爽凯, 青海师范大学地理科学学院;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, ;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 西宁;;西宁;;西宁, ;;;; 810008;;810008;;810008. 魏亚兰, 青海师范大学地理科学学院;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, ;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 西宁;;西宁;;西宁, ;;;; 810008;;810008;;810008. 刘娟, 青海师范大学地理科学学院;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, ;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 西宁;;西宁;;西宁, ;;;; 810008;;810008;;810008. 苏小艺, 青海师范大学地理科学学院;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, ;;青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 西宁;;西宁;;西宁, ;;;; 810008;;810008;;810008. 陈克龙, 青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 青藏高原环境与生态教育部重点实验室;;青海省自然地理与环境过程重点实验室, 西宁;;西宁, ;; 810008;;810008. 巴丁求英, 青海师范大学地理科学学院, 西宁, 青海 810008, 中国. 张肖, 四川师范大学地理与资源科学学院, 成都, 四川 610101, 中国. EM 1186599488@qq.com; ck17813@163.com Z7 1186599488@qq.com; ck17813@163.com Z8 4 Z9 5 UT CSCD:6447478 DA 2023-03-23 ER PT J AU Tian Fu Cheng Yunxiang Zhou Guoli Ma Qingqing Shen Bo Qu Jiu Chang Shenghua Z2 田富 程云湘 周国利 马青青 申波 曲久 常生华 TI Relations of density of pika burrows with plant community structure and soil in alpine meadows on the eastern Qinghai-Tibetan Plateau Z1 高原鼠兔洞穴密度与高寒草甸植物群落结构以及土壤因子的关系 Z3 草业科学 SO Pratacultural Science VL 36 IS 4 BP 1094 EP 1104 AR 1001-0629(2019)36:4<1094:GYSTDX>2.0.TX;2-4 PY 2019 DT Article AB The density gradient of pika (Ochotona curzoniae) burrows was determined using effective number of caves method (which were expressed from low to high as levelⅠ, Ⅱ, Ⅲ and Ⅳ respectively). To explore the effects of pika activity on the soil and vegetation of alpine meadows in Guoluo Tibetan Autonomous Prefecture, China, the relationships between the density of pika burrows and the total area of patchy bare ground, soil physical characteristics, and vegetation characteristics of alpine meadow were analyzed. The results showed that 1) The number of effective pika burrows across the four gradients was Ⅰ [(4 3)·100 m~(-2)] < Ⅱ[(15 2)·100 m~(-2)] < Ⅲ [(24 2)·100 m~(-2)] < Ⅳ [(37 5)·100 m~(-2)]. 2) The soil water content in the surface layer of the meadows (0 -10 cm) was affected by the pika burrow density gradient, and the difference between the gradients was significant (P < 0.05). With an increase in the density gradient of pika, the soil water content decreased sharply and remained below 50% in Ⅱ, Ⅲ, Ⅳ sampling plots. 3)There was no significant correlation between the pika burrow density gradient and the soil compaction of alpine meadows (P > 0.05); only gradient Ⅱ was significantly higher than gradient Ⅰ(P < 0.05), and the other gradients were not significantly different from each other. 4)The effective burrow number had an extremely significant effect on the total area of patch bare ground (P < 0.001), which was the largest at gradient Ⅳ(accounting for 8.75%); 5)The mouse cave density gradient had a significant effect on the coverage of alpine meadow communities (P < 0.001), and the total coverage of plant community at gradients Ⅱ, Ⅲ, Ⅳ (46.55%~41.15%) was significantly lower than gradientⅠ (98.7%); 6) The pika burrow density gradient affected the plant community structure of the alpine meadows. With an increase in the pika burrow density, the populations of Gentiana macrophylla, Elymus nutans, and Veronica eriogyne gradually increased and that of Chamaesium paradoxum, Viola kunawarensis, and Trollius farreri gradually declined, although the populations of the dominant species Kobresia pygmaea and Kobresia humilis did not change. 7) There was no significant difference of plant diversity index between different gradients (P > 0.05). In summary, properly managed pika populations can improve the habitat of the pika and promote the positive succession of the alpine meadow ecosystem. When the disturbance from pikas is too high, the resultant decline in habitat quality will cause the alpine meadow ecosystem to reverse succession. Z4 本研究采用有效洞穴法确定高原鼠兔(Ochotona curzoniae)鼠洞密度(从低到高划分Ⅰ、Ⅱ、Ⅲ、Ⅳ共4个梯度),通过分析鼠洞密度与研究区裸地面积、土壤物理特征、植被结构特征的关系探究鼠兔 活动对果洛藏族自治州高寒草甸土壤和植被的影响。结果表明:1) 4个梯度的有效鼠洞数量依次为每100 m~2(4 3)个(Ⅰ)、(15 2)个(Ⅱ)、(24 2)个(Ⅲ)、(37 5)个(Ⅳ);2)高寒草甸表层(0 -10 cm)土壤含水量受鼠洞密度影响,在梯度之间差异显著(P < 0.05),随鼠洞密度增加表层土壤含水量急剧下降,在Ⅱ、Ⅲ、Ⅳ样地基本在50 %以下;3)鼠洞密度对表层土壤紧实度影响不显著(P > 0.05),仅梯度Ⅱ样地内的土壤紧实度显著高于梯度Ⅰ样地(P < 0.05),其他梯度两两之间差异不显著(P > 0.05);4)有效洞口数影响样地内裸地面积(P < 0.001),其中梯度Ⅳ样地裸地面积最多(占比8.75%);5)鼠洞密度对高寒草甸群落盖度影响显著(P < 0.001),梯度Ⅱ、Ⅲ、Ⅳ样地的植物群落总盖度(46.55%~41.15%)显著低于梯度Ⅰ样地(98.7%); 6)鼠洞密度影响高寒草甸植被群落结构,伴随鼠洞密度的增加,优势种高山嵩草(Kobresia pygmaea)、矮嵩草(Kobresia humilis)的重要地位未改变,伴生种秦艽(Gentiana macrophylla)、垂穗披碱草(Elymus nutans)、毛果婆婆纳(Veronica eriogyne)的重要值逐渐增大,矮泽芹(Chamaesium paradoxum)、西藏堇菜(Viola kunawarensis)、矮金莲(Trollius farreri)逐步退出群落结构;7)鼠洞密度对高寒草甸群落多样性指数影响微弱(P > 0.05),不同鼠洞密度梯度样地之间植物多样性指数差异不显著。综上所述,适当的鼠兔干扰有助于改善鼠兔生境,推动高寒草甸生态系统正向演变,当高原鼠 兔干扰过高时,生境质量下降迫使高寒草甸生态系统逆向演替。 C1 Tian Fu, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, Gansu 730020, China. Zhou Guoli, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, Gansu 730020, China. Ma Qingqing, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, Gansu 730020, China. Shen Bo, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, Gansu 730020, China. Chang Shenghua, College of Pastoral Agriculture Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou, Gansu 730020, China. Cheng Yunxiang, College of Pastoral Agriculture Science and Technology, Lanzhou University;;School of Ecology and Environment, Inner Mongolia University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs;;Engineering Research Center of Grassland Industry, Ministry of Education;;, Lanzhou;;Hohhot, Gansu;;Inner Mongolia 730020;;010021. Qu Jiu, Naqu General Popularization Station of Animal husbandry and Veterinary Medicine Technology, Naqu, Tibet 852000, China. Z6 田富, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 周国利, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 马青青, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 申波, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 常生华, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心, 兰州, 甘肃 730020, 中国. 程云湘, 兰州大学草地农业科技学院;;内蒙古大学生态与环境学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室;;草地农业教育部工程研究中心;;, 兰州;;呼和浩特, 甘肃;;内蒙古 730020;;010021, 中国. 曲久, 西藏那曲市畜牧兽医技术推广总站, 那曲, 西藏 852000, 中国. EM tianf17@lzu.edu.cn; chengyx@lzu.edu.cn Z7 tianf17@lzu.edu.cn; chengyx@lzu.edu.cn Z8 2 Z9 4 UT CSCD:6500210 DA 2023-03-23 ER PT J AU Bai Wei Xi Jingyang Wang Genxu Z2 白炜 奚晶阳 王根绪 TI Effects of short-term warming and nitrogen addition on CO_2 emission during growing season in an alpine swamp meadow ecosystem of Qinghai-Tibetan Plateau Z1 短期增温与施氮对青藏高原高寒沼泽草甸生态系统CO_2排放的影响 Z3 生态学杂志 SO Chinese Journal of Ecology VL 38 IS 4 BP 927 EP 936 AR 1000-4890(2019)38:4<927:DQZWYS>2.0.TX;2-Q PY 2019 DT Article AB To investigate the interactive effects of global warming and increased nitrogen deposition on ecosystem respiration,a short-term experiment was carried out during growth season in an alpine swamp meadow of Qinghai-Tibetan Plateau,using open top champers (OTC) and nitrogen addition to simulate warming and nitrogen deposition,respectively. Warming,nitrogen addition, and their interaction significantly increased ecosystem respiration rate by affecting plant biomass, soil microbial quantity and activity,and soil nutrient status. The correlations between ecosystem respiration and each of the environmental factors were exponential or quadric multinomial,with the significance levels of such regressions declining with the increases of complexity of treatments. As soil water availability is sufficient in swamp meadow,air temperature and soil temperature at the depth of 5 cm could explain 80% of the variations of ecosystem respiration. Warming significantly increased above- and below-ground biomass,and enhanced the proportions of belowground biomass. Nitrogen addition significantly increased above-ground biomass and had no effect on below-ground biomass. Under warming condition,nitrogen addition significantly increased above-and below-ground biomass,but with no impacts on biomass allocation. Z4 采用开顶式增温小室(OTC)和外源氮素添加的方式,研究了气温升高、氮沉降增加及其交互作用对青藏高原腹地生长季沼泽草甸生态系统呼吸的短期影响。结果 表明:增温、施氮及其交互作用通过促进植物生物量积累、增加微生物数量与活性以及改变土壤养分状况,对沼泽草甸生态系统呼吸速率均产生了显著的促进作用; 生态系统呼吸与单一环境因子间符合指数或二次多项式关系,但两种关系的显著性随着样地处理方式趋向复杂而逐渐降低;由于沼泽草甸充足的水分条件,气温和土 壤温度共同决定了不同处理内80%的生态系统呼吸变异;增温使地上与地下生物量显著增加,但地下生物量的分配比例上升;施氮使地上生物量明显增加,但对地 下生物量的影响不显著;增温同时施氮使地上及地下生物量均显著上升,但生物量的分配格局变化并不显著。 C1 Bai Wei, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Xi Jingyang, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Wang Genxu, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Z6 白炜, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 奚晶阳, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 王根绪, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. EM baiwei915@163.com Z7 baiwei915@163.com Z8 9 Z9 13 UT CSCD:6474349 DA 2023-03-23 ER PT J AU Shu Kai Ke Xun Xin Ying Guo Xiaowei Cao Guangmin Du Yangong Zhou Huakun Z2 舒锴 柯浔 辛莹 郭小伟 曹广民 杜岩功 周华坤 TI Comparative studyon evapotranspiration characteristics of Multi-stable alpine meadow ecosystem on the Tibetan Plateau Z1 青藏高原多稳态高寒草甸生态系统蒸散特征对比研究 Z3 草原与草坪 SO Grassland and Turf VL 39 IS 6 BP 83 EP 88 AR 1009-5500(2019)39:6<83:QZGYDW>2.0.TX;2-2 PY 2019 DT Article AB This study aims to clarify the response of alpine meadow evapotranspiration to different grazing intensities.It is helpful to deepen the study of water cycle process in degraded ecosystems of alpine meadows, and to reveal the grassland degradation mechanism from the perspective of ecological hydrology.In this study, we taken 4 successional stable alpine meadows(Gramineae-Kobresiahumilis community;K.humilis community; K.pygmacacommunity;forb-black soil type secondary bare land)as research objects,and the evapotranspiration, soil moisture content and water storage of the multi-stable alpine meadow were studied by using the mini lysimeter method and the drying method.The results showed that with the increase of grazing intensity,the average daily evapotranspiration of the four successional stable alpine meadow ecosystems decreased during the peak season of growth;the total evapotranspiration of the four stable alpine meadows was respectively 235.2 mm for Gramineae-Kobresia humilis community,209.1 mm for K.humilis community,203.1 mm for K.pygmaca community,and 150.3 mm for forb-black soil type secondary bare land,all of which were lower than the precipitation; the moisture content of 0~10 cm soil layer showed the trend of gradual reduction,and the rate of reduction in August is faster,and the decrease in water content in September is not obvious.The soil moisture content of 10~20 cm in Gramineae-K. humilis community was not obvious,and that of other 3 alpine meadows decreased, but the change range was lower than that of the 0~10 cm soil layer;the water storage capacity of 0~10 cm and10~20 cm soil layer showed an increasing trend after decreasing in alpine meadow.In the growing season, the water storage capacity of each soil layer in the 4 successional stable alpine meadow ecosystems decreased gradually.By reducing the grazing intensity to restore the degraded alpine meadow ecosystem,the water storage capacity of the ecosystem will be significantly increased,and the grassland production function will be improved. Z4 在青海海北高寒草地生态系统国家野外科学观测研究站,以禾草-矮嵩草群落、矮嵩草群落、小嵩草群落、杂类草-黑土滩次生裸地4种演替稳态高寒草甸为研究对 象,利用小型蒸渗仪法和烘干法等,研究多稳态高寒草甸的蒸散量、土壤含水率、贮水量变化特征。结果表明:随放牧强度增加,生长季盛期,4种演替稳态高寒草 甸生态系统每日平均蒸散量出现下降趋势;4种稳态高寒草甸总蒸散量分别是禾本矮嵩草群落235.2 mm,矮嵩草群落209.1 mm,小嵩草群落203.1 mm,杂类草黑土滩次生裸地150.3 mm,均低于同期降水量。多稳态高寒草甸表层0~10 cm土壤含水率呈逐渐减小的趋势,且8月含水率降低速度较快,9月含水率下降不明显。禾本-矮嵩草群落10~20 cm土壤含水率变化不明显,其余3种草甸10~20 cm土层含水率均呈减小的趋势,但变化幅度低于表层土壤;高寒草甸0~10、 10~20 cm土层贮水量均呈先降低后增加的趋势,生长季4种演替稳态高寒草甸生态系统各土层贮水量均逐渐减小。 C1 Shu Kai, Northwest Plateau Institute of Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province;;, Xining;;, ;;Beijing 810008;;100049. Ke Xun, Northwest Plateau Institute of Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province;;, Xining;;, ;;Beijing 810008;;100049. Xin Ying, Northwest Plateau Institute of Biology,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province;;, Xining;;, ;;Beijing 810008;;100049. Guo Xiaowei, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Xining, Qinghai 810008, China. Cao Guangmin, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Xining, Qinghai 810008, China. Du Yangong, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Xining, Qinghai 810008, China. Zhou Huakun, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Key Laboratory of Restoration Ecology in Cold Region of Qinghai Province, Xining, Qinghai 810008, China. Z6 舒锴, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 柯浔, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 辛莹, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, 青海;;北京 810008;;100049, 中国. 郭小伟, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 曹广民, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 杜岩功, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 周华坤, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. EM shukai@nwipb.cas.cn; ygdu@nwipb.cas.cn Z7 shukai@nwipb.cas.cn; ygdu@nwipb.cas.cn Z8 5 Z9 6 UT CSCD:6649256 DA 2023-03-23 ER PT J AU Zhan Tianyu Hou Ge Liu Miao Sun Jian Fu Shun Z2 詹天宇 侯阁 刘苗 孙建 付顺 TI Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau Z1 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征 Z3 草业科学 SO Pratacultural Science VL 36 IS 4 BP 1010 EP 1021 AR 1001-0629(2019)36:4<1010:QZGYBT>2.0.TX;2-U PY 2019 DT Article AB Alpine grassland is an important component of the Tibetan Plateau. The degradation of these grasslands affects regional sustainable development. The mechanisms of linkage between soil properties and vegetation traits to the succession process of grassland degradation are still unclear. In the present study, we investigated the correlation of different vegetation characteristics and soil properties with degree of degradation (non-degraded to heavily degraded) of grasslands from across the Tibetan Plateau. The results showed that the aboveground and belowground biomass and the soil properties declined along the degradation gradient. For instance, in heavily degraded grassland, aboveground biomass, below-ground biomass, species richness and species evenness were lower by 42.44%, 60.64%, 21.08% and 8.36%, respectively, compared to nondegraded grasslands. Soil moisture content, organic carbon, total nitrogen and total phosphorus in heavily degraded grasslands were also lower by 33.57%, 45.75%, 22.70% and 11.23%, respectively, compared to non-degraded grasslands. The soil bulk density was 12.12% greater in heavily degraded grasslands than in non-degraded grasslands. In terms of response ratio, we found that vegetation biomass (aboveground biomass and belowground biomass) was positively related with soil properties (organic carbon, total nitrogen and total phosphorus) (P<0.05). The findings indicated that vegetation productivity and soil properties interacted with each other in the process of grassland degradation. In addition, the carbon content loss was more serious than nitrogen and phosphorus content loss. Z4 高寒草地是青藏高原生态系统的重要组成部分,草地退化严重影响区域可持续发展。目前,不同草地退化的演替过程中,土壤属性与植被特征的变化机理尚未理清。 本研究以青藏高原为研究对象,整合分析(meta-analysis)不同退化梯度草地的植被群落、生产力及土壤属性特征。结果表明:不同退化梯度下,植 被地上和地下生物量均降低,土壤特征均呈恶化趋势。尤其是在重度退化草地中,地上生物量、地下生物量、物种丰富度和物种均匀度较未退化草地分别显著降低了 42.44%、60.64%、21.08 %和8.36%,土壤含水量、有机碳、全氮和全磷同样较未退化草地分别显著下降了33.57%、45.75%、22.70 %和11.23%,而土壤容重显著上升了12.12%(P<0.05)。就效应比而言,植被生物量与土壤主要性质(有机碳、全氮和全磷)均呈显著正相关关 系,表明草地退化过程中植被生产力与土壤性质互相影响,相较氮和磷含量,碳含量的流失非常严重。研究结果可为青藏高原地区受损草地的修复提供科学依据。 C1 Zhan Tianyu, College of Tourism and Urban-Rural Planning, Chengdu University of Technology;;Integrated Research Center of Ecosystem Research Network, Institute of Geographic Sciences and Resources, Chinese Academy of Sciences, ;;, Chengdu;;, Sichuan;;Beijing 610059;;100101. Hou Ge, Integrated Research Center of Ecosystem Research Network, Institute of Geographic Sciences and Resources, Chinese Academy of Sciences, Beijing 100101, China. Liu Miao, Integrated Research Center of Ecosystem Research Network, Institute of Geographic Sciences and Resources, Chinese Academy of Sciences, Beijing 100101, China. Sun Jian, Integrated Research Center of Ecosystem Research Network, Institute of Geographic Sciences and Resources, Chinese Academy of Sciences, Beijing 100101, China. Fu Shun, College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu, Sichuan 610059, China. Z6 詹天宇, 成都理工大学旅游与城乡规划学院;;中国科学院地理科学与资源研究所生态系统研究网络综合研究中心, ;;, 成都;;, 四川;;北京 610059;;100101, 中国. 侯阁, 中国科学院地理科学与资源研究所, 中国科学院生态系统研究网络综合研究中心, 北京 100101, 中国. 刘苗, 中国科学院地理科学与资源研究所, 中国科学院生态系统研究网络综合研究中心, 北京 100101, 中国. 孙建, 中国科学院地理科学与资源研究所, 中国科学院生态系统研究网络综合研究中心, 北京 100101, 中国. 付顺, 成都理工大学旅游与城乡规划学院, 成都, 四川 610059, 中国. EM zty5327@163.com; sunjian@igsnrr.ac.cn; fs@cdut.edu.cn Z7 zty5327@163.com; sunjian@igsnrr.ac.cn; fs@cdut.edu.cn Z8 11 Z9 15 UT CSCD:6500202 DA 2023-03-23 ER PT J AU Jia Zhifeng Ma Xiang Xu Chengti Liu Wenhui Wei Xiaoxing Lei Shengchun Z2 贾志锋 马祥 徐成体 刘文辉 魏小星 雷生春 TI Effects of short-term enclosure on the vegetation characteristics of a lightly degraded alpine meadow in Guinan County Z1 短期封育对贵南县轻度退化高寒草甸植被特征的影响 Z3 草业科学 SO Pratacultural Science VL 36 IS 11 BP 2766 EP 2774 AR 1001-0629(2019)36:11<2766:DQFYDG>2.0.TX;2-V PY 2019 DT Article AB Grassland degradation has seriously affected the development of animal husbandry on the Qinghai-Tibetan plateau. To clarify the influence of short-term enclosure on the vegetation characteristics of alpine meadows, the short-term enclosure of a lightly degraded alpine meadow was conducted. The vegetation coverage, vegetation height, functional groups (grass, sedge, and forb), and annual dynamic change characteristics of the biomass inside and outside the fence were studied, to provide a scientific basis for the management of alpine meadows. The results showed that short-term enclosure could significantly improve the coverage, height, and aboveground biomass of a lightly degraded alpine meadow. In addition, the response of different plants to grazing exclusion was different. Grasses and forbs grew rapidly from July to August, while sedges gradually increased after September. In 2012, the sedge biomass accounted for over 60% of the total biomass on the ground, the grass biomass accounted for approximately 30%, and the forbs biomass was below 10%. Moreover, the grass, sedge, and total biomass in 2012 were higher than those in 2011. The average aboveground biomass increased by 12.4%, 161.5%, and 52.8% in July, August, and September, respectively, and the forbs biomass decreased by 57.1%. In summary, short-term enclosure can be used for the restoration and management of lightly degraded alpine meadows in Guinan County. Z4 为明晰短期封育措施对高寒草甸植被特征的影响,本研究以短期封育的轻度退化高寒草甸为研究对象,研究围栏内外植被盖度、高度和功能群(禾本科、莎草科和杂 类草)生物量的月动态和年动态变化特征,以期为高寒草地管理提供科学依据。结果表明,短期围栏封育处理显著提高了轻度退化高寒草甸植被盖度、高度和地上生 物量;不同经济类群植物对围封的响应也有所差异,7月-8月禾草和杂类草植物迅速生长,莎草则在9月后逐渐占据优势。围栏第2年轻度退化草地的群落盖度、 地上生物量的提升效果高于封育当年,其中,莎草生物量占地上总生物量的60%以上,禾草占30%左右,杂类草被抑制在10%以下,且封育处理禾草、莎草类 和总生物量均高于围栏第1年,7月-10月地上生物量的均值较2011年分别上升了12.4%、161.5%和52.8%,杂类草生物量降低了57.1% 。综上,短期围栏封育能够有效恢复贵南县轻度退化高寒草甸。 C1 Jia Zhifeng, Academy of Animal and Veterinary Sciences,Qinghai University;;Qinghai Academy of Animaland Veterinary Sciences, ;;Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Ma Xiang, Academy of Animal and Veterinary Sciences,Qinghai University;;Qinghai Academy of Animaland Veterinary Sciences, ;;Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Xu Chengti, Academy of Animal and Veterinary Sciences,Qinghai University;;Qinghai Academy of Animaland Veterinary Sciences, ;;Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Liu Wenhui, Academy of Animal and Veterinary Sciences,Qinghai University;;Qinghai Academy of Animaland Veterinary Sciences, ;;Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Wei Xiaoxing, Academy of Animal and Veterinary Sciences,Qinghai University;;Qinghai Academy of Animaland Veterinary Sciences, ;;Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Lei Shengchun, Academy of Animal and Veterinary Sciences,Qinghai University;;Qinghai Academy of Animaland Veterinary Sciences, ;;Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining;;Xining, Qinghai;;Qinghai 810016;;810016. Z6 贾志锋, 青海大学畜牧兽医科学院;;青海省畜牧兽医科学院, ;;青海省青藏高原优良牧草种质资源利用重点实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 马祥, 青海大学畜牧兽医科学院;;青海省畜牧兽医科学院, ;;青海省青藏高原优良牧草种质资源利用重点实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 徐成体, 青海大学畜牧兽医科学院;;青海省畜牧兽医科学院, ;;青海省青藏高原优良牧草种质资源利用重点实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 刘文辉, 青海大学畜牧兽医科学院;;青海省畜牧兽医科学院, ;;青海省青藏高原优良牧草种质资源利用重点实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 魏小星, 青海大学畜牧兽医科学院;;青海省畜牧兽医科学院, ;;青海省青藏高原优良牧草种质资源利用重点实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. 雷生春, 青海大学畜牧兽医科学院;;青海省畜牧兽医科学院, ;;青海省青藏高原优良牧草种质资源利用重点实验室, 西宁;;西宁, 青海;;青海 810016;;810016, 中国. EM jzhfeng@163.com; 373536152@qq.com Z7 jzhfeng@163.com; 373536152@qq.com Z8 3 Z9 3 UT CSCD:6621132 DA 2023-03-23 ER PT J AU Jia Zhifeng Ma Xiang Lei Shengchun Xu Chengti Wei Xiaoxing Liu Wenhui Z2 贾志锋 马祥 雷生春 徐成体 魏小星 刘文辉 TI Effects of Fertilization on Vegetation Characteristics of Light Degraded Meadow in Guinan County Z1 施肥对贵南县轻度退化草甸植被特征的影响 Z3 草地学报 SO Acta Agrestia Sinica VL 27 IS 4 BP 987 EP 996 AR 1007-0435(2019)27:4<987:SFDGNX>2.0.TX;2-U PY 2019 DT Article AB Grassland degradation has seriously affected the development of animal husbandry in alpine pastoral areas of Qinghai-Tibet plateau.Fertilization is a common measure to improve mildly degraded grassland. This study used the mild degraded meadow in Guinan county as the research area,in 2011,applied different amounts of nitrogen fertilizer(0,60,105,150,195and 240kg·hm~(-2))and bacterial fertilizer(45 m~3·hm~(-2))to explore the effects of fertilization on the coverage,height and aboveground biomass of the degraded meadow from 2011to 2012.The results showed that fertilization could effectively improve the community coverage,height and total aboveground biomass in the lightly degraded meadow,and the improvements were significantly(P<0.01)better in 2012than in 2011.The effect of 45m~3·hm~(-2) bacterial fertilizer treatment was better in 2011,while 195kg·hm~(-2) nitrogen fertilizer treatment was better in 2012,the total aboveground biomass was the highest from July to October 2012,which was 44.3%, 97.1%,123.0%and 135.4%higher than no fertilizer treatment,respectively.Different grass species have different responses to fertilization.For 195kg·hm~(-2) nitrogen fertilizer,grass aboveground was higher than sedge in 2011,while sedge biomass was higher than grass in 2012.In summary,nitrogen application of 195kg·hm~(-2) combined with fenced enclosure can be used for vegetation restoration in Guinan county. Z4 草地退化已严重影响青藏高原高寒牧区畜牧业的发展,施肥是改良轻度退化草地的常用措施。20112012年,本研究以贵南县轻度退化草地为研究对象,20 11年施加不同氮肥量(0,60,105,150,195和240kg·hm~(-2))和菌肥(45m~3·hm~(-2)),探讨施肥在退化草地治理 过程中对草地群落盖度、高度和地上生物量的影响。结果表明:施肥处理能够有效提高轻度退化草地植被群落的盖度、高度和总地上生物量,且施肥后次年轻度退化 草地群落的盖度、高度和总地上生物量显著(P<0.05)优于当年。45m~3·hm~(-2)菌肥处理在当年的效果较好,195kg·hm~(-2)氮 肥处理在次年更佳,2012年710月地上总生物量均为最高,分别比不施肥处理分别高出44.3%,97.1%,123.0%和135.4%。不同草种对 施肥的响应也不同,195kg·hm~(-2)氮肥处理下,2011年禾草地上生物量较高,2012年莎草生物量高于禾草。综上,195kg·hm~(- 2)尿素施用量配合围栏封育的措施可用于贵南县轻度退化草地的植被恢复。 C1 Jia Zhifeng, Academy of Animal and Veterinary Sciences of Qinghai University, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining, Qinghai 810016, China. Ma Xiang, Academy of Animal and Veterinary Sciences of Qinghai University, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining, Qinghai 810016, China. Lei Shengchun, Academy of Animal and Veterinary Sciences of Qinghai University, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining, Qinghai 810016, China. Xu Chengti, Academy of Animal and Veterinary Sciences of Qinghai University, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining, Qinghai 810016, China. Wei Xiaoxing, Academy of Animal and Veterinary Sciences of Qinghai University, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining, Qinghai 810016, China. Liu Wenhui, Academy of Animal and Veterinary Sciences of Qinghai University, Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Xining, Qinghai 810016, China. Z6 贾志锋, 青海大学畜牧兽医科学院, 青海省青藏高原优良牧草种质资源利用重点实验室, 西宁, 青海 810016, 中国. 马祥, 青海大学畜牧兽医科学院, 青海省青藏高原优良牧草种质资源利用重点实验室, 西宁, 青海 810016, 中国. 雷生春, 青海大学畜牧兽医科学院, 青海省青藏高原优良牧草种质资源利用重点实验室, 西宁, 青海 810016, 中国. 徐成体, 青海大学畜牧兽医科学院, 青海省青藏高原优良牧草种质资源利用重点实验室, 西宁, 青海 810016, 中国. 魏小星, 青海大学畜牧兽医科学院, 青海省青藏高原优良牧草种质资源利用重点实验室, 西宁, 青海 810016, 中国. 刘文辉, 青海大学畜牧兽医科学院, 青海省青藏高原优良牧草种质资源利用重点实验室, 西宁, 青海 810016, 中国. EM jzhfeng@163.com; qhliuwenhui@163.com Z7 jzhfeng@163.com; qhliuwenhui@163.com Z8 5 Z9 5 UT CSCD:6583850 DA 2023-03-23 ER PT J AU Lai Chimin Lai Riwen Xue Xian Li Chengyang You Quangang Huang Cuihua Peng Fei Z2 赖炽敏 赖日文 薛娴 李成阳 尤全刚 黄翠华 彭飞 TI Estimation of Aboveground Biomass of Different Degraded Alpine Grassland Based on Vegetation Coverage and Height Z1 基于植被盖度和高度的不同退化程度高寒草地地上生物量估算 Z3 中国沙漠 SO Journal of Desert Research VL 39 IS 5 BP 127 EP 134 AR 1000-694X(2019)39:5<127:JYZBGD>2.0.TX;2-T PY 2019 DT Article AB Due to climate change and irrational human activities,severe degradation of the alpine grassland on the Tibetan Plateau has occurred since the 1980s.Aboveground biomass is one of the most intuitive indicators of grassland degradation.Vegetation coverage and height are commonly used to estimate grassland biomass,but it is unclear whether the relationship between coverage and height and aboveground biomass will maintain after degradation,which affects the accuracy of the estimation of degraded grassland biomass.The relationship between vegetation coverage and height,and the aboveground biomass of alpine meadow and alpine steppe in the central and northeastern Tibetan Plateau under different degraded were studied by multiple regression analysis.Our results show that:(1) aboveground biomass had no significant difference between alpine meadow and alpine steppe (P>0.05) in different degradation stages.(2) As the degree of degradation changes,the effects of vegetation cover and height on aboveground biomass also change.Aboveground biomass was mainly affected by vegetation height in the non-degraded stage and was mainly affected by vegetation coverage after degradation.(3) The aboveground biomass estimated with different models at various degradation stages is closer to the measured value than the biomass estimated by an overall model either in the alpine meadow or alpine steppe.Our results indicate that the estimation of aboveground biomass should be conducted for each degradation level rather than estimating the aboveground biomass using a general model for all levels. Z4 由于气候变化和不合理的人类活动,20世纪80年代以来青藏高原高寒草地发生严重退化。地上生物量是评价草地退化的直观指标。通常采用植被盖度和高度来估 算草地地上生物量,但草地退化后,植被盖度和高度与地上生物量之间的关系是否会发生变化目前还不清楚,这影响着退化草地生物量估算的精度。通过多元回归分 析研究了青藏高原中部和东北部高寒草甸、高寒草原在不同退化程度下植被盖度和高度与地上生物量的关系。结果表明:(1)高寒草甸与高寒草原地上生物量整体 上及不同退化阶段都没有显著差异(P>0.05)。(2)随着退化程度的加剧植被盖度和高度对地上生物量的影响也发生改变,体现在未退化阶段地上生物量主 要受植被高度影响,退化后主要受植被盖度影响。(3)无论是高寒草甸还是高寒草原分退化程度的回归模型估算结果都较不分退化程度模型估算的生物量更接近实 测值。我们建议在退化高寒草地研究中采用盖度和高度估算生物量时,根据退化阶段采用不同的估算模型。 C1 Lai Chimin, College of Forestry,Fujian Agriculture and Forestry University;;Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences, ;;Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Fuzhou;;Lanzhou, ;; 350000;;730000. Lai Riwen, College of Forestry,Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China. Xue Xian, Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. You Quangang, Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Huang Cuihua, Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Peng Fei, Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Li Chengyang, Northwest Institute of Ecology and Environmental Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification,Chinese Academy of Sciences;;, Lanzhou;;, ;;Beijing 730000;;100049. Z6 赖炽敏, 福建农林大学林学院;;中国科学院西北生态环境资源研究院, ;;中国科学院沙漠与沙漠化重点实验室, 福州;;兰州, 福建;;甘肃 350000;;730000, 中国. 赖日文, 福建农林大学林学院, 福州, 福建 350000, 中国. 薛娴, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 黄翠华, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 彭飞, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 李成阳, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. EM lcm18850729847@163.com; pengfei@lzb.ac.cn Z7 lcm18850729847@163.com; pengfei@lzb.ac.cn Z8 8 Z9 9 UT CSCD:6574714 DA 2023-03-23 ER PT J AU Lai Chimin Xue Xian Lai Riwen Li Chengyang You Quangang Zhang Wenjuan Liu Feiyao Peng Fei Z2 赖炽敏 薛娴 赖日文 李成阳 尤全刚 张文娟 刘斐耀 彭飞 TI Alpine meadows at different levels of degradation in the Beiluhe Basin of Tibetan Plateau Characteristics of soil respiration Z1 青藏高原北麓河流域不同退化程度高寒草甸土壤呼吸特征 Z3 草业科学 SO Pratacultural Science VL 36 IS 4 BP 952 EP 959 AR 1001-0629(2019)36:4<952:QZGYBL>2.0.TX;2-R PY 2019 DT Article AB Soil respiration is one of the most important components of the carbon cycle in terrestrial ecosystems. The widely distributed degradation of the alpine meadows on the Tibetan Plateau will impact the soil respiration and carbon cycle. In order to further explore the effects of degradation on the soil respiration of alpine meadows, we measured the soil respiration and related factors of alpine meadows under different levels of degradation in the Beiluhe area, and the relationships between soil respiration and biomass, belowground net primary productivity (BNPP) and soil temperature was analyzed . Our results showed that: 1) Soil respiration of alpine meadows at different levels of degradation showed similar dynamic characteristics during the growing season. Soil respiration increased first and then decreased along the degradation gradient, which reached the maximum under moderate degradation and significantly changed in the middle of the growing season (P < 0.05); 2) There was a significant positive linear correlation between the soil respiration and the aboveground biomass, belowground biomass, and BNPP (P < 0.05); 3) The soil respiration is exponentially correlated with the soil temperature. The temperature sensitivity of the soil respiration changed with the degradation. The Q_(10) under slight (Q_(10) = 3.26) and moderate degradation (Q_(10) = 3.22) was higher than that under non-degraded soils (Q_(10) = 2.66); however, under severe (Q_(10) = 2.49) and extreme degradation (Q_(10) = 1.96), this was lower than that under no degradation. The change in the temperature sensitivity is mainly caused by differences in the soil temperature, belowground biomass, and soil organic carbon content under different degradation levels. The results of this study will help further the understanding of the carbon cycle process of degraded grasslands. Z4 土壤呼吸是陆地生态系统碳循环的重要环节之一,而青藏高原高寒草甸的大面积退化对土壤呼吸及碳循环造成重要影响。为了进一步探明高寒草甸退化对土壤呼吸的 影响,对北麓河区不同退化程度高寒草甸土壤呼吸及其相关因子进行了测定,分析了土壤呼吸与生物量、地下净初级生产力以及土壤温度的关系。结果表明:1)不 同退化程度高寒草甸土壤呼吸在生长季均表现出相似的动态特征,随退化程度加剧呈先增加后降低的变化趋势,在中度退化程度达到最大值,且在生长季中期变化显 著(P < 0.05)。2)土壤呼吸和地上、地下生物量及地下净初级生产力均显著线性正相关(P < 0.05)。3)土壤温度与土壤呼吸之间呈指数关系,但不同退化程度下土壤呼吸对土壤温度的敏感性不同,土壤呼吸敏感性在轻度退化(Q_(10) = 3.26)和中度退化程度(Q_(10) = 3.22)大于未退化(Q_(10) = 2.66),而在重度退化(Q_(10) = 2.49)和极度退化程度(Q_(10) = 1.96)小于未退化;这主要是由不同退化程度土壤温度、地下生物量以及土壤有机碳含量的差异造成。研究的结果有助于进一步认识退化草地的碳循环过程。 C1 Lai Chimin, College of Forestry, Fujian Agriculture and Forestry University;;Northwest Institute of Ecology and Environmental Resources/Chinese Academy of Sciences, ;;Key Laboratory of Desert and Desertification, Fuzhou;;Lanzhou, Fujian;;Gansu 350000;;730000. Xue Xian, Northwest Institute of Ecology and Environmental Resources/Chinese Academy of Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. You Quangang, Northwest Institute of Ecology and Environmental Resources/Chinese Academy of Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. Peng Fei, Northwest Institute of Ecology and Environmental Resources/Chinese Academy of Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. Lai Riwen, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China. Li Chengyang, Northwest Institute of Ecology and Environmental Resources/Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, Gansu;;Beijing 730000;;100049. Zhang Wenjuan, Northwest Institute of Ecology and Environmental Resources/Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, Gansu;;Beijing 730000;;100049. Liu Feiyao, Northwest Institute of Ecology and Environmental Resources/Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, Gansu;;Beijing 730000;;100049. Z6 赖炽敏, 福建农林大学林学院;;中国科学院西北生态环境资源研究院, ;;中国科学院沙漠与沙漠化重点实验室, 福州;;兰州, 福建;;甘肃 350000;;730000, 中国. 薛娴, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 彭飞, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 赖日文, 福建农林大学林学院, 福州, 福建 350000, 中国. 李成阳, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 张文娟, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 刘斐耀, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. EM lcm18850729847@163.com; fjlrw@126.com; pengfei@lzb.ac.cn Z7 lcm18850729847@163.com; fjlrw@126.com; pengfei@lzb.ac.cn Z8 3 Z9 4 UT CSCD:6500196 DA 2023-03-23 ER PT J AU Guo Xiaowei Dai Licong Li Qian Li Yikang Lin Liv Qian Dawen Fan Bo Ke Xun Shu Kai Peng Cuoji Du Yangong Cao Guangmin Z2 郭小伟 戴黎聪 李茜 李以康 林丽 钱大文 樊博 柯浔 舒锴 朋措吉 杜岩功 曹广民 TI Study on flux of main greenhouse gases and its affecting factors of grazing alpine meadow under different degradation levels on the Qinghai-Tibetan Plateau Z1 青藏高原放牧高寒草甸主要温室气体通量及其主控因素研究 Z3 草原与草坪 SO Grassland and Turf VL 39 IS 3 BP 72 EP 78 AR 1009-5500(2019)39:3<72:QZGYFM>2.0.TX;2-6 PY 2019 DT Article AB The alpine meadow under 4 degradation stages (ND,non-degraded;lightly degraded,LD;moderately degraded,MD;heavily degraded,HD) were selected to measure the greenhouse gas uxes by using the static chambers and gas chromatography.The result indicated that the grassland greenhouse gas flux were significant different among 4 degradation stages (P<0.05).The important factors affecting CH_4 flux were soil compaction and organic matter (44.6% and 28.4%).And they were soil compaction and biomass for CO_2 flux (36.1% and 32.8%).And they were still soil compaction and organic matter (50.1% and 22.9%) for N_2O flux.The trampling of animals increased the soil compaction and then changed the greenhouse gas flux.And a large amount of greenhouse gas was released while the alpine meadow was at severe degradation stage. Z4 在青藏高原高寒草地不同放牧强度区设4个试验样地,分别为原生草甸(NM)、轻度退化草甸(LM)、中度退化草甸(MM)和重度退化草甸(HM),监测草 地温室气体通量。结果表明:不同放牧强度对草地温室气体通量影响显著,放牧活动对高寒草甸的影响首先表现在植被上,而土壤环境的变化比较迟滞。通过逐步回 归分析和因子拆分得知,草甸甲烷通量影响较大的环境因素为土壤紧实度和有机质,分别能解释44.6%和28.4%的总变异,CO_2通量影响较大的环境因 素为紧实度和生物量,分别能解释36.1%和32.8%的总变异,氧化亚氮通量影响较大的环境要素为紧实度和有机质,分别能解释50.1%和22.9%的 总变异,家畜的践踏作用使退化草地紧实度增加,进而引起温室气体通量的改变,高寒草甸退化演替发展到重度退化阶段时释放大量温室气体。 C1 Guo Xiaowei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Li Qian, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Lin Liv, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Qian Dawen, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Fan Bo, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Du Yangong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Dai Licong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Ke Xun, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Shu Kai, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Peng Cuoji, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Z6 郭小伟, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 李茜, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 钱大文, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 樊博, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 戴黎聪, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, 青海;;北京 810001;;100039, 中国. 柯浔, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, 青海;;北京 810001;;100039, 中国. 舒锴, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, 青海;;北京 810001;;100039, 中国. 朋措吉, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, 青海;;北京 810001;;100039, 中国. EM xwguo1206@163.com; ygdu@nwipb.cas.cn Z7 xwguo1206@163.com; ygdu@nwipb.cas.cn Z8 1 Z9 1 UT CSCD:6543346 DA 2023-03-23 ER PT J AU Guo Xiaowei Dai Licong Li Yikang Zhang Fawei Lin Li Li Qian Qian Dawen Fan Bo Ke Xun Shu Kai Peng Cuoji Du Yangong Cao Guangmin Z2 郭小伟 戴黎聪 李以康 张法伟 林丽 李茜 钱大文 樊博 柯浔 舒铠 朋措吉 杜岩功 曹广民 TI Major Greenhouse Gas Fluxes in Different Degradation Levels of Alpine Meadow on the Qinghai-Tibetan Plateau Z1 不同退化程度下的高寒草甸主要温室气体通量 Z3 水土保持研究 SO Research of Soil and Water Conservation VL 26 IS 5 BP 188 AR 1005-3409(2019)26:5<188:BTTHCD>2.0.TX;2-T PY 2019 DT Article AB Qinghai-Tibet Plateau is sensitive and fragile to climate change and human activities.This study took four degradation stages of alpine meadow as the research site,i.e.natibe alpine meadow(NM),lightly degraded meadow (LM),moderately degraded meadow(MM)and heavily degraded meadow(HM).Greenhouse gas fluxes were measured using static chambers and gas chromatography.The results indicate that grassland greenhouse gas fluxes are significant different(p<0.05).The CH_4 absorption of HM significantly increases compared with that of NM,with the aggravation of grassland degradation,CO_2 flux decreases and N_2O flux increases.Grazing first affects the vegetation part of the alpine meadow,soil environment changes are much later than vegetation.The stepwise regression analysis shows that the main influencing factors of methane flux in meadow are soil compactness,organic matter and vegetation coverage,the main influencing factors of carbon dioxide flux are total phosphorus,vegetation coverage and total nitrogen,the main influencing factors of nitrous oxide flux were organic matter,compactness and dead root biomass.When alpine meadow degradation succession develops in the stage of severe degradation,a large amount of greenhouse gases emit. Z4 青藏高原高寒草甸对于气候变化和人类活动敏感而脆弱,以高寒草甸4个退化阶段:原生草甸(NM)、轻度退化草甸(LM)、中度退化草甸(MM)和重度退化 草甸(HM)为研究对象,利用静态箱法研究了草甸退化对于草地主要温室气体通量的影响。结果表明:不同放牧强度对于草地温室气体通量影响显著,重度退化草 甸相比原生草甸CH4吸收显著增加(p<0.05),CO_2排放能力逐渐降低,N_2O排放能力显著增强(p<0.05),放牧活动对于高寒草甸的影响 首先表现在植被上,而土壤环境的变化相比植被更加迟滞,因此退化年限对于草地温室气体通量至关重要。通过逐步回归分析得知,草甸甲烷通量主要影响因子为土 壤紧实度、有机质、植被盖度;二氧化碳通量主要影响因子为全磷、植被盖度、全氮;氧化亚氮通量主要影响因子为有机质、紧实度、死根,高寒草甸退化演替发展 到重度退化阶段时释放大量温室气体。 C1 Guo Xiaowei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Li Qian, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Qian Dawen, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Fan Bo, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Du Yangong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Dai Licong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;College of Resources and Environment,University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Ke Xun, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;College of Resources and Environment,University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Shu Kai, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;College of Resources and Environment,University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Peng Cuoji, Northwest Institute of Plateau Biology,Chinese Academy of Sciences;;College of Resources and Environment,University of the Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota;;, Xining;;, ;;Beijing 810001;;100039. Z6 郭小伟, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 李茜, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 钱大文, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 樊博, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810001, 中国. 戴黎聪, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, ;;北京 810001;;100039. 柯浔, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, ;;北京 810001;;100039. 舒铠, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, ;;北京 810001;;100039. 朋措吉, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, ;;北京 810001;;100039. EM xwguo1206@163.com; ygdu@nwipb.cas.cn Z7 xwguo1206@163.com; ygdu@nwipb.cas.cn Z8 6 Z9 8 UT CSCD:6583319 DA 2023-03-23 ER PT J AU Ma Jianguo Hou Fujiang Saman Bowatte Z2 马建国 侯扶江 Saman Bowatte TI Effects of toxic plants on soil physicochemical properties and soil microbial abundance in an alpine meadow on the Qinghai-Tibetan Plateau Z1 青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响 Z3 草业科学 SO Pratacultural Science VL 36 IS 12 BP 3033 EP 3040 AR 1001-0629(2019)36:12<3033:QZGYGH>2.0.TX;2-Y PY 2019 DT Article AB The fast spread of toxic plants promoted by ongoing grassland degradation has become a serious threat to plant diversity and productivity in alpine meadows on the Qinghai-Tibetan Plateau (QTP) in China. The impacts of toxic plant invasions on plant community characteristics have been well defined, but studies into their effects on belowground organisms and processes are rare. In this study, we investigated the effects of five dominant toxic plants growing in an alpine meadow grassland on the QTP (Oxytropis kansuensis, Stellera chamaejasme, Thermopsis lanceolata, Gentiana straminea, and Ligularia virgaurea) on soil parameters and microbial abundance. We also compared these effects with a non-toxic forage grass Elymus nutans. The results indicated that, compared to E. nutans, all toxic plants tested, except G. straminea, significantly increased total soil carbon, total soil nitrogen, and microbial biomass carbon (P < 0.05). The soil pH was not effected by plant species. The toxic plants tested in this study had significant effects on the abundance of soil bacteria, ammonia oxidizing bacteria, and denitrifying bacteria (P < 0.05), whereas the abundance of fungi was not affected by the toxic plants. These results indicated that the spread of toxic plants on the QTP could be of significant consequence to belowground soil properties, functions, and microorganisms, and they could have a significant effect on grassland productivity. Z4 草地退化促进有毒植物迅速扩张,已对我国青藏高原高寒草甸植物群落多样性和生产力构成了严重威胁。已有研究表明,有毒植物入侵影响植物群落,但有毒植物对 地下生物及生物过程的影响研究较少。本研究调查了在高寒草甸草地上生长的5种主要有毒植物[甘肃棘豆(Oxytropis kansuensis)、瑞香狼毒(Stellera chamaejasme)、披针叶黄华(Thermopsis lanceolata)、麻花艽(Gentiana straminea)、黄帚橐吾(Ligularia virgaurea)]对土壤特性和微生物丰度的影响,并将这些影响和无毒牧草[垂穗披碱草(Elymus nutans)]对土壤特性和微生物丰度的影响进行了比较。研究发现,与无毒牧草垂穗披碱草相比,除麻花艽以外,所有有毒植物均显著增加了土壤全碳、全氮 和微生物生物量碳(P < 0.05),但对土壤pH没有显著影响。此外,有毒植物对土壤细菌、氨氧化细菌和反硝化细菌丰度有显著影响(P < 0.05),但对土壤真菌丰度没有影响。结果表明,青藏高原有毒植物的扩张对土壤特性和土壤微生物有显著的影响,并且这些影响可能对草地生产力产生显著影 响。 C1 Saman Bowatte, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室, 兰州, 甘肃 730020, 中国. Ma Jianguo, College of Pastoral Agricultural Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730020, China. Hou Fujiang, College of Pastoral Agricultural Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730020, China. Saman Bowatte, College of Pastoral Agricultural Science and Technology, Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems;;Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu 730020, China. Z6 马建国, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室, 兰州, 甘肃 730020, 中国. 侯扶江, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室;;农业农村部草牧业创新重点实验室, 兰州, 甘肃 730020, 中国. EM samanbowatte@lzu.edu.cn; majg18@lzu.edu.cn; samanbowatte@lzu.edu.cn Z7 majg18@lzu.edu.cn Z8 7 Z9 8 UT CSCD:6632518 DA 2023-03-23 ER PT J AU Wei Wei Zhou Juanjuan Baima Gaweng Qu Guangpeng Z2 魏巍 周娟娟 白玛嘎翁 曲广鹏 TI Study of Resource Investigation of Kobresia in Tibetan Plateau Z1 西藏高原嵩草属植物资源调查研究 Z3 中国野生植物资源 SO Chinese Wild Plant Resources VL 38 IS 3 BP 80 EP 85 AR 1006-9690(2019)38:3<80:XZGYSC>2.0.TX;2-5 PY 2019 DT Article AB The objective of this research was to clarify the species characteristics and distribution of Kobresia in Tibet,a combination of data collection and field research was conducted. Different plant formation of Kobresia in Tibetan plateau at an elevation of 3100 ~ 5300 m were investigated and analyzed. The results showed that the genus Kobresia is mainly distributed in alpine meadow grassland,and 12 species were found in 18 regions. K. littledalei C. B. Clarke,K. deasyi C. B. Clarke and K. royleana ( Nees) Boeckeler grow well in marsh meadows; K. pygmaea C. B. Clarke,K. humilis ( C. A. Mey. ) Serg. and K. prainii Kuk were widely distributed in alpine meadow; K. macrantha Boeck and K. robusta Maxim are the common accompanying species in alpine steppe; the niche breadth of K. royleana is wide,which was distributed in marsh meadows,alpine meadows and all kinds of under shrub grass. Therefore,the investigation of the resources of Kobresia in Tibetan plateau and its adaptive characteristics have played a pivotal role in alleviating the degradation of vegetation and the rational development of resources. Z4 为了明确西藏嵩草属( Kobresia)植物种类特征和分布区域,通过数据资料收集和野外调研相结合的方法。对西藏高原海拔3 100-5 300 m部分地区不同植物群系进行嵩草属植物的调查。结果表明:嵩草属植物是高山草甸草原分布最为广泛的植物,在18个区域共发现了12种;在沼泽草甸上藏北嵩 草( K. littledalei C. B. Clarke) 、藏西嵩草( K. deasyi C. B. Clarke)和喜马拉雅嵩草( K. royleana ( Nees) Boeckeler)生长良好,高山草甸则以高山嵩草( K. pygmaea C. B. Clarke) 、矮生嵩草( K. humilis ( C. A. Mey. ) Serg. )和日喀则嵩草( K. prainii Kuk)分布较为广泛。大花嵩草( K. macrantha Boeck)和粗壮嵩草( K. robusta Maxim)作为高山草原较为常见的伴生植物;喜马拉雅嵩草其生态位较宽,在沼泽化草甸、高山草甸和各类灌下草丛中均有分布。因此,对西藏高原嵩草属资源 调查及其适应特征特性研究,对缓解植被退化和资源的合理开发有着举足轻重作用。 C1 Wei Wei, Institute of Pratacultural Science,Tibet Academy of Agriculture and Animal Husandry Science, State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lasa, Xizang 850009, China. Zhou Juanjuan, Institute of Pratacultural Science,Tibet Academy of Agriculture and Animal Husandry Science, State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lasa, Xizang 850009, China. Baima Gaweng, Institute of Pratacultural Science,Tibet Academy of Agriculture and Animal Husandry Science, State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lasa, Xizang 850009, China. Qu Guangpeng, Institute of Pratacultural Science,Tibet Academy of Agriculture and Animal Husandry Science, State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lasa, Xizang 850009, China. Z6 魏巍, 西藏自治区农牧科学院草业科学研究所, 青稞和牦牛种质资源与遗传改良国家重点实验室, 拉萨, 西藏 850009, 中国. 周娟娟, 西藏自治区农牧科学院草业科学研究所, 青稞和牦牛种质资源与遗传改良国家重点实验室, 拉萨, 西藏 850009, 中国. 白玛嘎翁, 西藏自治区农牧科学院草业科学研究所, 青稞和牦牛种质资源与遗传改良国家重点实验室, 拉萨, 西藏 850009, 中国. 曲广鹏, 西藏自治区农牧科学院草业科学研究所, 青稞和牦牛种质资源与遗传改良国家重点实验室, 拉萨, 西藏 850009, 中国. EM weiweicc01@126.com Z7 weiweicc01@126.com Z8 1 Z9 2 UT CSCD:6546589 DA 2023-03-23 ER PT J AU Huang Mei Shang Zhanhuan Z2 黄梅 尚占环 TI Research Progress on Poisonous Weeds Treatment Technology in Qinghai-Tibet Plateau Z1 青藏高原毒草型退化草地治理技术研究进展 Z3 草地学报 SO Acta Agrestia Sinica VL 27 IS 5 BP 1107 EP 1116 AR 1007-0435(2019)27:5<1107:QZGYDC>2.0.TX;2-6 PY 2019 DT Review AB The degraded grassland of weeds is one of the main types of alpine grassland degradation in Qinghai-Tibet Plateau.It is mainly due to the excessive number of rodents such as herbivores and pika,the shortage of pastures and the over-reproduction of poisonous weeds in grassland,which results in the replacement of plant community of high-quality pastures by poisonous weeds.The overgrowth,spread and harm of poisonous weeds in poisonous degraded grassland have become a serious problem in grassland utilization and animal husbandry production,and also a research topic that do not be ignored in the management and vegetation restoration of poisonous degraded grassland.Physical,chemical and biological control is the main technology of poisonous weed control at home and abroad.In this paper,five typical poisonous weeds degraded grasslands in Qinghai-Tibet Plateau were studied,which were Oxytropis-dominated in northern Tibetan plateau,Stellera chamaejasme-dominated in Qilian mountains,Ligularia virgaurea-dominated in northwestern Sichuan and Gannan tibetan autonmous prefecture,Achnatherum inebrians-dominated in Qinghai,andBlackion Soil Patchsecondary poisonous grass in Three-River Headwaters region.This paper reviewed the basic conditions and hazards of poisonous weeds on the Qinghai-Tibet Plateau,the mechanism of poisonous weeds invasion and spread,the treatment techniques of poisonous weeds on Qinghai-Tibet plateau,and the restoration technology of poisonous weeds degraded grassland.In order to pay more attention to the ecological status and economic value of the poisonous weeds,it could provide an important theoretical basis for the ecological restoration of Qinghai-Tibet plateau. Z4 毒草型退化草地是青藏高原高寒草地退化的主要类型之一,毒草型退化草地的毒草丛生、蔓延及其危害已成为草地利用和畜牧业生产中面临的严峻问题,亦是退化草 地治理和植被恢复中不容忽视的研究论题。物理、化学、生物防除是目前国内外主要的毒草治理技术。本文以青藏高原藏北棘豆型、祁连山狼毒型、川西北甘南黄帚 橐吾型、青海湖海西醉马草型、三江源黑土滩次生毒草型这5类典型的毒草型退化草地为研究对象,综述了青藏高原毒草的基本情况及危害、毒草入侵及扩散机制、 青藏高原毒草治理技术,集成了毒草型退化草地恢复技术,以期使毒草的生态地位和经济价值被重视,为青藏高原生态建设提供重要的理论基础。 C1 Huang Mei, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Shang Zhanhuan, School of Life Sciences,Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Z6 黄梅, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 尚占环, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. EM huangm2018@lzu.edu.con; Shangzhh@lzu.edu.con Z7 huangm2018@lzu.edu.con; Shangzhh@lzu.edu.con Z8 7 Z9 8 UT CSCD:6617872 DA 2023-03-23 ER PT J AU Huang Wenjie Zeng Tongyao Huang Xiaodong Z2 黄文洁 曾桐瑶 黄晓东 TI Spatiotemporal dynamics of alpine grassland phenology on the Tibetan Plateau Z1 青藏高原高寒草地植被物候时空变化特征 Z3 草业科学 SO Pratacultural Science VL 36 IS 4 BP 1032 EP 1043 AR 1001-0629(2019)36:4<1032:QZGYGH>2.0.TX;2-G PY 2019 DT Article AB Vegetation phenology is an important sensor for ecosystem feedbacks on climate change. The study of phenological changes of alpine grassland vegetation on the Tibetan Plateau is of great scientific significance, to reveal the response mechanisms of alpine ecosystems to global climate change. In this study, we selected the 16-day maximum synthetic product MOD13A1 of the MODIS Vegetation Index (VI) from 2001 to 2015. Based on the TIMESAT 3.2 platform, the threshold method was used to extract the vegetation phenological period of the alpine grassland on the Tibetan Plateau, including the start of growth season (SOG), end of growth season (EOG), and length of growth season (LOG). We analyzed the temporal and spatial variations of the vegetation phenology and its driving forces in an alpine grassland of the Tibetan Plateau from 2001 to 2015. The conclusions are summarized as follows: 1) From southeast to northwest, with the deterioration of water and heat conditions and the uplift of topography, the SOG became gradually more delayed, from the 110 days to 170 days. The EOG became gradually more advanced, from the 300 days to 260 days. Finally, the LOG became gradually shorter, from the 300 days to 260 days. However, major differences were noted for the different grassland types. 2) The interannual variation of alpine grasslands showed a tendency for the SOG and EOG to advance, but the LOG increased on the Tibetan Plateau. 3) Altitude is the main factor that affects the phenological heterogeneity of the different grassland types on the Qinghai-Tibet Plateau. Phenology is closely related to altitude between 3 500 m and 5 000 m. With increasing elevation, the SOG of different grassland types became gradually more delayed, the EOG became gradually more advanced, and the LOG became gradually shorter. However, below 3 500 m, the alpine grassland phenology fluctuated greatly with elevation, with no obvious regularity. Z4 植被物候是生态系统对气候变化反馈的重要感应器,研究青藏高原高寒草地植被物候变化对揭示高寒生态系统对全球气候变化的响应机制具有重要的科学意义。本研 究选取2001 -2015年MODIS植被指数(vegetation index, VI)16 d最大值合成产品MOD13A1,以TIMESAT 3.2平台为基础,采用阈值法提取青藏高原高寒草地植被物候期,包括返青期(start of growth season, SOG)、枯黄期(end of growth season, EOG)和生长季长度(length of growth season, LOG),分析青藏高原高寒草地2001-2015年植被物候时空变化及其驱动力。结果表明,1)随着水热条件的差异,青藏高原由东南向西北,返青期逐渐 推迟,从儒略日第110天推迟到第170天;枯黄期逐渐提前,从儒略日第300天提前到第260天;生长季长度逐渐缩短,由170 d逐渐缩短为100 d。不同草地类型的物候期表现出明显的差异。2)青藏高原高寒草地植被物候年际变化中返青期呈提前趋势,枯黄期也呈提前趋势,整体上,生长季长度呈增长趋 势。 3)海拔是影响青藏高原高寒草地类型物候空间分布异质性的主要因素。在3 500 m以下,植被物候随海拔变化的波动较大,没有明显的规律;在3 500-5 000 m,物候与海拔的关系密切,随着海拔升高,不同草地类型的返青期逐渐推迟,枯黄期逐渐提前,生长期长度也逐渐缩短。 C1 Huang Wenjie, Lanzhou University, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Zeng Tongyao, Lanzhou University, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Huang Xiaodong, Lanzhou University, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Z6 黄文洁, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 曾桐瑶, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 黄晓东, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM huangwj2017@lzu.edu.cn; huangxd@lzu.edu.cn Z7 huangwj2017@lzu.edu.cn; huangxd@lzu.edu.cn Z8 15 Z9 20 UT CSCD:6500204 DA 2023-03-23 ER PT J AU Yang Jianping TI Studies on eco-environmental change in source regions of the Yangtze and Yellow Rivers of China: present and future Z3 寒旱区科学 SO Sciences in Cold and Arid Regions VL 11 IS 3 BP 173 EP 183 AR 1674-3822(2019)11:3<173:SOEECI>2.0.TX;2-T PY 2019 DT Review AB The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly; moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability. The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research. C1 Yang Jianping, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Cryospheric Sciences, Lanzhou, Gansu 730000, China. EM jianping@lzb.ac.cn Z8 0 Z9 2 UT CSCD:6521681 DA 2023-03-23 ER PT J AU Zhao Xia Wang Junfeng Wang Yun Lu Xiang Liu Shaofang Zhang Yubao Guo Zhihong Xie Zhongkui Wang Ruoyu TI Influence of proximity to the Qinghai-Tibet highway and railway on variations of soil heavy metal concentrations and bacterial community diversity on the Tibetan Plateau Z3 寒旱区科学 SO Sciences in Cold and Arid Regions VL 11 IS 6 BP 407 EP 418 AR 1674-3822(2019)11:6<407:IOPTTQ>2.0.TX;2-R PY 2019 DT Article AB An understanding of soil microbial communities is crucial in roadside soil environmental assessments. The 16S rRNA sequencing of a stressed microbial community in soil adjacent to the Qinghai-Tibet Highway (QTH) revealed that the accumulation of heavy metals (over about 10 years) has affected the diversity of bacterial abundance and microbial community structure. The proximity of a sampling site to the QTH/Qinghai-Tibet Railway (QTR), which is effectively a measure of the density of human engineering, was the dominant factor influencing bacterial community diversity. The diversity of bacterial communities shows that 16S rRNA gene abundance decreased in relation to proximity to the QTH and QTR in both alpine wetland and meadow areas. The dominant phyla across all samples were Actinobacteria and Proteobacteria. The concentration of Cr and Cd in the soil were positively correlated with proximity to the QTH and QTR (MC/WC sampling sites), and Ni, Co, and V were positively correlated with proximity to the QTH and QTR (MA/WA sampling sites). The results presented in this study provide an insight into the relationships among heavy metals and soil microbial communities, and have important implications for assessing and predicting the impacts of human-induced activities from the QTH and QTR in such an extreme and fragile environment. C1 Zhao Xia, Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, ;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou;;Lanzhou, Gansu;;Gansu 730000;;730000. Lu Xiang, Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, ;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou;;Lanzhou, Gansu;;Gansu 730000;;730000. Liu Shaofang, Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, ;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou;;Lanzhou, Gansu;;Gansu 730000;;730000. Zhang Yubao, Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, ;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou;;Lanzhou, Gansu;;Gansu 730000;;730000. Guo Zhihong, Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, ;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou;;Lanzhou, Gansu;;Gansu 730000;;730000. Xie Zhongkui, Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, ;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou;;Lanzhou, Gansu;;Gansu 730000;;730000. Wang Ruoyu, Gaolan Station of Agricultural and Ecological Experiment, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, ;;Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Lanzhou;;Lanzhou, Gansu;;Gansu 730000;;730000. Wang Junfeng, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, State Key Laboratory of Frozen Soil Engineering, Lanzhou, Gansu 730000, China. Wang Yun, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Key Laboratory of Desert and Desertification, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. EM wangruoyu@lzb.ac.cn Z8 1 Z9 4 UT CSCD:6639644 DA 2023-03-23 ER PT J AU 刘向军 Z2 Liu Xiangjun TI Seasonal Temperature and Precipitation Influenced Holocene Environmental Changes in Qinghai Lake,Northeastern Qinghai-Tibetan Plateau Z1 冬夏季温度和降水变化对青海湖全新世环境变化的影响初探 Z3 盐湖研究 SO Journal of Salt Lake Research VL 26 IS 2 BP 16 EP 26 AR 1008-858X(2018)26:2<16:STAPIH>2.0.TX;2-N PY 2018 DT Article AB In the present paper,we reanalyzed the reported paleoenvironmental proxies,in combination with climate-model-simulated summer and winter temperature and precipitation changes,to more comprehensively understand paleoenvironmental changes in the Holocene period in Qinghai Lake. We found that the early Holocene(11-8 ka BP) summer precipitation and surface evaporation was high,but winter precipitation was low,causing widespread aeolian sands in the areas surrounding the lake and the lake water level only a few meters deep. Moreover,the early Holocene climate was not stable; it fluctuated frequently with large amplitudes. The Holocene hydrothermal configuration optimal period persisted from 8 ka to 6 ka BP,and some environmental proxies abruptly changed to indicate warm and wet environments during this period. The Asian summer monsoon weakened since 6 ka BP,while winter precipitation increased simultaneously,and summer temperature and evaporation decreased. These climate changes caused vegetation to transform from forest to grassland and alpine meadow,allowed the lake water level to be maintained at a high level,and caused continuous development of paleosol. Environmental conditions then deteriorated since 1.5 ka BP,summer and winter precipitation over Qinghai Lake declined simultaneously,the lake level dropped,and aeolian activities intensified again. Z4 青海湖是国内最大的内陆湖泊,位于青藏高原东北缘,因其处在东亚夏季风、印度季风和西风带的交替控制区域,对气候变化十分敏感,成为古环境变化研究的热点 地区。有关青海湖的形成演化、环境变化和水文变化的研究也存在多种观点。本研究再分析了青海湖已报道的古环境指标和气候模式模拟的夏季、冬季温度和降水变 化,力图更加全面地理解青海湖全新世以来的古环境变化。研究发现早全新世11 ~ 8 ka夏季降水量和表面蒸发量较大,冬季降水稀少,湖泊水位只有十余米深,使得青海湖周边风沙活动频繁。并且,早全新世的气候不稳定,经历了频繁和较大幅度 的波动。全新世气候适宜期出现在8 ~ 6 ka,古环境指标指示这一时期为温暖湿润的气候环境,湖盆内植被以森林草原为主,湖泊水位不断上升。青海湖地区的夏季降水自6 ka开始减少,然而冬季降水增加,同时夏季温度和蒸发量减少,使得湖区植被组成由森林草原向高山草甸转变,湖区大范围形成古土壤。湖区古环境条件在晚全新 世距今1.5 ka开始恶化,冬季和夏季降水同时减少,湖泊水位下降,风沙活动再次加强。 C1 Liu Xiangjun, Qinghai Institute of Salt Lakes,Chinese Academy of Sciences;;Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources,Chinese Academy of Sciences;;Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining;;Xining, ;; 810008;;810008. Z6 刘向军, 中国科学院青海盐湖研究所;;青海省盐湖地质与环境重点实验室, 中国科学院盐湖资源综合高效利用重点实验室;;青海省盐湖地质与环境重点实验室, 西宁;;西宁, 青海;;青海 810008;;810008, 中国. EM xjliu@isl.ac.cn Z7 xjliu@isl.ac.cn Z8 0 Z9 0 UT CSCD:6316369 DA 2023-03-23 ER PT J AU Lu Hui Zhao Heng Sheng Yuyu Cong Wei Wang Xiulei Li Diqiang Zhang Yuguang Z2 卢慧 赵珩 盛玉钰 丛微 王秀磊 李迪强 张于光 TI Research on soil microbial functional genes in alpine meadow based on GeoChip technique Z1 基于功能基因芯片技术的高寒草甸土壤微生物功能基因研究 Z3 生态学杂志 SO Chinese Journal of Ecology VL 37 IS 10 BP 3031 EP 3037 AR 1000-4890(2018)37:10<3031:JYGNJY>2.0.TX;2-A PY 2018 DT Article AB Soil microorganisms,an essential component of terrestrial ecosystems,play important roles in driving biogeochemical processes and maintaining ecosystem function. Studying soil microbial functional genes and their impact factors of alpine meadow in Qinghai-Tibet Plateau would help us understand the functional metabolic potential of soil microorganisms and provide valuable information for predicting the response of Qinghai-Tibet Plateau to global changes. Here,soil microbial functional genes in alpine swamp meadow and alpine meadow at Qinghai-Tibet Plateau were analyzed using a functional gene array technique (GeoChip 4.0). A total of 45818 functional genes were detected in two meadows,involving 16 key microbial-mediated biological processes. The results of Detrended Correspondence Analysis (DCA) and dissimilarity test showed significant differences in the microbial community structure between two types of meadow. All key carbon and nitrogen metabolism processes mediated by microorganisms were detected,among which, alpine swamp meadow had higher gene abundance and metabolic potential involved in carbon degradation and nitrogen cycling than alpine meadow,though soil organic carbon and total nitrogen contents of two types of meadow were relatively stable. The results of Canonical Correspondence Analysis (CCA) showed that soil pH and moisture were the main factors shaping the structure of microbial functional genes. In summary,our results will help us understand the impacts of environmental changes on the structure and function of alpine grasslands and provide scientific reference for their conservation and management. Z4 土壤微生物是陆地生态系统的重要组成部分,在生物地球化学循环和维持生态系统功能等方面发挥着极其重要的作用。研究青藏高原高寒草甸的土壤微生物功能基因 及其主要影响因子,对了解青藏高原微生物的功能代谢潜力和预测青藏高原受全球变化的影响具有重要意义。本研究选择三江源地区高寒沼泽化草甸和高寒草甸这两 种草甸类型土壤微生物为对象,利用微生物功能基因芯片(GeoChip4.0)技术开展微生物功能基因多样性研究。结果表明:两种草甸样地共检测到各类型 功能基因45818个,涉及到16类微生物介导的关键生物过程;除趋势对应分析和不相似性检验结果均表明,不同草甸类型的微生物功能基因结构有明显差异; 检测到土壤微生物参与的所有碳代谢过程和关键的氮循环过程,高寒沼泽化草甸比高寒草甸具有较高的碳降解相关功能基因和氮素基因丰度和代谢潜力,但两种草甸 类型的土壤有机碳和全氮含量相对稳定;典范对应分析结果表明,土壤pH值和土壤含水量是影响微生物功能基因结构的主要因素。综上,本研究结果有助于了解环 境变化对高寒草地生态系统结构和功能的影响,可为高寒草地生态系统的保护和管理提供科学依据。 C1 Lu Hui, College of Life and Environment Sciences,Minzu University of China;;Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry, ;;Key Laboratory of Biological Conservation of State Forestry Administration, ;;, Beijing;;Beijing 100081;;100091. Zhao Heng, College of Life and Environment Sciences,Minzu University of China, Beijing 100081, China. Sheng Yuyu, Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry, Key Laboratory of Biological Conservation of State Forestry Administration, Beijing 100091, China. Cong Wei, Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry, Key Laboratory of Biological Conservation of State Forestry Administration, Beijing 100091, China. Wang Xiulei, Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry, Key Laboratory of Biological Conservation of State Forestry Administration, Beijing 100091, China. Li Diqiang, Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry, Key Laboratory of Biological Conservation of State Forestry Administration, Beijing 100091, China. Zhang Yuguang, Institute of Forest Ecology,Environment and Protection,Chinese Academy of Forestry, Key Laboratory of Biological Conservation of State Forestry Administration, Beijing 100091, China. Z6 卢慧, 中央民族大学生命与环境科学学院;;中国林业科学研究院森林生态环境与保护研究所, ;;国家林业局生物多样性保护重点实验室, ;;, 北京;;北京 100081;;100091, 中国. 赵珩, 中央民族大学生命与环境科学学院, 北京 100081, 中国. 盛玉钰, 中国林业科学研究院森林生态环境与保护研究所, 国家林业局生物多样性保护重点实验室, 北京 100091, 中国. 丛微, 中国林业科学研究院森林生态环境与保护研究所, 国家林业局生物多样性保护重点实验室, 北京 100091, 中国. 王秀磊, 中国林业科学研究院森林生态环境与保护研究所, 国家林业局生物多样性保护重点实验室, 北京 100091, 中国. 李迪强, 中国林业科学研究院森林生态环境与保护研究所, 国家林业局生物多样性保护重点实验室, 北京 100091, 中国. 张于光, 中国林业科学研究院森林生态环境与保护研究所, 国家林业局生物多样性保护重点实验室, 北京 100091, 中国. EM susanluhui@163.com; yugzhang@sina.com.cn Z7 susanluhui@163.com; yugzhang@sina.com.cn Z8 3 Z9 3 UT CSCD:6345162 DA 2023-03-23 ER PT J AU Sun Feida Gou Wenlong Zhu Can Li Fei Chen Xiaoxia Liu Lin Liu Wei Yang Tingyong Liao Xihong Z2 孙飞达 苟文龙 朱灿 李飞 陈晓霞 刘琳 刘伟 杨廷勇 廖习红 TI Ranking and Parameters for Rodents Damaged Rangelands and Adaptive Management in Northwest Plateau of Sichuan Province Z1 川西北高原鼠荒地危害程度分级及适应性管理对策 Z3 草地学报 SO Acta Agrestia Sinica VL 26 IS 1 BP 152 EP 159 AR 1007-0435(2018)26:1<152:CXBGYS>2.0.TX;2-R PY 2018 DT Article AB Plateau pika(Ochotona curzoniae)and Plateau zokor(Myospalax baileyi)are the special small herbivores in the Qinghai-Tibet Plateau,which grazing,burrowing,mowing and storage grass activities have negative and positive effects on alpine meadow ecosystem.However,the orientation of harmful or beneficial influence was depended on rodent species and their population amount at different spatial and temporal scales.Adopting field survey and references analysis,rodents species and burrows data were collected from forty-two plots of three regions at Aba and Ganzi Tibetan Autonomous Prefecture in Northwest Plateau of Sichuan Province,and Guoluo Tibetan Autonomous Prefecture in Qinghai province.Understanding the roles of rodent activities on grassland degradation is essential to improve the management of small herbivores populations in alpine meadow ecosystems.We concluded the roles of rodent activities in alpine meadow ecosystems and defined the conception of Rodents Damaged Rangelands.Furthermore, based on rodent damage levels,damage degrees of Light,Medium,Heavy and Extreme were classified into three main factors groups and eleven individual indices.And three main combined factors were rodent population, plant community and soil properties,and eleven sub-factors were total burrows and active burrow amount.Based on rodent damaged rangelands phrases,we provided four adaptive management strategies including fencing self-restoration,human intervention repair,semi artificial grassland reconstruction and artificial grassland restoration.Further,all these measures were helpful to establish the adaptive management strategies and prevent rodents recurrence after using rodenticide in alpine meadow ecosystems in Qing-Tibetan Plateau. Z4 高原鼠兔和高原鼢鼠是青藏高原特有的食草型小动物,其啃食、掘洞、刈割、贮草行为对高寒草甸生态系统既具有破坏损伤系统的负面效应,也有利于维持和稳定系 统的正面效应,这种益害转化完全取决于不同时间和空间尺度上的害鼠种群及其数量。通过对川西北的阿坝州、甘孜州和青海省果洛州的42个高寒草地样地的鼠类 种群密度调查和已有文献的采集分析,明确了草原害鼠在高寒草地生态系统中的角色和作用,定义了鼠荒地的概念,对鼠荒地危害程度划分为轻度、中度、重度和极 度4个等级;依据指标因子重要性排序,分级指标包含害鼠种群、植物群落和土壤养分3个主因子群;总洞穴数量、有效洞口数等11个单项因子;并对不同危害程 度的鼠荒地提出了封育自然修复、人为干预修复、半人工草地改建和人工草地重建4种草原鼠害适应性管理策略,对于高寒草地生态系统草原害鼠适应性管理和害鼠 灭除后二次发生防控具有指导意义。 C1 Sun Feida, College of Animal Science and Technology,Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Zhu Can, College of Animal Science and Technology,Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Li Fei, College of Animal Science and Technology,Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Chen Xiaoxia, College of Animal Science and Technology,Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Liu Lin, College of Animal Science and Technology,Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Liu Wei, College of Animal Science and Technology,Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Gou Wenlong, Sichuan Grassland Science Academy, Chengdu, Sichuan 611731, China. Yang Tingyong, Ganzi Prefecture Grassland Working Station, Kangding, Tibet 626000, China. Liao Xihong, Agriculture,Animal Husbandry and Water Bureau of Ruoergai County, Aba, Ruoergai 624500. Z6 孙飞达, 四川农业大学动物科技学院, 成都, 四川 611130, 中国. 朱灿, 四川农业大学动物科技学院, 成都, 四川 611130, 中国. 李飞, 四川农业大学动物科技学院, 成都, 四川 611130, 中国. 陈晓霞, 四川农业大学动物科技学院, 成都, 四川 611130, 中国. 刘琳, 四川农业大学动物科技学院, 成都, 四川 611130, 中国. 刘伟, 四川农业大学动物科技学院, 成都, 四川 611130, 中国. 苟文龙, 四川省草原科学研究院, 成都, 四川 611731, 中国. 杨廷勇, 四川省甘孜藏族自治州草原工作站, 康定, 西藏 626000, 中国. 廖习红, 四川省若尔盖县农业畜牧和水务局, 阿坝若尔盖, 624500. EM sunfd08@163.com Z7 sunfd08@163.com Z8 3 Z9 3 UT CSCD:6246540 DA 2023-03-23 ER PT J AU Song Ruiling Wang Hao Zhang Di Lu Zhi Zhu Ziyun Zhang Lu Liu Yanlin Caiwengongbao Wu Lan Z2 宋瑞玲 王昊 张迪 吕植 朱子云 张璐 刘炎林 才文公保 吴岚 TI Conservation outcomes assessment of Sanjiangyuan alpine grassland with MODIS-EVI approach Z1 基于MODIS-EVI评估三江源高寒草地的保护成效 Z3 生物多样性 SO Biodiversity Science VL 26 IS 2 BP 149 EP 157 AR 1005-0094(2018)26:2<149:JYMEPG>2.0.TX;2-8 PY 2018 DT Article AB The Sanjiangyuan Region is a priority area for ecosystem conservation in China. Since 2005, the government has contributed significant funding to implement ecological conservation and restoration to protect and restore the grasslands. This study correlated aboveground biomass (AGB) data from 248 sites scattered across the Sanjiangyuan Region with MODIS Enhanced Vegetation Index (EVI) data from 2000 to 2016 and utilized four regression models to estimate AGB by EVI. Results showed that power-function model worked best for grasslands in the Sanjiangyuan Region. Trend analysis showed no significant trends in 62% of the area of Sanjiangyuan, with 22% of the area, mainly distributed in the western and northern regions, increasing significantly and 16% of the area, sporadically located in the central and southern regions, decreasing significantly from 2000 to 2016. In general, the AGB of the entire area showed no significant increases or decreases with high annual fluctuations since 2000. However, there have been significant decreases since 2012. The AGB inside of the Sanjiangyuan Nature Reserve was lower than that found outside, and didn't increase significantly during first-stage projects between 2005 and 2012, based on results from matching methods. Z4 三江源是我国生态保护的优先区域。自2005年以来,国家投入大量资金在三江源实施了一系列生态保护措施和工程,主要目的之一是保护和恢复草地生态系统。 本文基于中分辨率成像光谱仪(MODIS)增强型植被指数(EVI)数据和野外实测样方,从草地生物量的角度评估了三江源工程的保护成效,以期为后续的保 护措施提供参考。本文使用2000-2016年间在青藏高原248个样地的实测地上生物量数据和同期的EVI数据,比较了通过EVI估算草地地上生物量的 不同建模方法,并从中选择表现最佳的乘幂模型反演了三江源高寒草地的地上生物量,用趋势分析法得出了生物量的变化。结果显示, 2000-2016年间,三江源高寒草地地上生物量没有发生显著变化的面积占62%,显著增加的地方主要在西部和北部,占22%,显著减少的地方则主要在 中部和南部,占16%; 2000-2016年间,草地地上生物量的年际波动较大,但总趋势不显著;在2012年后,地上生物量表现出显著降低的趋势。三江源国家级自然保护区外部 的草地地上生物量高于内部,使用匹配法比较保护区内外草地地上生物量变化的情况,结果发现在生态保护工程实施的2005-2012年间,三江源保护区内的 草地生物量没有显著增加。 C1 Song Ruiling, Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China. Wang Hao, Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China. Zhang Di, Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China. Zhang Lu, Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China. Wu Lan, Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China. Lu Zhi, Center for Nature and Society, School of Life Sciences, Peking University;;Shanshui Conservation Center, ;;, ;;, Beijing;;Beijing 100871;;100871. Zhu Ziyun, Center for Nature and Society, School of Life Sciences, Peking University;;Shanshui Conservation Center, ;;, ;;, Beijing;;Beijing 100871;;100871. Liu Yanlin, Center for Nature and Society, School of Life Sciences, Peking University;;Institute of Forestry Ecology, Environment and Protection, Chinese Academy of Forestry, ;;, ;;, Beijing;;Beijing 100871;;100091. Caiwengongbao, Shanshui Conservation Center, Beijing 100871, China. Z6 宋瑞玲, 北京大学生命科学学院自然保护与社会发展研究中心, 北京 100871, 中国. 王昊, 北京大学生命科学学院自然保护与社会发展研究中心, 北京 100871, 中国. 张迪, 北京大学生命科学学院自然保护与社会发展研究中心, 北京 100871, 中国. 张璐, 北京大学生命科学学院自然保护与社会发展研究中心, 北京 100871, 中国. 吴岚, 北京大学生命科学学院自然保护与社会发展研究中心, 北京 100871, 中国. 吕植, 北京大学生命科学学院自然保护与社会发展研究中心;;北京山水自然保护中心, ;;, ;;, 北京;;北京 100871;;100871, 中国. 朱子云, 北京大学生命科学学院自然保护与社会发展研究中心;;北京山水自然保护中心, ;;, ;;, 北京;;北京 100871;;100871, 中国. 刘炎林, 北京大学生命科学学院自然保护与社会发展研究中心;;中国林业科学院森林生态环境与保护研究所, ;;, ;;, 北京;;北京 100871;;100091, 中国. 才文公保, 北京山水自然保护中心, 北京 100871, 中国. EM wanghao@pku.edu.cn Z7 wanghao@pku.edu.cn Z8 9 Z9 10 UT CSCD:6212212 DA 2023-03-23 ER PT J AU Zhang Zhonghua Zhou Huakun Zhao Xinquan Yao Buqing Ma Zhen Dong Quanmin Zhang Zhenhua Wang Wenying Yang Yuanwu Z2 张中华 周华坤 赵新全 姚步青 马真 董全民 张振华 王文颖 杨元武 TI Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau Z1 青藏高原高寒草地生物多样性与生态系统功能的关系 Z3 生物多样性 SO Biodiversity Science VL 26 IS 2 BP 111 EP 129 AR 1005-0094(2018)26:2<111:QZGYGH>2.0.TX;2-4 PY 2018 DT Review AB The study of the relationship between biodiversity and ecosystem functioning (BEF) is a hot topic in the field of terrestrial ecosystem ecology, and is of great significance for the efficient use and management of ecosystems. Furthermore, it plays an important role in the restoration of degraded ecosystems and biodiversity conservation. Alpine grassland is the main ecosystem type found in the Qinghai-Tibet Plateau. In recent years, progress has been made on species diversity and ecosystem functioning and their mutual relationship in alpine grasslands. This paper analyzes existing problems in the research of grassland biodiversity and ecosystem functioning in terms of the study of underlying ecological processes and the impacts on ecosystem multi-functionality under global change. The effects of different grassland types, grassland degradation, grazing disturbance, simulated climate change, mowing, fertilization, enclosure, and replanting on the relationship between biodiversity and ecosystem functioning in alpine grasslands are also thoroughly reviewed in this paper. Moreover, deficiencies and future research directions of alpine grassland BEF are identified: carrying on the BEF research of alpine grasslands based on the functional diversity of species, comprehensively considering the effects of abiotic factors such as resource supply levels, disturbance intensity and scale, and environmental fluctuation on the relationship between species diversity and ecosystem function, and paying attention to the effect of scale and element coupling on BEF research of alpine grasslands under global climate change. Finally, based on research progress and conclusions of BEF in alpine grasslands, we put forward suggestions to improve the utilization rate of alpine grassland resources and biodiversity conservation, including strengthening grazing management, protecting biodiversity, improving governance of degraded grasslands, maintaining biodiversity function, strengthening innovation and protection concepts and enhancing ecosystem functioning that has been seriously weakened by climate change and human disturbance. Z4 生物多样性和生态系统功能(BEF)之间的关系是目前陆地生态系统生态学研究的热点,对于生态系统的高效利用与管理意义重大,而且对于退化生态系统功能的 恢复及生物多样性的保护有重要的指导作用。高寒草地是青藏高原生态系统的主体,近年来,在气候变化与人为干扰等因素的驱动下,高寒草地生态系统功能严重衰 退。为此,本文在综述物种多样性和生态系统功能及其相互关系研究进展的基础上,首先从地下生态学过程研究、全球变化对生态系统多功能性的影响等方面解析了 目前关于草地生物多样性和生态系统功能研究中存在的问题。继而,从不同草地类型、草地退化程度、放牧、模拟气候变化、刈割、施肥、封育和补播等干扰利用方 式对高寒草地物种多样性与生态系统功能的影响进行了全面的评述。并指出了高寒草地BEF研究中存在的不足,今后应基于物种功能多样性开展高寒草地BEF研 究,全面且综合地考虑非生物因子(养分资源、外界干扰、环境波动等)对生物多样性与生态系统功能之间关系的影响,关注尺度效应和要素耦合在全球气候变化对 高寒草地BEF研究中的作用。最后,以高寒草地BEF研究进展和结论为支撑依据,综合提出了高寒草地资源利用和生物多样性保护的措施与建议:加强放牧管理 ,保护生物多样性;治理退化草地,维持生物多样性功能;加强创新保护理念,增强生态系统功能。 C1 Zhang Zhonghua, Northwest Plateau Institute of Biology, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province;;, Xining;;, ;;Beijing 810008;;100049. Zhou Huakun, Northwest Plateau Institute of Biology, Chinese Academy of Sciences;;Qinghai University, Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province;;The Co-constructing State Key Laboratory of Three Rivers Sources Ecology and Plateau Agriculture and Animal Husbandry, Xining;;Xining, ;; 810008;;810016. Zhao Xinquan, Northwest Plateau Institute of Biology, Chinese Academy of Sciences;;Qinghai University, Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province;;The Co-constructing State Key Laboratory of Three Rivers Sources Ecology and Plateau Agriculture and Animal Husbandry, Xining;;Xining, ;; 810008;;810016. Yao Buqing, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Xining, Qinghai 810008, China. Ma Zhen, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Xining, Qinghai 810008, China. Zhang Zhenhua, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Xining, Qinghai 810008, China. Dong Quanmin, Qinghai Academy of Animal and Veterinary Sciences, Xining, Qinghai 810016, China. Wang Wenying, College of Life and Geography Science, Qinghai Normal University, Xining, Qinghai 810008, China. Yang Yuanwu, College of Agricultural and Animal Husbandry, Qinghai University, Xining, Qinghai 810016, China. Z6 张中华, 中国科学院西北高原生物研究所;;中国科学院大学, 青海省寒区恢复生态学重点实验室;;, 西宁;;, ;;北京 810008;;100049. 周华坤, 中国科学院西北高原生物研究所;;青海大学, 青海省寒区恢复生态学重点实验室;;青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁;;西宁, ;; 810008;;810016. 赵新全, 中国科学院西北高原生物研究所;;青海大学, 青海省寒区恢复生态学重点实验室;;青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁;;西宁, ;; 810008;;810016. 姚步青, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 马真, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 张振华, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 董全民, 青海省畜牧兽医科学院, 西宁, 青海 810016, 中国. 王文颖, 青海师范大学生命与地理科学学院, 西宁, 青海 810008, 中国. 杨元武, 青海大学农牧学院, 西宁, 青海 810016, 中国. EM hkzhou@nwipb.cas.cn; xqzhao@nwipb.cas.cn Z7 hkzhou@nwipb.cas.cn; xqzhao@nwipb.cas.cn Z8 46 Z9 52 UT CSCD:6212209 DA 2023-03-23 ER PT J AU Peng Yuelin Cai Xiaobu Yu Baozheng Z2 彭岳林 蔡晓布 于宝政 TI Distribution and Characteristics of Soil Micro-organism at Different Degradation Stages in Alpine Grasslands of North Tibet Z1 不同状态高寒草原土壤微生物及其变化 Z3 西南农业学报 SO Southwest China Journal of Agricultural Sciences VL 31 IS 2 BP 379 EP 383 AR 1001-4829(2018)31:2<379:BTZTGH>2.0.TX;2-F PY 2018 DT Article AB 【Objective】The study aimed at understanding characteristics of soil micro-organism at different degradation stages in alpine grasslands of north Tibet.【Method】Sampling time occurred in September 2015. Three alpine grassland in the south of the northern Tibet plateau were selected,and undisturbed soil samples were collected according to 0 - 10,10 - 20 cm soil. Daub plate method was used to separate and identify soil micro-organism.【Result】Three kinds of micro-organism quantity were consistent as actinomycetes > bacteria > fungi in different degree of degraded alpine grassland and the actinomycetes were the dominant among three microbes,and its number showed a rising trend as the grassland degradated; micro-organism numbers varying pattern were different originated from different degree of degradation and different soil layer,and these three kinds of microorganisms numbers from the surface layer and sub-surfacelayer had a significant difference of normal grass. Soil micro-organisms number of surface layer was greater than that of sub-surface layer,micro-organism numbers in the surface and the sub-surface soil distribution trend was gradually consistent with the intensification of grassland degradation; And three kinds of soil microorganisms from different degraded grassland showed different correlation.【Conclusion】Soil microbial varying pattern are not identical with different degradation stages in alpine grasslands of north Tibet,and actinomycetes are the advantages of species among soil micro-organism from alpine grasslands of north Tibet. And microorganism numbers in the surface and the sub-surface soil distribution trend is gradually consistent with the intensification of grassland degradation. Z4 【目的】了解藏北高寒草原不同退化阶段土壤微生物的变化特征。【方法】于2015年9月,在藏北高原南部分别选取3处高寒草原按0 ~ 10、10 ~ 20 cm土层采集原状土样,采用涂抹平板法分离土壤微生物对不同状态高寒草原土壤微生物及其变化进行了研究。【结果】3种微生物数量在不同退化程度高寒草原中 均表现出放线菌>细菌>真菌的特征,放线菌在3种微生物中占绝对优势,其数量随着草原的退化表现出逐渐上升的趋势;不同程度退化草地不同土层土壤微生物数 量的变化情况各不相同,正常草地中3类微生物的数量在表层和亚表层土壤中的分布具有显著差异,表层数量大于亚表层,随着草地退化的加剧,微生物数量在表层 和亚表层土壤中的分布逐渐趋于一致;3种土壤微生物间在不同退化草原中相互间表现出不同的相关性。【结论】藏北高寒草原不同退化阶段土壤微生物的变化规律 各不相同,放线菌为藏北高寒草原土壤中的优势微生物种类,随着草地退化的加剧,微生物数量在表层和亚表层土壤中的分布逐渐趋于一致。 C1 Peng Yuelin, Xizang Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Cai Xiaobu, Xizang Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Yu Baozheng, Xizang Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Z6 彭岳林, 西藏农牧学院, 林芝, 西藏 860000, 中国. 蔡晓布, 西藏农牧学院, 林芝, 西藏 860000, 中国. 于宝政, 西藏农牧学院, 林芝, 西藏 860000, 中国. EM plyyl@sohu.com; xbcai21@sina.com Z7 plyyl@sohu.com; xbcai21@sina.com Z8 1 Z9 1 UT CSCD:6199498 DA 2023-03-23 ER PT J AU Cao Guangmin Lin Li Zhang Fawei Li Yikang Du Yangong Guo Xiaowei Li Qian Qian Dawen Fan Bo Z2 曹广民 林丽 张法伟 李以康 杜岩功 郭小伟 李茜 钱大文 樊博 TI Long-term Ecological Research and Experimental Demonstration Provide Theoretical and Technical Support for Adaptive Management of Alpine Grassland Z1 长期生态学研究和试验示范为高寒草地的适应性管理提供理论与技术支撑 Z3 中国科学院院刊 SO Bulletin of the Chinese Academy of Sciences VL 33 IS 10 BP 1115 EP 1126 AR 1000-3045(2018)33:10<1115:CQSTXY>2.0.TX;2-T PY 2018 DT Article AB The traditional theory holds that the extreme climatic environment of the Qinghai-Tibet Plateau has created the potential for regional ecosystem sensitivity and vulnerability making it a worldwide problem of ecosystem management, maintenance, and restoration. Haibei Research Station of Alpine Meadow Ecosystem was established by the Northwest Institute of Plateau Biology of the Chinese Academy of Sciences. Long-term monitoring of ecosystem component revealed the biological mechanism of alpine grassland response to climate change in the Qinghai-Tibet Plateau, explored the succession process of alpine grassland degradation under grazing disturbance, and clarified the biological mechanism of maintaining alpine grassland stability. The adaptive management model of alpine grassland based on ecological process science was put forward, and the exploration of ecological hydrological process of alpine grassland was initiated. It leads the basic research of applied ecology of alpine grassland and provides technical support for regional sustainable development. Z4 传统理论认为,青藏高原极端的气候环境造就了区域生态系统敏感性、脆弱性的潜质,使之成为世界性的生态系统管理、维系与修复的难题。20世纪70年代,中 国科学院西北高原生物研究所建立了海北高寒草甸生态系统定位站。长期生态系统构件监测研究揭示了青藏高原高寒草地对气候变化响应的生物学机制;探明了放牧 干扰下高寒草地退化的演替过程;明晰了高寒草地稳定性维持的生物学机制;提出了基于生态过程学的高寒草地适应性管理模式;开启了高寒草地生态水文学过程探 索。该定位站引领了高寒草地应用生态学理论基础研究,为区域的可持续发展提供了技术支撑。 C1 Cao Guangmin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Du Yangong, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Guo Xiaowei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Li Qian, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Qian Dawen, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Fan Bo, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Haibei Research Station of Alpine Meadow Ecosystem, Xining, Qinghai 810001, China. Z6 曹广民, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 郭小伟, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 李茜, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 钱大文, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. 樊博, 中国科学院西北高原生物研究所, 中国科学院海北高寒草甸生态系统定位站, 西宁, 青海 810001, 中国. EM caogm@nwipb.cas.cn Z7 caogm@nwipb.cas.cn Z8 5 Z9 6 UT CSCD:6349541 DA 2023-03-23 ER PT J AU Chu Bin Ma Sujie Zhou Yanshan Ji Chengpeng Zhou Jianwei Zhou Rui Tian Yongliang Hua Limin Z2 楚彬 马素洁 周延山 姬程鹏 周建伟 周睿 田永亮 花立民 TI Relationship between the spatial distribution of the mounds of plateau zokor (Eospalax baileyi) and environmental factors in eastern Qilian Mountain Z1 祁连山东段高原鼢鼠(Eospalax baileyi)土丘空间分布格局及其与环境因子的空间关联性 Z3 生态学报 SO Acta Ecologica Sinica VL 38 IS 3 BP 964 EP 974 AR 1000-0933(2018)38:3<964:QLSDDG>2.0.TX;2-M PY 2018 DT Article AB Plateau zokor (Eospalax baileyi) is a subterranean rodent endemic to the Tibetan Plateau , and it plays an important role in the alpine rangeland system because of the ecosystem function in terms of substance circulation and energy exchanges. However, at high population density, zokors are regarded as pests aggravating the degradation of rangelands. As zokors live underground,they dig tunnels in the soil for foraging or mating. In digging tunnels, the soil is pushed out on the ground as mounds, which reduce the grazing area and cover the forages. However, the mounds made by zokors create environmental heterogeneity, which increases the species diversity and nutrient recycling in soil. Therefore, the mounds have an important impact on the alpine rangeland ecosystem. Studying the spatial distribution of plateau zokor mounds and its correlation with environmental factors can reveal its role in habitat use and selection, which is the basis for controlling zokor damage and protecting biodiversity in the place. The variables of traditional statistics must be random variables, and the traditional statistics can not clarify the relationship between the variables and geographic location. As a result, the traditional statistics can not explain the reasons that influence the spatial distribution patterns in population studies. Currently, the geostatistical analysis methods are often used to study population spatial distribution patterns. In our study, we selected the small habitat of plateau zokor (140m * 100m) in eastern Qilian Mountain because a small habitat can eliminate the heterogeneity of climate and geography. We used the semivariogram and ordinary kriging of geostatistical analysis methods to analyze the spatial heterogeneity of zokor mounds and the environmental factors that influence the distribution of mounds. The purpose of this study was to determine the relation between the distribution of zokor mounds and environmental factors, including soil bulk density, soil moisture, aboveground biomass, underground biomass, root's water-soluble sugar, crude protein, crude fat, richness of grass, and richness of forbs and sedges. The results of semivariogram and ordinary kriging indicated that the mounds of plateau zokor presented clumped distribution with medium variation level, and all environmental factors had spatial heterogeneity in the studying site. The results of a crossvariogram analysis showed that the distribution of zokor mounds had a positive spatial correlation with soil moisture and aboveground as well as underground biomass at the same studying scale (10.7471.85m). The distribution of zokor mounds had a positive spatial correlation with forage nutrients, such as root's crude protein and water-soluble sugar at the studying scale (10.7430.82 m),as well as root's crude fat at the studying scale (10.7444.01m). Besides, the distribution of zokor mounds had a positive spatial correlation with forbs at all studying scales. The mantel test indicated that the distribution of zokor mounds had a significant negative spatial correlation with soil bulk density and richness of sedge and a significant positive spatial correlation with richness of forbs and the contents of root's fat. In conclusion, the plateau zokors prefer to select the alpine meadows with softer soil, more forbs as well as plants with higher root's fat in this studying site. Z4 高原鼢鼠推土造丘行为对高寒草地生态系统的生产和生态功能有重要影响,研究高原鼢鼠土丘空间分布格局及其与环境因子的关系,可以揭示高原鼢鼠栖息地利用和 选择规律,为合理控制鼠害及保护草地生物多样性提供科学依据。于2014年8月在祁连山东段选取面积为140m*100m的高原鼢鼠栖息地,消除景观尺度 取样带来的气候、地形和土壤的异质性,利用地统计学方法,分析高原鼢鼠土丘的空间分布格局、并揭示其与环境因子中土壤容重、土壤水分、植物地上、地下生物 量、根系营养物质含量(可溶性糖、粗蛋白、粗脂肪)以及各功能群丰富度(禾本科、莎草科、杂类草)的空间关系。半方差函数及普通克里格插值表明,高原鼢鼠 土丘存在中等程度的空间变异且呈现聚集分布,各环境因子均存在不同程度的空间异质性。交方差函数分析表明,高原鼢鼠分布虽与各环境因子在多种尺度下表现出 复杂的空间关联性(正的或负的),但mantel检验发现土壤容重、莎草科丰富度与高原鼢鼠土丘分布呈现显著的负空间关联性,杂类草丰富度和根系粗脂肪含 量与高原鼢鼠土丘分布存在显著正空间关联性。综上所述,高原鼢鼠主要栖息利用在土壤疏松、莎草科丰富度较低、杂类草较多和根系粗脂肪含量较高的地方。 C1 Chu Bin, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Ma Sujie, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Zhou Yanshan, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Ji Chengpeng, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Zhou Jianwei, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Zhou Rui, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Tian Yongliang, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Hua Limin, College of Rangeland Science , Gansu Agriculture University, Lanzhou, Gansu 730070, China. Z6 楚彬, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 马素洁, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 周延山, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 姬程鹏, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 周建伟, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 周睿, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 田永亮, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 花立民, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. EM hualm@gsau.edu.cn Z7 hualm@gsau.edu.cn Z8 7 Z9 8 UT CSCD:6161422 DA 2023-03-23 ER PT J AU Li Chengyang Xue Xian Lai Chimin You Quangang Peng Fei Zhang Wenjuan Z2 李成阳 薛娴 赖炽敏 尤全刚 彭飞 张文娟 TI Growing Season Bearing Capacity of Degraded Alpine Meadow in the Qinghai-Tibet Plateau Z1 青藏高原退化高寒草甸生长季承载力 Z3 中国沙漠 SO Journal of Desert Research VL 38 IS 6 BP 1330 EP 1338 AR 1000-694X(2018)38:6<1330:QZGYTH>2.0.TX;2-E PY 2018 DT Article AB In recent years,grassland has been severely degraded in parts of the Qinghai-Tibet Plateau(QTP) under the combined influence of climate change and human activities.In this study,the thermal infrared heaters were used to simulate climate warming in moderately degraded and non-degraded alpine meadows in the permafrost regions of the Beiluhe basin of the QTP to study the effects of grassland degradation and climate change on the grassland quantity and quality (digestible crude protein and metabolic energy) bearing capacity in the growing season.The result showed:(1) Degradation reduced the importance value of sedges species in the community,while that of grasses and forbs species gradually increased;(2) Degradation had no significant effect on above-ground biomass of vegetation,but degradation with climate warming reduced above-ground biomass by (87.176.93) g·m~(-2) and (38.892.23) g·m~(-2) in June and September;(3) Degradation reduced the content of crude protein by 29.15% and 33.74%,but increased the content of acid detergent fiber by 11.68% and 15.34% in June and September;(4) With climate warming,degradation reduced the quantity bearing capacity and metabolic energy bearing capacity by 2.630.21 and 6.940.55 sheep unit/hectare in June,and 1.170.07 and 3.10.17 sheep unit/hectare in September.The bearing capacity in the study area was in the sequence of metabolic energy bearing capacity>digestible crude protein bearing capacity>quantity bearing capacity.The nutrients supply of forage in the growing season in the study area is sufficient to livestock,and the suitable bearing capacity is the quantity bearing capacity. Z4 近年来,在气候变化和人类活动的共同影响下,青藏高原部分地区草场退化严重。在青藏高原北麓河流域多年冻土区选取中度退化及未退化高寒草甸,用热红外辐射 器模拟气候变暖,研究草地退化和气候变化对生长季草场数量和营养承载力(可消化蛋白承载力和代谢能承载力)的影响。结果表明:(1)退化后,莎草科植物在 群落中的重要值降低,而禾本科和杂草类植物重要值逐渐增加;(2)退化对植被地上生物量无显著影响,但退化伴随着气候变暖使地上生物量在6月和9月分别显 著降低了(87.176.93) g·m~(-2)和(38.892.23) g·m~(-2);(3)退化在6月和9月使牧草粗蛋白含量分别显著降低了29.15%和33.74%,但使牧草中酸性洗涤纤维含量分别显著增加了11. 68%和15.34%,牧草品质下降明显;(4)退化伴随着气候变暖使数量承载力和代谢能承载力在6月分别降低了(2.630.21)、(6.940.5 5)羊单位·hm~(-2),在9月分别降低了(1.170.07)、(3.10.17)羊单位·hm~(-2)。研究区草场代谢能承载力>可消化蛋白承 载力>数量承载力。研究区生长季牧草营养供给充足,适宜承载力为数量承载力。 C1 Li Chengyang, Northwest Institute of Ecol-Environmentl and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, ;;Beijing 730000;;100049. Zhang Wenjuan, Northwest Institute of Ecol-Environmentl and Resources,Chinese Academy of Sciences;;University of Chinese Academy of Sciences, Key Laboratory of Desert and Desertification;;, Lanzhou;;, ;;Beijing 730000;;100049. Xue Xian, Northwest Institute of Ecol-Environmentl and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. You Quangang, Northwest Institute of Ecol-Environmentl and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. Peng Fei, Northwest Institute of Ecol-Environmentl and Resources,Chinese Academy of Sciences, Key Laboratory of Desert and Desertification, Lanzhou, Gansu 730000, China. Lai Chimin, Northwest Institute of Ecol-Environmentl and Resources,Chinese Academy of Sciences;;College of Forestry,Fujian Agriculture and Forestry University, Key Laboratory of Desert and Desertification;;, Lanzhou;;Fuzhou, ;; 730000;;350000. Z6 李成阳, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 张文娟, 中国科学院西北生态环境资源研究院;;中国科学院大学, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;, 甘肃;;北京 730000;;100049, 中国. 薛娴, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 彭飞, 中国科学院西北生态环境资源研究院, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 赖炽敏, 中国科学院西北生态环境资源研究院;;福建农林大学林学院, 中国科学院沙漠与沙漠化重点实验室;;, 兰州;;福州, 甘肃;;福建 730000;;350000, 中国. EM lichengyang@lzb.ac.cn; pengfei@lzb.ac.cn Z7 lichengyang@lzb.ac.cn; pengfei@lzb.ac.cn Z8 10 Z9 10 UT CSCD:6375720 DA 2023-03-23 ER PT J AU Li Fei Liu Zhenheng Jia Tianhua Li Shanshan Bai Yanfu Guo Cancan Wang Weiwei Kong Meng Zhang Tao Awais Iqbal Zhou Huakun Jia Yu Shang Zhanhuan Z2 李飞 刘振恒 贾甜华 李珊珊 白彦福 郭灿灿 王惟惟 孔猛 张涛 Awais Iqbal 周华坤 贾宇 尚占环 TI Functional diversity of soil microbial community carbon metabolism with the degradation and restoration of alpine wetlands and meadows Z1 高寒湿地和草甸退化及恢复对土壤微生物碳代谢功能多样性的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 38 IS 17 BP 6006 EP 6015 AR 1000-0933(2018)38:17<6006:GHSDHC>2.0.TX;2-1 PY 2018 DT Article AB Qinghai-Tibetan plateau being the third pole of the earth,has global ecological significance and plays a considerable role as a watershed of major rivers of the region. Approximately 85% of the plateau comprises alpine grasslands,thus acting as a major pool for livestock grazing and providing many other ecosystem services. Over the past few decades,grassland deterioration has been the consequence of overgrazing and some other additional factors. Grassland degradation triggers adverse changes in the physical and chemical properties of the soil,which ultimately influence soil microbes. Soil microbes play a significant role in nutrition and other bio-geochemical cycling of the soil. This paper aims to explore the correlation between grassland degradation,soil microbes,and the key factors affecting the diversity of soil microbial carbon metabolism. The BIOLOG Eco microplate method was applied to analyze the community level physiological profile (CLPP) of soil microbes. In this study,we investigated the soil microbial community functional diversity profile for different types of alpine wetlands and meadows including alpine wetlands,swamp meadows,alpine meadows,and degraded and artificially restored meadows. Soil samples from the above grasslands were collected during August 2015. The BIOLOG plates were incubated at 25°C,and color development in each well was noted as optical density (OD) at 595 nm with a plate reader over a 7-d period,i. e.,24,48,72,96,120,144,and 168 h. The variation in utilization rates of soil microbes was analyzed from 14 restoration plots with varying degrees of disturbances /degradation of 5 types of land, including wetlands,swamp wetlands,meadows,and degraded and restored meadows from the Maqu region of Gansu Province. The metabolic activity of the soil microbial community amidst different soils of various meadows was significantly different. During the process of wetland drying,microbial activity progressively increased,and the soil microbial activity was highest in the swamp meadow. Nonetheless,Microbial activity decreased gradually with meadow degradation. Sandy grasslands exhibited the lowest microbial activity,while the reseeded grasslands portrayed increased microbial activity. These results signified that degradation had a promising effect on the functional diversity of microbial carbon metabolism. However,artificial reseeding slightly increased soil microbial activity depicting that microorganism utilize polymers,amino acids,and carbohydrates as the main carbon sources. The BIOLOG data recorded at 144 h were subjected to the redundancy analysis,and the results showed that C/N ratio,total soil organic carbon,total soil nitrogen,soil bulk density,N/P ratio, pH,and plant coverage are the key factors affecting microbial function diversity. The given results elucidate that microbial diversity in swamp wetlands was the highest because of its more suitable soil nutrient status and higher vegetation cover. On the contrary,degraded meadow caused by changes in soil nutrients and physical properties created a hostile milieu for soil microbial activity. It is therefore elucidated that by monitoring soil microbial community not only predicts the status of soil and vegetation nutrition status but also reflect a theoretical basis for the restoration and improvement of degraded alpine wetlands and meadows of the Qinghai-Tibetan Plateau. Z4 为研究高寒湿地、草甸的退化及恢复与土壤微生物碳代谢功能多样性的关系,以及影响土壤微生物碳代谢功能多样性的关键因素,利用BIOLOG Eco微平板法,分析了甘肃玛曲地区5类(湿地、沼泽化草甸、高寒草甸、退化草甸、人工恢复草甸) 14个退化与恢复样地的土壤微生物对单一碳源的利用情况。结果表明,从湿地到沙化草地的逐渐退化过程中,草甸的土壤微生物群落代谢活性差异显著;主要是由 于在湿地干化过程中,微生物活性逐渐升高,沼泽草甸土壤微生物活性最高;随着草甸不断退化,微生物活性逐渐降低,沙化草地最低;而人工补播恢复使土壤微生 物活性有所增加,表明退化对微生物碳代谢功能多样性造成显著影响,人工恢复措施在一定程度上提高了土壤微生物活性。聚合物类(吐温40、吐温80、环状糊 精、肝糖) 、氨基酸类及碳水化合物类是土壤微生物主要利用的碳源。冗余分析结果显示,土壤的碳氮比、含水量、有机碳、全氮、容重、氮磷比、pH及植被覆盖度是影响土 壤微生物碳代谢功能多样性的关键因子。因此,可用土壤碳代谢功能多样性变化评价高寒湿地及草甸的退化和恢复及其变化程度。 C1 Awais Iqbal, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. Li Fei, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Jia Tianhua, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Bai Yanfu, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Guo Cancan, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Kong Meng, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Zhang Tao, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Awais Iqbal, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Jia Yu, Life Sciences College of Lanzhou University, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730000, China. Liu Zhenheng, Grassland Station,Livestock and Forest Bureau of Gansu Maqu County, Maqu, 747300. Li Shanshan, College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730070, China. Wang Weiwei, College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730070, China. Zhou Huakun, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Qinghai Provincial Key Laboratory of Ecology Restoration in Cold Region, Xining, Qinghai 810008, China. Shang Zhanhuan, Life Sciences College of Lanzhou University;;Northwest Institute of Plateau Biology,Chinese Academy of Sciences, State Key Laboratory of Grassland Agro-ecosystems;;Qinghai Provincial Key Laboratory of Ecology Restoration in Cold Region, Lanzhou;;Xining, ;; 730000;;810008. Z6 李飞, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 贾甜华, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 白彦福, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 郭灿灿, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 孔猛, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 张涛, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 贾宇, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 刘振恒, 甘肃省玛曲县畜牧林业局草原站, 玛曲, 747300. 李珊珊, 兰州大学草地农业科技学院, 兰州, 甘肃 730070, 中国. 王惟惟, 兰州大学草地农业科技学院, 兰州, 甘肃 730070, 中国. 周华坤, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 尚占环, 兰州大学生命科学学院;;中国科学院西北高原生物研究所, 草地农业生态系统国家重点实验室;;青海省寒区恢复生态学重点实验室, 兰州;;西宁, ;; 730000;;810008. EM shangzhh@lzu.edu.cn Z7 shangzhh@lzu.edu.cn Z8 17 Z9 17 UT CSCD:6338695 DA 2023-03-23 ER PT J AU Wang Xuexia Dong Shikui Gao Qingzhu Zhang Yong Hu Guozheng Luo Wenrong Z2 王学霞 董世魁 高清竹 张勇 胡国铮 罗文蓉 TI The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Plateau Z1 青藏高原退化高寒草地土壤氮矿化特征以及影响因素研究 Z3 草业学报 SO Acta Prataculturae Sinica VL 27 IS 6 BP 1 EP 9 AR 1004-5759(2018)27:6<1:QZGYTH>2.0.TX;2-F PY 2018 DT Article AB Alpine meadow and alpine steppe were studied to explore the mechanisms of degradation in soil nitrogen transformation and the key factors that affect soil N transformation in grasslands of the Qinghai Tibet Plateau. The net nitrification rate and net ammonification rate,as well as the microbial aspects of nitrogen transformation, plant and soil factors,were investigated using the method of in situ incubation.The results showed that:1)The net nitrification and ammonification rates were significantly reduced by degradation in alpine grassland ecosystems;2)The number of nitrifiers and ammonifiers in the soil,soil urease and protease activities decreased in the degraded meadows and steppe.3)NH_4-N and NO_3-N contents were significantly reduced and microbial biomass nitrogen(MBN)also decreased.Soil nitrification and ammonification rates were closely related to the number of ammonifiers and nitrifiers,microbial biomass,and the extent of protease and urease in soils.Plant biomass,soil water,organic carbon and total nitrogen content were the main factors affecting soil N transformation by influencing the number of microbes,microbial biomass and enzyme activities.In conclusion, soil N transformation rates and the supply of available nitrogen in soils declined in degraded alpine grassland due to reductions in nitrogen transformation microbes and soil enzyme activities. Z4 为了明确青藏高原退化高寒草地土壤氮矿化特点以及影响因素,以高寒草甸和高寒草原为研究对象,运用原位培养法对健康与退化条件下2类型草地中土壤硝化速率 、氨化速率以及氮素转化微生物、植物和土壤等因子进行了研究。结果表明:1)草地退化显著降低了高寒草甸和草原土壤净硝化速率和净氨化速率;2)草地退化 降低了2类高寒草地土壤硝化细菌和氨化细菌数量,降低了土壤蛋白酶、脲酶活性;3)草地退化显著降低了NH_4-N和NO_3-N含量,降低了微生物生物 量氮含量。相关分析表明,高寒草地中土壤硝化速率和氨化速率与土壤硝化细菌和氨化细菌的数量以及蛋白酶和脲酶密切相关。植物生物量、土壤含水量、有机碳、 全氮含量通过影响微生物数量、微生物生物量及酶活性而成为影响土壤氮素转化的主要因素。因此,草地退化通过降低高寒草地硝化细菌和氨化细菌、土壤酶活性而 降低土壤氮素转化速率和土壤有效氮的供给。 C1 Wang Xuexia, Agricultural Environment and Sustainable Development Research Institute,Chinese Academy of Agricultural Sciences;;School of Environment,Beijing Normal University, ;;, ;;, Beijing;;Beijing 100081;;100875. Dong Shikui, School of Environment,Beijing Normal University, Beijing 100875, China. Gao Qingzhu, Agricultural Environment and Sustainable Development Research Institute,Chinese Academy of Agricultural Sciences, Beijing 100081, China. Hu Guozheng, Agricultural Environment and Sustainable Development Research Institute,Chinese Academy of Agricultural Sciences, Beijing 100081, China. Luo Wenrong, Agricultural Environment and Sustainable Development Research Institute,Chinese Academy of Agricultural Sciences, Beijing 100081, China. Zhang Yong, School of Wetlands,Southwest Forestry University, Kunming, Yunnan 650224, China. Z6 王学霞, 中国农业科学院农业环境与可持续发展研究所;;北京师范大学环境学院, ;;, ;;, 北京;;北京 100081;;100875, 中国. 董世魁, 北京师范大学环境学院, 北京 100875, 中国. 高清竹, 中国农业科学院农业环境与可持续发展研究所, 北京 100081, 中国. 胡国铮, 中国农业科学院农业环境与可持续发展研究所, 北京 100081, 中国. 罗文蓉, 中国农业科学院农业环境与可持续发展研究所, 北京 100081, 中国. 张勇, 西南林业大学湿地学院, 昆明, 云南 650224, 中国. EM wxx0427@163.com; huguozheng@caas.cn Z7 wxx0427@163.com; huguozheng@caas.cn Z8 16 Z9 17 UT CSCD:6270854 DA 2023-03-23 ER PT J AU Hu Yunfeng Zhang Yunzhi Han Yueqi Z2 胡云锋 张云芝 韩月琪 TI Identification and monitoring of desertification lands in China from 2000 to 2015 Z1 20002015年中国荒漠化土地识别和监测 Z3 干旱区地理 SO Arid Land Geography VL 41 IS 6 BP 1321 EP 1332 AR 1000-6060(2018)41:6<1321:2NZGHM>2.0.TX;2-U PY 2018 DT Article AB Desertification is an extreme manifestation of ecological degradation which refers to land degradation in arid, semi-arid and dry sub-humid arid regions caused by various factors including climate variability and human activities. How to identify the desertification lands quickly and accurately is the key point to prevent and control deserts and desertification. This paper analyzes the changing trend,stability and desertification sensitivity of terrestrial ecosystem NPP in China from 2000 to 2015, and constructs a technical method to identify desertification lands. The main conclusions are as follows: (1) over the past 16 years, there have been different declining levels of net primary productivity in the south of Yin Mountain in Inner Mongolia,north of Tianshan Mountains in Xinjiang,and most regions in the south of Yangtze River,and vegetation ecosystem is in instability state in more than half of the regions; 56.2% of the country 's land belongs to the desertification sensitive area, and the above area is susceptible to desertification due to climate,natural conditions and human disturbance. (2) Since 2000,the area of desertification lands in China is about 207 400 square kilometers,accounting for 2.16% of the total land area. The area can be divided into five regions,namely the typical grassland and desertification steppe in the central Inner Mongolia Plateau, the Tianshan-Altay Mountain steppe area in Xinjiang,the temperate desert and oasis area in the lower reaches of the Tarim River in Xinjiang, the alpine-desert area of the Ali-Kunlun Mountains in the Qinghai-Tibet Plateau and south Qinghai alpine grassland area. (3) The desertification process is accompanied by the evolution of key parameters such as the decrease of productivity,the decrease of vegetation cover and the rising surface temperature. The formation of desertification is affected by climate,and the decrease of rainfall is the main factor that causes the process of desertification. In addition,human activities and unreasonable farming and animal husbandry also formed the desertification in some extended. Z4 荒漠化是生态退化的极端表现形式,包括气候变异和人类活动在内的种种因素造成的干旱、半干旱和亚湿润干旱区的土地退化.快速和准确地识别中国荒漠化地区, 是防范和治理荒漠化的关键.针对2000-2015年我国陆地生态系统NPP的变化趋势、稳定性和荒漠化敏感性进行了综合分析,构建了识别荒漠化土地的技 术方法.结果表明:(1)近16 a以来,我国内蒙古阴山以南、新疆天山以北、西藏阿里地区、长江以南大部地区,植被净初级生产力均出现了不同程度的下降趋势,且一半以上的区域处于植被生 态系统不稳定状况;在全国56.2%的国土属于荒漠化敏感区内,上述区域容易受气候、自然条件、人为干扰等影响而发生荒漠化.(2)2000年以来,我国 土地荒漠化退化区域面积约20.74*10~4 km~2,占国土总面积的2.16%.主要为五大分布区域,即内蒙古高原中部的典型草原和荒漠化草原区、新疆天山一阿尔泰山山地草原区、新疆塔里木河下游 的温带荒漠和绿洲区、青藏高原的阿里一昆仑山高寒荒漠区、青海省的青南山高寒草原区.(3)荒漠化进程伴随有生产力下降、植被盖度降低和地表温度不断攀升 的地表关键参数演变特征,荒漠化的形成受气候影响显著,降雨的减少是造成土地荒漠化进程突出的主要因素;人类活动、不合理的种植业、畜牧业等在一定程度上 对土地荒漠化起到推动作用. C1 Hu Yunfeng, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, State Key Laboratory of Resources and Environmental Information System;;, ;;, Beijing;;Beijing 100101;;100049. Zhang Yunzhi, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, State Key Laboratory of Resources and Environmental Information System;;, ;;, Beijing;;Beijing 100101;;100049. Han Yueqi, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences;;University of Chinese Academy of Sciences, State Key Laboratory of Resources and Environmental Information System;;, ;;, Beijing;;Beijing 100101;;100049. Z6 胡云锋, 中国科学院地理科学与资源研究所;;中国科学院大学, 资源与环境信息系统国家重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. 张云芝, 中国科学院地理科学与资源研究所;;中国科学院大学, 资源与环境信息系统国家重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. 韩月琪, 中国科学院地理科学与资源研究所;;中国科学院大学, 资源与环境信息系统国家重点实验室;;, ;;, 北京;;北京 100101;;100049, 中国. EM huyf@lreis.ac.cn Z7 huyf@lreis.ac.cn Z8 4 Z9 8 UT CSCD:6386372 DA 2023-03-23 ER PT J AU Cai Xiaobu Peng Yuelin Z2 蔡晓布 彭岳林 TI Characteristics of Soil Aggregates Organic Carbon in Degraded Alpine Steppes in Tibet Z1 西藏退化高寒草原土壤团聚体有机碳的变化特征 Z3 环境科学研究 SO Research of Environmental Sciences VL 31 IS 2 BP 310 EP 319 AR 1001-6929(2018)31:2<310:XZTHGH>2.0.TX;2-# PY 2018 DT Article AB Alpine steppe is the most important steppe ecosystem in Tibetan Plateau. Important problems in alpine steppes degrading process are explored,including soil aggregates organic carbons (SAOC) change characteristics,change process,etc.,which has important significance for further predicting soil carbon dynamic change trend,and seeks the theory and method for restoring and reconstructing degraded alpine steppe ecosystem. Wet screening method is adopted for studying surface (0-10 cm) and subsurface (>10- 20 cm) soil in light degraded and severely degraded alpine steppe in the south of Northern Tibet Plateau. It is obvious that SAOC in dry and wet plateau environment with different grades and changes thereof are deeply affected by steppe degradation degree,soil depth,etc. It is embodied in the following aspects: (1) The SAOC content decreases in the steppes in different degraded degrees,but the SAOC content,and macroaggregates (>0.25 mm) and microaggregates (<0.25 mm) SAOC content in surface and subsurface layers in seriously degraded steppe are higher than that of the light degraded steppe. This may be related to the decomposition and transfer ability of microbes to the soil organic residual bodies,which plays an important role in the stability of soil ecological system with the microbes' adaptation to gradually deteriorative soil environment. (2) In the cold and draught environment of the alpine steppes,both macroaggregates (>0.25 mm) and microaggregates (<0.25 mm) SAOC contents degrease in surface and subsurface layers in the steppes in different seriously degraded degrees as a whole,where the degree of reduction in subsurface layer is obviously higher than that the surface layer. However, the SAOC content in the subsurface layer is still higher than that of the surface layer. The SAOC contents increase by 51.84%,31.34% and 6.83% respectively in the subsurface layer of non-degraded steppe,light and seriously degraded steppes,and the difference of SAOC in soil layers is significantly lessened with steppe degeneration intensified. (3) In the cold and draught environment of the alpine steppes, the SAOC distribution characteristics in different size fractions in light and seriously degraded steppes are still consistent with that of the non-degraded steppe; the macroaggregates SAOC content is significantly higher than the microaggregates SAOC in their surface and subsurface layers. (4) Similar to non-degraded steppes,the degraded surface and subsurface layers show the SAOC contribution rate decreases dramatically at the size fractions of 2-0.25,<0.25-0.053,>2 and <0.053 mm successively. The size fractions at 2-0.25 and < 0.25-0.053 mm determine the SAOC contribution rates at the size fractions of > 0.25 and < 0.25 mm. (5) The degraded steppe environment has an important effect on the relation between aggregates and SAOC as well as soil organic carbons(SOC) and SAOC. Z4 为进一步了解高寒草原土壤碳动态变化特点与变化过程,采用湿筛法对藏北高原未退化、轻度退化和严重退化高寒草原表层(0~ 10 cm)、亚表层(>10~ 20 cm)不同粒级w(SAOC)(SAOC为土壤团聚体有机碳)进行研究.结果表明,与未退化草地相比,不同程度退化草地w(SAOC)均呈下降趋势,但严 重退化草地表层、亚表层中w(SAOC)、>0.25 mm粒级w(SAOC)、<0.25 mm粒级w(SAOC)降幅均显著低于轻度退化草地;不同程度退化草地表层、亚表层中>0.25、<0.25 mm粒级w(SAOC)在总体上趋于下降,且亚表层的降幅明显高于表层的降幅,但退化草地亚表层中w(SAOC)仍高于表层(未退化草地、轻度和严重退化 草地亚表层较表层分别增加51.84%、31.34%、6.83%),w(SAOC)的土层差异随草地退化加剧而大幅缩小;轻度、严重退化草地不同粒级w (SAOC)的土层分布特征仍与未退化草地一致,其表层、亚表层中>0.25 mm粒级w(SAOC)均明显较高;与未退化草地相同,退化草地表层、亚表层w(SAOC)贡献率亦均呈| 2~ 0.25 mm| >| <0.25~ 0.053 mm| >| >2 mm| >| <0.053 mm|粒级;退化草地环境对团聚体与w(SAOC),以及w(SOC)(SOC为土壤有机碳)与w(SAOC)间的关系具有重要影响.研究显示,高原冷干 环境下不同粒级SAOC及其变化受草地退化程度、土层深度等的深刻影响,需要从影响土壤有机碳形成与转化的土壤机制等方面进行深入研究. C1 Cai Xiaobu, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Peng Yuelin, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Z6 蔡晓布, 西藏农牧学院, 林芝, 西藏 860000, 中国. 彭岳林, 西藏农牧学院, 林芝, 西藏 860000, 中国. EM xbcai21@sina.com; plyyl@sohu.com Z7 xbcai21@sina.com; plyyl@sohu.com Z8 5 Z9 6 UT CSCD:6177005 DA 2023-03-23 ER PT J AU Su Peixi Zhou Zijuan Shi Rui Xie Tingling Z2 苏培玺 周紫鹃 侍瑞 解婷婷 TI Variation in basic properties and carbon sequestration capacity of an alpine sod layer along moisture and elevation gradients Z1 高寒草毡层基本属性与固碳能力沿水分和海拔梯度的变化 Z3 生态学报 SO Acta Ecologica Sinica VL 38 IS 3 BP 1040 EP 1052 AR 1000-0933(2018)38:3<1040:GHCZCJ>2.0.TX;2-B PY 2018 DT Article AB The alpine sod layer is spongy, tough, and resistant to the shifting surface soil layer formed under natural vegetation in the alpine cold region. Understanding the ecological functions of this layer is necessary to promote sustainable methods of grass production and animal husbandry that can restore and protect existing grasslands, and to suggest new projects to implement these goals. After conducting extensive preliminary investigations regarding the alpine vegetation on the Zoige Plateau on the Eastern Qinghai-Tibetan Plateau, China, we established community sample plots along the existing soil moisture gradient : swamp, degraded swamp, swampy meadow, wet meadow, dry meadow, and degraded meadow. We also established community sample plots along the existing elevation gradient : subalpine meadow,subalpine shrub meadow, alpine shrub meadow, and alpine meadow. We determined sod layer thickness, bulk density, soil particle composition, and soil organic carbon (SOC) content in the community plots to compare carbon sequestration capacity along the moisture and elevation gradients. The results indicated that the average thickness of the sod layer was 30cm. The bulk density of swamp soil was the lowest among the communities studied,and the SOC content of swamp soil was greater than 300g/kg. The bulk density of degraded meadow soil was the highest among the communities studied,and the SOC content of degraded meadow soil was significantly lower than that of the other communities. The SOC density of the different communities ranged from 10 to 24kg C/m~2,and decreased with decreasing soil water availability. Degraded meadow soil had significantly lower SOC storage in the sod layer. The SOC density of alpine shrub meadow soil was 15% higher than that of alpine meadow soil. The minimum mass water content needed to maintain a stable sod layer was 30%,and the minimum SOC was 30g/kg. In alpine vegetation regressive succession, the bulk density and compactness of the sod layer became increased. SOC content, density, and storage decreased along the soil moisture gradient from swamp to degraded meadow. The higher the gravel content of swamp soil, the more easily it was degraded. Similarly, the higher the sand content of meadow soil, the more easily it was degraded. The carbon sequestration capacity of alpine shrub meadows was greater than that of alpine meadows ; however, the productivity of shrub meadows was lower. To maintain sustainable development of grassland production and protect the carbon sequestration function of the alpine sod layer,it is necessary to prevent degradation of the sod layer and prevent succession from meadows to shrub meadows. Z4 高寒草毡层是高原寒区自然植被下形成的松软而坚韧且耐搬运的表土层,认识其生态功能是促进草牧业生产休养保护和工程施工主动利用的前提。通过对青藏高原东 部若尔盖高原植被的广泛调查,在布设沼泽、退化沼泽、沼泽化草甸、湿草甸、干草甸和退化草甸水分梯度群落样地,以及亚高山草甸、亚高山灌丛草甸、高山灌丛 草甸和高山草甸海拔梯度群落样地的基础上,通过对不同类型群落样地草毡层容重、土壤颗粒组成和土壤有机碳(SOC)含量的测定分析,比较了水分和海拔梯度 下草毡层固碳能力。结果表明,草毡层厚度平均为30cm,沼泽湿地草毡层容重最小,SOC含量在300g/kg以上;退化草甸容重最高,SOC含量显著下 降。不同群落草毡层SOC密度在1024kg C/m~2之间,随着土壤水分有效性的降低而降低;高山灌丛草甸草毡层SOC密度比草甸高15%。研究得出,保持草毡层稳定的质量含水量阈值为30%,S OC含量阈值为30g/kg;高寒植被草毡层在沼泽到草甸的退化演替中,容重、紧实度变大,有机碳含量减少,碳密度和碳储量下降;灌丛草甸的固碳能力大于 草甸,但灌丛草甸的生产功能降低;保持可持续发展的草地生产能力,维护固碳生态功能,需要防止草毡层退化,抑制草甸向灌丛草甸演替。 C1 Su Peixi, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences, ;;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences, Lanzhou;;Lanzhou, ;; 730000;;730000. Zhou Zijuan, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences, ;;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences, Lanzhou;;Lanzhou, ;; 730000;;730000. Shi Rui, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences;;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences, ;;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences, Lanzhou;;Lanzhou, ;; 730000;;730000. Xie Tingling, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 苏培玺, 中国科学院西北生态环境资源研究院;;中国科学院寒旱区陆面过程与气候变化重点实验室, ;;中国科学院寒旱区陆面过程与气候变化重点实验室, 兰州;;兰州, ;; 730000;;730000. 周紫鹃, 中国科学院西北生态环境资源研究院;;中国科学院寒旱区陆面过程与气候变化重点实验室, ;;中国科学院寒旱区陆面过程与气候变化重点实验室, 兰州;;兰州, ;; 730000;;730000. 侍瑞, 中国科学院西北生态环境资源研究院;;中国科学院寒旱区陆面过程与气候变化重点实验室, ;;中国科学院寒旱区陆面过程与气候变化重点实验室, 兰州;;兰州, ;; 730000;;730000. 解婷婷, 中国科学院西北生态环境资源研究院, 兰州, 甘肃 730000, 中国. EM supx@lzb.ac.cn Z7 supx@lzb.ac.cn Z8 4 Z9 14 UT CSCD:6161429 DA 2023-03-23 ER PT J AU Ma Xiaoliang Liu Guimin Wu Xiaodong Xu Haiyan Ye Linlin Zhang Xiaolan Z2 马小亮 刘桂民 吴晓东 徐海燕 叶琳琳 张晓兰 TI Seasonal Variations of Dissolved Organic Carbon Exports in Streams Under Alpine Meadow in the Three Rivers'Headwater Regions,Qinghai-Tibetan Plateau Z1 三江源高寒草甸下溪流溶解性有机碳的季节性输移特征 Z3 长江流域资源与环境 SO Resources and Environment in the Yangtze Basin VL 27 IS 10 BP 2387 EP 2394 AR 1004-8227(2018)27:10<2387:SJYGHC>2.0.TX;2-L PY 2018 DT Article AB Dissolved organic carbon (DOC) plays an important role in ecosystem. Little is known about the dynamics of riverine DOC exports and their responses to climate change and permafrost degradation. To examine the seasonal variations of concentrations and exports of DOC and their responses to changes of air temperature and precipitation, we collected monthly river water samples from 8 catchments under alpine meadow in the Three Rivers'headwater regions on the Qinghai-Tibet Plateau from August 2016 to July 2017. The discharges in these rivers were monitored, and DOC concentrations of water samples were analyzed in the laboratory. The results showed: (1) The annual average DOC concentrations of these streams varied from (4.051.20) mg·L~(-1) to (6.552.86) mg·L~(-1),with an mean value of 5.30 mg·L~(-1) . The DOC concentrations were significantly negatively correlated with the coverage area of alpine swamp meadow (ASM) ,but significantly correlated with the coverage of alpine meadow (AM) . The average DOC concentrations in the rivers in permafrost regions were significantly higher than those in non-permafrost regions. (2) The DOC concentrations showed a great variations with seasonal changes of air temperature. From the spring to the beginning of summer,DOC concentrations increased sharply. During this period,the monthly mean air temperature increased from -8℃ to 2℃. The DOC concentrations decreased rapidly as the air temperature increased from 2℃ to 13℃. From summer to winter,the temperature decreased from 13℃ to -8℃. Meanwhile,the average DOC concentrations decreased gradually,and the lowest value was recorded in December. (3) The seasonal changes of DOC export varied greatly,ranging from (0.0060.0005) kg·km~(-2)·d~(-1) and (3.010.74) kg·km~(-2)·d~(-1) among the rivers,with an average value of(1.120.81) kg·km~(-2)·d~(-1) . DOC export fluxes were positively correlated with the discharges. The highest DOC export was recorded in the spring snowmelt period and the rainy summer. Since the climate change may lead to a thicker active layer in permafrost regions,our results showed that the DOC export increased along with temperature,indicating that climate warming can cause a higher DOC export in alpine meadow in the permafrost regions on the Qinghai-Tibetan Plateau. Z4 溶解性有机碳(DOC)在生态系统中起着重要作用,但河流DOC输移动态及其对气候变化和多年冻土退化的响应还不清楚。对青藏高原三江源地区高寒草甸下8 条小流域河流于2016年8月至2017年7月进行逐月采集水样,同步测定流量,在室内对DOC浓度进行分析,研究河流DOC浓度和输移通量的逐月变化规 律以及对降雨和温度逐月变化的响应。结果表明: (1) DOC的年平均浓度介于4.051.20 ~ 6.552.86 mg·L~(-1)之间,均值为5.30 mg·L~(-1) ; DOC平均浓度与流域内高寒沼泽草甸(ASM)覆盖面积比例呈显著线性负相关,而与高寒草甸(AM)呈显著线性正相关;此外,有多年冻土发育的流域内河流 平均DOC浓度明显高于无多年冻土发育的流域。(2) DOC浓度随季节性气温的变化呈现较大的变异性,在-8 ~ 2℃气温回升的过程中,DOC平均浓度随气温的升高呈急剧上升的趋势,在随后2~ 13℃气温继续升高到最高的过程中,DOC平均浓度又急速降低,而在之后13~ -8℃气温下降的过程中,DOC平均浓度呈一个缓慢降低的趋势,并在12月达到最低。 (3) DOC平均输移通量也显示出较大的季节差异,其范围为0.0060.000 5 ~ 3.010.74 kg·km~(-2)·d~(-1),均值为1.120.81 kg·km~(-2)·d~(-1) ; DOC输移通量与流域内平均径流量显著线性正相关,DOC的输移主要集中在春季融雪期和夏季丰雨期。气候变暖会导致多年冻土活动层厚度增加,因此,温度增 加导致DOC输移增加的结果提示,气候变暖可能会增加青藏高原高寒草甸区河流对有机碳输移和释放。 C1 Ma Xiaoliang, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Liu Guimin, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Xu Haiyan, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Zhang Xiaolan, School of Environmental and Municipal Engineering,Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China. Wu Xiaodong, Northwest Institute of the Eco-Environment and Resources, Chinese Academy of Sciences, Cryosphere Research Station on the Qinghai-Tibet Plateau,State Key Laboratory of Cryospheric Science, Lanzhou, Gansu 730000, China. Ye Linlin, School of Geography Science,Nantong University, Nantong, Jiangsu 226007, China. Z6 马小亮, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 刘桂民, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 徐海燕, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 张晓兰, 兰州交通大学环境与市政工程学院, 兰州, 甘肃 730070, 中国. 吴晓东, 中国科学院西北生态环境资源研究院, 冰冻圈国家重点实验室;;中国科学院青藏高原冰冻圈观测研究站, 兰州, 甘肃 730000, 中国. 叶琳琳, 南通大学地理科学学院, 南通, 江苏 226007, 中国. EM mxl815815@163.com; liuguimin@mail.lzjtu.cn Z7 mxl815815@163.com; liuguimin@mail.lzjtu.cn Z8 3 Z9 3 UT CSCD:6367782 DA 2023-03-23 ER PT J AU Gong Yifan Cao Jianjun Yang Shurong Xu Xueyun Li Mengtian Z2 龚毅帆 曹建军 杨书荣 许雪贇 李梦天 TI Understanding of herders regarding the change of phosphorus source in grassland on the Qinghai-Tibetan Plateau Z1 牧民对青藏高原草地磷源变化的认知 Z3 草业科学 SO Pratacultural Science VL 35 IS 9 BP 2291 EP 2298 AR 1001-0629(2018)35:9<2291:MMDQZG>2.0.TX;2-# PY 2018 DT Article AB Studying the understanding of herders concerning the number of bones and birds contributes to a better understanding of the changing trend of grassland phosphorus sources.Herders from grazing districts(Maqu,Luqu,Nagchu,Damxung)on the Qinghai-Tibetan Plateau(QTP)participated.Their understanding of the change of phosphorus source in grassland in the past 20 years was assessed.A total of 331 questionnaires were distributed.Of these,324 were valid for assessment.The results showed that the number of bones had decreased by 10% ~40%,while the number of birds had decreased by 10% ~50% in the past 20 years.Thus,the phosphorus sources on the QTP had tended to decline.Region and gender had significant effects on the recognition of change of the phosphorus source.Herders from Nagchu and Damxung better recognized that the number of birds had decreased than did herders from Maqu and Luqu.However,females were always more attentive than males to the decline in the number of bones and birds.A reduction in the ongoing trend of reduction of grassland phosphorus would be helpful in strengthening the protection of species,especially the diversity of birds. Z4 研究牧民对动物骨头和鸟类数量的认知,有助于了解草地磷源的变化趋势。以青藏高原牧区(玛曲县、碌曲县、那曲县和当雄县)牧民为调查对象,对其关于近20 年草地磷源变化的认知进行了实证研究。本次调查共发放问卷331份,其中收回有效问卷324份。结果显示,近20年来,动物骨头数量减少了10%~40% ,鸟类数量减少了10%~50%,说明青藏高原草地磷源呈萎缩趋势;地域和性别对磷源变化的认知具有重要影响。与玛曲县和碌曲县相比,那曲县和当雄县牧民 认为鸟类数量的下降幅度更大。与男性相比,女性认为动物骨头和鸟类数量的下降幅度都较大。因此,加强动物尤其是鸟类的保护,可在一定程度上缓解该区草地磷 源持续萎缩的趋势。 C1 Gong Yifan, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Cao Jianjun, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Yang Shurong, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Xu Xueyun, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Li Mengtian, College of Geography and Environmental Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Z6 龚毅帆, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 曹建军, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 杨书荣, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 许雪贇, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. 李梦天, 西北师范大学地理与环境科学学院, 兰州, 甘肃 730070, 中国. EM gongyifan93@163.com; caojj@nwnu.edu.cn Z7 gongyifan93@163.com; caojj@nwnu.edu.cn Z8 0 Z9 1 UT CSCD:6345462 DA 2023-03-23 ER PT J AU Yu Baozheng Peng Yuelin Cai Xiaobu Z2 于宝政 彭岳林 蔡晓布 TI Change Characteristics of Soil Aggregates Organic Carbon in Degraded Alpine Meadow in the Northern Tibet Plateau Z1 藏北高原退化高寒草甸土壤团聚体有机碳变化特征 Z3 草地学报 SO Acta Agrestia Sinica VL 25 IS 6 BP 1212 EP 1220 AR 1007-0435(2017)25:6<1212:ZBGYTH>2.0.TX;2-7 PY 2017 DT Article AB The studies were conducted on the soil aggregates organic carbon(SAOC)and its changes in different size fractions of surface(0~10cm)and subsurface(10~20cm)soil layers of alpine meadows in different degenerative degrees in Northern Tibetan Plateau using the wet screening method.The results showed that the steppe degeneration results in a decrease of SAOC content in surface and subsurface layers in cold and wet environment of the plateau,and the decreasing degree increased significantly with aggravating degeneration.The SAOC decreasing degree in different size fractions of the surface layers of light and seriously degraded steppes was obviously higher than that in the subsurface layer,but the SAOC content in different size fractions of the surface layer of the light degraded steppe was significantly higher than that in the subsurface layer,where the higher SAOC contribution rate keeps unchanged in different size fractions of subsurface layer,and SAOC content and its contribution rate in different size fractions of subsurface layer of seriously degraded steppe were significantly higher than that in the surface layer.The steppe degeneration has shrinked the difference of SAOC content among different soil layers,and the higher degenerative degree means the less difference of SAOC content between surface and subsurface layers. SOC content distribution in macroaggregate(>0.25mm)and microaggregate(<0.25mm)was the same in soil layer.The SOC in macroaggregates presented a higher decreasing degree in different soil layers of the light degraded steppe,while the microaggregate SOC content showed a higher decreasing degree in different soil layers of the severely degraded steppe.The ratios of macroaggregate SOC/microaggregate SOC in the surface layer of normal steppe and light and severely degraded steppes were 0.95,0.87and 1.55, respectively,and 0.96,0.72and 2.33in the subsurface layer,respectively.This indicated microaggregate SOC content more likely tended to decrease and increase with deepening the soil layer in light and severely degraded steppes,respectively.Similar to normal steppes,the SAOC contribution rate in the size fractions of degraded surface and subsurface layers followed the order of 2~0.25mm,>2mm,0.25~0.053mm, and<0.053mm,indicating there was a higher microaggregate SOC contribution rate in different soil layers. The relation of soil aggregates with SAOC and of SOC with SAOC were affected by steppe degenerative degree. Z4 采用湿筛法对藏北高原退化高寒草甸表层(0~10cm)、亚表层(10~20cm)土壤团聚体有机碳及其变化进行了研究。结果表明,高原冷湿环境中退化草 地表层、亚表层SAOC的下降幅度随草地退化加剧均趋于显著提高,轻度、严重退化草地表层各粒级SAOC降幅均明显高于亚表层;草地退化缩小了不同土层间 SAOC含量的差异,草地退化程度越高则表层、亚表层间SAOC含量的差异越小,退化草地大团聚体(>0.25mm)SOC、微团聚体(<0.25 mm)SOC含量的土层分布亦呈相同趋势。轻度退化草地不同土层大团聚体SOC降幅均较高,严重退化草地不同土层微团聚体SOC降幅则较高;正常草地、轻 度退化草地、严重退化草地表层大团聚体SOC/微团聚体SOC比值分别为0.95,0.87,1.55,亚表层分别为0.96,0.72,2.33,表明 轻度、严重退化草地中大团聚体SOC含量随土层加深分别更趋下降、更趋提高。退化草地表层、亚表层SAOC贡献率在总体上亦均按2~0.25mm,>2m m,0.25~ 0.053mm,<0.053mm的顺序依次大幅降低,表明不同土层大团聚体SOC贡献率均较高。土壤团聚体与SAOC、 SOC与SAOC间的关系受草地退化程度的影响。 C1 Yu Baozheng, College of Resoruces and Environment,Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Peng Yuelin, College of Resoruces and Environment,Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Cai Xiaobu, College of Resoruces and Environment,Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Z6 于宝政, 西藏农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 彭岳林, 西藏农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 蔡晓布, 西藏农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. EM yuzheng521777@sina.com; xbcai21@sina.com Z7 yuzheng521777@sina.com; xbcai21@sina.com Z8 3 Z9 4 UT CSCD:6202419 DA 2023-03-23 ER PT J AU Liu Tong Mao Liang Pang Xiaopan Jin Shaohong Zhang Jing Guo Zhenggang Z2 刘彤 毛亮 庞晓攀 金少红 张静 郭正刚 TI Effect of areas of land used for engineering construction on soil moisture and nutrient in the alpine steppe regions of the Qinghai-Tibet Plateau Z1 青藏高原高寒草原区工程迹地面积对其恢复过程中土壤水分和养分含量变化的影响 Z3 草业科学 SO Pratacultural Science VL 34 IS 11 BP 2175 EP 2182 AR 1001-0629(2017)34:11<2175:QZGYGH>2.0.TX;2-X PY 2017 DT Article AB The area of land used for engineering construction greatly affects the restorable degree of destroyed natural steppe on the Qinghai-Tibetan Plateau.An experiment was carried out to disclose the effect of land use for engineering construction on the conservation of water,potential nutrients,and present nutrients of soil in land that had been used for engineering construction and had experienced identical restoration periods.This study showed that the soil moisture content did not different between land used for engineering construction and natural steppe when the area used for construction was below 254 m~2.Furthermore,the soil moisture of land used for engineering construction was smaller than that of natural steppe when the area used was 583 m~2 (P<0.05).The organic matter content at a soil depth of 0-10 cm in land used for engineering construction was bigger and that at a depth of 10-20 cm was smaller than that of natural steppe when the area used for engineering construction was below 254 m~2.However,the organic matter content at both soil depths in land used for engineering construction was smaller when the area used was 583 m~2(P<0.05).The soil total nitrogen content did not differ between land used for engineering construction and natural steppe when the area used was 55 m~2.The soil total nitrogen,ammonium nitrogen,and nitrate nitrogen contents of land used for engineering construction were significantly lower than those of natural steppe(P<0.05)when the land used for engineering construction was over 156 m~2.The amplitudes of these declines in nitrogen content correlated with the area of land used for engineering construction.The total phosphorus content at a soil depth of 0-10 cm first increased and then decreased as the area of land used for engineering construction increased(P<0.05),peaking at 156 and 254 m~2.The available phosphorus contents at soil depths of 0-10 and 10-20 cm first decreased and then increased as the area of land used for engineering construction increased,reaching nadirs at 156 and 254 m~2. The total potassium and available potassium contents in soil first increased and then decreased as the area of land used for engineering construction increased,peaking at 254 m~2.The total potassium and available potassium contents of land used for engineering construction were lower than those of natural steppe when the area used was over 254 m~2,and they were bigger than those of natural steppe when the area used was below 254 m~2. These results suggested that the conservation of water,potential nutrients,and present nutrients in the soil of land used for engineering construction were similar to those of natural steppe when the area of land used for engineering construction was below 254 m~2,but differed in larger areas,when all the tested areas had experienced identical restoration periods. Z4 工程迹地面积严重影响着青藏高原受损天然草原的恢复程度。本研究测定了历经18年恢复期的不同面积的工程迹地(55、156、254、583 m~2)的土壤水分、有机质和养分含量,以工程迹地附近的青藏苔草(Carex moorcroftii)+紫花针茅(Stipapurpurea)天然草原作为对照,揭示工程迹地面积对土壤持水力、养分潜力和养分供给能力恢复程度的 影响。结果表明,工程迹地面积小于254 m~2时,0-20 cm土层土壤含水量与天然草原土壤差异不显著(P>0.05),但当其增至583 m~2时,土壤含水量却显著低于天然草原(P<0.05);工程迹地面积小于254 m~2时,0-10 cm土层有机质含量显著高于天然草原,10-20 cm土层有机质含量却显著低于天然草原,但它们均显著高于工程迹地面积为583 m~2时的土壤有机质含量(P<0.05);工程迹地为55 m~2时,其土壤全氮含量和天然草原差异不显著(P>0.05),但当迹地面积大于156 m~2时,土壤全氮、铵态氮和硝态氮含量均显著低于天然草原(P<0.05),且随工程迹地面积增加,降低幅度逐渐增加;0-10 cm土层全磷含量随工程迹地面积增加先增加后降低(P<0.05),在156和254 m~2时较高;土壤速效磷含量却先降低后增加,在156和254 m~2时较低。土壤全钾和速效钾含量随工程迹地面积增加先升高后降低,均以254 m~2时最大,当工程迹地面积大于254 m~2时,土壤全钾和速效钾含量低于天然草原,当其小于254 m~2时土壤全钾和速效钾含量高于天然草原。土壤含水量、养分潜质和养分含量对工程迹地面积响应的结果表明,工程迹地面积小于254 m~2时土壤持水量、养分潜力和养分供给力基本得到恢复。 C1 Liu Tong, State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology,Lanzhou University,National Demonstration Center for Experimental Grassland Science Education(Lanzhou University), Lanzhou, Gansu 730020, China. Mao Liang, State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology,Lanzhou University,National Demonstration Center for Experimental Grassland Science Education(Lanzhou University), Lanzhou, Gansu 730020, China. Pang Xiaopan, State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology,Lanzhou University,National Demonstration Center for Experimental Grassland Science Education(Lanzhou University), Lanzhou, Gansu 730020, China. Jin Shaohong, State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology,Lanzhou University,National Demonstration Center for Experimental Grassland Science Education(Lanzhou University), Lanzhou, Gansu 730020, China. Zhang Jing, State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology,Lanzhou University,National Demonstration Center for Experimental Grassland Science Education(Lanzhou University), Lanzhou, Gansu 730020, China. Guo Zhenggang, State Key Laboratory of Grassland Agro-ecosystems College of Pastoral Agriculture Science and Technology,Lanzhou University,National Demonstration Center for Experimental Grassland Science Education(Lanzhou University), Lanzhou, Gansu 730020, China. Z6 刘彤, 兰州大学草地农业科技学院草业科学国家级实验教学示范中心, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 毛亮, 兰州大学草地农业科技学院草业科学国家级实验教学示范中心, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 庞晓攀, 兰州大学草地农业科技学院草业科学国家级实验教学示范中心, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 金少红, 兰州大学草地农业科技学院草业科学国家级实验教学示范中心, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 张静, 兰州大学草地农业科技学院草业科学国家级实验教学示范中心, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 郭正刚, 兰州大学草地农业科技学院草业科学国家级实验教学示范中心, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM liut14@lzu.edu.cn; 562015010@qq.com; guozhg@lzu.edu.cn Z7 liut14@lzu.edu.cn; 562015010@qq.com; guozhg@lzu.edu.cn Z8 2 Z9 2 UT CSCD:6124184 DA 2023-03-23 ER PT J AU Lu Tongping Zhang Wenxiang Niu Jie Lin Yongjing Wu Mengjuan Z2 卢同平 张文翔 牛洁 林永静 武梦娟 TI Study on Spatial Variability and Driving Factors of Stoichiometry of Nitrogen and Phosphorus in Soils of Typical Natural Zones of China Z1 典型自然带土壤氮磷化学计量空间分异特征及其驱动因素研究 Z3 土壤学报 SO Acta Pedologica Sinica VL 54 IS 3 BP 682 EP 692 AR 0564-3929(2017)54:3<682:DXZRDT>2.0.TX;2-F PY 2017 DT Article AB 【Objective】 Nitrogen (N) and phosphorus (P) are two important nutrients and play important role in sustaining plant growth in natural ecosystems,and changes in structure and function of an ecosystem may reflect in stoichiometric characteristics of the elements in the soil. Natural zone, life form and elevation are major factors affecting soil nutrients in all climatic zones. Therefore, the study on stoichiometric characteristics on large spatial scales may help explore distribution characteristics of soil nutrients and driving factors of the evolution of soil nutrients,and provide important reference to studies to understand in depth global biogeochemical recycling of the soil nutrients and simulate regional responses to global change. [Method] From the literature available regarding soil stoichiometry in the subtropical evergreen broad-leaved forest zone (SEB), warm temperate deciduous broad-leaved forest zone (WTD),temperate steppe zone (TSZ),temperate desert zone (TDZ) and Qinghai-Tibet Plateau Alpine vegetation zones (QST), a total of 594 data of N and P contents in natural soils, 0-20 cm in depth of various regions of the country and their stoichiometric analyses, covering a time span of 15 years were acquired using the aid of electronic search engines. Statistic analysis of the collected data were performed using methods of one-way analysis of variance (ANOVA),least significant difference (LSD),Spearman correlation coefficient analysis, and multivariate linear and non-linear autoregressive modeling (MAR),to explore distribution and variability of soil total nitrogen (TN) and total phosphorus (TP) and their stoichiometry in soil in relation to elevation, temperature and precipitationin the SEB, WTD, TSZ, TDZ and QST.【Result】 Results show that soil TN and N/P varied significantly from natural zone to natural zone, but soil TP did not as much. The average TN content was 2.35 mg g~(-1), 1.13 mg g~(-1), 1.07 mg g~(-1), 3.59 mg g~(-1), and 5.66 mg g~(-1); the average TP content 0.80 mg g~(-1), 0.82 mg g~(-1), 0.75 mg g~(-1), 0.47 mg g~(-1), and 0.75 mg g~(-1); and the average N/P 4.04, 2.26, 2.49, 6.71, and 7.73 in the SEB, WTD, TSZ, TDZ and QST, respectively. In all the five zones, TN, TP and N/P varied with elevation, displaying a non-linear secondary relationship, and a single peak pattern. However, in the SEB and TSZ soil TN was mainly affected by temperature and elevation, and the impact of elevation was more significant in the TSZ. In the TDZ soil TN was influenced by elevation and precipitation. However, in the WTD and QST, soil TN was not so much affected by the three factors. In the SEB, soil TP was jointly affected by the three natural factors, which, however, followed a declining order of precipitation > temperature > elevation in extent, and in the WTD and TDZ and QST soil TP was mainly affected by elevation, while in the TSZ, precipitation was the dominant factor that affects soil TP. Furthermore, in the SEB, soil N/Pwas more affected by by precipitation than by elevation, and in the TSZ, TDZ and QST it was affected jointly by all the three factors, temperature, precipitation and elevation, while in the TDZ, elevation was the key factor affecting soil N/P and in the TSZ, temperature and precipitation were, but differed in degree of the effect. Z4 植物生活型、地形及区域气候特征等对土壤养分的空间分布有着重要的影响。通过对我国典型自然带土壤氮磷化学计量与植物生活型、地形及气候因素间相互关系的 研究,探讨了我国土壤氮磷的空间变异与分布特征及其主要控制因素。结果发现,5个自然带的土壤全氮(TN)和氮磷比(N/P)存在显著差异(p< 0.01);除温带荒漠带较低(0.47 mg g~(-1))外,土壤全磷(TP)均值总体变化不明显(p>0.05)。在不同自然带区域内,TN、TP及N/P变化与海拔、温度及降水呈现出显著的线 性和非线性二次相关,即表现出线性与单峰模式。暖温带落叶阔叶林带、温带草原带、温带荒漠带森林土壤中TN,以及青藏高原高寒植被带草本土壤中TP、温带 荒漠带森林土壤的N/P主要受海拔因素的影响,而温带草原带草本植物的土壤TP则主要受降水的影响。同时,研究还发现,在多要素共同作用时,其影响程度也 略有差异,温度和海拔作为控制因素影响亚热带常绿阔叶林带森林和温带草原带草本土壤TN变化,但前者受温度控制更为明显,后者则以海拔为主要驱动因素,而 温带荒漠带草本土壤和森林土壤的TN主要受海拔和降水作用的影响,但以降水影响为主;亚热带常绿阔叶林带森林土壤TP,温带草原带、温带荒漠带和青藏高原 高寒植被带草本土壤的N/P受植物生活型、地形及气候的共同影响,但程度略有不同,其中TP表现为降水 > 温度 > 海拔,而N/P为温度 > 海拔 > 降水。因此,在自然带和植物生活型的主控背景下,海拔、温度和降水的主控或交互作用直接驱动土壤氮磷及其化学计量特征的空间分异。 C1 Lu Tongping, Laboratory of Plateau Lake Ecology and Global Change, Yunnan Normal University, Key Laboratory of Plateau Geographical Process and Environmental Change of Yunnan Province, Kunming, Yunnan 650500, China. Zhang Wenxiang, Laboratory of Plateau Lake Ecology and Global Change, Yunnan Normal University, Key Laboratory of Plateau Geographical Process and Environmental Change of Yunnan Province, Kunming, Yunnan 650500, China. Niu Jie, Laboratory of Plateau Lake Ecology and Global Change, Yunnan Normal University, Key Laboratory of Plateau Geographical Process and Environmental Change of Yunnan Province, Kunming, Yunnan 650500, China. Lin Yongjing, Laboratory of Plateau Lake Ecology and Global Change, Yunnan Normal University, Key Laboratory of Plateau Geographical Process and Environmental Change of Yunnan Province, Kunming, Yunnan 650500, China. Wu Mengjuan, Laboratory of Plateau Lake Ecology and Global Change, Yunnan Normal University, Key Laboratory of Plateau Geographical Process and Environmental Change of Yunnan Province, Kunming, Yunnan 650500, China. Z6 卢同平, 云南师范大学高原湖泊生态与全球变化实验室, 云南省高原地理过程与环境变化重点实验室, 昆明, 云南 650500, 中国. 张文翔, 云南师范大学高原湖泊生态与全球变化实验室, 云南省高原地理过程与环境变化重点实验室, 昆明, 云南 650500, 中国. 牛洁, 云南师范大学高原湖泊生态与全球变化实验室, 云南省高原地理过程与环境变化重点实验室, 昆明, 云南 650500, 中国. 林永静, 云南师范大学高原湖泊生态与全球变化实验室, 云南省高原地理过程与环境变化重点实验室, 昆明, 云南 650500, 中国. 武梦娟, 云南师范大学高原湖泊生态与全球变化实验室, 云南省高原地理过程与环境变化重点实验室, 昆明, 云南 650500, 中国. EM tongpinglu2014@sina.com; wenxiangzhang@gmail.com Z7 tongpinglu2014@sina.com; wenxiangzhang@gmail.com Z8 17 Z9 18 UT CSCD:6001709 DA 2023-03-23 ER PT J AU Cui Yanan Li Shaowei Yu Chengqun Tian Yuan Zhong Zhiming Wu Jianshuang Z2 崔亚楠 李少伟 余成群 田原 钟志明 武建双 TI Effects of the award-allowance payment policy for natural grassland conservation on income of farmer and herdsman families in Tibet Z1 西藏天然草原生态保护补助奖励政策对农牧民家庭收入的影响 Z3 草业学报 SO Acta Prataculturae Sinica VL 26 IS 3 BP 22 EP 32 AR 1004-5759(2017)26:3<22:XZTRCY>2.0.TX;2-5 PY 2017 DT Article AB The status of alpine grasslands on the Tibetan Plateau not only has a major impact on the welfare of local residents,but also contributes to economic activity in East China,and thus has an important role to play in the overall ecological security of China.To stop grassland degradation,to recover degraded pastures,and to conserve healthy natural grasslands,in 2011the government implemented an economic payment policy including awards and allowances to local families for their efforts in grassland conservation.We conducted face-toface interviews with local families in Agriculture counties (AC),Agriculture-Animal-Husbandry counties (AAHC),and Animal-Husbandry counties(AHC)in 2014,with husbandry activities and economic income data collected at the family level,to assess the social and economic influence of this policy.The results showed that economic benefits arising from this policy are unevenly distributed between different family types.Herdsmen families in AHC received much more benefit than those in either AC or AAHC.We found that the policy has altered the income structure of herdsmen families in AHC,and the transferred income accounted for a great proportion of the total income at the family level.In addition,the policy has reduced the family income gap between AHC and AC,but has provided little incentive or increase in income for families in AAHC.It is necessary therefore,to adjust the criteria,methodology and levels of payment to take into account zonal differences in ecosystem functionality,in order for the system to promote the sustainable development of animal husbandry on the Tibetan Plateau. Z4 西藏高寒草地生态保护不仅关系当地人民生活水平的提升,而且关乎我国东部地区的生态和经济安全,是我国重要的生态安全屏障之一。为遏止高寒草地退化,恢复 已退化草地的生态功能,保护未退化高寒草地资源,在2011年国家启动天然草原生态保护补助奖励政策(以下简称草奖政策)。2014年我们深入西藏3类地 区(纯牧区、半农半牧区、纯农区)的农、牧家庭进行问卷调查,从家庭牧业生产、家庭收入与构成及农牧户间收入差距3方面剖析了政策实施3年(2011-2 013年)的社会经济影响。研究发现,1)草原生态保护补助奖励机制的政策福利存在地域间的不均衡性,纯牧区家庭享有更多经济福利;2)草奖政策改变了牧 区家庭的收入结构,转移性收入超过家庭经营性收入,成为牧民家庭的重要收入来源;3)草奖政策有利于缩小牧区和农区贫富差距,但对于半农半牧区效果不明显 。因此,政策措施需要进行适时适度地调整,从补偿标准、方式、力度等方面进行优化,体现高寒草地生态功能的地域性差异,使其符合各地域农牧家庭的实际生产 ,促使西藏高原草地畜牧业的可持续发展。 C1 Cui Yanan, Lhasa Plateau Ecosystem Research Station,Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,China Academy of Sciences, Beijing 100101, China. Li Shaowei, Lhasa Plateau Ecosystem Research Station,Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,China Academy of Sciences, Beijing 100101, China. Yu Chengqun, Lhasa Plateau Ecosystem Research Station,Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,China Academy of Sciences, Beijing 100101, China. Tian Yuan, Lhasa Plateau Ecosystem Research Station,Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,China Academy of Sciences, Beijing 100101, China. Zhong Zhiming, Lhasa Plateau Ecosystem Research Station,Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,China Academy of Sciences, Beijing 100101, China. Wu Jianshuang, Lhasa Plateau Ecosystem Research Station,Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,China Academy of Sciences, Beijing 100101, China. Z6 崔亚楠, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 李少伟, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 余成群, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 田原, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 钟志明, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 武建双, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM cuiyn.14s@igsnrr.ac.cn; wujs.07s@igsnrr.ac.cn Z7 cuiyn.14s@igsnrr.ac.cn; wujs.07s@igsnrr.ac.cn Z8 11 Z9 16 UT CSCD:5942054 DA 2023-03-23 ER PT J AU Zhang Lifeng Zhang Jiqun Zhang Xiang Liu Xiaoqin Zhao Liang Li Qi Chen Dongdong Gu Song Z2 张立锋 张继群 张翔 刘晓琴 赵亮 李奇 陈懂懂 古松 TI Characteristics of Evapotranspiration of Degraded Alpine Meadow in the Three-River Source Region Z1 三江源区退化高寒草甸蒸散的变化特征 Z3 草地学报 SO Acta Agrestia Sinica VL 25 IS 2 BP 273 EP 281 AR 1007-0435(2017)25:2<273:SJYQTH>2.0.TX;2-X PY 2017 DT Article AB To examine the characteristics of water budget of degraded alpine meadow in the Three-River Source Region(TRSR),we studied the annual variation of evapotranspiration(ET)and its controlling factors using the eddy covariance and micro-meteorological system in the Guoluo Prefecture,Dawu,Qinghai Province.The results showed that the annual amount of ET was 481.9 mm,and the ratio of annual ET to precipitation was about 97%.The average daily ET rate in the growing season was 2.3 mm·d~(-1),while the average daily ET rate in non-growing season was only 0.6 mm·d~(-1).There was a significant exponential correlation between ET and temperature.Solar radiation received by study site was strong,while the ratio of the net radiation to solar radiation(R_n/R_s)was relatively low(46%).ET was linear with the net radiation in non-frozen-soil period.Precipitation was relatively abundant in this alpine meadow,and the impact of soil water content on ET was relatively small in comparison with that of temperature and net radiation. This study suggested that the degradation of alpine meadow increased the ET,and thus reduced the water conservation capacity of ecosystem;net radiation and temperature were the most important environmental factors influencing ET for this degraded alpine meadow ecosystem in the TRSR. Z4 为揭示三江源区退化高寒草甸水分收支变化特征,利用涡度相关和微气象方法对青海省果洛州大武镇退化高寒草甸生态系统的年蒸散变化进行了定量研究,并探讨了 环境和生物因子对其影响。结果表明:年总蒸散量为481.9 mm,年蒸散量约占年降水量的97%。生长季中日均蒸散量为2.3 mm·d~(-1),而非生长季日均蒸散量仅为0.6 mm·d~(-1)。温度与蒸散量呈明显的指数关系;该区接收的太阳辐射较强,但净辐射占太阳辐射的比例相对较低(46%),在非冻土时期,蒸散量与净辐 射呈线性关系;研究区降水量相对丰沛,与温度和净辐射相比,土壤含水量对蒸散的影响相对较小。本研究说明高寒草甸的退化加剧了生态系统的蒸散量,从而降低 了生态系统涵养水分的能力,净辐射和温度是驱动三江源区退化高寒草甸生态系统蒸散最主要的环境因子。 C1 Zhang Lifeng, College of Life Sciences of NanKai University, Tianjin 300071, China. Zhang Xiang, College of Life Sciences of NanKai University, Tianjin 300071, China. Liu Xiaoqin, College of Life Sciences of NanKai University, Tianjin 300071, China. Gu Song, College of Life Sciences of NanKai University, Tianjin 300071, China. Zhang Jiqun, Water Resources Management Center of Ministry of Water Resources, Beijing 100032, China. Zhao Liang, Northwest Plateau Institute of biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Qi, Northwest Plateau Institute of biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Chen Dongdong, Northwest Plateau Institute of biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 张立锋, 南开大学生命科学学院, 天津 300071, 中国. 张翔, 南开大学生命科学学院, 天津 300071, 中国. 刘晓琴, 南开大学生命科学学院, 天津 300071, 中国. 古松, 南开大学生命科学学院, 天津 300071, 中国. 张继群, 水利部水资源管理中心, 北京 100032, 中国. 赵亮, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李奇, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 陈懂懂, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM qiongkaixin106606@163.com; songgu@nankai.edu.cn Z7 qiongkaixin106606@163.com; songgu@nankai.edu.cn Z8 10 Z9 12 UT CSCD:6019157 DA 2023-03-23 ER PT J AU Li Xiaojuan Li Yikang Z2 李小娟 李以康 TI Effects of Tibetan Plateau Meadow Degradation on the Physiological Characteristics of Kobresia humilis Z1 青藏高原高寒草甸退化对矮嵩草有关生理特性的影响 Z3 西北植物学报 SO Acta Botanica Boreali-Occidentalia Sinica VL 37 IS 8 BP 1577 EP 1585 PY 2017 DT Article AB The study used spatial distribution to replace time succession. We chose typical non-degraded meadow and degraded meadow plots in Maqin County, Guoluo Tibetan Autonomous Prefecture, Qinghai Province. Three 5 mX 5 m quadrats were set up, plant and soil samples were taken in the morning from the end of June to September, and physiological indexes of Kobresia humilis , was measured to explore the effects of environment changes caused by degradation of Tibetan Plateau alpine meadow on physiological characteristics of K. humilis under natural conditions. The results showed that : (1) compared to non-degraded meadow, the available nitrogen content significantly reduced in degraded meadow (P<0.01),but the available phosphorus content and available potassium content significantly increased (P<0.05) ; The overall performance of total nitrogen, total phosphorus and total potassium contents were lower in non-degraded meadow than that in degraded meadow. (2) In degraded meadow, SOD activity of K. humilis leaves decreased in late growth stage (reduced by 4%) , the trend of GSH content in two plots was basically the same. (3) The contents of soluble sugar and soluble protein in the leaves of K. humilis in degraded meadow were lower than that in non-degraded meadow at late growth stage (reduced by 17.6% and 34. 9%,respectively),and significantly decreased in September (P<0.01). (4) After middle growth stage, the contents of chlorophyll a and b in the leaves of K. humilis of degraded meadow decreased more quickly than that of non-degraded meadow, and the contents were low (18.84% and 20.68% , respectively). (5) The generate velocity of O_2~(·~-) in the leaves of K. humilis in degraded meadow was higher than that in nondegraded meadow in September(P<0.01). These results indicate that K. humilis has higher ROS scavenging ability and osmotic adjustment ability. Environment change caused by degradation maybe the inner reason that resulted in K. humilis antioxidant capacity decrease and aging more earlier in late growth stage. Z4 该研究采用空间分布代替时间演替的方法,选取青藏高原青海省果洛藏族自治州玛沁县境内典型的未退化草甸和退化草甸样地.分别设置3个5 m*5 m的样方,于6至9月下旬上午进行植株和土壤采样,测定矮嵩草生理指标,探讨高寒草甸退化所导致的环境变化对自然生长状态下矮嵩草生理特性的影响机制。结 果表明:(1)与未退化草甸相比,退化导致土壤表层速效氮含量极显著降低,而速效磷和速效钾含量显著升高;全氮、全磷和全钾的含量总体上表现为未退化草甸 低于退化草甸。(2)与未退化草甸相比,退化草甸矮嵩草叶中超氧化物歧化酶(SOD)活性在生长前期高而后期低(低4%),谷胱甘肽(GSH)含量在两个 样地的变化趋势基本一致。(3)退化草甸矮嵩草叶片可溶糖和可溶蛋白含量在生长后期分别比未退化草甸降低17.6%和34.9%,且9月份降低达极显著水 平。(4)生长中期以后,退化草甸矮嵩草叶片叶绿素a、b含量比未退化草甸的下降速度快、含量分别低18.84%和20.68%。(5)退化草甸矮嵩草叶 片超氧阴离子自由基(O_2~(·~-) )的产生速率在9月份极显著高于未退化草甸。研究表明,在非生物胁迫下未退化草甸的矮嵩草具有更高的ROS清除能力和渗透调节能力.退化导致的环境变化可 能是矮嵩草在生长后期抗氧化能力降低、衰老早的内在原因。 C1 Li Xiaojuan, Qinghai Nationalities University, Institute of Chemistry and Chemical Technology, Xining, Qinghai 810007, China. Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 李小娟, 青海民族大学化学化工学院, 西宁, 青海 810007, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM chouerli@126.com; liyikang501@163.com Z7 chouerli@126.com; liyikang501@163.com Z8 3 Z9 4 UT CSCD:6062006 DA 2023-03-23 ER PT J AU Li Yansen Zhou Jinxing Wu Xiuqin Z2 李延森 周金星 吴秀芹 TI Effects of the construction of Qinghai-Tibet railway on the vegetation ecosystem and eco-resilience Z1 青藏铁路(格拉段)修建对沿线植被生态系统及其弹性的影响 Z3 地理研究 SO Geographical Research VL 36 IS 11 BP 2129 EP 2140 AR 1000-0585(2017)36:11<2129:QZTLGL>2.0.TX;2-9 PY 2017 DT Article AB The Qinghai-Tibet Railway is constructed in an ecologically fragile area, and thus, the railway construction will impact the ecosystem around inevitably. To evaluate the effects of railway objectively, we carried out a study on the basis of 212 Landsat TM/ETM + images captured in 1995-2014 during the peak period of vegetation growth along the railway and within a 10-km range of it. The Fmask method and the spatial and temporal adaptive reflectance fusion model (STARFM) were used to remove the cloud, shadow, and gap in those images to acquire clear 30-m NDVI images. Then, the linear regression and sequential T test of regime shifts (STARS) were used to analyze the spatial-temporal change, regime shift, and ecoresilience characteristics of the NDVI in the study area. Results show that: (1) the NDVI of the study area grew slightly in 20 years, similar to the NDVI growth in the whole Tibetan Plateau. The NDVI along the railway is higher in the north than that in the south. The NDVI in the northern part changes slightly, and the area of decline is concentrated in Naqu-Damxung; (2) The railway construction exerts no apparent effects on the ecological system. Both sides of the railway within the range of 1 km are influenced by the railway construction. Most significant damages to vegetation cover resulted by the railway and ancillary facilities construction are within the range of 100 m along the railway. (3) Regime shift and eco-resilience focused in the city and the surrounding valley and pastoral areas caused most dramatic changes in the region. The detection results of different ecosystem types of eco-resilience show that the eco-resilience order is as follows: bare >desert >alpine >grassland >meadow >shrub >wetland >farmland. The wetland ecosystem is the most vulnerable environment and the main type of ecosystem protection. In addition, restoring vegetation is most difficult in the desert ecosystem and bare ground. Z4 青藏铁路穿越区生态脆弱,铁路修建会对沿线区域植被造成破坏。为客观评价铁路修建对沿线植被生态系统的影响,基于1995-2014年覆盖青藏铁路沿线1 0 km范围的212景Landsat TM/ETM~+影像,利用Fmask算法结合STARFM模型去除云、阴影及条带,得到30 m NDVI数据,最后通过一元线性回归和序贯t检验,对10 km区域的NDVI时空演变、稳态转变以及各植被生态系统弹性特征进行分析。结果表明:① 20年间,青藏铁路沿线10 km范围内NDVI稳中有升,与青藏高原NDVI变化相符,空间上呈南高北低的分布特征;北部区域NDVI变化相对稳定,NDVI下降区域集中在那曲当雄 。②将沿线10 km范围划分为7个缓冲区,发现铁路修建及附属设施占地对植被的破坏作用最明显,集中在青藏铁路两侧100 m内,并对青藏铁路沿线1 km范围内的植被生长有抑制作用,作用程度与铁路距离成反比。③城市及周边、河谷和牧区等人类活动较多的区域NDVI稳态转变最剧烈;各生态系统弹性大小 依次为:裸地>荒漠>高山植被>草原>草甸>灌丛>湿地>农田。湿地是最易受外界干扰而改变的类型,是保护的重点类型,而荒漠和裸地生态系统弹性最高,最 不易改变,也是生态恢复的难点。 C1 Li Yansen, School of Soil andWater Conservation, Key Laboratory of State Forestry Administration on Soil andWater Conservation, Beijing Forestry University, Beijing 100083, China. Zhou Jinxing, School of Soil andWater Conservation, Key Laboratory of State Forestry Administration on Soil andWater Conservation, Beijing Forestry University, Beijing 100083, China. Wu Xiuqin, School of Soil andWater Conservation, Key Laboratory of State Forestry Administration on Soil andWater Conservation, Beijing Forestry University, Beijing 100083, China. Z6 李延森, 北京林业大学水土保持学院, 水土保持国家林业局重点实验室, 北京 100083, 中国. 周金星, 北京林业大学水土保持学院, 水土保持国家林业局重点实验室, 北京 100083, 中国. 吴秀芹, 北京林业大学水土保持学院, 水土保持国家林业局重点实验室, 北京 100083, 中国. EM lys_zmz@126.com; wuxq@bjfu.edu.cn Z7 lys_zmz@126.com; wuxq@bjfu.edu.cn Z8 9 Z9 10 UT CSCD:6119236 DA 2023-03-23 ER PT J AU 柴曦 石培礼 宗宁 牛犇 何永涛 张宪洲 Z2 Chai Xi Shi Peili Zong Ning Niu Ben He Yongtao Zhang Xianzhou TI Biophysical Regulation of Carbon Flux in Different Rainfall Regime in a Northern Tibetan Alpine Meadow Z1 西藏高原高寒嵩草草甸在不同降雨条件下CO_2通量的生物物理调节机制 Z3 资源与生态学报 SO Journal of Resources and Ecology VL 8 IS 1 BP 30 EP 41 AR 1674-764X(2017)8:1<30:BROCFI>2.0.TX;2-I PY 2017 DT Article AB Inter-annual variability in total precipitation can lead to significant changes in carbon flux. In this study,we used the eddy covariance (EC) technique to measure the net CO_2 ecosystem exchange (NEE) of an alpine meadow in the northern Tibetan Plateau. In 2005 the meadow had precipitation of 489.9 mm and in 2006 precipitation of 241.1 mm, which, respectively, represent normal and dry years as compared to the mean annual precipitation of 476 mm. The EC measured NEE was 87.70 g C m~(-2) yr~(-1) in 2006 and -2.35 g C m~(-2) yr~(-1) in 2005. Therefore,the grassland was carbon neutral to the atmosphere in the normal year, while it was a carbon source in the dry year,indicating this ecosystem will become a CO_2 source if climate warming results in more drought conditions. The drought conditions in the dry year limited gross ecosystem CO_2 exchange (GEE), leaf area index (LAI) and the duration of ecosystem carbon uptake. During the peak of growing season the maximum daily rate of NEE and P_(max) and a were approximately 30%-50% of those of the normal year. GEE and NEE were strongly related to photosynthetically active radiation (PAR) on half-hourly scale, but this relationship was confounded by air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). The absolute values of NEE declined with higher Ta, higher VPD and lower SWC conditions. Beyond the appropriate range of PAR, high solar radiation exacerbated soil water conditions and thus reduced daytime NEE. Optimal Ta and VPD for maximum daytime NEE were 12.7℃ and 0.42 KPa respectively, and the absolute values of NEE increased with SWC. Variation in LAI explained around 77% of the change in GEE and NEE. Variations in R_e were mainly controlled by soil temperature (T_s), whereas soil water content regulated the responses of R_e to T_s. Z4 降雨的年际变化可导致碳通量显著变化。因此我们利用涡度相关(EC)技术观测西藏高原北部的一个高寒草甸连续2年(2005-2006)的CO_2净生态 系统交换(NEE),以分析不同降水年份下CO_2通量的差异和控制因素。2005和2006年的降水量分别为489.9 mm和241.1 mm,相比于476.0 mm的多年平均值,前者属于平水年,后者属于干旱年。2006年的NEE的年际累积表现为净排放量(87.70 g C m~(-2) yr~(-1)),而2005年则表现为非常微弱的吸收(-2.35 g C m~(-2) yr~(-1))。因此该高寒草甸在平水年是碳中性的,但在干旱年是碳源,这说明如果未来气候变暖继续恶化加剧土壤干旱的条件下,高寒草甸有可能成为一个 CO_2释放源。在干旱年份,总初级生产力(GEE)、叶面积指数(LAI)以及生态系统碳吸收持续的时间都明显降低,由此引发干旱年份生长季旺盛时期每 日NEE最大吸收速率、最大光合速率(P_(max))以及表观量子效率(alpha)只是平水年的30%-50%。在其他因子的调控方面,半小时尺度的 GEE和NEE与光合有效辐射(PAR)密切相关,但这种响应会受空气温度(Ta),土壤水分含量(SWC)和水汽压亏缺(VPD)的影响。 NEE的吸收速率会随着Ta和VPD的升高以及SWC的下降而减少。当PAR超过合适的范围值时,由于较高的辐射加剧了土壤干旱的情况,会减少白天NEE 的吸收速率。NEE吸收速率的最适Ta和VPD值分别为12.7℃和0.42 KPa,而且NEE的吸收速率也会随着SWC的增加而增大。LAI的季节变异能够解释GEE和NEE变异的77%。半小时尺度上的生态系统呼吸(Re)的 变异主要依赖于土壤温度(T_s),但SWC会在一定程度上调控R_e对T_s的响应。 C1 Chai Xi, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100010, China. Shi Peili, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100010, China. Zong Ning, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100010, China. Niu Ben, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100010, China. He Yongtao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100010, China. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100010, China. Z6 柴曦, 中国科学院地理科学与资源研究所, 北京 100010, 中国. 石培礼, 中国科学院地理科学与资源研究所, 北京 100010, 中国. 宗宁, 中国科学院地理科学与资源研究所, 北京 100010, 中国. 牛犇, 中国科学院地理科学与资源研究所, 北京 100010, 中国. 何永涛, 中国科学院地理科学与资源研究所, 北京 100010, 中国. 张宪洲, 中国科学院地理科学与资源研究所, 北京 100010, 中国. EM shipl@igsnrr.ac.cn Z7 shipl@igsnrr.ac.cn Z8 5 Z9 9 UT CSCD:5913959 DA 2023-03-23 ER PT J AU Wang Jiuluan Ma Yushou Chen Litong Z2 王九峦 马玉寿 陈立同 TI Changes in biomass allocation to leaves, stems and roots of three dominant alpine species from the Tibetan Plateau Z1 青藏高原三种优势植物生物量分配的变化规律 Z3 广西植物 SO Guihaia VL 37 IS 6 BP 768 AR 1000-3142(2017)37:6<768:QZGYSZ>2.0.TX;2-1 PY 2017 DT Article AB In this study, using four common gardens from high to low elevations, we examined the shifts in the biomass allocation to leaves, stems and roots of three dominant species Elymus nutans, Kobresia humilis and Polygonum viviparum in alpine grasslands on the Tibetan Plateau, and explored whether this changes were controlled by the environmental factors, or by the genetic factors. In 2012, using three dominant species in alpine grasslands from the same provenance, we established four common garden experiments in Dawu, Guoluo; the Haibei Station, Haibei; Xining and Yuzhong, Lanzhou from high to low altitudes. We used the mass fraction of leaves (LMF), stems (SMF), roots (RMF) and shoot to root ratios (R/ S ratio) individually as the variables to describe plant allocation. Our results were as follows: (1) There were significant differences in the biomass allocation to leaves, stems, roots and R/ S ratios among three species examined; compared to Elymus nutans and Polygonum viviparum, Kobresia humilis had a higher RMF but lower LMF and SMF, and thus a higher R/ S ratio. (2) During the transplantation from high to low altitudes, for Polygonum viviparum, SMF apparently decreased while RMF significantly increased, but LMF had no changes, leading R/ S ratios to have an increasing trend; by contrast, for Elymus nutans, LMF and SMF markedly increased while RMF significantly declined, which led R/ S ratio to having a decreasing trend. (3) since mean annual temperature increases and mean annual precipitation decreased from high to low elevations, and there were the same plant origin and soil matrix among four common gardens, temperature was the main factor driving the shifts of biomass allocation to leaves, stems, roots of Polygonum viviparum, by contrast, water availability was the primary factor driving the shifts of biomass allocation to leaves, stems, roots of Elymus nutans, whereas the changes in biomass allocation to leaves, stems, roots of Kobresia humilis was controlled by its genetic effects. Therefore, under the future warmer and drier conditions, the biomass allocation to leaves, stems, roots of plant species in alpine grasslands would shift, and this shift would change the acquisition and utilization of resources (such as light, water and soil nutrients) and further change interspecific interactions, and would lead to changes in community diversity and species composition, and even ecosystem functioning. Z4 该研究利用4个由高到低不同海拔的同质园实验,以青藏高原高寒草地优势植物垂穗披碱草(Elymus nutans)、矮嵩草(Kobresia humilis)和珠芽蓼(Polygonum viviparum)为对象,分析了植物个体根、茎、叶生物量分配及根冠比的变化规律及影响因素。结果表明:(1)植物个体根、茎、叶质量比和根冠比具有 显著的种间差异;与垂穗披碱草和珠芽蓼相比,矮嵩草具有显著较高的根质量比而叶、茎质量比较低,所以其根冠比较高。 (2)在向低海拔移栽的过程中,珠芽蓼叶质量比保持不变,茎质量比显著降低而根质量比显著升高,根冠比表现出显著上升的趋势;垂穗披碱草则相反,即叶、茎 质量比显著升高而根质量比显著降低,根冠比表现出显著下降的趋势;矮嵩草根、茎、叶质量比和根冠比则无显著变化。(3)随着海拔降低,年均气温明显升高而 年均降雨量明显降低,且在植物个体种源地和土壤基质保持一致的条件下,向低海拔移栽过程中温度是导致珠芽蓼根、茎、叶生物量分配及根冠比变化的重要因素, 而水分是垂穗披碱草根、茎、叶生物量分配及根冠比变化的重要驱动因素;矮嵩草根、茎、叶生物量分配及根冠比受其遗传因素影响较大。因此,在将来暖干化的背 景下,青藏高原高寒草地植物生物量的分配将会发生改变,导致它们对资源(光照、水分和土壤养分)获取和利用的变化而改变它们的种间关系,从而影响群落的物 种多样性与组成,最终可能导致生态系统功能的变化。 C1 Wang Jiuluan, Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai 810016, China. Ma Yushou, Qinghai Academy of Science and Veterinary Medicine, Xining, Qinghai 810016, China. Chen Litong, Key Laboratory of adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 王九峦, 青海大学畜牧兽医科学院, 西宁, 青海 810016, 中国. 马玉寿, 青海省畜牧兽医科学院, 西宁, 青海 810016, 中国. 陈立同, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810008, 中国. EM jiuluan6929@126.com; mayushou@sina.com Z7 jiuluan6929@126.com; mayushou@sina.com Z8 3 Z9 3 UT CSCD:6021889 DA 2023-03-23 ER PT J AU Luo Jiufu Zhou Jinxing Zhao Wenxia Dong Linshui Zheng Jingming Z2 罗久富 周金星 赵文霞 董林水 郑景明 TI Effect of fences on functional groups and stability of the alpine meadow plant community in the Qinghai-Tibet Plateau Z1 围栏措施对青藏高原高寒草甸群落结构和稳定性的影响 Z3 草业科学 SO Pratacultural Science VL 34 IS 3 BP 565 EP 574 AR 1001-0629(2017)34:3<565:WLCSDQ>2.0.TX;2-1 PY 2017 DT Article AB The changes in community structure and stability of the alpine meadow ecosystem under artificial conditions are an important way to study its ecological function.To explore this kind of change in the Qinghai-Tibet Plateau,field investigations within and outside of fences in a permanent sample plot(established in 2005) in Wumatang were conducted in August of 2009 and 2013.Species richness(R),differences in functional groups,and M.Godron stability index were analysed to explore the differences between fenced and unfenced communities.The results showed that 1)the species richness of the fenced community was greater than unfenced; the number of annual and biennial plants in the fenced community was significantly greater than in the unfenced one in 2009;the dominant species of the fenced community changed from Kobresia pygmaea to Pedicularis kansuensis by 2013,and species belonging to perennial grasses,forbs,and annuals and biennials meant the fenced community was obviously richer than the unfenced community;and 2)the M.Godron stability index showed that the fenced community was more stable than the unfenced one in 2009,but less stable than the unfenced community in 2013.The fenced community structure showed an obvious change and the stability presented a downtrend as the time went by,whereas the stability of the unfenced community presented an uptrend. Z4 人工条件下高寒脆弱生态系统群落结构及其稳定性的变化是研究其生态功能的重要内容。本研究以乌玛塘高寒草甸示范区为例,对研究区植被进行植物群落学调查, 对植物群落功能群和稳定性进行分析,研究了高寒草甸植物群落在围栏4年和8年后,围栏内外群落的结构变化和稳定性差异。结果表明,1)围栏内物种多样性大 于围栏外;围栏4年后群落内一年生、二年生植物重要值明显高于围栏外;围栏8年后,群落优势种发生变化,高山嵩草(Kobresia pygmaea)优势度降低,一年生、二年生植物甘肃马先蒿(Pedicularis kansuensis)成为优势物种之一;多年生禾草,杂类草以及一年生、二年生植物3个功能群所含物种数显著多于围栏外(P<0.05);2)围栏4年 后群落稳定性表现为围栏内>围栏外,8年后表现为围栏内<围栏外。短期围栏使得群落稳定性高于未围栏的群落,但是群落结构差异并不明显,随着围栏时间增加 ,群落结构发生明显变化,且群落稳定性降低,围栏外群落则趋向于稳定。 C1 Luo Jiufu, College of Forestry,Beijing Forestry University,Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing 100083, China. Zhou Jinxing, Key Laboratory of State Forestry Administration on Soil and Water Conservation,Beijing Forestry University, Beijing 100083, China. Zhao Wenxia, College of Forestry,Beijing Forestry University, Beijing 100083, China. Zheng Jingming, College of Forestry,Beijing Forestry University, Beijing 100083, China. Dong Linshui, Key Laboratory of Eco-environmental Science for Yellow River Delta, Shandong Province;Binzhou University, Binzhou, Shandong 256603, China. Z6 罗久富, 北京林业大学林学院, 水土保持国家林业局重点实验室, 北京 100083, 中国. 周金星, 北京林业大学, 水土保持国家林业局重点实验室, 北京 100083, 中国. 赵文霞, 北京林业大学林学院, 北京 100083, 中国. 郑景明, 北京林业大学林学院, 北京 100083, 中国. 董林水, 滨州学院, 山东省黄河三角洲生态环境重点实验室, 滨州, 山东 256603, 中国. EM yijiuyuan@yeah.net; zhengjm@bjfu.edu.cn Z7 yijiuyuan@yeah.net; zhengjm@bjfu.edu.cn Z8 14 Z9 15 UT CSCD:5946551 DA 2023-03-23 ER PT J AU Jiang Chong Wang Dewang Luo Shanghua Li Daiqing Zhang Linbo Gao Yanni Z2 蒋冲 王德旺 罗上华 李岱青 张林波 高艳妮 TI Ecosystem Status Changes and Attribution in the Three-River Headwaters Region Z1 三江源区生态系统状况变化及其成因 Z3 环境科学研究 SO Research of Environmental Sciences VL 30 IS 1 BP 10 EP 19 AR 1001-6929(2017)30:1<10:SJYQST>2.0.TX;2-8 PY 2017 DT Article AB The Three-River Headwaters Region (TRHR) is located in the hinterland of the Qinghai-Tibet Plateau,China,and is the source area of the Yangtze River Basin (YARB),the Yellow River Basin (YRB) and the Lancang River Basin (LRB). TRHR is an important component of the ecological barrier of China,which is related to national ecological security and long-term development. In order to investigate the ecosystem structure,quality and ecosystem service changes,observation data and model simulation results, including Integrate Valuation of Ecosystem Services and Tradeoffs (InVEST),Carnegie-Ames-Stanford Approach (CASA),Revised Universal Soil Loss Equation (RUSLE) and Revised Wind Erosion Equation (RWSQ),were combined to quantitatively assess the spatial pattern of ecosystem types and ecosystem service change since 2000,and then to understand and reveal the causes of the ecosystem health status. The main conclusions are as follows: (1) During 2000-2010,the ecosystem structure in TRHR was basically stable; the farmland and desert area decreased,and urban land and wetland slightly increased. The vegetation coverage increased in more than 65% of the area of TRHR,and the grassland degradation trend improved to a certain extent,but the overall degradation pattern did not show fundamental changes. The carbon sequestration in TRHR and sub-regions increased slightly,which was more obvious in the northern part of YRB and Qinghai Lake Basin. The temperature and rainfall increment jointly promoted Net Primary Productivity (NPP) and grass yield significantly,and ecological engineering also play a positive role. (2) After the implementation of ecological engineering in 2005,the soil loss status in key project areas improved,but the overall improvement trend was not significant. The soil organic matter obviously improved during 2005-2010,but the root layer restoration of vegetation is a slow process,and the rainfall erosivity increment also enhanced the soil erosion process,so the ecosystem' s soil conservation function was basically not improved. (3) Over the period 2000-2013,surface water,groundwater and soil water resources in TRHR showed a significant increasing trend. The water quality stabilized at class I-II as classified by Environmental Quality Standards for Surface Water (GB 3838-2002),indicating basically no change. The increment in precipitation and ice/snow melting water led to stream flow increase,and permafrost degradation induced by regional warming resulted in enhancement in runoff regulation effect of underground reservoir in the dry season. (4) The wildlife habitat degradation conditions were slightly improved; the population of wild animals and distribution range increased significantly,such as Alpine Musk Deer,White-lipped Deer and Eastern Elk. The ecological engineering since 2005 effectively improved the grassland degradation and soil loss,and wildlife habitat developed in a positive direction. However,the ecological status change was also influenced by climate change,and the ecological consequence of ecological engineering still has local and temporary characteristics. Besides,grassland rodents and other factors threatening healthy grassland development still exist; the arduous task of ecological construction should not be ignored. Z4 三江源区是黄河、长江和澜沧江的发源地. 为研究三江源区生态系统状况变化及其可能成因,利用InVEST(Integrate Valuation of Ecosystem Services and Tradeoffs)、CASA (Carnegie-Ames-Stanford Approach)、RUSLE (Revised Universal Soil Loss Equation)和RWSQ(Revised Wind Erosion Equation)模型模拟,结合实地观测数据,系统全面地评估2000年以来三江源区生态系统构成、质量和服务功能变化,并揭示其成因. 结果表明: ①20002010年三江源区生态系统结构基本稳定. 草地退化状况轻微好转,产草量和生产力微弱增加. 植被生长季水热条件的改善是促使产草量增加和草地退化态势趋缓的重要原因,同时生态工程的实施也发挥了积极作用. ②20052010年局部重点生态工程区的水土流失状况轻微好转,但区域整体好转趋势不明显. 土壤中w(有机质)明显增加,但对于土壤保持功能起到关键作用的植被根系层的恢复却比较缓慢,降雨侵蚀力的增强加速了土壤侵蚀过程,生态系统的土壤保持功 能基本上没有提高. ③20002013年地表水、地下水资源量和土壤湿度均呈明显增加趋势,水质稳定在GB 38382002《地表水环境质量标准》划定的Ⅰ ~Ⅱ类. 降水量和冰川/积雪融水量增加导致径流量增大,气候变暖引起的冻土退化导致地下水库枯水季径流调节作用增强. ④生态工程实施后,生物栖息地的生境退化状况轻微改善,野生动物的分布范围和种群数量都有了较为明显的增加. C1 Jiang Chong, State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco- Process and Function Assessment and State Environmental Protection,Chinese Academy of Environmental Sciences, Beijing 100012, China. Wang Dewang, State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco- Process and Function Assessment and State Environmental Protection,Chinese Academy of Environmental Sciences, Beijing 100012, China. Luo Shanghua, State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco- Process and Function Assessment and State Environmental Protection,Chinese Academy of Environmental Sciences, Beijing 100012, China. Li Daiqing, State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco- Process and Function Assessment and State Environmental Protection,Chinese Academy of Environmental Sciences, Beijing 100012, China. Zhang Linbo, State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco- Process and Function Assessment and State Environmental Protection,Chinese Academy of Environmental Sciences, Beijing 100012, China. Gao Yanni, State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences, Key Laboratory of Regional Eco- Process and Function Assessment and State Environmental Protection,Chinese Academy of Environmental Sciences, Beijing 100012, China. Z6 蒋冲, 中国环境科学研究院, 环境基准与风险评估国家重点实验室;;国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 王德旺, 中国环境科学研究院, 环境基准与风险评估国家重点实验室;;国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 罗上华, 中国环境科学研究院, 环境基准与风险评估国家重点实验室;;国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 李岱青, 中国环境科学研究院, 环境基准与风险评估国家重点实验室;;国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 张林波, 中国环境科学研究院, 环境基准与风险评估国家重点实验室;;国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. 高艳妮, 中国环境科学研究院, 环境基准与风险评估国家重点实验室;;国家环境保护区域生态过程与功能评估重点实验室, 北京 100012, 中国. EM cba8702@126.com; gaoyn51@sina.com Z7 cba8702@126.com; gaoyn51@sina.com Z8 8 Z9 11 UT CSCD:5912710 DA 2023-03-23 ER PT J AU Xue Huiying Luo Daqing Wang Hongyuan Qu Xingle Z2 薛会英 罗大庆 王鸿源 屈兴乐 TI Effects of Free Grazing or Enclosure on Soil Nematodes in Alpine Meadows in North Tibet, China Z1 藏北高寒草甸土壤线虫群落对围封及自由放牧的响应 Z3 土壤学报 SO Acta Pedologica Sinica VL 54 IS 2 BP 480 EP 492 AR 0564-3929(2017)54:2<480:ZBGHCD>2.0.TX;2-E PY 2017 DT Article AB 【Objective】 The North Tibet Prairie lies in the inland of the Qinghai-Tibet Plateau and is one of the most important grassland ecosystems in China. Recent years have witnessed an apparent rising trend of the expansion of severely degraded grassland in area. According to relevant data available, in 2013,the area of slightly degraded grassland expanded to cover 62.0% of the total of the prairie.【Method】 During the initial period of this research project, an investigation was carried out of soil nematode communities under different plant communities in the alpine meadow of Nagqu County of North Tibet. It was found that soil nematode communities responded significantly to degradation of grassland. On such a basis, the research went on with colleting soil samples from two tracts of natural grassland in the same area, one enclosed and the other exposed to free grazing for 3 years in a row (2013-2015 ),for analysis of changes in soil nematode communities along the soil profile (0 ~ 25 cm),with soil moisture and temperature taken into account, in an attempt to explore effects of grazing on alpine meadow, and effects of enclosure on degraded alpine meadow. Soil nematodes in the soil samples were collected using the shallow basin method and analyzed for composition, number of individuals, and diversity of the nematode communities, and their relationships with soil temperature and water content. 【Result】 Results show that the two tracts of grasslands differed sharply in all the indices of soil nematode community. The nematode community in the enclosed tract were higher than that in the grazing tract in nematodes individual density, diversity index (H' ),species richness(SR ),and dominance index (lambda).The number of nematode individuals varied greatly from year to year in both tracts. Phytophagous nemitodes are the major contributor to the changes in nematode population of the community. The number of bacterivores and nematode channel ratio (NCR ) value shows that the grazing tract was higher than the enclosed tract in organic matter conversion efficiency. In the studied area under the same grazing intensity as it has, maintaining or increasing species diversity of the nematode community is conducive to species coexistence and ecosystem stability of the grassland. Maturity index (MI ) and plant parasite index (PPI ) values demonstrate that the five years of enclosure did not have any obvious positive effect on stability of the ecosystem. 【Conclusion】 Composition, individual density, diversity index and other indexes of soil nematode communities may reflect to a certain extent conditions of the environment they live in. All the findings in this study indicate that in the studied region, the current grazing practices are still within the reasonable extent do not have any pressure forcing the grassland to degrade. So free grazing controlled within a certain intensity may contribute to maintenance of the stability of the grassland ecosystem. Z4 为了解放牧干扰对藏北高寒草甸的影响,以及连续围封措施对草地的恢复作用, 20132015年连续3年对那曲县围封、自由放牧天然高寒草甸土壤线虫群落进行取样调查及数据分析。结果表明:围封、放牧样地的线虫个体数量在年际间的 变化均较明显,植食性线虫是整个线虫群落个体数量变化的主要贡献者;围封样地的线虫个体密度、多样性指数H'、丰富度指数SR,以及优势度指数A的年际变 化幅度均大于放牧样地;食细菌性线虫个体数量及线虫通路比值(NCR)表明放牧样地的有机质转化效率高于围封样地;成熟度指数(MI)、植物寄生线虫指数 (PPI)分析表明,所研究区域经5年围封,高寒草甸生态系统稳定性没有明显的提高,相反,现有放牧强度维持或者增加了线虫群落的物种多样性,利于物种共 存和草地生态系统稳定性的维持。 C1 Xue Huiying, College of Resources and Environment, Tibet College of Agriculture and Animal Husbandry, Linzhi, Tibet 860000, China. Luo Daqing, Institute of Plateau Ecology,Tibet College of Agriculture and Animal Husbandry, Linzhi, Tibet 860000, China. Wang Hongyuan, Institute of Plateau Ecology,Tibet College of Agriculture and Animal Husbandry, Linzhi, Tibet 860000, China. Qu Xingle, Institute of Plateau Ecology,Tibet College of Agriculture and Animal Husbandry, Linzhi, Tibet 860000, China. Z6 薛会英, 西藏农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 罗大庆, 西藏农牧学院高原生态研究所, 林芝, 西藏 860000, 中国. 王鸿源, 西藏农牧学院高原生态研究所, 林芝, 西藏 860000, 中国. 屈兴乐, 西藏农牧学院高原生态研究所, 林芝, 西藏 860000, 中国. EM 472425717@qq.com; dqluo0894@163.com Z7 472425717@qq.com; dqluo0894@163.com Z8 7 Z9 9 UT CSCD:5959014 DA 2023-03-23 ER PT J AU Jiang Yongmei Shi Shangli Tian Yongliang Lu Hu Li Haiyun Li Jianhong Lan Xiaojun Yao Tuo Z2 蒋永梅 师尚礼 田永亮 卢虎 李海云 李建宏 兰晓君 姚拓 TI Characteristics of Soil Microorganism and Soil Enzyme Activities in Alpine Meadows Under Different Degrees of Degradation Z1 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征 Z3 水土保持学报 SO Journal of Soil and Water Conservation VL 31 IS 3 BP 244 EP 249 AR 1009-2242(2017)31:3<244:GHCDBT>2.0.TX;2-I PY 2017 DT Article AB To explore the effects of different degrees of degradation on soil microbes and soil enzyme activities in alpine meadows,lightly degraded grassland,moderate degraded grassland and severe degraded grassland of alpine grasslands in the Qilian Mountains of the northeastern Qinghai-Tibet Plateau were chosen as the research objects.Characteristic changes of the number of soil microbes(bacteria,fungus,and actinomycetes), soil nitrogen bacteria groups(ammonifier,aerobic nitrogen fixing bacteria,anaerobic nitrogen fixing bacteria, nitrifiers,and denitrifying bacteria),soil microbial biomass(soil microbial biomass carbon and soil microbial biomass nitrogen),and soil enzyme activities(sucrose,urease,phosphatase,and catalase)were determined and analyzed in alpine meadows under different degrees of degradation.The results showed that,for the same soil layer under different degrees of degradation,the number of soil microbes,soil microbial biomass, soil nitrogen bacteria groups,and soil enzyme activities decreased with the increase of degradation degree, and each index was the lowest under severe degradation.The number of actinomycetes,ammoniated bacteria,and denitrifying bacteria in the 10-20cm soil layer,and the number of bacteria,fungi,actinomycetes, aerobic nitrogen fixing bacteria and denitrifying bacteria in the 20-30cm soil layer increased in the moderate degraded grassland(p <0.05).For different soil layers under under the same degrees of degradation,the number of soil microbes,soil nitrogen bacteria groups,soil microbial biomass,and soil enzyme activities decreased with the increase of soil depth.These results provide a new method for assessing the degradation of grasslands,and thus offering important theoretical bases for the restoration of degraded alpine meadows. Z4 为探讨不同退化程度对高寒草地土壤微生物及土壤酶活性的影响,以青藏高原东北缘祁连山3种不同退化程度(轻度退化、中度退化、重度退化)高寒草地为研究对 象,测定和分析土壤3大类微生物(细菌、真菌、放线菌)和氮素生理群(氨化细菌、好气性固氮菌、嫌气固氮菌、硝化细菌、反硝化细菌)数量、微生物量(碳、 氮)及土壤酶活性(蔗糖酶、脲酶、磷酸酶、过氧化氢酶)变化特征。结果表明:(1)相同土层不同退化程度,土壤3大类微生物数量、氮素生理群、微生物量以 及土壤酶活性随退化程度的加重总体呈减小的趋势,重度退化程度下各指标含量最小,中等退化程度可增加1020cm土壤放线菌、氨化细菌及反硝化细菌数量和 2030cm土壤细菌、真菌、放线菌、好气性固氮菌、反硝化细菌数量;(2)不同土层相同退化程度,土壤3大类微生物数量、氮素生理群、微生物量以及土壤 酶活性随土层深度的加深均逐渐减小。研究结果对评价草地退化程度提供了新思路,同时为高寒草地的恢复和重建提供了重要的理论依据。 C1 Jiang Yongmei, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Shi Shangli, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Tian Yongliang, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Lu Hu, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Li Haiyun, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Li Jianhong, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Lan Xiaojun, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Yao Tuo, Pratacultural College Gansu Agricultural University,Key Laboratory of Grassland Ecosystem,Ministry of Education Sino -U.S.Centers for Grazing Land Ecosystem Sustainability, Lanzhou, Gansu 730070, China. Z6 蒋永梅, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 师尚礼, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 田永亮, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 卢虎, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 李海云, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 李建宏, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 兰晓君, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 姚拓, 甘肃农业大学草业学院, 中-美草地畜牧业可持续发展研究中心;;草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. EM JYMjiangyongmei@yeah.net; yaotuo@gsau.edu.cn Z7 JYMjiangyongmei@yeah.net; yaotuo@gsau.edu.cn Z8 38 Z9 39 UT CSCD:6005984 DA 2023-03-23 ER PT J AU 赵广帅 石培礼 宗宁 何永涛 张宪州 何洪林 张晶 Z2 Zhao Guangshuai Shi Peili Zong Ning He Yongtao Zhang Xianzhou He Honglin Zhang Jing TI Declining Precipitation Enhances the Effect of Warming on Phenological Variation in a Semiarid Tibetan Meadow Steppe Z1 降水减少加剧气候变暖对西藏半干旱草甸草原物候变化的效应 Z3 资源与生态学报 SO Journal of Resources and Ecology VL 8 IS 1 BP 50 EP 56 AR 1674-764X(2017)8:1<50:DPETEO>2.0.TX;2-W PY 2017 DT Article AB Vegetation phenology is a sensitive indicator of global warming, especially on the Tibetan Plateau. However, whether climate warming has enhanced the advance of grassland phenology since 2000 remains debated and little is known about the warming effect on semiarid grassland phenology and interactions with early growing season precipitation. In this study, we extracted phenological changes from average NDVI in the growing season (GNDVI) to analyze the relationship between changes in NDVI, phenology and climate in the Northern Tibetan Damxung grassland from 2000 to 2014. The GNDVI of the grassland declined. Interannual variation of GNDVI was mainly affected by mean temperature from late May to July and precipitation from April to August. The length of the growing season was significantly shortened due to a delay in the beginning of the growing season and no advancement of the end of the growing season, largely caused by climate warming and enhanced by decreasing precipitation in spring. Water availability was the major determinant of grass growth in the study area. Warming increased demand for water when the growth limitation of temperature to grass was exceeded in the growing season. Decreased precipitation likely further exacerbated the effect of warming on vegetation phenology in recent decades due to increasing evapotranspiration and water limitations. The comprehensive effects of global warming and decreasing precipitation may delay the phenological responses of semiarid alpine grasslands. Z4 植被物候被认为是全球变暖的一个敏感指标,特别是在青藏高原。然而,自2000年以来,对气候变暖是否能够促进草地物候期的提前存在争议。升温以及生长季 节早期降水如何与之交互对半干旱草原物候产生影响鲜为人知。本研究中,我们提取藏北当雄草地2000-2014年生长季平均NDVI(GNDVI)和草地 物候变化信息,分析了NDVI、物候变化和气候变化的关系。结果表明天然草地GNDVI呈下降趋势。GNDVI的年际变化主要受5月下旬至7月的气温和4 月至8月的降水影响。由于生长季起始期不断延迟,生长季结束期基本不变,天然草地生长季长度大大缩短,这大部分是由于春季变暖和降水减少造成。水分有效性 是研究区草地生长的主要决定因素,当草地生长的温度限制被打破后,升温将增加对水的需求。近10年来,由于蒸散和水分限制不断增强,降水减少进一步加剧了 气候变暖对植被物候变化的效应。全球变暖和降水减少的综合影响可能会延迟半干旱高寒草地的物候响应。 C1 Zhao Guangshuai, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Shi Peili, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Zong Ning, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. He Yongtao, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. He Honglin, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Zhang Jing, College of Global Change and Earth System Sciences, Beijing Normal University, Beijing 100875, China. Z6 赵广帅, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 石培礼, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 宗宁, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 何永涛, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 张宪州, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 何洪林, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 张晶, 北京师范大学全球变化与地球系统科学研究院, 北京 100875, 中国. EM shipl@igsnrr.ac.cn Z7 shipl@igsnrr.ac.cn Z8 10 Z9 12 UT CSCD:5913961 DA 2023-03-23 ER PT J AU Guo Fengqing Sun Shuhong Zeng Hui Cong Peitong Z2 郭凤清 孙书洪 曾辉 丛沛桐 TI Dynamic Change of Soil Temperature and Moisture during Re-greening Period on Alpine Meadow at Haibei Station Z1 海北高寒草甸返青期土壤温度与水分动态变化 Z3 生态环境学报 SO Ecology and Environmental Sciences VL 26 IS 3 BP 408 EP 414 AR 1674-5906(2017)26:3<408:HBGHCD>2.0.TX;2-F PY 2017 DT Article AB It is a key basis to analyze the dynamics of soil moisture and soil temperature and the correlation between them during re-greening period on the Alpine Meadow of the Tibet Plateau, and the work can help to better understood the ecosystem changes on the alpine meadow. The field experiments, combined with the methods such as variance, correlation and regression analysis, were conducted in the Haibei alpine meadow to the eastern Qilian Mountain on the Tibetan Plateau in China to study the dynamic changes of the soil moisture and soil temperature of during re-greening period. The study results indicated that, (1) The average soil temperatures at the ground surface 0 cm, and the underground depths of 5, 15, 30, 60 and 120 cm were 10.47, 4.11, 3.28, 1.76, 0.80 and 0.51 ℃, respectively, during the whole re-greening period on the Haibei alpine meadow; The ground temperature at the surface 0 cm was significantly influenced by the air temperature and the change was obvious. The soil temperatures of different soil layers were around 0 ℃ at the early re-greening phase, all the soil temperatures increased rapidly at the mid-re-greening phase, and then the difference between the soil temperatures from the top to the bottom decreased gradually at the late re-greening phase. (2) The average soil moistures at the surface layer, middle layer and deep layer were 17.3%, 20.6% and 20.9%, respectively; The soil moisture gradient at the middle and deep layers was smaller. The soil moisture at the surface layer was remarkably fluctuated during the whole re-greening period and showed the trend of gradual decline. The soil moisture raised continuously at the middle and deep layers and the fluctuation range was small. And (3) the correlation of the soil moisture and soil temperature at the soil layer 0~15 cm was obviously negative, where the soil moisture was decreased gradually with the soil temperature increased. However, the correlations of them at the soil layers 15~30, 30~45 and 45~60 cm were all remarkably positive, and the correlation coefficient was increased with the soil depth increased. Our study results may provide the reference to better understand the change rules of the alpine meadow ecosystem on the Tibetan Plateau, such as biological diversity, biological processes and characteristics, and hydrological processes on the land, but also they are of great significance to protect the alpine meadow. Z4 分析青藏高原高寒草甸返青期土壤水分和温度的变化以及相互关系是理解高寒草甸生态系统变化的重要基础。为明晰青藏高原祁连山东部高寒草甸返青期的土壤温度 与水分变化规律,选择祁连山东部海北高寒草甸为试验区,以实地测试与方差、相关及回归分析相结合的方法研究了海北高寒草甸返青期土壤分层水分和温度的动态 变化。结果表明:(1)观测期内,高寒草甸整个返青期表层0 cm及地表以下5、15、30、60和120 cm土壤各层平均温度分别为10.47、4.11、3.28、1.76、0.80和0.51 ℃,表层0 cm地温受气温变化影响最为显著;返青早期各层土壤温度均稳定于0 ℃左右,返青中期各层土壤温度迅速增加,返青中后期自上而下不同土壤层温度逐渐降低;(2)表层、中层和深层土壤平均含水量分别为17.3%、20.6% 和20.9%,中层和深层土壤水分含量较小;表层土壤含水量波动剧烈,在整个返青期呈逐渐下降趋势,中层和深层土壤含水量连续增加,波动范围小;(3)高 寒草甸土层0~15 cm的土壤体积含水量与土壤温度呈显著负相关,随土壤平均温度增加,土壤体积含水量逐渐降低;15~30、30~45和45~60 cm较深层土壤含水量与土壤平均温度呈显著正相关,随土壤深度增加其相关性也随之增强。该研究可为理解青藏高原高寒草甸生态系统的变化规律和变化过程提供 参考依据,对高寒草甸的保护及可持续利用也具有重要意义。 C1 Guo Fengqing, College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300384, China. Sun Shuhong, College of Water Conservancy Engineering, Tianjin Agricultural University, Tianjin 300384, China. Zeng Hui, School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China. Cong Peitong, College of Water Conservancy and Civil Engineering, South China Agricultural University, Guangzhou, Guangdong 510642, China. Z6 郭凤清, 天津农学院水利工程学院, 天津 300384, 中国. 孙书洪, 天津农学院水利工程学院, 天津 300384, 中国. 曾辉, 北京大学深圳研究生院城市规划与设计学院, 深圳, 广东 518055, 中国. 丛沛桐, 华南农业大学水利与土木工程学院, 广州, 广东 510642, 中国. EM gfqlwr@163.com; hongss63@126.com Z7 gfqlwr@163.com; hongss63@126.com Z8 2 Z9 2 UT CSCD:5996885 DA 2023-03-23 ER PT J AU Gao Feng Wang Bin Shi Yuxiang Zhang Gengxin Wang Jian Si Guicai Han Conghai Yuan Yanli Hu Ang Z2 高凤 王斌 石玉祥 张更新 王建 斯贵才 韩丛海 袁艳丽 胡盎 TI The response of alpine grasslands ecosystem in the north Tibet to short-term enclosure Z1 藏北古露高寒草地生态系统对短期围封的响应 Z3 生态学报 SO Acta Ecologica Sinica VL 37 IS 13 BP 4366 EP 4374 AR 1000-0933(2017)37:13<4366:ZBGLGH>2.0.TX;2-C PY 2017 DT Article AB Alpine grasslands,an important terrestrial ecosystem,play an essential role in global carbon and nitrogen cycles. Recently, overgrazing in alpine grasslands, particularly on the Tibetan Plateau, a sensitive district subject to climate change, is a serious issue leading to their degradation and degeneration, Fencing to exclude grazers has become an important management practice to protect and re-establish the degraded grasslands on the TP. Previous studies on the alpine grassland ecosystem have focused on a certain aspect. However, a systematic study has largely been lacking. The current research was focused on the severely degraded alpine grassland in Gulu Town, Naqu County, located in the north of TP. In order to determine the effect of restoration, we studied the short-term (three-year) effects of fencing on the vegetation characteristics, soil physicochemical properties, soil enzyme activities, soil microbial biomass, and soil microbial communities, and compared them with areas where grazing was allowed. Soil enzyme activity was detected using an UV spectrophotometer. Microbial biomass was measured by phospholipid -derived fatty-acid analysis (PLFA) method. Furthermore, we also studied profiling of complex soil bacterial communities based on 16S ribosomal RNA gene (rDNA) sequences by means of Next Generation Sequencing (NGS) technologies at the Ion Personal Genome Machine (PGM) platform. After fencing for three years, the alpine grassland ecosystem differed noticeably between the fencing and grazing areas across the study sites. Our study showed that: (1) The total plant cover, average vegetation height, and aboveground biomass of vegetation determined during the above ground vegetation surveys were significantly higher in fenced areas than the areas where grazing was permitted (P<0.01). However, the diversity of vegetation (Shannon-Weiner index) in the fenced area was significantly lower than that in grazing sites (P<0.01). (2) Soil pH perceptibly decreased while the dissolved organic carbon in soil was increased after fencing. Soil structure, in terms of the ratio of sand to silt was also affected with fencing (P<0.05). (3) Soil enzyme activities were not influenced by fencing. (4) Soil microbial biomass(Bacteria, Actinomycetes, and Fungi) significantly increased in the fencing area(P<0.05). (5) There was an increasing tendency in the diversity of bacteria in soil,and the community composition of bacteria was changed at the phylum level, but there was no significant difference after fencing. (6) Further, the Mantel's test suggested that the major environmental factor, soil organic matter such as total organic carbon (TOC),total nitrogen (TN),carbon to phosphorus ratio (C/P), and nitrogen to phosphorus ratio(N/P) were affecting microbial community in the fenced sites. From these results, it can be inferred that, in the grasslands ecosystem, soil sub-system was steadier than plant community sub-system. In soil subsystem,soil microbial communities were less susceptible than soil profile characteristics in fenced grasslands. In conclusions,fencing was a valid method in reconstructing aboveground biomass in the alpine grassland on TP,thereby inducing a number of changes in the soil microbial community, including the composition and diversity of microorganisms. In future, more destroyed grassland should be fenced in order to preserve the balance of the ecosystem and to resist the effects of global climate change. More studies were needed to be conducted over longer periods of fencing to further our understanding of the effects on fencing on restoration of alpine grasslands. Z4 过度放牧导致高寒草地生态系统退化,围封是生态保护和恢复的管理手段。以青藏高原那曲县古露镇过牧退化高寒草地为对象,系统分析了高寒草地生态系统的植被 特征及土壤理化特性、土壤酶活性、土壤微生物生物量和群落结构对围封的响应。结果表明,短期围封后,(1)植被平均高度、盖度和地上生物量均有极显著增加 (P<0.01),而生物多样性指数则显著降低(P<0.01); (2)土壤的水溶性有机碳含量、土壤物理结构(沙土与粉土的比例)及pH有显著变化(P <0.05); (3)土壤酶活性没有明显改善;(4)土壤微生物生物量(细菌、放线菌、真菌)均呈显著增加(P <0.05); (5)土壤中细菌的多样性有增加的趋势,其群落组成在门水平上也发生了变化;(6) Mantel test分析显示与土壤细菌群落结构的呈正相关性的环境因子主要为土壤有机碳含量(TOC)、总氮含量(TN)、碳磷比(C/P)与氮磷比(N/P)(P <0.05)。这表明围栏封育有利于藏北草地植被、土壤理化特性的恢复,还能维持土壤微生物多样性,促进高寒草地生态系统的可持续发展。 C1 Gao Feng, Hebei University of Engineering, Key Laboratory of Alpine Ecology and Biodiversity (LAEB), Handan, Hebei 056038, China. Wang Bin, Hebei University of Engineering, Handan, Hebei 056038, China. Shi Yuxiang, Hebei University of Engineering, Handan, Hebei 056038, China. Zhang Gengxin, Key Laboratory of Alpine Ecology and Biodiversity (LAEB),Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100101, China. Han Conghai, Key Laboratory of Alpine Ecology and Biodiversity (LAEB),Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100101, China. Yuan Yanli, Key Laboratory of Alpine Ecology and Biodiversity (LAEB),Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100101, China. Hu Ang, Key Laboratory of Alpine Ecology and Biodiversity (LAEB),Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100101, China. Wang Jian, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Si Guicai, Lanzhou Institute of Geology,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 高凤, 河北工程大学, 中国科学院高寒生态学与生物多样性重点实验室, 邯郸, 河北 056038, 中国. 王斌, 河北工程大学, 邯郸, 河北 056038, 中国. 石玉祥, 河北工程大学, 邯郸, 河北 056038, 中国. 张更新, 中国科学院青藏高原研究所, 中国科学院高寒生态学与生物多样性重点实验室, 北京 100101, 中国. 韩丛海, 中国科学院青藏高原研究所, 中国科学院高寒生态学与生物多样性重点实验室, 北京 100101, 中国. 袁艳丽, 中国科学院青藏高原研究所, 中国科学院高寒生态学与生物多样性重点实验室, 北京 100101, 中国. 胡盎, 中国科学院青藏高原研究所, 中国科学院高寒生态学与生物多样性重点实验室, 北京 100101, 中国. 王建, 中国科学院水利部成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 斯贵才, 中国科学院地质与地球物理研究所兰州油气资源研究中心, 兰州, 甘肃 730000, 中国. EM hdwangbin@126.com Z7 hdwangbin@126.com Z8 12 Z9 17 UT CSCD:6024137 DA 2023-03-23 ER PT J AU Hu Yigang Zhang Zhenhua Wang Shiping Zhang Zhishan Zhao Yang Wang Zengru TI The weak effects of fencing on ecosystem respiration, CH_4, and N_2O fluxes in a Tibetan alpine meadow during the growing season Z3 寒旱区科学 SO Sciences in Cold and Arid Regions VL 9 IS 6 BP 554 EP 567 AR 1674-3822(2017)9:6<554:TWEOFO>2.0.TX;2-U PY 2017 DT Article AB Fencing is the most common land-management practice to protect grassland degradation from livestock overgrazing on the Tibetan Plateau. However, it is unclear whether fencing reduces CO_2, CH_4, and N_2O emission. Here, we selected four vegetation types of alpine meadow (graminoid, shrub, forb, and sparse vegetation) to determine fencing effects on ecosystem respiration (Re), CH_4, and N_2O fluxes during the growing season. Despite increased average monthly ecosystem respiration (Re) for fenced graminoid vegetation at the end of the growing season, there was no significant difference between grazing and fencing across all vegetation types. Fencing significantly reduced average CH_4 uptake by about 50% in 2008 only for forb vegetation and increased average N_2O release for graminoid vegetation by 38% and 48% in 2008 and 2009, respectively. Temperature, moisture, total organic carbon, C/N, nitrate, ammonia, and/or bulk density of soil, as well as above- and belowground biomass, explained 19%~71% and 6%~33% of variation in daily and average Re and CH_4 fluxes across all vegetation types, while soil-bulk density explained 27% of variation in average N_2O fluxes. Stepwise regression showed that soil temperature and soil moisture controlled average Re, while soil moisture and bulk density controlled average CH_4 fluxes. These results indicate that abiotic factors control Re, CH_4, and N_2O fluxes; and grazing exclusion has little effect on reducing their emissionimplying that climatic change rather than grazing may have a more important influence on the budgets of Re and CH_4 for the Tibetan alpine meadow during the growing season. C1 Hu Yigang, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Shapotou Desert Experiment and Research Station, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Zhang Zhishan, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Shapotou Desert Experiment and Research Station, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Zhao Yang, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Shapotou Desert Experiment and Research Station, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Wang Zengru, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Shapotou Desert Experiment and Research Station, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Zhang Zhenhua, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Wang Shiping, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Key Laboratory of Alpine Ecology and Biodiversity, Chinese Academy of Sciences, Beijing 100085, China. EM huyig@lzb.ac.cn; wangsp@itpcas.ac.cn Z8 0 Z9 3 UT CSCD:6150056 DA 2023-03-23 ER PT J AU He Yongtao Zhang Xianzhou Yu Chengqun Z2 何永涛 张宪洲 余成群 TI Coupling Crop Farming and Pastoral System for Regional Development and Their Ecological Effects on the Tibetan Plateau Z1 西藏高原农牧系统耦合发展及其生态效应 Z3 中国科学院院刊 SO Bulletin of the Chinese Academy of Sciences VL 31 IS 1 BP 112 EP 117 AR 1000-3045(2016)31:1<112:XZGYNM>2.0.TX;2-3 PY 2016 DT Article AB Tibet Autonomous Region of China, as central part of the Qinghai-Tibetan plateau, average elevation above 4000m, is one key zone for ecological sheltering function to China and East Asia. Nevertheless, the ecological capacity of the Tibetan plateau is lower due to their extreme environment and abominable natural resources. And, the Tibetan plateau is among those areas that are most sensitive and vulnerable to future climate change, addition with increasing human activities, such as overgrazing, many ecological problems including ecosystem degradation emerged on the Tibetan plateau, which will inevitably weaken the ecological sheltering function on the Tibetan plateau.On the other hand, poverty still widespreads on the Tibetan plateau due to inadequacy of natural resources and rigorous environment.Therefore, how to increase income of the local farmers is another important problem. Although the average income of local famers increased from 1 691 RMB in 2003 to 7 359 RMB in 2014 on the Tibetan plateau, it is still lower than national level, and about 45.7*10~4 local people lives below the national poverty line standard. The government aims to increase the local framer's average income equal to national level in year 2020. In summary, both strength the ecological sheltering function and increase income of famer and herdsman are pressing tasks on the Tibetan plateau. Therefore, the road to sustainable development and ecological civilization on the Tibetan plateau should be conserving the natural environment friendly. And, the increasing income of local farmers mainly comes from agricultural and pastoral because the traditional husbandry supported by alpine grassland ecosystem still dominated on the Tibetan plateau.Obvious functional differences exit between the pastoral system and crop farming system on the Tibetan plateau. The pastoral system distributes above 4000m, mainly includes the Nagqu and Nagri prefecture, and this region locates at the highest area, which is important for ecological sheltering function in China. Dominated ecosystems include the alpine meadow, steppe, and desert, their natural productivity is limited and the edible forage is lower than 100kg/mu. The shortage of forage, especially in non-growth season, restricts the development of livestock farming. The contradiction between the forage supply and livestock demand will inevitably bring damage to natural grassland ecosystem. The crop-farming system distributed about 3 000-4 000 m, along the dominated river basin of YarlungZangbo river, Lhasa river, and Nyangqu river, mainly includes the Lhasa, Xigaze, Shannan prefecture. This area has the advantage climate and enough fields for crop farming, and their productivity of forage is about 3 000 kg/mu, which far higher than that of natural grassland in northwestern Tibetan plateau,while the current single grains planting structure limits the increase of local farm's income. We suggest that the ways to deal with this situation should couple pastoral system and crop farming system in different areas to realize the double win for increasing farmer's income and guarantee the ecological sheltering function on the Tibetan Plateau. This engineer mainly is to produce forage in crop farming system and to supply the forage to pastoral ecosystem for reducing the overgrazing in natural grassland. Based on ensuring the crop demand for the local people, some crop field can shift to artificial pasture for producing more forage in the crop framing area. Z4 生态安全屏障建设和促进农牧民持续增收是西藏高原可持续发展过程中面临的两方面重大需求。文章根据西藏地域分异的特点,对藏北地区草地面临的主要生态问题 以及高原地区农牧民面临的增收困境进行了分析,提出了农区和牧区互动耦合的区域发展对策。即利用西藏一江两河河谷农区丰富的水热和土地条件,建设草产品和 饲料基地,实施南草北上工程,对藏北地区的牲畜进行季节性补饲,缓解草畜矛盾,遏止草地退化,不仅可以改善藏北草地的生态环境,同时还可以增加农牧民的收 入,从而实现西藏高原生态环境保护和农牧民收入增加的双赢。 C1 He Yongtao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; Lhasa Station, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; Lhasa Station, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Yu Chengqun, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences; Lhasa Station, Key Laboratory of Ecosystem Network Observation and Modeling,Chinese Academy of Sciences, Beijing 100101, China. Z6 何永涛, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室(拉萨站), 北京 100101, 中国. 张宪洲, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室(拉萨站), 北京 100101, 中国. 余成群, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室(拉萨站), 北京 100101, 中国. EM heyt@igsnrr.ac.cn; zhangxz@igsnrr.ac.cn Z7 heyt@igsnrr.ac.cn; zhangxz@igsnrr.ac.cn Z8 7 Z9 11 UT CSCD:5615514 DA 2023-03-23 ER PT J AU Liu Zhe Chen Dongdong Li Qi Zhao Liang Xu Shixiao Zhao Xinquan Z2 刘哲 陈懂懂 李奇 赵亮 徐世晓 赵新全 TI Effects of Different Land Use Patterns on Soil Inorganic Carbon in Alpine Meadow Ecosystem Z1 土地利用方式对高寒草甸生态系统土壤无机碳的影响 Z3 水土保持通报 SO Bulletin of Soil and Water Conservation VL 36 IS 5 BP 73 EP 79 AR 1000-288X(2016)36:5<73:TDLYFS>2.0.TX;2-L PY 2016 DT Article AB [Objective] We aimed to understand the effects of different land use patterns on soil inorganic car-bon(SIC) content and storage, in order to provide scientific support for regional carbon transfer principle and grassland management. [Methods] The content and storage of SIC and the main soil physicochemical properties are analyzed, in five different land use patterns including fencing grassland (WF),free grazing land (NG),perennial artificial grassland(RG),reseeding land(BB) and an extreme degradation meadow (HTT). [Results] In alpine meadow ecosystem, SIC content was low, and the SIC storages differed among different land use patterns:RG(3 381.28 kg/hm~2)>WF(739.27 kg/hm~2)>NG(712.12 kg/hm~2)>BB(647.64 kg/hm~2)> HTT(361.26 kg/hm~2). Soil pH value, bulk density and water content varied greatly among different land use types. SIC content showed a positive relation with soil bulk density while a negative relation with water content. When pH<7, the SIC content was very low and remained constant, in contrast, when pH>7,SIC content increased exponentially. [Conclusions] The planting perennial artificial grassland was more effective than other measures in terms of SIC sequestration and maintaining the function of carbon sink. Z4 [目的]探明土地利用方式对高寒草甸生态系统土壤无机碳含量及储量的影响,为青藏高原区域碳增汇原理及草地管理实践提供科学支撑。[方法]选取围栏封育地 、自由放牧地、多年生人工草地、补播地及黑土滩型退化草地5类不同土地利用类型,对无机碳的含量和储量、土壤主要理化性质的变化及其相关性进行比较分析。 [结果]在高寒草甸生态系统中,无机碳含量较低且不同土地利用下土壤无机碳的储量(以C含量表示)有显著差异,表现为多年生人工草地(3 381.28 kg/hm~2)>围栏封育地(739.27 kg/hm~2) >自由放牧地(712.12 kg/hm~2)>补播地(647.64 kg/hm~2)>黑土滩型退化草地(361.26 kg/hm~2)。不同土地利用类型草地的土壤pH值、容重和含水量差异显著。土壤无机碳与土壤容重和含水量分别为线性正相关和负相关关系,与pH值为正 相关关系,当pH值<7时,无机碳含量很低,基本保持不变;当pH值>7时,表现为指数函数关系。[结论]在高寒退化草地改良重建的技术与综合治理模式中 ,黑土滩型退化草地上建植多年生人工草地的管理策略在无机碳固定方面较其他措施更加有效,是维持草地碳汇功能的有效措施。 C1 Liu Zhe, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Chen Dongdong, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Qi, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhao Liang, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Xu Shixiao, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhao Xinquan, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 刘哲, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 陈懂懂, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李奇, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 赵亮, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 徐世晓, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 赵新全, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM liuzhe2010@126.com; lzhao@nwipb.cas.cn Z7 liuzhe2010@126.com; lzhao@nwipb.cas.cn Z8 1 Z9 3 UT CSCD:5862450 DA 2023-03-23 ER PT J AU Liu Yanbin Zhang Dianye Zhang Yongchao Shi Mingming Shang Zhenyan He Lei Zong Wenjie Fu Hua Niu Decao Z2 刘延斌 张典业 张永超 石明明 尚振艳 贺磊 宗文杰 傅华 牛得草 TI Evaluation of restoration effect in degraded alpine meadow under different regulation measures Z1 不同管理措施下高寒退化草地恢复效果评估 Z3 农业工程学报 SO Transactions of the Chinese Society of Agricultural Engineering VL 32 IS 24 BP 268 EP 275 AR 1002-6819(2016)32:24<268:BTGLCS>2.0.TX;2-F PY 2016 DT Article AB Alpine meadow mainly locates in the Qinghai-Tibetan Plateau and other high altitude areas, and plays a vital role in maintaining the balance of the global ecosystem. Recently, the extensive degradation of alpine meadow has been caused by the global climate change and the interference of human activities, which has made these areas extremely important for further study. People have applied a few measures to restore the degraded grassland, however there was no quantitative mean that could evaluate the effectiveness of ecological restoration measures synthetically. For the scientific assessment of the effects of different ecological regulation measures on the degraded alpine meadow ecosystems, this research was conducted in Maqu alpine meadow in Gansu Province, northwestern China from May 2010 to December 2012. The VOR(vigor, organization, resilience) and CVOR(condition, vigor, organization, resilience) ecosystem health evaluation models were utilized to evaluate the health condition of the degraded grassland ecosystem after restoration, and the restoration measures included enclosure, ripping, organic material addition, reseeding and comprehensive measure, and the grazing was taken as the control. We implemented enclosure and slicing of the pasture vertically and horizontally with the plough as ripping, implemented enclosure, scarifying and fertilization in the pasture with sheep manure of 22.5 t/hm~2 as organic material addition, and implemented enclosure and reseeding with Elymus nutans of 15 kg/hm~2 as reseeding. And for grazing treatment we used the grazing pressure of about 2-2.5 yak/hm~2. As for comprehensive measure, we combined the treatment of enclosure with the treatments of ripping, organic material addition and reseeding. For the calculation of evaluation model, we determined soil organic carbon content and gauged above-ground biomass, Shannon-Wiener species diversity index, biomass of functional groups and economic groups of all the grass under different regulation measures to further compute condition index(C), vigor index(V), organization index(O), and resilience index(R). We expected to find which ecological regulation measure was the most effective and contrasted 2 models to check the applicability. The results showed the CVOR health evaluation index was relatively more comprehensive than the VOR health evaluation index considering the importance of basic condition, which could more objectively reflect the additional specific soil nutrient status(organic or inorganic), and more quantitatively manifest the effects of restoration measures of grassland ecosystem, contributing to the specific formulation and the implementation of specific engineering management measures. According to the 2 models, the VOR index evaluation calculation results showed the effects of organic material input and comprehensive measure on recovery and rehabilitation of degraded grassland were more obvious than others, their health values rose by 5%-9% year by year simultaneously, and the value of grazing was lower than other measures significantly(P<0.05). The CVOR index evaluation calculation results showed the effect of comprehensive ecological restoration measure was superior to other single treatment measure and its value reached 0.917 that was significantly higher than others(P<0.05), while grazing led alpine meadow ecosystem to health "warning" level and its value went down to 0.572, which was lower than other measures significantly(P<0.05). The results manifested that the implementation of comprehensive measure in local degraded areas can achieve the purpose of saving the grassland ecosystem health comprehensively and quickly. But in practice due to the comprehensive measure cost is high, for selecting the optimum ecological recovery measure, it requires specific consideration of each measure's dual benefits of economy and ecology so as to adjust the measures to local conditions. Z4 为了科学评估不同管理措施下退化高寒草地生态治理的综合成效,该研究采用VOR及CVOR生态系统健康评价模型,对甘肃省玛曲退化高寒草甸实施2a的围封 、划破、施肥、补播和综合措施等五种不同生态恢复措施,以及自由放牧下的草地生态系统健康状况进行了评估。根据两种模型测算结果,用VOR指数评价综合生 态恢复措施的效果大致为:综合措施、施肥>划破、补播、围封>放牧,用CVOR指数评价综合生态恢复措施的效果:综合措施>划破>施肥、补播、围封>放牧 。综合措施在2种评价体系下均显著优于各单一处理措施,实施2a后其CVOR数值处于健康范围,高达0.917,且放牧导致高寒草甸生态系统健康趋于警戒 水平,健康指数值为0.572。结果表明,VOR及CVOR指数模型应用于生态恢复管理措施的效果评价,可反映出不同措施实施后的具体量化效果,可进行更 广泛适用。在退化严重亟需生态恢复的草地,可通过综合生态恢复措施的实施,以达到全面迅速恢复草地生态系统健康的目的。此外,需具体考量每种措施的经济学 和生态学双重效益,利用更全面的CVOR指数模型评价草地健康状况,因地制宜地制定和实施管理措施。 C1 Liu Yanbin, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Zhang Dianye, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Zhang Yongchao, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Shi Mingming, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Shang Zhenyan, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. He Lei, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Fu Hua, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Niu Decao, State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Zong Wenjie, Maqu Animal Husbandry and Veterinary Bureau, Maqu, 747300. Z6 刘延斌, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 张典业, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 张永超, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 石明明, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 尚振艳, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 贺磊, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 傅华, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 牛得草, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 宗文杰, 甘肃省玛曲县畜牧兽医局, 玛曲, 747300. EM liuyb15@lzu.edu.cn; xiaocao0373@163.com Z7 liuyb15@lzu.edu.cn; xiaocao0373@163.com Z8 10 Z9 15 UT CSCD:5888635 DA 2023-03-23 ER PT J AU Liu Shuli Lin Li Zhang Fawei Du Yangong Li Yikang Guo Xiaowei Ouyang Jingzheng Cao Guangmin Z2 刘淑丽 林丽 张法伟 杜岩功 李以康 郭小伟 欧阳经政 曹广民 TI Effects of grazing season and degradation degree on the soil organic carbon in alpine meadow Z1 放牧季节及退化程度对高寒草甸土壤有机碳的影响 Z3 草业科学 SO Pratacultural Science VL 33 IS 1 BP 11 EP 18 AR 1001-0629(2016)33:1<11:FMJJJT>2.0.TX;2-Q PY 2016 DT Article AB Alpine meadow is the major vegetation type in the Qinghai-Tibet Plateau. This study investigated the differences in soil organic carbon content and storage under different grazing seasons and degradation degree alpine meadow of Qinghai Province. The result of this study showed that soil organic carbon content decreased with the decrease of soil depth from surface to 30 cm depth,and it was not significantly different between cold-season grazing meadow and warmseason grazing meadow at 0 ― 30 cm soil layer. Soil physical properties and biomass at 0-30 cm soil layer varied with different grazing seasons. Soil organic carbon content was the biggest in non-degradation meadow at 0-5 cm layer and in the light-degradation meadow except for 0-5 cm layer. Soil physical properties varied with different degradation stages. The underground biomass increased at first and then decreased while the aboveground biomass decreased as the degradation degree of meadow increased. The soil organic carbon decreased within the cold-season grazing meadow while it increased at first and then decreased in the warm-season grazing meadow. The soil organic carbon density was lower in the cold-season grazing meadow than that in the warm-season grazing meadow but it was not significant. These results implied that the degradation degree played great impact on soil organic carbon. Z4 高寒草甸是青藏高原的主要植被类型,本研究以青海省高寒草甸为研究对象,探讨不同放牧季节及退化程度下高寒草甸土壤有机碳含量及密度的分异特征。结果表明 ,在0-30 cm土层内,土壤有机碳含量随土层深度逐渐减小。土壤有机碳含量暖季放牧与冷季放牧之间无显著差异(P>0.05), 且在不同土壤深度中一致。不同放牧季节下土壤理化性质及生物量各不相同。0-30 cm土层内,除0-5 cm未退化阶段土壤有机碳含量最高,其余各层土壤有机碳含量均在轻度退化阶段达到最大。土壤理化性质在不同退化阶段也变化各异,地下生物量随草地退化呈先 增加后减小的趋势,而地上生物量随草地退化呈逐渐减小的趋势。冷季放牧高寒草甸土壤有机碳含量随草地退化呈逐渐减小的趋势,而暖季放牧土壤有机碳含量随草 地退化呈先增加后减小的趋势。0-30 cm土层冷季放牧不同阶段土壤有机碳储量均低于暖季放牧,但未达到显著水平。可见,放牧强度的不同会对土壤有机碳的影响比放牧季节更大。 C1 Liu Shuli, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Du Yangong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Guo Xiaowei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Ouyang Jingzheng, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Z6 刘淑丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 欧阳经政, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM liushuli0203@163.com; caogm@nwipb.ac.cn Z7 liushuli0203@163.com; caogm@nwipb.ac.cn Z8 16 Z9 18 UT CSCD:5645143 DA 2023-03-23 ER PT J AU Gong Yuling Wang Zhaofeng Zhang Yili Feng Yongjun Z2 巩玉玲 王兆锋 张镱锂 冯永军 TI Characteristics of Variation of Soil Temperature in Shrub Meadow Area of Lhasa Z1 拉萨灌丛草甸区土壤温度变化特征 Z3 土壤学报 SO Acta Pedologica Sinica VL 53 IS 2 BP 411 EP 420 AR 0564-3929(2016)53:2<411:LSGCCD>2.0.TX;2-G PY 2016 DT Article AB Soil temperature is one important environmental factor affecting soil formation and plant growth,especially in the alpine environment. The studies on plateau soil temperature may help researchers understand how soil heat is conducted during the freezing and thawing process as well as how fragile the ecosystem of an alpine region is. However,so far the studies on soil temperature of alpine regions are not so helpful and instead affect proper characterization of the variation of soil temperature,because they are often conducted in fields different in vegetation,topography,latitude and longitude,etc. This study was laid out in a typical shrub meadow area of the Lhasa River Valley on a mountain slope uniform in natural conditions, including vegetation type,slope degree and aspect. The slope is covered dominantly with Rhododendron primuliflorum,making the total vegetation coverage up to 82%. The soil on the slope is of the type of subalpine shrub meadow soil,slightly acidic. Nine monitoring points were distributed over the slope from elevation of 4 000 m to 4 800 m with a gradient of 100 m;and in each point 2 temperature recorders(The Onset HOBO Company of USA;The type is U23-003;Operation range Internal sensors:-40 °C to 100 °C) were placed,each with 4 temperature sensors placed at the depth of 5,10,20 and 30 cm,separately. Data were collected once an hour from October 5,2013 to September 15,2014. As the monitoring points at 4 000 m,4 400 m and 4 700 m were damaged owning to unknown causes,only the data collected from the points at 4 100,4 200,4 300,4 500,4 600 and 4 800 m were analyzed with the typical statistical method for characteristics of the variation of soil temperature with elevation and soil depth gradients. Results show that(1)in a year,the daily mean soil temperature within the 0~30 cm soil layer followed a cosine function curve,fluctuating within the range from-9.05 °C to 14.21 °C and averaging 2.94 °C;it rose at a rate of 0.11 °C d~(-1) and fell at a rate of-0.19 °C d~(-1),and it displayed a rising trend for 106 days and a declining trend for 73 days,and remained frozen for 147 days in a year;(2)the soil temperature followed a quasi-sine curve in daily variation,fluctuating within the range of 2.8 °C;it varied sharper in summer than in fall;the rising trend of soil temperature lasted shorter than the declining trend did:and especially in winter,the former lasted for only 4 hours,the shortest among the four seasons;but in summer it did for 8 hours and peaked at 17:00 and the soil temperature bottomed at 10:00 within a day;(3)the annual mean soil temperature decreased with rising elevation,at a rate of-0.63 °C (100 m~(-1)),and the phenomenon was more obvious in summer than in the other seasons,with the rate being-0.76 °C(100 m~(-1)) and the least in fall,being only-0.37 °C(100 m~(-1));variation coefficient of the soil temperature increased with rising elevation,which indicates that soil temperature varies sharply and intricately with elevation;(4)the annual mean soil temperature was a power function of soil depth;with increasing depth,soil temperature varied less and less,the difference between soil layers in temperature became narrower and narrower,and the occurrence of peak and bottom values was delayed;during the temperature rising period, soil heat transferred downward,while during the temperature declining period,it did reversely;during the period when the soil was frozen,variation of soil temperature tended to be uniform regardless of soil depth;however,freeze-up of the top soil layer lasted the longest,for about 149 days;and soil heat transfer at 20cm in depth was relatively steady during the freezing-thawing process. Z4 土壤温度影响土壤发育与植被状况,是反映脆弱生态系统环境状况的基本参数。本文通过一年的实地观测,分析了拉萨典型灌丛草甸区土壤温度特征及其在海拔梯度 与深度层次上的变化规律。结果表明:(1)0~30 cm深度范围,年内土壤日均温变化类似余弦曲线,平均值为2.94℃,年内有147 d土壤低于0℃;一天内土壤温度变化类似正弦曲线,日温差平均为2.80℃,夏季温差大,秋季温差小。(2)土壤年均温与海拔符合线性关系,土壤年均温随 海拔的变率为-0.63℃(100 m~(-1)),夏季土壤温度的海拔效应较其他季节明显;且海拔越高,土壤温度波动幅度越大。(3)土壤年均温与深度呈幂函数关系;随深度的增加,土壤温 度变率降低。20 cm是土壤温度变化相对稳定的浅土层。 C1 Gong Yuling, College of Resource and Environment,Shandong Agricultural University Key Laboratory of Land Surface Pattern and Simulation, Chinese Academy of Sciences, Taian, Shandong 271018, China. Wang Zhaofeng, Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Zhang Yili, Key Laboratory of Land Surface Pattern and Simulation,Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Feng Yongjun, College of Resource and Environment,Shandong Agricultural University, Taian, Shandong 271018, China. Z6 巩玉玲, 山东农业大学资源与环境学院, 中国科学院陆地表层格局与模拟重点实验室, 泰安, 山东 271018, 中国. 王兆锋, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京 100101, 中国. 张镱锂, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京 100101, 中国. 冯永军, 山东农业大学资源与环境学院, 泰安, 山东 271018, 中国. EM gongyuling0827@126.com; wangzf@igsnrr.ac.cn Z7 gongyuling0827@126.com; wangzf@igsnrr.ac.cn Z8 8 Z9 9 UT CSCD:5670555 DA 2023-03-23 ER PT J AU Zhang Xianzhou Wang Xiaodan Gao Qingzhu Hou Taiping Shen Zhenxi Fang Jiangping Z2 张宪洲 王小丹 高清竹 侯太平 沈振西 方江平 TI Research in ecological restoration and reconstruction technology for degraded alpine ecosystem,boosting the protection and construction of ecological security barrier in Tibet Z1 开展高寒退化生态系统恢复与重建技术研究,助力西藏生态安全屏障保护与建设 Z3 生态学报 SO Acta Ecologica Sinica VL 36 IS 22 BP 7083 EP 7087 AR 1000-0933(2016)36:22<7083:KZGHTH>2.0.TX;2-P PY 2016 DT Article AB Tibet is a vital ecological security barrier in China,as well as the core of the Qinghai-Tibet Plateau. In cause of the high altitude,low temperature,and drought climate,Alpine ecosystem in Tibet is almost the most vulnerable ecosystem under the effects of natural and artificial factor in the world. Despite controlling the grassland degeneration and land desertification is still the top priority of the protection and construction of ecological security barrier in Tibet,it is difficult to put that into effect. To tackle this issue,we start the national key research and development program,Ecological Restoration and Reconstruction Technology for Degraded Alpine Grasslands in Tibet (No. 2016YFC0502000),in the special research project of Ecological Restoration and Protection of Typical and Vulnerable Ecosystem. Based on the study of ecosystem evolution and mechanism,our project focuses on alpine grassland restoration,land desertification management,ecological industry and ecological livestock husbandry development under distinct degradation situations. The project will develop an integrative system for ecological restoration and reconstruction technology in degraded alpine ecosystem at county level,which can promote ecosystem function and optimize management structure of ecosystem adaption. Our results will provide a technological support for the protection and construction of ecological security barrier in Tibet. Z4 西藏是青藏高原的核心,是我国重要的生态安全屏障。由于高、寒、旱的特点,西藏高寒生态系统极为脆弱,在自然和人为因素影响下极易发生退化,治理难度大。 草地退化和土地沙化治理一直是西藏生态安全屏障保护与建设的重中之重。为此,国家在典型脆弱生态修复与保护研究重点专项里启动了西藏退化高寒生态系统恢复 与重建技术及示范(2016YFC0502000)项目,旨在研究生态系统演变规律和影响机理的基础上,针对西藏高原不同的退化区域,重点研发高寒退化草 地恢复、沙化土地治理、生态产业及生态畜牧业发展等技术与模式,开展县域水平的集成示范,实现高寒生态系统功能的提升与适应性优化管理的目标,为西藏生态 安全屏障保护与建设提供技术支撑。 C1 Zhang Xianzhou, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Shen Zhenxi, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Wang Xiaodan, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Beijing 610041, China. Gao Qingzhu, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China. Hou Taiping, Tibet University, Lhasa, Tibet 850000, China. Fang Jiangping, Xizang Agriculture and Animal Husbandry Collage, Lhasa, Tibet 860000, China. Z6 张宪洲, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 沈振西, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 王小丹, 中国科学院水利部成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 高清竹, 中国农业科学院农业环境与可持续发展研究所, 北京 100081, 中国. 侯太平, 西藏大学, 拉萨, 西藏 850000, 中国. 方江平, 西藏大学农牧学院, 拉萨, 西藏 860000, 中国. EM zhangxz@igsnrr.ac.cn Z7 zhangxz@igsnrr.ac.cn Z8 7 Z9 9 UT CSCD:5870237 DA 2023-03-23 ER PT J AU Zhang Wenpeng Si Xiaolin Wang Wenyin Gao Tianpeng Xu Danghui Z2 张文鹏 司晓林 王文银 高天鹏 徐当会 TI Effects of short-term nitrogen and silicon addition on above-ground biomass and biodiversity of alpine meadow of the Qinghai-Tibetan Plateau,China Z1 氮硅添加对高寒草甸生物量和多样性的影响以青藏高原为例 Z3 草业科学 SO Pratacultural Science VL 33 IS 1 BP 38 EP 45 AR 1001-0629(2016)33:1<38:DGTJDG>2.0.TX;2-V PY 2016 DT Article AB The nitrogen and phosphate is widely fertilized to meadow,but few silicon is involved. Silicon,a beneficial element,has been proved to encourage plant to grow well by enhancing the resistance to various environmental stresses. A field experiment was carried out to investigate the effects of different levels of nitrogen and silicon addition on aboveground biomass and biodiversity of alpine meadow in the Qinghai-Tibetan Plateau,China. This study indicated that nitrogen fertilizer and silicon fertilizer improved the above-ground biomass of plant community. However,the increase from silicon fertilizer for above-ground plant biomass was far lower than that from nitrogen fertilizer. Nitrogen fertilizer led to declines in species diversity,while silicon fertilizer alleviated the decreasing trend of species diversity. The biological function of silicon fertilizer had an optimal concentration effect at the plant community level. Meanwhile,we hypothesized that silicon fertilizer plays a positive role in maintaining the survival rate of weeds,and the results of this study supported this speculation,in which the proportion of the weed biomass to plant community biomass varied with different silicon fertilizer levels. Z4 草地施肥多集中于添加氮肥与磷肥,很少涉及硅肥。硅作为对植物有益的一种元素,能提高植物对环境的抗性,促进植物的生长。本研究以青藏高原高寒草甸为研究 对象,通过添加不同组合的氮肥和硅肥,研究群落地上生物量和生物多样性的变化。结果表明,氮肥和硅肥的添加均能提高群落的地上生物量,然而硅肥提高群落地 上生物量的幅度远低于氮肥; 在添加氮肥导致群落物种多样性下降的同时,添加硅肥可以缓解群落多样性下降的趋势; 硅肥的生物学功能在群落水平上存在着最佳浓度效应。同时,我们推测硅肥在维持群落中杂草的存活率上发挥着积极的作用,并通过比较不同硅肥处理时,杂草生物 量所占群落生物量比重的变化,支持了上述推测。 C1 Zhang Wenpeng, State Key Laboratory of Grassland Agro-Ecosystems,School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Si Xiaolin, State Key Laboratory of Grassland Agro-Ecosystems,School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Wang Wenyin, State Key Laboratory of Grassland Agro-Ecosystems,School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Xu Danghui, State Key Laboratory of Grassland Agro-Ecosystems,School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Gao Tianpeng, Centre of Urban Ecology and Environmental Biotechnology,Lanzhou City University, Lanzhou, Gansu 730070, China. Z6 张文鹏, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 司晓林, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 王文银, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 徐当会, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 高天鹏, 兰州城市学院城市生态与环境生物技术中心, 兰州, 甘肃 730070, 中国. EM 295637395@qq.com; dhxu@lzu.edu.cn Z7 295637395@qq.com; dhxu@lzu.edu.cn Z8 8 Z9 9 UT CSCD:5645146 DA 2023-03-23 ER PT J AU Zhang Fawei Wang Junbang Li Yikang Lin Li Cao Guangmin Z2 张法伟 王军邦 李以康 林丽 曹广民 TI Response of Ecosystem Photosynthesis and Respiration to Degradation Gradients in an Alpine Kobresia Meadow Z1 高寒嵩草草甸不同退化梯度下生态系统光合和呼吸响应特征 Z3 中国草地学报 SO Chinese Journal of Grassland VL 38 IS 1 BP 34 EP 40 AR 1673-5021(2016)38:1<34:GHSCCD>2.0.TX;2-H PY 2016 DT Article AB Alpine grassland ecosystems plays an essential role in national ecological security shelter,but it have been widely and severely degraded in the Qinghai-Tibetan Plateau. But the responses of carbon budgets to degradation process are not fully understood on the alpine grassland. The experiment of degradation gradients (lightly degradation, medium degradation and severe degradation) on an alpine Kobresia meadow was conducted. During plant flourishingly growing season, net ecosystem CO_2 exchange rate (NEE), ecosystem dark respiration rate (RES) and gross ecosystem photosynthesis rate (GEP)was measured by LI-6400 and carbon assimilation chamber from mid-July to mid-August in 2014 on Northeastern Qinghai-Tibetan Plateau. The results showed that the diurnal unimodal patterns of GEP, RES and NEE were not significantly influenced along degradation gradients and the peak and valley of diurnal CO_2 fluxes from different gradation status occurred almost simultaneously. Daily RES and NEE of severe degradation plots was evidently (P< 0.05) improved by 12.2% and 41.8% than that of light degradation plots, respectively. Daily GEP declined undetectably. Along the degradation gradients, the temperature sensitivity of RES (Q_(10)) was decreased and ecosystem apparent quantum yield (a) was enhanced, while the ecosystem saturated photosynthetic rate (P_(max)) was little changed. Those results indicated that the response of carbon dynamics of alpine Kobresia meadow to degradation processes was mostly demonstrated by ecosystem respiration CO_2 efflux rather than photosynthetic CO_2 uptake during the vegetation flourishing periods from July to August. Z4 青藏高原高寒草甸生态地位突出但退化严重,其植被光合和系统呼吸特征如何响应仍不清楚。于植被生长的旺盛期(7月中旬~8月中旬)在青藏高原祁连山南麓分 别选取原生草地、中度退化和重度退化3类高寒草甸,使用自制同化箱和LI-6400便携式光合仪测定生态系统CO_2净交换(NEE)、生态系统暗呼吸( RES)和生态系统初级光合(GEP),研究退化程度对高寒嵩草草甸生态系统CO_2通量的影响特征。结果表明不同退化程度的NEE、RES和GEP的单 峰日变化格局没有明显差异,日极值出现时间相近。日均NEE和日均RES随着退化加剧逐渐升高,重度退化较原生草地分别显著(P < 0.05)升高了41.8%和12.2%。日均GEP略有下降。退化降低了RES的温度敏感度(Q10),提高了群落表观光量子产额(a),但对系统潜在 CO_2最大同化速率(Pmax)无明显影响。在植被生长旺盛期,高寒草甸生态系统碳收支对退化的响应主要表现在系统的呼吸强度而非群落光合速率。 C1 Zhang Fawei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Wang Junbang, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Z6 张法伟, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. 王军邦, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM fwzhang@nwipb.cas.cn; jbwang@igsnrr.ac.cn Z7 fwzhang@nwipb.cas.cn; jbwang@igsnrr.ac.cn Z8 6 Z9 7 UT CSCD:5624997 DA 2023-03-23 ER PT J AU Peng Yan Yang Wanqin Xue Qiao Li Jun Wang Bin Tan Bo Wu Fuzhong Z2 彭艳 杨万勤 薛樵 李俊 王滨 谭波 吴福忠 TI Impact of soil fauna on lignin degradation of two foliar litters in an alpine meadow during freezing-thawing period Z1 季节性冻融期间土壤动物对高山草甸两种凋落叶木质素降解的影响 Z3 应用与环境生物学报 SO Chinese Journal of Applied and Environmental Biology VL 22 IS 2 BP 300 EP 306 AR 1006-687X(2016)22:2<300:JJXDRQ>2.0.TX;2-R PY 2016 DT Article AB Strong freezing and frequent freeze-thaw cycles could accelerate lignin degradation during litter decomposition in alpine meadow during the seasonal freezing-thawing period, which plays an important role in keeping circulation of materials and the balance of ecosystem nutrients. However, little information is currently available about whether soil fauna has obvious effects on lignin degradation under the crucial environment conditions during the freezing-thawing period in alpine meadow. Using litterbags with different mesh sizes, we conducted a field experiment to investigate the contribution of soil fauna to lignin degradation of two foliar litters in the freezing-thawing period in an alpine meadow on the eastern Tibetan Plateau. The predominant plants were Ajania nubigena and Carex atrofusca, and the litterbags were sampled in the pre-freezing period, the freezing period and the thawing period from November 2013 to April 2014. Soil fauna showed an obvious effect on the lignin degradation of foliar litter in the alpine meadow over the freezing-thawing period. The lignin degradation rate of A. nubigena and C. atrofusca foliar litter driven by soil fauna (C_(fau)) was 19.41% and 2.02%, respectively, with the corresponding contribution rate of soil fauna to litter lignin degradation rate (P_(fau)) as 32.47% for A. nubigena, and 2.33% for C. atrofusca. However, the effect of soil fauna to litter lignin degradation was different in different freezing-thawing stages. Among all, the thawing period showed the highest lignin degradation rate of A. nubigena foliar litter driven by soil fauna (17.59%), and the freezing period (-5.12%) the lowest one. In contrast, lignin degradation rate of C. atrofusca foliar litter (13.59%) was the highest in the pre-freezing period, but the lowest in the thawing period (-0.27%). Additionally, Cfau and Pfau were significantly correlated with negative accumulated temperature (P < 0.05), but insignificantly with the initial litter quality. These results suggested that soil fauna obviously affect lignin degradation during foliar litter decomposition in wint er; the temperature and freeze-thaw dynamics could have greater impact than the litter quality on the lignin degradation processes in the alpine meadow. Z4 高山草甸冻融季节强烈的冻结作用和频繁的冻融循环可促进凋落叶木质素降解,进而影响凋落叶分解及其相关的物质循环过程,但严酷环境下仍然活跃的土壤动物是 否具有明显的作用尚无定论.因此,以高山草甸代表性植物黄花亚菊(Ajania nubigena)和黑褐苔草(Carex atrofusca)凋落叶为研究对象,采用不同孔径凋落叶袋排除土壤动物的方法,探讨冬季不同冻融时期(冻结前期、冻结期和融化期)土壤动物对凋落叶木 质素降解的贡献.结果显示,整个季节性冻融期间,土壤动物对凋落叶中木质素的降解具有明显的贡献.土壤动物作用的凋落叶木质素降解率(C_(fau))为 19.41%(黄花亚菊凋落叶)和2.02%(黑褐苔草凋落叶),总贡献率(P_(fau))为32.47%(黄花亚菊凋落叶)和2.33%(黑褐苔草凋 落叶).然而不同时期土壤动物具有不同程度的影响.相对于其他时期,冻结初期土壤动物作用于黑褐苔草凋落叶木质素降解率最大(13.59%),而融化期最 小(-0.27%).与黑褐苔草不同,融化期土壤动物作用于黄花亚菊凋落叶木质素降解率最大(17.59%),而在冻结期最小(-5.12%).土壤动物 作用于凋落叶木质素的降解率和贡献率均与负积温显著正相关(P < 0.05),与凋落叶初始质量无显著相关性.可见,高寒草甸土壤动物在严酷的冬季环境下仍然对凋落叶木质素降解具有积极的作用,但相对于凋落叶质量,温度 及其相关冻融环境的改变对土壤动物作用于木质素降解过程的影响更大. C1 Peng Yan, Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agriculture University, Chengdu, Sichuan 611130, China. Yang Wanqin, Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agriculture University, Chengdu, Sichuan 611130, China. Li Jun, Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agriculture University, Chengdu, Sichuan 611130, China. Wang Bin, Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agriculture University, Chengdu, Sichuan 611130, China. Tan Bo, Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agriculture University, Chengdu, Sichuan 611130, China. Wu Fuzhong, Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agriculture University, Chengdu, Sichuan 611130, China. Xue Qiao, Lixian Forestry Bureau, Lixian, 623100. Z6 彭艳, 四川农业大学生态林业研究所,高山森林生态系统定位研究站, 四川省林业生态工程重点实验室, 成都, 四川 611130, 中国. 杨万勤, 四川农业大学生态林业研究所,高山森林生态系统定位研究站, 四川省林业生态工程重点实验室, 成都, 四川 611130, 中国. 李俊, 四川农业大学生态林业研究所,高山森林生态系统定位研究站, 四川省林业生态工程重点实验室, 成都, 四川 611130, 中国. 王滨, 四川农业大学生态林业研究所,高山森林生态系统定位研究站, 四川省林业生态工程重点实验室, 成都, 四川 611130, 中国. 谭波, 四川农业大学生态林业研究所,高山森林生态系统定位研究站, 四川省林业生态工程重点实验室, 成都, 四川 611130, 中国. 吴福忠, 四川农业大学生态林业研究所,高山森林生态系统定位研究站, 四川省林业生态工程重点实验室, 成都, 四川 611130, 中国. 薛樵, 理县林业局, 理县, 623100. EM wufzchina@163.com Z7 wufzchina@163.com Z8 4 Z9 6 UT CSCD:5706148 DA 2023-03-23 ER PT J AU Xu Manhou Liu Min Zhai Datong Xue Xian Peng Fei You Quangang Z2 徐满厚 刘敏 翟大彤 薛娴 彭飞 尤全刚 TI Effects of experimental warming on the root biomass of an alpine meadow on the Qinghai-Tibetan Plateau,China Z1 模拟增温对青藏高原高寒草甸根系生物量的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 36 IS 21 BP 6812 EP 6822 AR 1000-0933(2016)36:21<6812:MNZWDQ>2.0.TX;2-4 PY 2016 DT Article AB The Qinghai-Tibetan Plateau (QTP) has been considered an ideal region in which to study the responses of terrestrial ecosystems to climate change. The alpine meadow,a typical vegetation type of the QTP,is extremely fragile and highly sensitive to climate change. Once destroyed,reestablishing these meadows in a short timeframe has proven to be very difficult; their loss would result either in landscape degradation or desertification. Therefore,an understanding of the dynamic changes to the alpine meadow vegetation of the QTP caused by climate change is extremely important and urgently needed. In previous research,we chose an alpine meadow in the QTP as our study area and established 20 experimental plots with a randomized block design,comprising five replicates and four treatments: a control,warming alone,clipping alone,and a combination of warming and clipping. In this study,we tested the control and the warming plots independently and sampled root biomass using a soil auger with an inner diameter of 7 cm. Samples were collected from soil layers of 010 cm,1020 cm,2030 cm,3040 cm,and 4050 cm during the growing season,from May to September in 2012 and 2013. This study explored variations in root biomass occurring in different months and at different soil depths during the growing season,as well as correlations between biomass and the moisture and temperature of the corresponding soil layers. The results show that (1) root biomass tended to increase over time in 2012,peaking from July to September and with the mean being 3811 g /m~2 and 4468 g /m~2 in the control and warming treatments,respectively. However,root biomass decreased over time in 2013,peaking in May and June with an average value of 4175 g /m~2 and 4142 g /m~2 in the control and warming treatments,respectively. Total root biomass was larger in the warming treatments than in the control,with a mean difference of 293.97 g /m~2. Conversely,there were no significant differences in total root biomass between treatments in the various months. Warming treatments resulted in slightly increased root biomass,but the magnitude of the increase varied widely among months in the growing season,which resulted in differences in the increase in inter-annual root biomass. (2) The root biomass was primarily distributed at depths of 010 cm,where 50.61% of all roots were localized. In the warming treatments,root biomass declined by 8.38% in the 010 cm soil layer,whereas it increased by 2.1% in the 1050 cm soil layer. Relative to the control treatments,the root biomass at depths of 030 cm tended to increase in the deeper soil layers,with the increasing trends being slightly less pronounced at depths of 3050 cm. Therefore,in warming treatments,the root biomass tended to be greater in deeper soil layers. (3) Warming treatments caused a highly significant decrease in root biomass and soil moisture. However,root biomass increased very significantly with increase in soil temperature,which was elevated in the warming treatments. This illustrates that soil moisture and temperature both had highly significant effects on root biomass,but the effects of soil temperature were more intense and took effect more rapidly than the effects of soil moisture. Z4 在青藏高原高寒草甸布设模拟增温实验样地,采用土钻法于20122013年植被生长季获取5个土层的根系生物量,探讨增温处理下根系生物量在生长季不同月 份、不同土壤深度的变化趋势及其与相应土层土壤水分、温度的关系。结果表明: (1)根系生物量在2012年随月份呈增加趋势,其中79月较大,其平均值在对照、增温处理下分别为3810.88 g /m2和4468.08 g / m~2;在2013年随月份呈减小趋势,其中56月较大,其平均值在对照、增温处理下分别为4175.39 g /m~2和4141.6 g /m~2。增温处理下的总根系生物量高出对照处理293.97 g /m~2,而各月份总根系生物量在处理间的差值均未达到显著水平。表明在增温处理下根系生物量略有增加,但在生长季不同月份其增加的程度不同,致使年际间 的增幅出现差异。(2)根系生物量主要分布在010 cm深度,所占百分比为50.61%。在增温处理下,0 10 cm深度的根系生物量减少,减幅为8.38%; 1050 cm深度的根系生物量增加,增幅为2.1%。相对于对照处理,增温处理下030 cm深度的根系生物量向深层增加, 3050 cm深度的根系生物量增加趋势略有减缓。可见,在增温处理下根系生物量的增幅趋向于土壤深层。(3)根系生物量与土壤水分呈极显著的递减关系,在增温处理 下线性关系减弱;与土壤温度呈极显著的递增关系,在增温处理下线性关系增强。表明土壤水分、温度都可极显著影响根系生物量,但在增温处理下土壤温度对根系 生物量的影响较土壤水分更为敏感而迅速。 C1 Xu Manhou, Taiyuan Normal University, Jinzhong, Shanxi 030619, China. Liu Min, Taiyuan Normal University, Jinzhong, Shanxi 030619, China. Zhai Datong, Taiyuan Normal University, Jinzhong, Shanxi 030619, China. Xue Xian, Cold and Arid Regions Environmental and Engineering Research Institute,University of Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Peng Fei, Cold and Arid Regions Environmental and Engineering Research Institute,University of Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. You Quangang, Cold and Arid Regions Environmental and Engineering Research Institute,University of Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 徐满厚, 太原师范学院地理科学学院, 晋中, 山西 030619, 中国. 刘敏, 太原师范学院地理科学学院, 晋中, 山西 030619, 中国. 翟大彤, 太原师范学院地理科学学院, 晋中, 山西 030619, 中国. 薛娴, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 彭飞, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. EM xumanhou@163.com Z7 xumanhou@163.com Z8 13 Z9 15 UT CSCD:5849976 DA 2023-03-23 ER PT J AU Zhang Haiyan Fan Jiangwen Shao Quanqin Zhang Yaxian Z2 张海燕 樊江文 邵全琴 张雅娴 TI Ecosystem dynamics in the 'Returning Rangeland to Grassland' programs, China Z1 2000-2010年中国退牧还草工程区生态系统宏观结构和质量及其动态变化 Z3 草业学报 SO Acta Prataculturae Sinica VL 25 IS 4 BP 1 EP 15 AR 1004-5759(2016)25:4<1:22NZGT>2.0.TX;2-4 PY 2016 DT Article AB Grassland in arid, semi-arid and alpine areas has experienced severe degradation in recent decades. To enable restoration of grassland vegetation and sustainable development, the Returning Rangeland to Grassland (RRG) program was initiated in 2003. Based on remote sensing images, meteorological data and ground observed data, this study utilized data fusion, ecological model simulation and scaling transformation to construct the regional macro ecosystem structure, ecosystem quality and dynamics in regions hosting RRG programs. Fractional vegetation cover (FVC), leaf area index (LAI) and net primary production (NPP) were utilised to indicate ecosystem quality. We examined the spatiotemporal characteristics of ecological structure and ecosystem quality in regions where the RRG programs were implemented from 2000 to 2010. Additionally, we analyzed ecosystem evolution characteristics and the driving mechanism of ecosystem change.Grassland ecosystems were dominant in the study area. The ecosystem structure was stable, but grassland experienced local change in farmland, wetland and desert. FVC showed a slight increasing trend for grassland; LAI tended to fluctuate but tended to also increase; NPP increased, ranging from 218.23 g C/(m~2·a) in 2000, to 226.30 g C/(m~2·a) in 2010, a 3.7% increase. Ecological conditions differed spatially; overall there was improvement but with areas of localized deterioration. The integral level of the sub-region was: the degraded grassland region of eastern Inner Mongolia>the riverhead grassland region of the Qinghai-Tibetan Plateau>the degraded grassland region of Xinjiang>the desert grassland region of western Inner Mongolia-Gansu-Ningxia. The spatiotemporal variation of ecosystems was mainly affected by ecological restoration projects, climate change and human activities. The RRG programs restored degraded grassland and promoted natural grassland protection. The warming-wetting trend observed over this time promoted the restoration of vegetation. Human activities such as overexploitation resulted in conversion of grassland into farmland in some areas. Z4 本研究以生态学理论为基础,以空间信息技术为支撑,基于遥感数据、气象数据和地面观测数据,通过多源数据融合、生态模型模拟和尺度转换手段,分析中国退牧 还草综合治理工程区2000-2010年生态系统宏观结构和质量的时空分布及变化趋势,探讨生态系统变化的自然和人文驱动机制,为退牧还草工程的生态成效 评估提供理论依据。研究结果表明,1)2000-2010年,草地生态系统面积保持平稳,生态系统宏观结构稳定,但局部区域仍存在草地与农田、湿地和荒漠 间的相互转化;2)研究区草地退化趋势已得到初步遏制,植被覆盖度略有增长,叶面积指数略呈波动式增加,净初级生产力呈显著上升,草地植被呈现恢复转好态 势,生态系统总体质量有所提高,生态环境向良性演变;3)研究区生态状况具有空间差异性,总体转好,局部变差,各亚区整体水平排序为内蒙古东部退化草原治 理区>青藏高原江河源退化草原治理区>新疆退化草原治理区>蒙甘宁西部退化草原治理区;4)退牧还草工程的实施有利于草地保护,气候暖湿化促进植被生长与 恢复,人类活动干扰局部地区生态系统,三者共同影响研究区总体生态状况。 C1 Zhang Haiyan, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Fan Jiangwen, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Shao Quanqin, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Zhang Yaxian, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Z6 张海燕, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京 100101, 中国. 樊江文, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京 100101, 中国. 邵全琴, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京 100101, 中国. 张雅娴, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟重点实验室, 北京 100101, 中国. EM zhanghy.13b@igsnrr.ac.cn; fanjw@igsnrr.ac.cn Z7 zhanghy.13b@igsnrr.ac.cn; fanjw@igsnrr.ac.cn Z8 17 Z9 31 UT CSCD:5682896 DA 2023-03-23 ER PT J AU Yang Yongsheng Li Hongqin Zhang Li Zhu Jingbin He Huidan Wei Yaxi Li Yingnian Z2 杨永胜 李红琴 张莉 祝景彬 贺慧丹 未亚西 李英年 TI Effects of Fencing Measurement on Vegetation Community Structure and Soil Water-holding Capacity in Batang Alpine Meadow Z1 封育措施对巴塘高寒草甸植被群落结构及土壤持水能力的影响 Z3 山地学报 SO Mountain Research VL 34 IS 5 BP 606 EP 614 AR 1008-2786(2016)34:5<606:FYCSDB>2.0.TX;2-Z PY 2016 DT Article AB This is to explore the effects of fencing cultivation on plant community succession and soil water-conservation capacity in alpine meadow in Tibetan plateau. Grazing and fencing plots in Batang alpine meadow was chose in this research,and it analyzed the effects of fencing on plant community structure and soil water-retention capacity by methods of field monitoring and laboratory experiment. The results showed that : 1) Fencing measurement significantly enhanced the total coverage and average height of plant community (p <0.05) ,increased the species richness ,evenness and complexity of plant community,and the fine herbage like Gramineae and Leguminosae plants in vegetation community was significantly increased, the proportion of Compositae, Cyperaceae plant and poisonous weed was decreased in some degree. 2) Fencing measurement enriched the vertical structure of vegetation community, the vertical structure of degraded pastures increased from one layer to three layers. 3) Fencing measurement decreased the soil bulk density of 0 ?40 cm layer in alpine meadow, and the difference in 10 ~ 20 cm layer was most significant (p <0.05). 4) Although the difference didn't reached significant level (p >0. 05) , soil organic carbon content of 0 ~40 cm in fencing plot was higher than that of grazing plot. 5) Fencing measurement obviously improved the soil water-retention capacity,the soil saturated water content,capillary water content and field water content of 0 ?10, 10~20 and 20 ~40 cm in fencing plot was higher than that of grazing plot. The increasing rate of soil water-retention capacity,the soil saturated water content,capillary water content and field water content of 0 ?40 cm in fencing plot was 1.4, 1.9, 1.7 mm/a, respectively. Fencing measurement is benefit to the restoration of ecological environment in degraded pastures,and it's an effective measurement to contain and improve the degradation of alpine grassland. Z4 选取巴塘高寒草甸设置封育及自然放牧样地,通过野外实地监测及室内试验相结合的方法,分析封育措施对植被群落结构及土壤持水能力的影响。结果显示:1)封 育措施显著提高了高寒草甸植被群落总盖度及平均高度(p <0.05),增加了群落的物种丰富度、均匀度及复杂程度,植被群落中禾本科和豆科植物等优良牧草显著增加,菊科、莎草科以及有毒杂草类植物所占比重有所 下降。2)封育措施丰富了高寒草甸植被群落垂直分层结构,退化草地垂直结构由一层增加至三层。3)封育措施降低了高寒草甸0 ~40 cm层面土壤容重,二者差异在10 ~20 cm层面最明显(p <0.05)。4)尽管未达到显著水平(p >0. 05),封育样地0 ~40 cm层面土壤有机碳密度均高于自然放牧样地。5)封育措施明显改善了高寒草甸土壤持水能力。其中,封育样地0~10、10~20、20~40cm深度土壤 饱和持水量、毛管持水量及田间持水量均高于自然放牧样地,封育条件下0?40 cm整个土层土壤饱和持水量、毛管持水量及田间持水量增加速率分别为1.4、1.9、1.7 mm/a。封育措施有利于退化草地生态环境的恢复,是遏制和改善高寒草地退化的有效措施。 C1 Yang Yongsheng, Northwest Institute of Plateau Biology , Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Hongqin, Northwest Institute of Plateau Biology , Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhu Jingbin, Northwest Institute of Plateau Biology , Chinese Academy of Sciences, Xining, Qinghai 810001, China. He Huidan, Northwest Institute of Plateau Biology , Chinese Academy of Sciences, Xining, Qinghai 810001, China. Wei Yaxi, Northwest Institute of Plateau Biology , Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhang Li, Ecological environment monitoring center of environmental protection bureau of Qinghai, Xining, Qinghai 810001, China. Li Yingnian, Northwest Institute of Plateau Biology , Chinese Academy of Sciences,Key Laboratory of Adaptation and Evolution of Plateau Biota, China Academy of Sciences, Xining, Qinghai 810001, China. Z6 杨永胜, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李红琴, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 祝景彬, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 贺慧丹, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 未亚西, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张莉, 青海省环境保护厅生态环境遥感监测中心, 西宁, 青海 810001, 中国. 李英年, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. EM ysyang@nwipb.cas.cn; ynli@nwipb.cas.cn Z7 ysyang@nwipb.cas.cn; ynli@nwipb.cas.cn Z8 6 Z9 6 UT CSCD:5831111 DA 2023-03-23 ER PT J AU Lin Li Zhang Degang Cao Guangmin Ouyang Jingzheng Ke Xun Liu Shuli Zhang Fawei Li Yikang Guo Xiaowei Z2 林丽 张德罡 曹广民 欧阳经政 柯浔 刘淑丽 张法伟 李以康 郭小伟 TI Responses of soil nutrient traits to grazing intensities in alpine Kobresia meadows Z1 放牧强度对高寒嵩草草甸土壤养分特性的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 36 IS 15 BP 4664 EP 4671 AR 1000-0933(2016)36:15<4664:FMQDDG>2.0.TX;2-G PY 2016 DT Article AB Soil-Plant system is the base of eco-economic production in grassland system. Livestock grazing is the most important disturbance factor in plant community succession in Qinghai-Tibet plateau. Soil traits will become considerable indices when the plant community characteristics are different by livestock grazing. There are some relationships between soil and plant community traits,in vegetation cover,vegetation diversity,soil development,soil erosion,soil degradation, and geomorphological and hydrological behaviour of alpine meadow system. The health of plant-soil system is the focus issue in natural eco-system,and plant and soil properties can reflect the healthy of the ecosystem. So in the alpine meadow system which factor is more sensitive in grazing disturbing,soil nutrient characters or plant community characters. In our studies,we first investigated 4 plots in Haibei states,Qinghai province,China,which had the same geographical unit and climatic region but in different livestock grazing intensities. We inquired details information about stocking rates,grazing time and livestock species in these plots. In the same time,soil samples were collected to the laboratory to analyze characters of soil nutrient contents (containing organism,total nitrogen,total phosphorous,total potassium,slowly release potassium,ammonium nitrogen,nitrate nitrogen,available phosphorous,available potassium,pH value,and inorganic carbon). The results showed that: the soil parent materials were in the same style in different livestock grazing intensities, it illustrated that those plots had the same pedogenic basis. The discrimination of plant community characters were come from environmental disturbing intensities,like livestock grazing. Plant community characters were differences,but soil layers' nutrient characters were consistent in the same soil layer under the different grazing intensities. In soil system, characters of soil profile transition layers were more sensitive to grazing disturbing,for example 510cm was a transition layer of mattic epipedon and leached layer,mattic epipedon would grow thickly when the livestock grazing intensity increasing to a certain extent,as a result,the plant community succession changed the root distribution length and density, and affected nutrient under the mattic epipedon soil layer (the leached soil layer),so 510cm had some transition characters between mattic epipedon and leached soil layer,it became the soil profile transition layers,those layers would more sensitive on livestock grazing intensities. It was inconformity between plant community characteristics and soil nutrient traits under different livestock pressure. Soil nutrient system were more stable than plant community system in different livestock intensities,meanwhile the different livestock intensities would not change soil profile nutrient classification,but it would more or less change the soil nutrients content in soil transition layer,and roots distributed condition could effect the soil nutrients by soil rhizosphere microbe,root exudates and so on. So in the soil-plant system,soil sub-system was more steady than plant community sub-system. In soil sub-system,soil transition layers were more sensitive than soil profile characters in livestock intensities. So plant community characters and the soil transition layers may become the discrimination index in livestock intensities in alpine meadows. Z4 植物-土壤系统是草地生态和生产服务价值实现的基础,放牧是草地植物群落演替的重要因素。植物、土壤亚系统对放牧的敏感性是评价草地稳定性和提高草地恢复 力的重要依据。以不同放牧强度下的高寒嵩草(Kobresia)草甸为研究对象,探讨土壤养分特征对放牧强度的响应及作用位点,结果表明:改变放牧强度可 以明显改变植物群落数量特征,但没有明显改变土壤层次分类特征,说明土壤养分特征对一定范围内放牧强度具有自我稳定维持功能;但放牧干扰强度不同时,土壤 剖面过渡层养分含量存在差异,说明长期放牧强度的差异会对土壤剖面养分性质产生影响,且这种影响起源于土壤剖面过渡层。在放牧高寒嵩草草甸植物-土壤系统 中土壤剖面养分特征较植物群落数量特征更稳定;土壤剖面过渡层养分特征是土壤亚系统中对放牧的敏感因素;而放牧引起土壤剖面养分特征的改变主要表现在各过 渡层上,并构成土壤发生层迁移的风险,因此推测,更为持久和更高强度的放牧干扰将最终改变土壤剖面特征及养分性质。 C1 Lin Li, Pratacultural College of Gansu Agricultural University, Lanzhou, Gansu 730070, China. Zhang Degang, Pratacultural College of Gansu Agricultural University, Lanzhou, Gansu 730070, China. Cao Guangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Ouyang Jingzheng, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Ke Xun, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Liu Shuli, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhang Fawei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Guo Xiaowei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 林丽, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 张德罡, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 欧阳经政, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 柯浔, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 刘淑丽, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM zhangdg@gsau.edu.cn Z7 zhangdg@gsau.edu.cn Z8 23 Z9 24 UT CSCD:5778422 DA 2023-03-23 ER PT J AU Tserang Donko Mipam Wen Yongli Ai Yi Zhao Hongwen Chen Youjun Z2 泽让东科 文勇立 艾鷖 赵洪文 陈有军 TI Impact of different grazing intensity on soil physical properties and plant biomass in Qinghai-Tibet Plateau alpine meadow ecosystem Z1 放牧对青藏高原高寒草地土壤和生物量的影响 Z3 草业科学 SO Pratacultural Science VL 33 IS 10 BP 1975 EP 1980 AR 1001-0629(2016)33:10<1975:FMDQZG>2.0.TX;2-M PY 2016 DT Article AB In Qinghai-Tibet Plateau grassland,human disturbances are becoming more and more strongly,especially with the increase of grazing intensity,the grassland ecosystems are in face of seriously degradation.In order to analysis the impacts of yak grazing on Qinghai-Tibet Plateau alpine meadow ecosystem and to determine the appropriate yak grazing intensity,four different grazing intensities and one control treatment were set up in Hongyuan County located in eastern part of Qinghai-Tibet Plateau.The soil water content and soil bulk density, plant biomass and coverage,the weight increase rate of yak were determined after one growing season.The results showed that,with the increasing of yak grazing intensity,the soil water content decreased and the soil bulk density did not change.The above-ground and below-ground biomass firstly increased then decreased with the increasing of yak grazing intensity,and the Poaceae and Cyperaceae biomass showed the same pattern as the total biomass,but the fabaceae and others grass biomass showed no significant difference.The weight increase rate of yak slowed with the increasing of yak grazing intensity.The combined results indicated that the appropriate yak grazing intensity was between 1.016~1.284head·ha~(-1) in this region.The study can provide theoretical basis for the restoration of the degraded alpine grassland and the ecological livestock reducing engineering programs in Qinghai-Tibet Plateau. Z4 随着人类对青藏高原高寒草地干扰的不断加剧,特别是放牧干扰的增加,该草地生态系统正在受到持续的破坏,草地退化尤为严重。本研究通过在青藏高原东缘红原 县设置4个不同牦牛放牧强度处理和1个对照处理,分析土壤含水量和容重、植物生物量和盖度以及草食家畜牦牛相关数据,研究牦牛放牧对青藏高原高寒草地生态 系统的影响,确定最优牦牛放牧强度。结果表明,随着放牧强度的增加,土壤含水量逐渐减少,土壤容重无显著性变化(P>0.05);地上和地下生物量及禾本 类和莎草类生物量呈现先上升后下降的趋势,而豆科和杂草类变化不明显;随放牧强度的增加,牦牛的增重趋于减缓。综合分析认为,该区域最优放牧强度应在1. 0161.284头牦牛当量·hm-2。研究结果可为青藏高原高寒草地退化恢复治理和生态减畜工程提供理论依据。 C1 Tserang Donko Mipam, Institute of Qinghai-Tibetan Plateau,Southwest University for Nationalities, Chengdu, Sichuan 610000, China. Wen Yongli, Institute of Qinghai-Tibetan Plateau,Southwest University for Nationalities, Chengdu, Sichuan 610000, China. Ai Yi, Institute of Qinghai-Tibetan Plateau,Southwest University for Nationalities, Chengdu, Sichuan 610000, China. Chen Youjun, Institute of Qinghai-Tibetan Plateau,Southwest University for Nationalities, Chengdu, Sichuan 610000, China. Zhao Hongwen, Sichuan Academy of Grassland Science, Chengdu, Sichuan 610000, China. Z6 泽让东科, 西南民族大学青藏高原研究院, 成都, 四川 610000, 中国. 文勇立, 西南民族大学青藏高原研究院, 成都, 四川 610000, 中国. 艾鷖, 西南民族大学青藏高原研究院, 成都, 四川 610000, 中国. 陈有军, 西南民族大学青藏高原研究院, 成都, 四川 610000, 中国. 赵洪文, 四川省草原科学研究院, 成都, 四川 610000, 中国. EM tdmipam@163.com; wansit99@163.com Z7 tdmipam@163.com; wansit99@163.com Z8 2 Z9 6 UT CSCD:5843209 DA 2023-03-23 ER PT J AU Wang Fushan He Yongtao Shi Peili Niu Ben Zhang Xianzhou Xu Xingliang Z2 王福山 何永涛 石培礼 牛犇 张宪洲 徐兴良 TI Stellera chamaejasme as an indicator for alpine meadow degradation on the Tibetan Plateau Z1 狼毒对西藏高原高寒草甸退化的指示作用 Z3 应用与环境生物学报 SO Chinese Journal of Applied and Environmental Biology VL 22 IS 4 BP 567 EP 572 AR 1006-687X(2016)22:4<567:HDDXZG>2.0.TX;2-# PY 2016 DT Article AB Local grassland degradation has become the main ecological issue on the Tibetan Plateau. The degraded alpine meadows in northern Tibetan Plateau have been seriously invaded by Stellera chamaejasme, one of the main noxious and unpalatable herbs. This research aimed to understand its role as an indicator for degradation of alpine meadows. Three communities of alpine meadow at different degradation stage were investigated in Damxung Grassland Station in the northern Tibetan Plateau. The species composition, biomass and soil physical-chemical features were sampled and measured. The investigation found that with the increasing of S. chamaejasme, the alpine meadow had been gradually degraded. The dominant species changed from grasses and sedges to noxious herbs. The coverage, aboveground biomass and important value of S. chamaejasme increased significantly. In contrast, those of grasses and sedges gradually decreased. The top soil organic matter, soil water content and total N significantly declined; the available inorganic nitrogen also showed a decreasing trend; soil pH and bulk density increased with degradation levels. Further regression analysis indicated a significant negative relationship between the coverage, aboveground biomass of S. chamaejasme and the aboveground biomass of herbage, soil organic matter, total N and soil moisture content, and a significant positive relationship between the coverage, aboveground biomass of S. chamaejasme and the soil pH value and soil bulk density. Our results suggested that the cover and aboveground biomass of S. chamaejasme, which are relatively easy to measure, can be good indicators for the degradation of alpine meadows on the northern Tibetan Plateau. Z4 局部草甸退化是西藏高原面临的主要生态问题,狼毒在高寒退化草甸中的入侵、扩散也日益严重,已经成为退化草甸中主要的毒杂草之一.为了解狼毒对高寒草甸退 化程度的指示作用,在西藏当雄县草原站选择3处不同退化程度的高寒草甸群落,调查植物群落组成,并测定各群落表层土壤的理化指标.结果显示:随着狼毒分布 增加,草甸呈逐步退化的态势,一方面,草甸群落的优势物种组成从以牧草为主转变为以毒杂草为主,狼毒盖度、地上生物量及重要值逐渐增加,而禾本科、莎草科 等优良牧草的盖度、地上生物量以及重要值逐渐降低;另一方面,草甸表层土壤表现出贫瘠化的趋势,土壤有机质、全氮含量、土壤含水量均显著降低,无机氮(硝 态氮、氨态氮)也呈降低的趋势,而 pH值、土壤容重则呈增加趋势.狼毒盖度及地上生物量与牧草地上生物量、土壤全氮、有机碳及土壤含水量呈显著的负相关(P < 0.05),而与土壤容重和pH值呈极显著正相关(P < 0.01).因此,较易测定的狼毒盖度及地上生物量能较好地指示当雄草原化草甸的退化程度,可作为判定草甸退化程度的指标. C1 Wang Fushan, Lhasa Plateau Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. He Yongtao, Lhasa Plateau Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Shi Peili, Lhasa Plateau Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Niu Ben, Lhasa Plateau Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Zhang Xianzhou, Lhasa Plateau Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Xu Xingliang, Lhasa Plateau Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Z6 王福山, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 何永涛, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 石培礼, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 牛犇, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 张宪洲, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 徐兴良, 中国科学院地理科学与资源研究所,拉萨高原生态试验站, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM heyt@igsnrr.ac.cn Z7 heyt@igsnrr.ac.cn Z8 14 Z9 17 UT CSCD:5792871 DA 2023-03-23 ER PT J AU Luo Jiufu Zheng Jingming Zhou Jinxing Zhang Xin Cui Ming Z2 罗久富 郑景明 周金星 张鑫 崔明 TI Analysis of the interspecific associations present in an alpine meadow communityundergoing revegetation on the railway-construction affected land of the Qinghai-Tibet Plateau Z1 青藏高原高寒草甸区铁路工程迹地植被恢复过程的种间关联性 Z3 生态学报 SO Acta Ecologica Sinica VL 36 IS 20 BP 6528 EP 6537 AR 1000-0933(2016)36:20<6528:QZGYGH>2.0.TX;2-Z PY 2016 DT Article AB The construction of the Qinghai-Tibet Railway is a centennial project of the People's Republic of China. A large part of this railway is located on alpine meadows (typical vulnerable ecotones characterized by high altitude,low temperatures,and scarce annual precipitation) between the Tanggula Mountains Pass and Damxung County. Because the construction of this railway is inevitably a source of disturbance to the surrounding environment,it is vital to study the re vegetation of these severely affected alpine meadows. To understand the community dynamics of the affected alpine meadows,we investigated the vegetation present on the impacted land during the railway construction period (2005),as well as 4 years (2009),and 8 years (2013) after the construction period. Eight 10 m * 40 m plots uniformly located between the Tanggula Mountains Pass (91° 43' 31.4" E,33°04' 36.3" N) and Wumatang (91° 32' 11.95〃 E,30° 37' 51.05〃 N) were sampled,each with 9 quadrants 1 m * 1 m in size. The data collected included species composition,species coverage,species height,and the population size of each species. To this end,a series of variance ratio (VR) tests,X~2 tests,and Spearmans rank correlation coefficient tests were conducted. The results show that the community coverages were (35.21 4.41)%,(33.423.01) %,and (43.41 3.26)%,and 71,78,and 85 species recorded in the year 2005,2009,and 2013,respectively. After dropping the species with importance values lower than 0.01,we used the 23,27,and 21 dominant species in our subsequent analyses for the respective periods. Overall,species richness and community coverage increased over time,with the overall interspecific association indices (VR) being larger than 1 (from 2005 to 2013). In addition,the results of the W statistics (X_(0.95N)~2< W < X_(0.05N)~2) showed that the overall associations between species in the community were all significantly positive (P < 0.05). The sequential order of association was VR_(2005) > VR_(2009)>VR_(2013),suggesting that the intensity of the community associations gradually declined over time. Finally,the proportion of positive and negative interspecific associations between the dominated species pairs declined,and the proportion of species pairs achieving significant and highly significant levels tended to increase during the 8 years of re vegetation. In addition,the associations between the same species pairs varied significantly among years of investigations(e.g.,the association between Potentilla bifurca and Anemone imbricate was not significant during the railway construction period,but was significant in 2009 (P < 0.05) and highly significant (P < 0.01) in 2013). Lastly,the number of mesophyte and hygrophyte species such as Taraxacum leucanthum and Saxifraga tibetica declined,while that of drought-tolerant plants such as Ceratoides compacta increased. Overall,the results indicated that the alpine meadows affected by the Qinghai-Tibet Railway construction project fluctuated greatly during the first 8 years of re vegetation. Future research can be done to more precisely determine the patterns present during the time in which the alpine meadow community becomes stabilized. Z4 为了研究大型工程建设对脆弱生态系统的影响,以青藏高原高寒草甸区铁路工程迹地植被为对象,分别在青藏铁路建设期(2005年8月)、运行期(2009年 8月、2013年8月)对工程迹地进行了3次植被群落调查,样地大小10m*40m,在此基础上利用种间关联性分析的方法,通过对群落特征的方差比率(V R)检验X~2检验和Spearman秩相关系数检验,来探讨群落物种总体关联性和主要种种对间关联性。结果显示:(1)2005年群落平均盖度(35. 21 4.41)%,群落内共有物种71种,2009年群落平均盖度(33.42 3.01)%,共有物种78种,2013年群落平均盖度(43.41 3.26)%,共有物种85种。(2)对群落物种总体关联性检验发现群落物种总体关联性均表现为显著正相关,关联程度排列为VR_(2005)>VR_( 2009)>VR_(2013),群落趋向松散,抗干扰能力弱。(3)对群落主要物种种对间关联性检验发现成对物种间的正、负联结比例总体呈下降趋势,并 且达到显著或极显著的种对数百分比也呈下降趋势,群落内物种间联结强度逐渐降低。(4)在高寒草甸区工程迹地植被恢复8a时间里,部分相同种对之间的关联 程度发生变化,中生或者湿生植物减少,耐旱植物种类增加,表明铁路沿线由于生境小气候干旱化和土壤紧实度增加,群落组成发生适应性改变,群落处于从逆向演 替向正向演替的过渡阶段,应尽量降低放牧等二次干扰,加速其自然恢复进程。研究旨为探索青藏铁路工程迹地植被恢复规律提供参考。 C1 Luo Jiufu, College of Forestry,Beijing Forestry University, Beijing 100083, China. Zheng Jingming, College of Forestry,Beijing Forestry University, Beijing 100083, China. Zhou Jinxing, School of Soil and Water Conservation,Beijing Forestry University, Beijing 100083, China. Zhang Xin, College of Forestry,Northwest A&F University, Yangling, Shanxi 712100, China. Cui Ming, Institute of Dersertification, Chinese Academy of Forestry, Beijing 100091, China. Z6 罗久富, 北京林业大学林学院, 北京 100083, 中国. 郑景明, 北京林业大学林学院, 北京 100083, 中国. 周金星, 北京林业大学水土保持学院, 北京 100083, 中国. 张鑫, 西北农林科技大学林学院, 杨凌, 712100. 崔明, 中国林业科学研究院荒漠化研究所, 北京 100091, 中国. EM zjx9277@126.com Z7 zjx9277@126.com Z8 12 Z9 13 UT CSCD:5847069 DA 2023-03-23 ER PT J AU Xue Huiying Luo Daqing Hu Feng Li Huixin Wang Jingsheng Qu Xingle Wang Hongyuan Yu Baozheng Sun Qiao Z2 薛会英 罗大庆 胡锋 李辉信 王景升 屈兴乐 王鸿源 于宝政 孙巧 TI Effect of short-term enclosure on soil nematode communities in an alpine meadow in Northern Tibet Z1 短期围封对西藏北部高寒草甸土壤线虫群落的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 36 IS 19 BP 6139 EP 6148 AR 1000-0933(2016)36:19<6139:DQWFDX>2.0.TX;2-8 PY 2016 DT Article AB Alpine meadow is extensively distributed throughout Northern Tibet, and is the typical ecosystem of the Tibetan plateau. Collectively, alpine meadow represents the largest and most important ecosystem in Northern Tibet. The aim of the present study was to examine the restoration of degraded grassland and the rational use of grassland resources, and to provide a theoretical basis for local animal husbandry development in the alpine meadow of northern Tibet. We conducted an experiment using alpine meadow sample plots of both enclosed and grazed land in Naqu County in the Naqu region of the Tibet Autonomous Region, China (31°38'38.87"N, 92°00'51.44"E). To better understand the effect of grazing on alpine meadow habitats, and how degraded land may recover following enclosure, we surveyed the variation in soil nematode communities at soil depths from 025 cm. From May to November 2013,we carried out a survey in all sample plots to investigate variation in soil nematode communities in different soil layers ranging from 0 to 25 cm,in order to understand the effect of grazing on alpine meadows and the role of enclosure for the recovery of degraded alpine meadows in northern Tibet. We collected soil nematodes using the shallow basin method,and measured the following soil chemical properties: soil pH, organic matter content, and concentrations of total nitrogen, phosphorus, and potassium. We compared the composition, distribution,and diversity of nematode communities between grazed and enclosed plots using indices of individual density, diversity, and trophic composition. We also analyzed the relationships between nematode communities and soil chemical properties. Overall, nematode communities differed between grazed and enclosed sample plots. Short-term (3a) enclosure increased the biodiversity and total abundance of soil nematodes. Nematode groups increased in abundance in grazing plots from Plant parasites > Bacterivores > Fungivores > Omnivores-predators, while group abundances in enclosed sample plots decreased from Fungivores > Plant parasites > Bacterivores > Omnivores-predators. Various trophic groups showed no significant differences between the two sample areas. Enclosures reduced the proportion of plant predatory nematodes, and stabilized the nematode composition of the alpine meadow ecosystem. The Shannon-Wiener (H') and Margalef indices (SR) were higher in enclosed plots than grazed plots,whereas the dominance index (A) was lower for grazed than for enclosed plots. Wasilewska index (WI) showed that grazing intensity was highest in the period during which alpine meadow vegetation flourishes (August). At high grazing intensity,soil health declined, suggesting that further intensification of grazing will cause degeneration of the alpine meadow. Enclosures changed the structure of the soil nematode community, density, and diversity characteristics. However, nematode channel ratio values (NCR),which reflect soil organic matter decomposition pathways, were the same in both sample areas. Soil organic matter degradation occurred mainly through the fungal biodegradation pathway during reviving and flourishing periods, whereas bacterial decomposition dominated during the withering period. Our analyses of the relationships between soil nematode communities and soil chemical properties revealed that soil nematode abundance responded to changes in soil physical and chemical properties. This study demonstrates that grazing and enclosure have distinct effects on soil nematode communities in the northern Tibetan alpine meadow ecosystem. Z4 为了解放牧对高寒草甸的影响,以及围封对高寒草甸的恢复作用,2013年5月、8月、10月,分别对藏北短期围封高寒草甸和自由放牧高寒草甸不同深度土层 的土壤线虫群落及土壤理化性质等进行了调查。调查结果表明,3a围封提高了土壤全氮、磷、钾及土壤有机质含量,土壤保水能力也明显提高;围封使土壤线虫个 体密度下降,但物种多样性和丰富度却提高了;围封使土壤线虫群落中的植食性线虫所占比重呈下降趋势,食真菌线虫比重加大。短期围封有利于高寒草甸生态系统 的正向演替,使之向更稳定的方向发展,同时,土壤线虫数量对土壤理化性质变化有明显的响应,通过土壤线虫群落的群落特征可以反映放牧干扰及围封对高寒草甸 生态系统的影响。 C1 Xue Huiying, College of Agriculture and Animal Husbandry, Tibet University, Linzhi, Tibet 860000, China. Luo Daqing, College of Agriculture and Animal Husbandry, Tibet University, Linzhi, Tibet 860000, China. Qu Xingle, College of Agriculture and Animal Husbandry, Tibet University, Linzhi, Tibet 860000, China. Wang Hongyuan, College of Agriculture and Animal Husbandry, Tibet University, Linzhi, Tibet 860000, China. Yu Baozheng, College of Agriculture and Animal Husbandry, Tibet University, Linzhi, Tibet 860000, China. Sun Qiao, College of Agriculture and Animal Husbandry, Tibet University, Linzhi, Tibet 860000, China. Hu Feng, College of Natural Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Li Huixin, College of Natural Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. Wang Jingsheng, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Z6 薛会英, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 罗大庆, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 屈兴乐, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 王鸿源, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 于宝政, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 孙巧, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 胡锋, 南京农业大学资源与环境科学学院, 南京, 江苏 210095, 中国. 李辉信, 南京农业大学资源与环境科学学院, 南京, 江苏 210095, 中国. 王景升, 中国科学院地理科学与资源研究所, 北京 100101, 中国. EM 472425717@qq.com Z7 472425717@qq.com Z8 5 Z9 8 UT CSCD:5820067 DA 2023-03-23 ER PT J AU Ma Yushou Zhou Huakun Shao Xinqing Zhao Zhizhong Zhao Liang Dong Shikui Wang Xiaoli Z2 马玉寿 周华坤 邵新庆 赵之重 赵亮 董世魁 王晓丽 TI Recovery techniques and demonstration of degraded alpine ecosystems in the source region of three rivers Z1 三江源区退化高寒生态系统恢复技术与示范 Z3 生态学报 SO Acta Ecologica Sinica VL 36 IS 22 BP 7078 EP 7082 AR 1000-0933(2016)36:22<7078:SJYQTH>2.0.TX;2-I PY 2016 DT Article AB Recovery Techniques and Demonstration of Degraded Alpine Ecosystems in Three Rivers Source Region (2016YFC0501900) is the second program under the guide directionThe improvement function and adaptive management of qinghai-tibet plateau ecosystemsbelonging to the special project of National Key Research and Development Program of ChinaResearch of Typical Fragile Ecological Restoration and Protection. The serious degradation ecosystems,alpine meadow,alpine steppe,and alpine wetland in the three rivers source region were selected as the research objects in the present study. We would conduct the innovative,systematic and comprehensive research based on the theory of integrated ecosystem management and the idea of soil-vegetation-livestockcooperative recovery. Firstly,we will research and develop the comprehensive technology system of ecological restoration and derivative industry. Then we will perfect the evaluation of ecological restoration and industrial development pattern and perfect the monitoring technology system. Our research will promote the transformation and upgrading of ecological restoration and regional development mode. Furthermore,it will enhance the ecological recovery technology and regulatory capacity. Importantly,we would solve the restoration and reconstruction issues of degraded grassland,and then provide the technology support and system solutions for ecological construction in the three river source region. Z4 三江源区退化高寒生态系统恢复技术与示范(2016YFC0501900) 是国家重点研发计划典型脆弱生态修复与保护研究专项中青藏高原生态系统功能提升与适应性管理指南方向下的第二个项目。项目以综合生态系统管理方法为支撑点 ,以三江源区退化严重的三类主体生态系统高寒草甸、高寒草原和高寒湿地为研究对象,以土壤(土)-植被(草)-动物(畜)协同恢复的思路为指导,通过创新 性、系统性、综合性的科学研究,自主研发三江源区生态恢复与生态衍生产业发展的综合技术体系,完善生态恢复及产业发展模式评估和监测技术体系,推动生态恢 复和区域发展模式的转型升级,提升生态整体恢复的技术水平和监管能力,解决三江源退化草地恢复重建及功能提升的重大问题,旨在为三江源的生态建设提供科技 支撑和系统解决方案。 C1 Ma Yushou, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China. Zhao Zhizhong, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China. Wang Xiaoli, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China. Zhou Huakun, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhao Liang, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Shao Xinqing, Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Dong Shikui, School of Environment, Beijing Normal University, Beijing 100875, China. Z6 马玉寿, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 赵之重, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 王晓丽, 青海大学, 青海省省部共建三江源生态与高原农牧业国家重点实验室, 西宁, 青海 810016, 中国. 周华坤, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 赵亮, 中国科学院西北高原生物研究所, 青海省寒区恢复生态学重点实验室, 西宁, 青海 810008, 中国. 邵新庆, 中国农业大学动物科技学院, 草地研究所, 北京 100193, 中国. 董世魁, 北京师范大学环境学院, 北京 100875, 中国. EM wxl.yu@163.com Z7 wxl.yu@163.com Z8 16 Z9 19 UT CSCD:5870236 DA 2023-03-23 ER PT J AU Gao Yanmei Wu Pengfei Z2 高艳美 吴鹏飞 TI Effects of alpine meadow degradation on soil insect diversity in the Qinghai- Tibetan Plateau Z1 高寒草甸退化对土壤昆虫多样性的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 36 IS 8 BP 2327 EP 2336 AR 1000-0933(2016)36:8<2327:GHCDTH>2.0.TX;2-F PY 2016 DT Article AB Soil insects are an important component and play a key role in the material cycling and energy flow processes in grassland ecosystems. However, soil insect populations are easily influenced by changes in environmental factors. The Qinghai-Tibetan Plateau is the highest and largest plateau in the world, and is mainly dominated by alpine meadow vegetation. Alpine meadow degradation has become an important, widespread, and growing ecological problem in the Qinghai-Tibetan Plateau due to the effects of climate change and increasing overgrazing. The Zoige wetland, which is located on the eastern edge of the Qinghai-Tibetan Plateau, has also degraded due to climate change and increased overgrazing over the last 50 years. Currently, there are four typical habitats (swamp meadow, grassland meadow, moderately degraded meadow, and seriously degraded meadow) in this area. However, the changes in the structure and diversity of the soil insect community among the four habitats are unknown. Six plots of 50 cm x 50 cm were selected in each habitat to investigate the effects of alpine meadow degradation on the soil insect community in April, May, July, and October of 2011. A total of 4, 172 insect individuals were captured and classified into 8 orders, 35 families, and 46 taxonomic groups. The Sciaridae larvae, Chironomidae larvae, and Curculionidae larvae were the dominant groups in soil insect communities,and Sciaridae larvae comprised the most dominant group at all four degradation phases. The density and diversity indices of the soil insects were significantly lower in the seriously degraded meadow compared with the other degradation phases (P < 0.01). The Sorenson and Morisita-Horn similarity indices in the different degradation stages indicated that degradation of the alpine meadow had a strong effect on the taxonomic composition and dominant group abundances of soil insect communities. Moreover, the seasonal dynamics in the density and diversity of soil insect communities also differed among the different degradation stages. Degradation of the alpine meadow also changed the spatio- temporal distributions of the dominant taxonomic groups of soil insect communities. Correlation analysis showed that the diversity indices of soil insect communities were negatively correlated to soil pH (P < 0.01) and were positively correlated to below-ground biomass and phosphorus contents (P < 0.01), while the community density was only negatively correlated to soil pH (P < 0.01). Our results indicated that degradation of the alpine meadow influenced the taxonomic composition and spatio-temporal distributions of the soil insect communities by altering plant communities and soil properties. Z4 土壤昆虫是陆地生态系统的重要组成部分,在物质循环和能量转化过程中起着重要的作用。为了查明高寒草甸生态系统退化对土壤昆虫群落的影响,于2011年的 4、5、7和10月份别对青藏东缘的若尔盖高寒草甸的沼泽草甸、草原草甸、中度退化草甸和重度退化草甸的土壤昆虫群落进行了调查。共捕获土壤昆虫4172 只,隶属于8目35科,共46类。优势类群有尖眼蕈蚊科幼虫(Sciaridae larvae)、摇蚊科幼虫(Chironomidae larvae)和象甲科幼虫(Curculionidae larvae),其中尖眼蕈蚊科幼虫为各退化阶段的共同优势类群。重度退化草甸的土壤昆虫密度和多样性指数均显著低于其它退化阶段(P<0.01)。各退 化阶段间的Sorenson相似性和Morisita-Hom相似性指数变化趋势表明退化对土壤昆虫的类群组和优势类群的个体数量影响较大。而土壤昆虫的 群落密度和多样性指数的季节动态在不同退化阶段间也存在差异。此外,高寒草甸的退化还可影响昆虫群落优势类群的时空分布,但不同类群间存在差异。相关分析 结果表明土壤昆虫多样性与土壤pH值呈显著负相关(P<0.01),与地下生物量和磷含量呈显著正相关(P<0.01),而密度仅与pH值呈显著负相关( P<0.01)。研究结果表明高寒草甸退化可通过改变植物群落及土壤等环境因子影响土壤昆虫群落组成和多样性的空间分布和季节动态。 C1 Gao Yanmei, College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Wu Pengfei, College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Z6 高艳美, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 吴鹏飞, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. EM wupf@swun.cn Z7 wupf@swun.cn Z8 7 Z9 8 UT CSCD:5686794 DA 2023-03-23 ER PT J AU Liu Guangsheng Wang Genxu TI Influence of short-term experimental warming on heat-water processes of the active layer in a swamp meadow ecosystem of the Qinghai-Tibet Plateau Z3 寒旱区科学 SO Sciences in Cold and Arid Regions VL 8 IS 2 BP 125 EP 134 AR 1674-3822(2016)8:2<125:IOSTEW>2.0.TX;2-V PY 2016 DT Article AB Climate change is now evident in the Qinghai-Tibet Plateau (QTP), with impacts on the alpine ecosystem, particularly on water and heat balance between the active layer and the atmosphere. Thus, we document the basic characteristics of changes in the water and heat dynamics in response to experimental warming in a typical alpine swamp meadow ecosystem. Data sets under open top chambers (OTC) and the control manipulations were collected over a complete year. The results show that annual (2008) air temperatures of OTC-1 and OTC-2 were 6.7 ℃ and 3.5 ℃ warmer than the control. Rising temperature promotes plant growth and development. The freeze-thaw and isothermal days of OTCs appeared more frequently than the control, owing to comparably higher water and better vegetation conditions. OTCs soil moisture decreased with the decrease of soil depth; however, there was an obviously middle dry aquifer of the control, which is familiar in QTP. Moreover, experimental warming led to an increase in topsoil water content due to poorly drained swamp meadow ecosystem with higher organic matter content and thicker root horizons. The results of this study will have some contributions to alpine cold ecosystem water-heat process and water cycle under climate change. C1 Liu Guangsheng, College of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China. Wang Genxu, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. EM liugs@xmut.edu.cn Z8 1 Z9 2 UT CSCD:5676707 DA 2023-03-23 ER PT J AU Ren Guohua Deng Bin Hou Yuan Z2 任国华 邓斌 后源 TI Changes of community characteristics in the degradation process of the alpine swamp wetland in the Yellow River Source area Z1 黄河源区沼泽湿地退化过程中植物群落特征的变化 Z3 草业科学 SO Pratacultural Science VL 32 IS 8 BP 1222 EP 1229 AR 1001-0629(2015)32:8<1222:HHYQZZ>2.0.TX;2-H PY 2015 DT Article AB Based on the method of replacing time series with spatial sequence,the changes of plant community spatial distribution characteristics in the degradation process of the alpine swamp wetland were investigated in the Yellow River Source area in Qinghai-Tibetan Plateau of China. The results showed that the degradation process of the wetland experienced from swamp meadow to alpine meadow,and to degraded grassland. During this progress, the species component in plant communities had succession and hygrophytes were replaced by mesophytes and xerophytes, the dominant plants,Kobresia tibetica,gradually disappeared and forbs became constructive species. Species richness index,evenness index and diversity index firstly increased and then decreased whereas dominance index inversely decreased and then increased which peaked at the alpine meadow stage. As the succession proceeded, the above-ground biomass showed a unimodal decreased curve,the proportion of perennial forbs increased dramatically and the species-abundance distribution gradually changed into a Zipf-Mandelbrot model from the early log-normal model. Z4 利用空间序列代替时间序列的方法,研究了黄河源区沼泽湿地退化过程中植物群落空间分布特征的变化。结果显示:在湿地退化过程中,经沼泽化草甸、高寒草甸到 退化草地,1)群落内物种发生更替,优势种藏嵩草(Kobresia tibetica)逐渐退出群落,多年生杂类草则逐渐增多并演变成优势种; 2)物种丰富度、均匀度和多样性指数先升后降,优势度指数先降后升,峰值均出现在高寒草甸阶段; 3)群落生产力呈现下降态势,多年生杂类草所占比例随演替年限的增大而急剧增加; 4)物种-多度格局由生物统计型的对数正态分布逐渐转变为生态位型的Zipf- Mandelbrot分布。 C1 Ren Guohua, College of Animal Science and Veterinary Medicine,Shanxi Agricultural University; The State Key Laboratory of Grassland Agroecosystems, Taigu, Shanxi 030801, China. Deng Bin, The State Key Laboratory of Grassland Agroecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Hou Yuan, The State Key Laboratory of Grassland Agroecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Z6 任国华, 山西农业大学动物科技学院, 草地农业生态系统国家重点实验室, 太谷, 山西 030801, 中国. 邓斌, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 后源, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM rengh07@126.com Z7 rengh07@126.com Z8 8 Z9 12 UT CSCD:5512887 DA 2023-03-23 ER PT J AU He Guiyong Sun Haozhi Shi Xiaoming Qi Wei Du Guozhen Z2 何贵永 孙浩智 史小明 齐威 杜国祯 TI Soil properties of Tibetan Plateau alpine wetland affected by grazing and season Z1 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应 Z3 草业学报 SO Acta Prataculturae Sinica VL 24 IS 4 BP 12 EP 20 AR 1004-5759(2015)24:4<12:QZGYGH>2.0.TX;2-M PY 2015 DT Article AB The seasonal characteristics of soil physical and chemical properties under different grazing patterns(annual grazing,winter grazing,no-grazing)were studied on an alpine wetland of the eastern Tibet Plateau. The main results were:soil moisture and soil organic carbon content at the surface(0-15cm)and sub-surface(15-30cm)layers were highest under non-grazing and lowest under annual grazing.2)For all treatments, soil moisture,organic carbon,total nitrogen,total phosphorus and available nitrogen significantly declined with increasing soil depth,however,available phosphorus was not affected by soil depth.3)The surface soil organic carbon content of all treatments showed the same seasonal pattern;September>May>July and soil total nitrogen and total phosphorus content were generally higher in September.4)Total nitrogen content in both soil layers were significantly positively correlated with soil organic carbon content in July and September.It is concluded that annual grazing increases carbon,nitrogen and phosphorus cycling and increases nutrient losses, leading to decreased soil fertility and declining grassland quality. Z4 本文分析了青藏高原东缘高寒湿地在全年放牧、冬季放牧和全年禁牧3种放牧模式下土壤理化性质的变化,探讨其在不同土层深度的变化及季节性动态。结果如下: 1)沿着全年禁牧冬季放牧全年放牧3种放牧模式,土壤表层(0~15cm)及下层(15~30cm)的土壤含水量和有机碳含量显著减小。2)土壤含水量、 有机碳、全氮、全磷和速效氮含量均随土层深度的增加而降低,而速效磷表现为无规律。3)3种放牧模式下表层土壤有机碳含量均为:9月>5月>7月;全氮和 全磷含量一般都在9月份较高,而速效氮和速效磷含量9月份最低,每种放牧模式下它们之间的具体差异也不完全相同。4)除5月份,两个土层土壤全氮含量均与 有机碳含量呈极显著正相关。综上,全年放牧模式加快了土壤中C、N、P的周转,使土壤养分输出量增加,进而导致土壤肥力下降,草地退化。 C1 He Guiyong, State Key Laboratory of Grassland and Agro-Ecosystems,School of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Sun Haozhi, State Key Laboratory of Grassland and Agro-Ecosystems,School of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Shi Xiaoming, State Key Laboratory of Grassland and Agro-Ecosystems,School of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Qi Wei, State Key Laboratory of Grassland and Agro-Ecosystems,School of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Du Guozhen, State Key Laboratory of Grassland and Agro-Ecosystems,School of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Z6 何贵永, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 孙浩智, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 史小明, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 齐威, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. 杜国祯, 兰州大学生命科学学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730000, 中国. EM hegy11@lzu.edu.cn; guozdu@lzu.edu.cn Z7 hegy11@lzu.edu.cn; guozdu@lzu.edu.cn Z8 38 Z9 41 UT CSCD:5404554 DA 2023-03-23 ER PT J AU Liu Min Jin Huijun Luo Dongliang Wang Qingfeng Jin Xiaoyin Li Xiaoying Lu Lanzhi Z2 刘敏 金会军 罗栋梁 王庆峰 金晓颖 李晓英 吕兰芝 TI Progress in studies of carbon emission from soil on the Qinghai-Tibetan Plateau Z1 青藏高原土壤碳排放研究进展 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 37 IS 6 BP 1544 EP 1554 AR 1000-0240(2015)37:6<1544:QZGYTR>2.0.TX;2-X PY 2015 DT Article AB Carbon emission from soil on the Tibetan Plateau is an important part of national carbon emission, evaluating which would be useful to rightly evaluate national carbon emission and predict the potential effects due to climate change. In this paper, the key influence factors of carbon emission are discussed and the spatial and temporal pattern of carbon emission in the plateau is analyzed. At present, studies of carbon emission are mainly in allusion to alpine meadow and alpine steppe ecological systems, less involve alpine desert, with studied region inhomogeneous. Carbon emissions from soil are affected by multiple factors, such as climate, biological and human activities, among them, temperature, soil moisture, soil fauna and permafrost degradation are the main; carbon emission from soil displays obvious spatiotemporal variability, with spatial variabilities in biologic association, landscape, regional and biotic formation and temporal variabilities in daily, seasonal and annual. In conclusion, relevant studies are still very inadequate, especially, of large-scale and long-term sequence; mechanisms of carbon emissions are also short. Further and more systematic studies are necessary. Z4 青藏高原土壤碳排放研究是评估国家区域碳排放量和预测气候变化所可能导致影响的关键. 首先对青藏高原土壤碳排放的关键性影响因子进行探讨, 并分析了土壤碳排放的时空分布格局变化. 目前青藏高原土壤碳排放研究主要是针对高寒草甸及高寒草地生态系统, 较少涉及高寒荒漠, 研究区域较为分散; 土壤碳排放受到气候环境因素、 生物因素及人为因素等多重因素的影响, 其中温度、 土壤湿度、 土壤区系生物、 人为因素及多年冻土退化是最关键的影响因素; 土壤碳排放具有明显的时空变异性, 空间变异性在生物群丛、 景观、 区域和生物群系四个尺度体现, 时间变异性在日、 季、 年上体现. 总体而言, 青藏高原土壤碳排放的研究较少, 尤其关于大尺度、 长时间序列的研究以及土壤碳排放的机理等方面的研究十分缺乏, 有待于后续加强研究. C1 Liu Min, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Jin Huijun, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Luo Dongliang, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Wang Qingfeng, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Jin Xiaoyin, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Li Xiaoying, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Lu Lanzhi, State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 刘敏, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 金会军, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 罗栋梁, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 王庆峰, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 金晓颖, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 李晓英, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 吕兰芝, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. EM dismusic@whu.edu.cn; hjjin@lzb.ac.cn Z7 dismusic@whu.edu.cn; hjjin@lzb.ac.cn Z8 2 Z9 3 UT CSCD:5676782 DA 2023-03-23 ER PT J AU Liu Xiaodong Yin Guoli Wu Jun Chen Jiangang He Zhengang Shi Shangli Z2 刘晓东 尹国丽 武均 陈建纲 何振刚 师尚礼 TI Effect of organic carbon and total nitrogen distribution in alpine meadow soil aggregates with different nitrogen addition level Z1 氮素补充对高寒草甸土壤团聚体有机碳、全氮分布的影响 Z3 农业工程学报 SO Transactions of the Chinese Society of Agricultural Engineering VL 31 IS 14 BP 139 EP 147 AR 1002-6819(2015)31:14<139:DSBCDG>2.0.TX;2-P PY 2015 DT Article AB The alpine meadow, mainly distributed in cold and high altitude region in the Qinghai-Tibetan Plateau, is a grassland ecosystem with the largest area. In the past decade, the grassland and soil ecological environments were degraded continuously, which have been paid high attention by human beings. The reasons of grassland degradation are complex, and from the view of ecology, the degradation is mainly caused by the unbalance of energy flow and material circulation in grassland ecosystem. Grazing together with other human activities, lead to soil nutrient loss with the output of grass and livestock products. Due to the insufficient supply of nutrients, the decline of soil fertility seriously affects the grass growth in pasture, leading to grassland ecosystem health deteriorating. Nitrogen (N) is the main limiting factor of soil nutrient in the alpine meadow. N addition is an important means to maintain the balance of grassland soil nutrient, which in turn can increase soil N content, and stimulate the growth and distribution of aboveground biomass and belowground root system, thereby affecting the soil structure. Soil aggregates are the basic unit of soil structure, while carbon (C) and total N are the most important factors affecting the structure of soil aggregates. Therefore, relying on N addition experiment of 3 consecutive years located in Xiahe County in eastern Qinghai-Tibet Plateau, in order to explore the effects of N addition on the changing process of soil aggregates, organic C and total N, and its impacts on soil structure, the paper attempted to seek methods for maintaining the stability of soil structure in the alpine meadow. The experiment consisted of 4 treatments with different N addition levels: CK (0), LN (50 kg/hm~2), MN (100 kg/hm~2) and HN (200 kg/hm~2), in which the randomized block design was applied and each processing was repeated for 3 times. The result showed that LN, MN and HN treatments improved the content of ≥0.25 mm soil aggregate in 0-30 cm, and compared to CK treatment, LN, MN and HN increased by 4.74%, 6.42% and 1.96%, respectively; meanwhile, LN and MN treatments improved the mean weight diameter (MWD), and compared to CK treatment, LN and MN increased by 9.79% and 12.63%, respectively; at the same time, LN and MN improved the contents of the aggregate of ≥5 and ≥2-5 mm. The results showed that reasonable N addition not only enhanced soil stability but also enabled glued micro-aggregate to form the larger soil aggregate, and MN treatment was the most effective among the 4 treatments, followed by LN. In the 0-30 cm depth, N addition produced the difference in organic C content, and the trend was MNLN > CK > HN; and N addition significantly increased the total N content of LN, MN and HN treatments, which trend was MN > LN HN > CK. In soil aggregates with different sizes, soil organic C content of <0.25 mm aggregate was the highest, while that of ≥0.25-2 mm aggregate was the lowest; the total N content was in the opposite of organic C content, and ≥0.25-2 mm aggregate was the highest, while <0.25 mm aggregate was the lowest. The correlation between ≥2-5 mm soil aggregate content and their soil organic C content was significantly positive (P<0.05). The correlations between ≥5 and ≥2-5 mm soil aggregate contents and their total N contents were significantly positive with the correlation coefficient of 0.865 and 0.547, respectively. Therefore, the contributing rates of organic C, total N and aggregate content among soil aggregates with different sizes are the same, which shows that aggregate content of different sizes mainly causes the changing of the contributing rates of organic C and total N. In conclusion, 50-100 kg/hm~2 N addition improves the soil stability and the nutrient status. Z4 土壤结构的稳定性对高寒草甸生态系统有重要意义。为研究不同水平氮素补充对高寒草甸草地土壤团聚体、有机碳和全氮含量及分布格局的影响,于2012-20 14年在青藏高原东部夏河县进行3 a的试验研究。试验为随机区组设计,包括0(对照)、50(低氮)、100(中氮)和200(高氮)kg/hm~2 4个氮素补充水平。研究结果表明:低、中、高水平氮素补充处理显著提高了0~30 cm土层≥0.25 mm大团聚体质量分数(P<0.05),比对照分别提高了4.74%、6.42%和1.96%;较之对照,低、中水平氮素补充处理显著增加了≥5 mm、≥2~5 mm粒级团聚体含量;低、中水平氮素补充处理显著提升了0~30 cm土壤团聚体平均质量直径,分别比对照提升了9.79%和12.63%。不同水平氮素补充处理有机碳、全氮含量大小排序分别为:中氮低氮>对照>高氮、 中氮>低氮高氮>对照。不同粒级团聚体中<0.25 mm微团聚体有机碳含量最高而全氮含量最低、≥0.25~2 mm粒级有机碳含量最低而全氮含量最高;低、中水平氮素补充提高了不同粒级团聚体0~30 cm土层有机碳含量而高水平氮素补充处理显著降低了有机碳含量;低、中、高水平氮素补充增加了不同粒级团聚体全氮含量,其中中水平氮素补充处理最高,低水 平氮补充次之。不同粒级团聚体含量是影响团聚体养分贡献率的主要原因,≥2~5 mm粒级团聚体含量与相应粒级团聚体有机碳含量呈显著正相关关系,≥5 mm和≥2~5 mm粒级团聚体含量与相应粒级团聚体全氮含量分别呈极显著正相关、显著正相关关系。研究表明连续每年补充50~100 kg/hm~2氮可以改善高寒草甸土壤结构并提高土壤肥力状况。 C1 Liu Xiaodong, College of Grassland Science, Gansu Agricultural University; Key Ecosystem Laboratory of the Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Yin Guoli, College of Grassland Science, Gansu Agricultural University; Key Ecosystem Laboratory of the Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Chen Jiangang, College of Grassland Science, Gansu Agricultural University; Key Ecosystem Laboratory of the Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Shi Shangli, College of Grassland Science, Gansu Agricultural University; Key Ecosystem Laboratory of the Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Wu Jun, College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu 730070, China. He Zhengang, Tianshui Animal Husbandry Technique Extension Station, Tianshui, Gansu 741000, China. Z6 刘晓东, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 尹国丽, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 陈建纲, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 师尚礼, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 武均, 甘肃农业大学资环学院, 兰州, 甘肃 730070, 中国. 何振刚, 甘肃省天水市畜牧技术推广站, 天水, 甘肃 741000, 中国. EM liuxiaodongcom@163.com; shishl@gsau.edu.cn Z7 liuxiaodongcom@163.com; shishl@gsau.edu.cn Z8 6 Z9 8 UT CSCD:5486483 DA 2023-03-23 ER PT J AU Liu Zhengjia Shao Quanqin Wang Sisi Z2 刘正佳 邵全琴 王丝丝 TI Variation of alpine grasslands and its response to climate warming in the Tibetan Plateau since the 21st Century Z1 21世纪以来青藏高寒草地的变化特征及其对气候的响应 Z3 干旱区地理 SO Arid Land Geography VL 38 IS 2 BP 275 EP 282 AR 1000-6060(2015)38:2<275:2SJYLQ>2.0.TX;2-5 PY 2015 DT Article AB As one of the major issues in global environmental research, the impacts of climatic factors on regional vegetation variability has attracted widespread attention from scientists and it is important to understand the driving mechanism of this variation by using remote sensed data and meteorological observations. In this study, based on meteorological data in the period of 1980-2012,MODIS-NDVI data in the period of 2000-2012 and methods of linear regression and correlation analysis,our aim is to explain how climate changes impact on Qinghai and Tibet alpine grasslands since the 21st century. Results indicated as follows: (1) Qinghai and Tibet regions both showed warm and humid trends over 1980-2012. But in Tibet region, annual precipitation performed a decreasing trend with less significant in the period of 2000-2012. Warming trend was significantly throughout the central and western regions of the Tibetan plateau (>0.05 ℃·a~(-1)). (2) At the interannual scale (in 2000-2012),NDVI showed a significantly increasing trend in Qinghai region, with the rate of 0.003·a~(-1) (P<0.05). However, unchanged trend in NDVI was found in Tibet region owing to that vegetation degradation and recovery mutually offset at the regional scale. Spatial NDVI largely presented rising trends in northeastern of the Tibetan Plateau with the slope of 0.01·a~(-1),but in southern Tibetan Plateau, NDVI trends were worse at the slope of 0.008·a~(-1). (3) Regional correlation analysis expounded the different trends in Qinghai and Tibet regions. In Qinghai region, increasing precipitation and warming temperature together promote positive trends of regional vegetation. Reducing precipitation and rising temperature might be important reasons causing vegetation deterioration in the south of Tibet region. Z4 利用遥感数据和气象观测资料探索气候因子对区域植被变化的驱动作用具有重要意义。以1980-2012年气象数据和2000-2012年MODIS-ND VI数据为数据源,借助线性回归和相关分析分别分析了青海和西藏两个地区21世纪以来气候变化对青藏高寒草地的影响机制。结果表明:(1)1980-20 12年,青海和西藏地区均呈暖湿化的发展趋势。但21世纪以来,西藏地区降水呈不显著的减少趋势;整个青藏高原中部和西部地区增温趋势明显(>0.05 ℃·a~(-1))。(2)在年际尺度(2000-2012年)上,青海地区NDVI呈显著增加的趋势,增长率为0.003·a~(-1)(P<0.05 );西藏地区NDVI无变化趋势,区域尺度统计中植被退化与改善相互抵消。在空间上,青藏高原东北部地区NDVI呈良性趋势,部分区域增长斜率超过0.0 1·a~(-1)。青藏高原南部地区NDVI呈变差趋势,变化斜率为0.008·a~(-1)。(3)区域上的相关分析显示,在青海地区,降水量的增加和 温度的升高共同促进了该区域植被的良性发展趋势;在西藏地区,降水量的减少和温度的升高可能是南部地区植被变差的重要原因。 C1 Liu Zhengjia, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Shao Quanqin, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Wang Sisi, Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Z6 刘正佳, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟院重点实验室, 北京 100101, 中国. 邵全琴, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟院重点实验室, 北京 100101, 中国. 王丝丝, 中国科学院地理科学与资源研究所, 中国科学院陆地表层格局与模拟院重点实验室, 北京 100101, 中国. EM liuzj@lreis.ac.cn; shaoqq@lreis.ac.cn Z7 liuzj@lreis.ac.cn; shaoqq@lreis.ac.cn Z8 13 Z9 15 UT CSCD:5398630 DA 2023-03-23 ER PT J AU WU Xifang LI Gaixin PAN Xuepeng WANG Yanfang ZHANG Sha LIU Fenggui SHEN Yanjun Z2 吴喜芳 李改欣 潘学鹏 王彦芳 张莎 刘峰贵 沈彦俊 TI Response of vegetation cover to temperature and precipitation in the source region of the Yellow River Z1 黄河源区植被覆盖度对气温和降水的响应研究 Z3 资源科学 SO Resources Science VL 37 IS 3 BP 512 EP 521 AR 1007-7588(2015)37:3<512:HHYQZB>2.0.TX;2-1 PY 2015 DT Article AB The source region of the Yellow River is located in the hinterland of the Qinghai-Tibet Plateau. The evolution of its alpine vegetation system not only determines the local ecological environment and livestock production,but also significantly influences the ecological safety of the Yellow River basin. Under the influence of climate change and human activities,grassland degradation over upstream headwaters of the Yellow River is increasingly serious. Examining the spatial-temporal characteristics of vegetation cover and its response to climate change in the study area is important for understanding vegetation ecology and changes in water yield across the Tibetan Plateau. Here,based on NOAA/AVHRR NDVI (1982-2006) and MODIS NDVI (2000-2012),monthly air temperature and precipitation of stations,spatial-temporal characteristics of vegetation cover and its response to climate change were investigated in the study area. To analyze the long time series of vegetation variation in the study area,NOAA/AVHRR NDVI were extended by a correction algorithm based on the two kinds of data sets during the overlapping period (2000-2006). The results show that vegetation cover decreased from the southeast to the northwest of the study area. Vegetation cover was poor in areas where elevation was lower than 3 000m and higher than 4 500m,but better between 3 000m and 4 500m. Annual vegetation cover revealed an increasing trend from 1982-2012 but there was an abrupt point in 2000,and the increasing rate after 2000 was about two times before. Vegetation cover change varied in different regions. On the whole,vegetation cover increased from 1982 to 2012 but there was also sporadic degradation. In low vegetation cover regions mainly located in the western high altitude regions and northern arid regions,vegetation cover increases were characterized by large interannual fluctuations. The results of correlation analysis between vegetation cover and climate factors showed vegetation cover was more sensitive to temperature compared with precipitation in the growing season. This indicates that the study area is a typical calorie restriction ecological region. Z4 本文基于1982-2006年NOAA/AVHRR NDVI和2000-2012年MODIS NDVI两种遥感植被数据以及同期站点的月平均气温和降水资料,通过对重叠观测时期的数据建立映射关系,对NOAA/AVHRR NDVI数据延长插补,分析黄河源区1982-2012年植被的时空变化特征及其对气候变化的响应。结果表明,黄河源区植被覆盖度呈由东南向西北递减的分 布格局;海拔在3 000m以下和4 500m以上地区植被覆盖度相对较差,3 000~4 500m地区植被覆盖度相对较好;植被覆盖度在时间变化上呈增加趋势,但在2000年出现突变点,2000年之后增加速率约为之前的2倍;植被覆盖在整体 增加的背景下,也存在零星的退化现象,而在西部高海拔和北部较干旱的低植被覆盖度区域植被覆盖的增加仍存在着较大的年际波动,并不稳定;相对于降水,研究 区的植被覆盖对气温变化的响应更为敏感,属于热量限制型生态区。 C1 WU Xifang, College of Resources and Environment Science,Hebei Key L aboratory of Environmental Change and Ecological Construction,Hebei Normal University, Key Laboratory of Agricultural Water Resources, Shijiazhuang, Hebei 050024, China. LI Gaixin, Shijiazhuang Preschool Teachers College, Shijiazhuang, Hebei 050228, China. PAN Xuepeng, Key Laboratory of Agricultural Water Resources,Center for Agricultural Resources Research,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China. WANG Yanfang, Key Laboratory of Agricultural Water Resources,Center for Agricultural Resources Research,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China. SHEN Yanjun, Key Laboratory of Agricultural Water Resources,Center for Agricultural Resources Research,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China. ZHANG Sha, College of Resources and Environment Science,Hebei Key L aboratory of Environmental Change and Ecological Construction,Hebei Normal University, Shijiazhuang, Hebei 050024, China. LIU Fenggui, School of Life and Geographical Sciences,Qinghai Normal University, Xining, Qinghai 810008, China. Z6 吴喜芳, 河北师范大学资源与环境科学学院, 河北省环境演变与生态建设省级重点实验室;;农业资源研究中心水资源重点实验室, 石家庄, 河北 050024, 中国. 李改欣, 石家庄幼儿师范高等专科学校, 石家庄, 河北 050228, 中国. 潘学鹏, 中国科学院遗传与发育生物学研究所, 农业资源研究中心水资源重点实验室, 石家庄, 河北 050021, 中国. 王彦芳, 中国科学院遗传与发育生物学研究所, 农业资源研究中心水资源重点实验室, 石家庄, 河北 050021, 中国. 沈彦俊, 中国科学院遗传与发育生物学研究所, 农业资源研究中心水资源重点实验室, 石家庄, 河北 050021, 中国. 张莎, 河北师范大学资源与环境科学学院, 河北省环境演变与生态建设省级重点实验室, 石家庄, 河北 050024, 中国. 刘峰贵, 青海师范大学生命与地理科学学院, 西宁, 青海 810008, 中国. EM xifangwu1987@126.com; yjshen@sjziam.ac.cn Z7 xifangwu1987@126.com; yjshen@sjziam.ac.cn Z8 27 Z9 30 UT CSCD:5385308 DA 2023-03-23 ER PT J AU Sun Zhe Wang Yibo Liu Guohua Gao Zeyong Z2 孙哲 王一博 刘国华 高泽永 TI Heterogeneity analysis of soil particle size distribution in the process of degradation of alpine meadow in the permafrost regions based on multifractal theory Z1 基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 37 IS 4 BP 980 EP 990 AR 1000-0240(2015)37:4<980:JYDZFX>2.0.TX;2-B PY 2015 DT Article AB The study purpose was to investigate the changes of the heterogeneity of the soil particle-size distribution (PSD) in the process of degradation of alpine meadows of permafrost regions in the Tibetan Plateau and to develop a precise quantitative analytical method of quantitative research on the evolution of soil properties in the developing process of alpine meadow ecosystem. In this paper, alpine meadows in the source regions of the Yangtze River were divided into five stages (no degradation, slight degradation, moderate degradation, severe degradation and extreme degradation). Three soil samples were collected from every degradation stage area. PSD, saturated hydraulic conductivity, porosity and organic matter content of the soil samples were measured. Multifractal theory was used combined with the correlation analyses between physical and chemical characteristic parameters of soil and soil particle size distribution. The result showed that with increasing degradation degree of alpine meadow in the Tibetan Plateau permafrost regions, the soil particles trend to coarsen and increase dimension (D_0) in multifractal parameter, which means PSD width increasing; information dimension (D_1), ratio of information dimension to capacity dimension (D_1/D_0), correlation dimension (D_2), the singular spectrum width Deltaalpha could represent the trend of soil PSD inhomogeneity changing with degradation degree of alpine meadow, first increasing and then decreasing; in moderate degradation area the inhomogeneity is the maximum. The study also found that the multifractal parameters of soil in the study region are obviously correlated with fine sand content, soil porosity, soil organic matter content. The multifractal parameters could accurately describe the subtle changes in soil particle size distribution in the process of degradation of alpine meadow and could be used as potential indicators of soil properties. Z4 为阐明青藏高原多年冻土区高寒草甸退化过程中土壤粒径分布(PSD)非均匀性和异质性的变化特征, 在青藏高原长江源区, 根据高寒草甸的退化梯度, 选取了未退化区域、 轻度退化区域、 中度退化区域、 重度退化区域和极重度退化区域, 测定了高寒草甸退化过程中土壤的粒径分布、 饱和导水率、 孔隙度与有机质含量. 运用多重分形理论, 并结合土壤颗粒分布与土壤理化特性等参数的相关性进行分析, 为高寒草甸退化对长江源高寒土壤性质变化的影响的定量研究提供一种精确的分析方法. 结果表明: 随着青藏高原多年冻土区高寒草甸退化程度的增加, 土壤颗粒呈粗粒化趋势, 多重分形参数中容量维数(D_0)随之增大, 表征PSD宽度随之增大; 信息维数(D_1)、 信息维数/容量维数(D_1/D_0)、 关联维数(D_2)、 奇异谱宽(Deltaalpha)可从不同角度反映的土壤PSD的非均匀性与局部异质性随着高寒草甸退化有先增大后减小的趋势, 中度退化区域的土壤PSD不均匀性最大. 研究发现, 研究区土壤多重分形参数与细砂含量、 土壤的孔隙度、 有机质含量具有较明显的相关性. 多重分形参数能准确描述高寒草甸退化过程中土壤粒径分布的细微差别, 可作为反映土壤性质的潜在指标. C1 Sun Zhe, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Liu Guohua, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Gao Zeyong, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Wang Yibo, College of Earth and Environment Sciences, Lanzhou University; State Key Laboratory of Frozen Soil Engineering, Lanzhou, Gansu 730000, China. Z6 孙哲, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 刘国华, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 高泽永, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 王一博, 兰州大学资源环境学院, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. EM sunjack0227@163.com; yibo_wang@163.com Z7 sunjack0227@163.com; yibo_wang@163.com Z8 23 Z9 26 UT CSCD:5641823 DA 2023-03-23 ER PT J AU You Quangang Xue Xian Peng Fei Dong Siyang Z2 尤全刚 薛娴 彭飞 董斯扬 TI Alpine Meadow Degradation Effect on Soil Thermal and Hydraulic Properties and Its Environmental Impacts Z1 高寒草甸草地退化对土壤水热性质的影响及其环境效应 Z3 中国沙漠 SO Journal of Desert Research VL 35 IS 5 BP 1183 EP 1192 AR 1000-694X(2015)35:5<1183:GHCDCD>2.0.TX;2-P PY 2015 DT Article AB Widely distributed degradation of alpine meadow in the Qinghai-Tibet Plateau changes water retention capacity,hydraulic conductivity,and thermal conductivity in the shallow soil layer,which could affect surface water and heat fluxes and feedback to regional ecological environment.We compared plant community characteristics,above and underground biomass,and soil physical and chemical properties between typical native and moderately degraded alpine meadow to understand the effect of land degradation on soil thermal and hydraulic properties and environment.The results showed that vegetation coverage reduced significantly (p< 0.01)in moderately degraded alpine meadow.Forbs with deep roots replaced the native sedges which have shallow roots to ensure the ecosystem acclimate the drier environment.Under moderate degradation,biodiversity of alpine meadow ecosystem significantly increased(p<0.01).Underground biomass in mattic epipedon(0-10 cm)significantly decreased(p<0.01),however,it significantly increased(p<0.01)in 30-50 cm soil layer.Mattic epipedon thinning decreased vertical heterogeneity in soil bulk density,and bulk density of surface soil significantly increased (p<0.01).The soil tended to coarsen with degradation (p<0.01).Surface soil water retention capacity and saturated hydraulic conductivity decreased,and soil thermal conductivity increased in moderately degraded alpine meadow because surface soil organic matter significantly decreased and soil bulk density increased.The results of this research suggest that the grassland degradation in alpine meadow results in decreases in soil water retention capacity and increases in soil thermal conductivity,which could accelerate land surface water and heat exchange.In addition,the decrease in vegetation coverage and mattic epipedon could lead to a potential positive feedback to permafrost thawing and regional climate warming. Z4 青藏高原高寒草甸草地的大面积退化,将改变浅层土壤的水热性质,影响地表水热交换,甚至导致区域生态环境的变化。本文通过系统分析典型原生高寒草甸与中度 退化高寒草甸的植物群落特征、地上地下生物量和土壤理化特征的差异,研究高寒草甸草地退化对土壤水热性质的影响及其环境效应。结果表明:随着高寒草甸草地 退化,植被覆盖度显著降低(p<0.01),适应旱生、深根系的杂草侵入适应湿润生境、浅根系的以莎草科植物为主的原生植被,生物多样性显著增加(p<0 .01);草毡表层(0~10cm)地下生物量显著减少(p<0.01),30~50cm地下生物量显著增加(p<0.01)。草毡表层变薄降低了土壤容 重的垂向异质性,使表层土壤容重显著增加(p<0.01),土壤颗粒显著变粗(p<0.01)。受浅层土壤有机质降低和土壤容重增加的影响,中度退化高寒 草甸土壤的持水量和饱和导水率降低,土壤导热率升高。高寒草甸草地植被退化,土壤持水量、饱和导水率降低和导热率增加将加速地表水热交换,对高寒草甸草地 退化和下伏多年冻土消融都可能是正反馈。 C1 You Quangang, Key Laboratory of Desert and Desertification,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Xue Xian, Key Laboratory of Desert and Desertification,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Peng Fei, Key Laboratory of Desert and Desertification,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Dong Siyang, Key Laboratory of Desert and Desertification,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 尤全刚, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 薛娴, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 彭飞, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 董斯扬, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. EM youqg@lzb.ac.cn Z7 youqg@lzb.ac.cn Z8 22 Z9 25 UT CSCD:5527266 DA 2023-03-23 ER PT J AU Zhang Xianzhou He Yongtao Shen Zhenxi Wang Jingsheng Yu Chengqun Zhang Yangjian Shi Peili Fu Gang Zhu Juntao Z2 张宪洲 何永涛 沈振西 王景升 余成群 张扬建 石培礼 付刚 朱军涛 TI Frontier of the Ecological Construction Support the Sustainable Development in Tibet Autonomous Region Z1 西藏地区可持续发展面临的主要生态环境问题及对策 Z3 中国科学院院刊 SO Bulletin of the Chinese Academy of Sciences VL 30 IS 3 BP 306 EP 312 AR 1000-3045(2015)30:3<306:XZDQKC>2.0.TX;2-P PY 2015 DT Article AB Tibet Autonomous Region, as central part of the Qinghai-Tibetan plateau, is a unique ecological regional unit on the Earth, average elevation above 4 000 m, has a lot of special and peculiar ecosystems, and thus is important for biodiversity, river source conservation, and other ecological services. Therefore, the Tibetan plateau is one key zone for ecological sheltering function to China and East Asian, while the Qinghai-Tibetan plateau is among those areas that are most sensitive and vulnerable to future climate change. Climate change predictions indicate that increase in temperature will be faster on the Qinghai-Tibetan plateau than in surrounding areas and trends will increase with elevation. Climate change will within the next decades have major effects on biodiversity and ecosystem function on the Qinghai-Tibetan plateau. Addition with increasing human activities, such as overgrazing, many ecological problems including ecosystem degradation, even grassland desertification emerged on the Tibetan plateau, will inevitably weaken the ecological sheltering function on the Tibetan plateau. In 2009, for protecting the ecosystem services on the Tibetan plateau, Chinese government began to implement the project ofProtection and Construction of the State Ecological Safe Shelter Zone on the Tibetan Plateau. Based on many constructive technician and restorative countermeasures of ecological engineer, the degraded trend of Tibetan plateau ecosystem was suppressed, and the functions of plateau ecological sheltering become stable on the whole Plateau, even enhanced in some area. On the other hand, how to increase income of the local farmers is another important issue on the Tibetan plateau. The average income of local farmers is still lower than national level, and aim of government is to increase the local framers average income to national level in year 2020. These need more developing projects to achieve the goal, which will certainly put more environmental pressures on the ecosystems on Tibetan plateau. In summary, both the ecological sheltering construction and increasing income of famer and herdsman are two pressing tasks faced by government of the Tibet Autonomous Region during their sustainable development and ecological civilization. Key problems involved in this situation include:(1)Background of natural resources and environment need more investigation and research, due to the large area and extreme environment on the Tibetan plateau;(2)Ecological sheltering function of the Plateau ecosystem is suppressed by both climate change and human activities, which would lead to ecological degradation especially in alpine grassland ecosystem;(3)Gap between the farmers and herdsmens average income and national level currently exists in the Tibet Autonomous Region, because the traditional husbandry supported by alpine grassland ecosystem still dominated in the Plateau which lack of cooperative organization, effective support of science and technology. The ways to deal with this situation include:(1)comprehensive evaluation of regional resources and environmental capacity and reach the goal of regulating the ecological capacity, to realize sustainable development in the Tibet Autonomous Region;(2)quantitate and identificate the impact of global change and human beings activity on alpine grassland, to develop the different technique and pattern for manage typical Plateau ecosystem and construct different ecological projects;(3)coupling agriculture and animal husbandry system in different areas to realize the double win for increasing farmers income and guarantee the ecological sheltering function in Plateau;and(4)strengthen protection and construction the base for characteristic animal products for enhancing transition of husbandry economy and increasing the farmers income in the region. Z4 西藏是我国重要的生态安全屏障区域,也是我国生态建设的重点区域。生态安全屏障建设和促进农牧民持续增收是西藏可持续发展过程中面临的两方面重大需求,其 面临的主要问题包括:(1)受高原特殊的自然条件限制,西藏资源环境承载能力极为有限,其资源与生态环境本底情况有待于进一步调查、评估;(2)以高寒草 地为主体的高原生态系统深受气候变化和人类活动的双重影响,屏障功能正面临日益严峻的威胁;(3)以高寒草地为支撑的畜牧业仍沿袭传统模式,农牧民收入现 状及趋势与全国平均水平还有一定的差距。因此,在建设西藏生态文明的背景下,应积极探索资源节约型、环境友好型发展道路,为转变经济发展方式、发展生态产 业提供理论与技术支撑,在实现农牧民增收的同时,保护和建设国家生态系统安全屏障。主要对策包括:(1)开展西藏地区资源环境容量调查与研究,保障西藏的 可持续发展;(2)量化辨识气候变化和人类活动对草地生态系统的影响,建立科学有效的分类治理与管理模式;(3)实施农牧系统耦合工程,实现高寒草地保护 和农牧民增收的双赢;(4)加强西藏高原特色畜产品基地保护与建设,促进农牧民增收。 C1 Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. He Yongtao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Shen Zhenxi, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Wang Jingsheng, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Yu Chengqun, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Zhang Yangjian, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Shi Peili, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Fu Gang, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Zhu Juntao, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Z6 张宪洲, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 何永涛, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 沈振西, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 王景升, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 余成群, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张扬建, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 石培礼, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 付刚, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 朱军涛, 中国科学院地理科学与资源研究所, 北京 100101, 中国. EM zhangxz@igsnrr.ac.cn Z7 zhangxz@igsnrr.ac.cn Z8 21 Z9 31 UT CSCD:5436932 DA 2023-03-23 ER PT J AU Xu Manhou Liu Min Xue Xian Zhai Datong Peng Fei You Quangang Liu Yang Z2 徐满厚 刘敏 薛娴 翟大彤 彭飞 尤全刚 刘洋 TI Effects of Warming and Clipping on the Growth of Aboveground Vegetation in An Alpine Meadow Z1 增温、刈割对高寒草甸地上植被生长的影响 Z3 生态环境学报 SO Ecology and Environmental Sciences VL 24 IS 2 BP 231 EP 236 AR 1674-5906(2015)24:2<231:ZWYGDG>2.0.TX;2-T PY 2015 DT Article AB In recent years, alpine meadow vegetation increasingly exhibits a phenomenon of degradation, owing to the double effects of climate change and land use change. In such situation, discussing the dynamic law of alpine meadow vegetation in climate change and human activities has great significance for the protection and effective utilization of alpine vegetation, as well as to the prevention of grassland degradation or desertification in high-altitude regions. In this research, we chose an alpine meadow of the Qinghai-Tibetan Plateau as the study area, and adopted experimental warming to simulate climate warming and clipping to mimic human grazing, and set four treatments with the random block design including control, warming alone, clipping alone, and the interaction of warming and clipping. We measured vegetation height, coverage, and aboveground biomass in the growing season (from May to September) of the alpine meadow in 2012 and 2013. The aim was to study the responses of aboveground vegetation to warming and clipping, and further explored the characteristics and trends of aboveground vegetation in climate change and human activities in the alpine meadow of the Qinghai-Tibetan Plateau. The results showed that (1) summer was the best season and July was the best month for vegetation growth in the alpine meadow. But the variations of vegetation growth properties were greater in the different months of the growing season and different years. Vegetation height was greater in the middle growing season than the early and late growing season (P<0.05), whereas vegetation coverage and aboveground biomass were greater in the middle and late growing season than the early growing season (P<0.05). Vegetation height and aboveground biomass were slightly larger in 2012 than 2013 (P>0.05), whereas vegetation coverage was slightly smaller in 2012 than 2013 (P>0.05). (2) Vegetation height, coverage, and aboveground biomass were all not significant between treatments in the second year of warming (2012, P>0.05), whereas reached significant differences in the third year of warming (2013, P<0.05). 2-year clipping significantly reduced vegetation height and aboveground biomass (P<0.05), whereas the interaction of 3-year warming and 2-year clipping significantly decreased vegetation coverage and aboveground biomass (P<0.05). The above results demonstrated that the effects of warming and clipping on aboveground vegetation of the alpine meadow had differences between short-term and long-term scales, i.e. the effects were not significant in the early stage, but enhanced with passing time. However, this conclusion needs more data to be explained deeply. Z4 近些年由于气候变化和土地利用方式变化的双重影响,高寒草甸植被逐渐表现出退化现象。探讨高寒草甸植被生长特征在气候变化和人类活动中的动态变化规律,对 高海拔地区植被的保护和合理利用,防止草地退化和沙漠化发生具有重要意义。以青藏高原高寒草甸为研究区,利用增温实验模拟气候变暖、刈割实验模拟人类放牧 ,采用随机区组设计,设置对照、增温、刈割、增温+刈割交互作用四种实验处理,于2012─2013年植被生长季调查高度、盖度和地上生物量,研究高寒草 甸地上植被生长特征对增温、刈割的响应,以此探讨青藏高原高寒草甸地上植被在气候变化和人类活动中的变化趋势。结果表明:(1)夏季是高寒草甸植被生长的 最佳季节,其中7月是其生长的最佳月份;高寒草甸地上植被生长特征年内生长季和年际间的变化趋势差异较大,表现为植被高度在生长季中期高于初期和末期(P <0.05),植被盖度和地上生物量在生长季中期和末期高于初期(P<0.05);2012年的植被高度和地上生物量略高于2013年(P>0.05), 但植被盖度略低于2013年(P>0.05)。(2)植被高度、盖度和地上生物量在增温第2年(2012年)的各实验处理间均未出现显著差异(P>0.0 5),而在第3年(2013年)开始出现显著差异(P<0.05),其中2年刈割显著降低植被高度和地上生物量(P<0.05),3年增温和2年刈割的交 互作用显著降低植被盖度和地上生物量(P<0.05)。以上结果表明,增温、刈割对高寒草甸地上植被生长的影响在短期和长期尺度上存有差异,初期并不显著 ,但随着时间推移,影响开始加强。 C1 Xu Manhou, Taiyuan Normal University, 030619. Liu Min, Taiyuan Normal University, 030619. Zhai Datong, Taiyuan Normal University, 030619. Xue Xian, Cold and Arid Regions Environmental and Engineering Research Institute, University of Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Peng Fei, Cold and Arid Regions Environmental and Engineering Research Institute, University of Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. You Quangang, Cold and Arid Regions Environmental and Engineering Research Institute, University of Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Liu Yang, Yili Vocational and Technical College, Yining, 835000. Z6 徐满厚, 太原师范学院地理科学学院, 太原, 山西 030619, 中国. 刘敏, 太原师范学院地理科学学院, 太原, 山西 030619, 中国. 翟大彤, 太原师范学院地理科学学院, 太原, 山西 030619, 中国. 薛娴, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 彭飞, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 尤全刚, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 刘洋, 伊犁职业技术学院, 伊宁, 新疆 835000, 中国. EM xumh@tynu.edu.cn Z7 xumh@tynu.edu.cn Z8 10 Z9 13 UT CSCD:5396724 DA 2023-03-23 ER PT J AU Zhang Juan Sha Zhanjiang Xu Weixin Z2 张娟 沙占江 徐维新 TI Variations of alpine meadow soil temperature and moisture in Batang, Yushu region of the Qinghai-Tibet Plateau Z1 青藏高原玉树地区巴塘高寒草甸土壤温湿特征分析 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 37 IS 3 BP 635 EP 642 AR 1000-0240(2015)37:3<635:QZGYYS>2.0.TX;2-B PY 2015 DT Article AB The establishment of field test site in Batang alpine meadow, Yushu County, Tibetan Autonomous Prefecture of Yushu, hinterland of the Qinghai-Tibet Plateau, soil temperature and moisture dynamic were monitoried. Using the field every 10min monitoring data of soil temperature and moisture, and meteorological data, we are analysis the varitaions of soil temperature and moisture by linear trend method. Analysis of daily and yearly variations of soil temperature and moisture characteristics, the results showed that: daily soil temperature began to rise from around 10:00, to 17:00, 18:00 reached the highest value, and then began to decline, at about 9:00 to reach the lowestpoint; the soil moisture reaches a minimum value at about 10:00, reached a maximum at about 18:00, with the increase of soil depth, the soil moisture decreased; soil temperature and moisture showed a different trend in different seasons, two different soil showed a relatively uniform change, with the increase of soil depth; soil temperature and moisture decreased gradually with increasing distance from the snow fence; with the increase of soil depth, influence of snow fence also decreased gradually. Through the analysis of soil temperature and moistureof different periods, by the middle of August from mid-May, soil moisture and soil temperature is opposite variation tendency, while in the rest period, the soil temperature and moisture change trend; fall to winter conversion, the soil temperature and moisture were significantly decreased, and soil into the frozen period, the winter to spring conversion, soil temperature and moisture increased, soil into the thawing period; cold season, 25 cm depth soil temperature is higher than 5 cm depth; warm season, 5 cm depth soil temperature is higher than 25 cm depth. Z4 在青藏高原腹地青海省玉树藏族自治州玉树县巴塘高寒草甸草场设立野外试验场, 进行土壤温、 湿动态监测. 利用温、 湿监测数据及同步气象数据资料, 采用对比分析及线性趋势等方法, 分析了巴塘高寒草甸日、 年土壤温、 湿变化状况. 结果表明: 土壤温度从10:00时左右开始上升, 至17:00-18:00时达到最高值, 然后开始下降, 在第二天9:00时左右到达最低; 土壤湿度在10:00时达到最低值, 在18:00时达到最大值, 随着土壤深度的增加, 土壤湿度逐渐降低. 土壤温、 湿度在不同的季节表现出不同的变化趋势, 二个点不同土层表现出相对一致的变化, 随着土壤深度的增加, 土壤温、 湿度逐渐降低; 随着与雪栅距离的增加, 土壤温、 湿度的变化幅度减弱; 随着土壤深度的增加, 雪栅的影响也逐渐减小. 通过对土壤温、 湿不同时期的特征分析, 5月中旬至8月中旬, 土壤湿度与土壤温度呈现相反的变化趋势, 而在其余时期土壤温湿变化趋势一致; 秋季向冬季转换时, 土壤温湿呈显著下降趋势, 而后土壤进入封冻时期; 冬季向春季转换时, 土壤温湿呈显著上升趋势, 土壤进入解冻时期. 冷季时, 25 cm土壤温度高于5 cm; 暖季时, 5 cm土壤温度高于25 cm. C1 Zhang Juan, Qinghai Institute of Meteorological Science, Xining, Qinghai 810001, China. Xu Weixin, Qinghai Institute of Meteorological Science, Xining, Qinghai 810001, China. Sha Zhanjiang, Qinghai Normal University, Xining, Qinghai 810001, China. Z6 张娟, 青海省气象科学研究所, 西宁, 青海 810001, 中国. 徐维新, 青海省气象科学研究所, 西宁, 青海 810001, 中国. 沙占江, 青海师范大学, 西宁, 青海 810001, 中国. EM 7845944@qq.com; 23400782@qq.com Z7 7845944@qq.com; 23400782@qq.com Z8 10 Z9 13 UT CSCD:5540334 DA 2023-03-23 ER PT J AU Zhang Xianzhou Yang Yongping Piao Shilong Bao Weikai Wang Shiping Wang Genxu Sun Hang Luo Tianxiang Zhang Yangjian Shi Peili Liang Eryuan Shen Miaogen Wang Jingsheng Gao Qingzhu Zhang Yili Ouyang Hua Z2 张宪洲 杨永平 朴世龙 包维楷 汪诗平 王根绪 孙航 罗天祥 张扬建 石培礼 梁尔源 沈妙根 王景升 高清竹 张镱锂 欧阳华 TI Ecological change on the Tibetan Plateau Z1 青藏高原生态变化 Z3 科学通报 SO Chinese Science Bulletin VL 60 IS 32 BP 3048 EP 3056 AR 0023-074X(2015)60:32<3048:QZGYST>2.0.TX;2-L PY 2015 DT Article AB The Tibetan Plateau is the highest physiographic unit regarding average elevation globally. In recent history, the ecosystem structure and function of the Tibetan Plateau, and population size and composition of the dominant species have shown profound changes due to the dual effect of climatic change and human activities. Studies during recent decades on this ecosystem showed that the green-up date of vegetation has advanced resulting in an extended growing period. Generally, the vegetation on the Plateau has improved, but with some local areas becoming degraded. Climatic warming has been a key factor responsible for the positive ecosystem change; however, this effect has been varied, especially the spatiotemporal changes of precipitation, which resulted in large changes of vegetation growth in arid and semi-arid regions. In drought years, the dual effect of climatic change and human activities caused the severe degradation of grasslands, particularly in the western region. However, with the implementation of a constructive project to protect the security of the ecological barrier on the Tibetan Plateau, the degradation of alpine ecosystems has been reduced, and the overexploitation of rare plant resources (e.g., Cordyceps spp., Saussurea spp., Picrorhiza scrophulariiflora) and poaching of wild animals (e.g., yak, Tibetan antelope, and Tibetan wild ass) have decreased, and their populations are recovering. The uplift of the Tibetan Plateau has affected its climate and environment and those of the adjacent areas. Future studies should consider the impact of global change on the Tibetan Plateau, and monitor the changes in ecosystem structure and function through field investigations and the application of remote sensing technology. Further implementation of large-scale ecological engineering to improve the ability of local residents to respond to global change on the Tibetan Plateau is necessary. Z4 青藏高原是全球平均海拔最高的自然地理单元. 近几十年乃至上百年来, 在气候变化和人类活动双重影响下, 青藏高原生态系统的结构和功能以及重要物种的种群数量和结构均发生了深刻的变化. 近几十年的研究表明:青藏高原植被返青期提前, 生长期延长, 覆盖度和生产力增加,碳汇功能增强, 青藏高原植被总体趋于向好, 局部变差. 气候变化是高原生态系统变化的主控因子, 气候变暖对青藏高原生态系统的影响是正面的, 但这种影响仍存在时间和空间上的不平衡性,尤其是降水在时间和空间上的变化对干旱和半干旱地区植被产生较大影响, 在干旱的年份叠加人类放牧活动等会导致这些区域, 尤其是青藏高原西部地区植被产生严重的退化, 但随着青藏高原生态安全屏障保护与建设工程的实施, 高原生态系统退化的态势得到了进一步遏制, 人类对高原特有珍稀植物资源, 如虫草、雪莲和胡黄连的过度采收以及对野牦牛、藏羚羊和藏野驴的盗猎等现象得到近一步缓解, 近期高原的野牦牛、藏羚羊和藏野驴的种群数量得到恢复. 青藏高原的隆起不仅对本区而且对其毗邻地区的气候与环境都产生着深刻的影响, 其生态系统对全球变化的响应与影响研究具有特殊重要的地位, 今后迫切需要加强生态系统结构和功能变化的地面监测和遥感技术的应用, 加大大型生态保护工程建设的实施力度, 整体提高高原地区应对全球变化的能力. C1 Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Zhang Yangjian, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Shi Peili, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Wang Jingsheng, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Zhang Yili, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Ouyang Hua, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Yang Yongping, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. Sun Hang, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. Piao Shilong, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China. Wang Shiping, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China. Luo Tianxiang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China. Liang Eryuan, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China. Shen Miaogen, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China. Bao Weikai, Chengdu Insititute of Biology, Chengdu, Sichuan 610041, China. Wang Genxu, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Gao Qingzhu, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Z6 张宪洲, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张扬建, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 石培礼, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 王景升, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张镱锂, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 欧阳华, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 杨永平, 中国科学院昆明植物研究所, 昆明, 云南 650201, 中国. 孙航, 中国科学院昆明植物研究所, 昆明, 云南 650201, 中国. 朴世龙, 中国科学院青藏高原研究所, 北京 100101, 中国. 汪诗平, 中国科学院青藏高原研究所, 北京 100101, 中国. 罗天祥, 中国科学院青藏高原研究所, 北京 100101, 中国. 梁尔源, 中国科学院青藏高原研究所, 北京 100101, 中国. 沈妙根, 中国科学院青藏高原研究所, 北京 100101, 中国. 包维楷, 中国科学院成都生物研究所, 成都, 四川 610041, 中国. 王根绪, 中国科学院水利部成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 高清竹, 中国农业科学院, 北京 100081, 中国. EM zhangxz@igsnrr.ac.cn Z7 zhangxz@igsnrr.ac.cn Z8 56 Z9 97 UT CSCD:5579063 DA 2023-03-23 ER PT J AU Li Yikang Ouyang Jingzheng Lin Li Zhang Fawei Du Yangong Cao Guangmin Han Fa Z2 李以康 欧阳经政 林丽 张法伟 杜岩功 曹广民 韩发 TI Evolution characteristics of biological soil crusts(BSCs) during alpine meadow degradation Z1 高寒草甸植被退化过程中生物土壤结皮演变特征 Z3 生态学杂志 SO Chinese Journal of Ecology VL 34 IS 8 BP 2238 EP 2244 AR 1000-4890(2015)34:8<2238:GHCDZB>2.0.TX;2-X PY 2015 DT Article AB Biological soil crusts(BSCs) are an important component of ecosystems,especially in arid and semi-arid ecosystems,but we know little about their distribution and function on the Tibetan Plateau. In this study,we investigated the effects of alpine meadow degradation and artificial grassland construction on the distribution and growth of BSCs. Results showed that community coverage decreased with the degradation of alpine meadow. The occurrence frequency of moss was the highest in Graminaceous + Kobresia community and 6-year-old artificial grassland,and then decreased along alpine meadow degradation succession,being the lowest in black soil beach(43.6%). Black patches,white patches and lichen formed in K. humilis community,and were most abundant at Mattic epipedon crack stage of K. pygmaea meadow or Mattic epipedon erosion stage as indicated by the highest occurrence frequency,but were not observed in Graminaceous + Kobresia community,6-year-old artificial grassland and black soil beach. The correlation analysis showed that the occurrence frequency of moss was significantly positively correlated with vegetation coverage,but negatively correlated with the occurrence frequencies of both black patches and white patches. A significant positive correlation was observed between the occurrence frequency of white patches and lichen(P <0.05). These findings demonstrate that BSCs distribute widely in alpine meadows,and vary greatly in distribution and species composition,indicating strong heterogeneity in distribution pattern due to the changes in vegetation growth and soil surface stability with meadow degradation. Z4 对生物土壤结皮(BSCs)在青藏高原的分布和作用还知之甚少,为了解其在高寒草甸退化过程中的演变特征,以高寒草甸为对象,研究其退化和人工重建对BS Cs生长和分布影响。结果表明:随草甸退化,植被盖度不断降低,苔藓类结皮在禾草嵩草草甸和6年人工草地出现频度最高,随植被退化出现频度降低,黑土滩阶 段最低(43.6%);黑斑、菌斑和地衣都是在矮嵩草阶段形成,在小嵩草草甸裂缝期或者剥蚀期出现频度最高,在禾草嵩草群落、6年人工草地及黑土滩均未出 现;相关分析表明,苔藓类结皮出现频率与植被盖度呈极显著相关(P < 0.01),而与黑斑和地衣出现频率呈负相关,菌斑与地衣出现频度呈显著相关(P < 0.05) 。BSCs在高寒草甸广泛分布,不同演替阶段,其分布和物种组成存在较大差别。植被生长和表土稳定性状况导致了BSCs的异质性分布格局。 C1 Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Ouyang Jingzheng, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Lin Li, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhang Fawei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Du Yangong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Cao Guangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Han Fa, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 欧阳经政, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 杜岩功, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 韩发, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM liyikang501@163.com; hanfa@nwipb.cas.cn Z7 liyikang501@163.com; hanfa@nwipb.cas.cn Z8 12 Z9 15 UT CSCD:5490896 DA 2023-03-23 ER PT J AU Li Huimei Zhang Anlu Z2 李惠梅 张安录 TI Herdsman's Perception and Influencing Factors about Grassland Ecological Environment Degradation Based on Household Investigation and Structural Equation Modeling in Sanjiangyuan Region, China Z1 基于结构方程模型的三江源牧户草地生态环境退化认知研究 Z3 草地学报 SO Acta Agrestia Sinica VL 23 IS 4 BP 679 EP 688 AR 1007-0435(2015)23:4<679:JYJGFC>2.0.TX;2-U PY 2015 DT Review AB Affected by the climate changes and human activities,the ecosystem of Sanjiangyuan region has been seriously degraded and fragmented. Herdsman's perception about environment degradation in grasslands will greatly affect local ecological security; the herdsman's unreasonable means of livelihood may be play a very important role in environment degradation. This paper divided herdsman's perception about grassland environmental degradation into eight indexes, i. e. plant coverage, plant height, biodiversity index, rampant rats, black beach phenomenon, desertification, soil erosion, percentages of Oxytropis and Artemisia plants. Based on these comprehensive perception indexes and the structural equation model,the local herdsman's perception about grassland environment degradation were quantitatively analyzed in the seven counties of Guoluo State, Huangnan State and Yushu State in Sanjiangyuan region. The results showed that herdsmen did not completely feel these adverse indexes of environment degradation, although their perceptions in tangible expression such as rampant rats and black beach phenomenon were well established. Yushu State was the lightly degraded area and the herdsman had less perception about environment degradation. Zeku county was the small range of mild continuous degraded area,the herdsman had the highest perception of livelihoods. Therefore, the diversification of herdsman's livelihoods had a direct impact on the perception about grassland environment situations. The livelihood assets and the livelihood capacity of herdsman were the most important factors of perception about grassland environmental degradation; the limited livelihoods of the herdsman should be fundamentally solved by optimizing their livelihoods and emphasizing the environmental education. In order to improve the wellbeing of local herdsman, the conservation strategies and management planning of grasslands should be formulated with an emphasis on improving both human livelihood and environmental protection. Z4 三江源草地生态环境退化严重,牧户对生态环境退化的感知在很大程度上影响着当地的生态安全,更是产生保护行为响应的前提。通过对青海三江源自然保护区的牧 户进行参与式结构问卷调查研究,将草地生态环境的退化感知细化为覆盖度下降、植株矮化、生物多样性下降、鼠害猖獗、黑土滩/荒漠化加剧、群落演替、草地生 产能力下降、毒草和杂草增多等8个指标,借助定量分析建立了牧户草地生态环境退化综合感知指数,并运用结构方程模型分析和探讨了影响牧户环境退化感知的主 要影响因素。结果表明:牧户对三江源区草地生态环境退化有一定程度的感知,但仅仅对较明显的退化结果有略高的认知。牧户拥有的生计多样化能力直接影响了他 们对草地生态环境退化的感知,故从根本上解决三江源区牧民的严重依赖草地生态环境而生存的单一化的生计问题,通过优化和丰富牧民的生计方式来影响和调控当 地草地生态环境退化趋势,认识环保知识在宗教信仰、日常环境教育宣传中的重要性,有效地加大环境保护和生态安全知识的宣传力度,在改善牧户生计问题的基础 上制定牧户认同和支持的自然资源管理规划和政策,才有可能激励牧户主动地参与生态环境保护,并最终实现牧户生活幸福自然资源可持续利用的良性循环。 C1 Li Huimei, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China. Zhang Anlu, College of Land Management, Huazhong Agricultural University, Wuhan, Hubei 430000, China. Z6 李惠梅, 浙江海洋学院, 舟山, 浙江 316000, 中国. 张安录, 华中农业大学土地管理学院, 武汉, 湖北 430000, 中国. EM 22995670@qq.com; zhanganlu@mail.hzau.edu.cn Z7 22995670@qq.com; zhanganlu@mail.hzau.edu.cn Z8 6 Z9 7 UT CSCD:5529776 DA 2023-03-23 ER PT J AU Li Linsen Cheng Shulan Fang Huajun Yu Guirui Xu Minjie Wang Yongsheng Dang Xusheng Li Yingnian Z2 李林森 程淑兰 方华军 于贵瑞 徐敏杰 王永生 党旭升 李英年 TI EFFECTS OF NITROGEN ENRICHMENT ON TRANSFER AND ACCUMULATION OF SOIL ORGANIC CARBON IN ALPINE MEADOWS ON THE QINGHAI-TIBETAN PLATEAU Z1 氮素富集对青藏高原高寒草甸土壤有机碳迁移和累积过程的影响 Z3 土壤学报 SO Acta Pedologica Sinica VL 52 IS 1 BP 183 EP 193 AR 0564-3929(2015)52:1<183:DSFJDQ>2.0.TX;2-N PY 2015 DT Review AB Increasing atmospheric nitrogen (N) deposition can significantly change carbon (C) cycling rates and budget in the terrestrial ecosystem, and is generally considered to be an important pathway of missing of the sink. However, the contribution of atmospheric N deposition to C sequestration in the terrestrial ecosystem is controversial. It is, therefore, essential to accurately evaluate the effects of rate and type of N deposition on amount, composition and stability of soil organic carbon (SOC). Stable C isotope natural abundance (or delta~(13) C) contains various information concerning C cycling processes, and hence makes it feasible to track SOC in its transfer, transformation and accumulation processes. The technique of Stable ~(13) C natural abundance provides a way to characterize the dynamics of SOC with different turnover times. It is hypothesized in this study that N deposition increases biomass of plants and ~ (13) C-depleted plant debris that leads to expansion of the fraction of coarse particle-sized SOC. Meanwhile, increased N deposition promotes activities of soil microbes, and increases emission of ~ (13) C-depleted CO _2, thus leading to decrease in SOC content and accumulation of delta ~(13) C. Consequently, this study is mainly aimed at determination of the effects of rate and type of N deposition on contents of SOC and its various particle-size fractions in the soil and quantification of relative contributions of the changes in these fractions to the change in total under the condition of N accumulation. Through the above-described researches, it is expected a better in-depth knowledge could be obtained regarding mechanisms of the effects of N deposition on deposit and stability of SOC. For that end a controlled multi-form, low-rate N addition field experiment was conducted at the Haibei Alpine Meadow Ecosystem Research Station in 2007. The experiment was designed to have three types of N fertilizers, NH _4 Cl, (NH _4) _2 SO _4 and KNO _3, and four N application rates: 0, 10, 20 and 40 kg hm~ (- 2) a~ (-1), and three replicates for each treatment. Soil samples, 10 in each treatment lot,were collected randomly with augers at 10cm intervals to a depth of 30 cm. Z4 为深入揭示陆地生态系统碳固定对大气氮沉降增加的响应机理,基于海北高寒草甸多形态(NH _4 Cl、(NH _4) _2 SO _4 、KNO _3)、低剂量(N 0、10、20、40 kg hm~ (- 2) a~(-1))的增氮控制试验平台,采集各处理水平下不同深度土壤样品,利用颗粒分组法分离测定总土壤有机碳(SOC)以及各粒径组分的碳含量和delt a~(13) C值。研究结果表明:低氮显著增加了土壤粗颗粒态有机碳(MacroPOC)和矿质结合态有机碳(MAOC)的含量,而高氮处理正好相反。施氮一致降低土 壤细颗粒态有机碳(MicroPOC)含量。此外,添加硝态氮肥对SOC各组分含量和 delta ~(13) C值的影响显著高于铵态氮肥。总体而言,低氮导致地表30 cm层SOC储量增加了4.5%,而中氮和高氮导致SOC储量分别下降了5.4%和8.8%。低氮处理时新增的碳以MacroPOC为主,而高氮处理时损 失的碳主要是 MicroPOC 。连续5 a施氮促进了颗粒态有机碳(POC)组分的分解,进而导致SOC稳定组分的比例增加。可以认为,大气氮沉降或低剂量施氮(10 kg hm~ (- 2) a~(-1))短期内有利于青藏高原高寒草甸土壤碳截留,硝态氮较铵态氮输入对土壤碳储量增加更为有益。 C1 Li Linsen, College of Resources and Envir onment, University of Chinese Academy of Sciences, Beijing 100049, China. Cheng Shulan, College of Resources and Envir onment, University of Chinese Academy of Sciences, Beijing 100049, China. Xu Minjie, College of Resources and Envir onment, University of Chinese Academy of Sciences, Beijing 100049, China. Fang Huajun, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Yu Guirui, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Wang Yongsheng, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Dang Xusheng, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. Li Yingnian, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Z6 李林森, 中国科学院大学资源与环境学院, 北京 100049, 中国. 程淑兰, 中国科学院大学资源与环境学院, 北京 100049, 中国. 徐敏杰, 中国科学院大学资源与环境学院, 北京 100049, 中国. 方华军, 中国科学院地理科学与资源研究所, 中国科学院生态系统观测与模拟重点实验室, 北京 100101, 中国. 于贵瑞, 中国科学院地理科学与资源研究所, 中国科学院生态系统观测与模拟重点实验室, 北京 100101, 中国. 王永生, 中国科学院地理科学与资源研究所, 中国科学院生态系统观测与模拟重点实验室, 北京 100101, 中国. 党旭升, 中国科学院地理科学与资源研究所, 中国科学院生态系统观测与模拟重点实验室, 北京 100101, 中国. 李英年, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM 569941018@qq.com; slcheng@ucas.ac.cn Z7 569941018@qq.com; slcheng@ucas.ac.cn Z8 16 Z9 18 UT CSCD:5330714 DA 2023-03-23 ER PT J AU 曲家鹏 刘明 杨敏 张知彬 张堰铭 Z2 Qu Jiapeng Liu Ming Yang Min Zhang Zhibin Zhang Yanming TI Effects of fertility control in plateau pikas (Ochotona curzoniae) on diversity of native birds on Tibetan Plateau Z1 高原鼠兔不育控制对鸟类多样性影响 Z3 兽类学报 SO Acta Theriologica Sinica VL 35 IS 2 BP 164 EP 169 AR 1000-1050(2015)35:2<164:EOFCIP>2.0.TX;2-X PY 2015 DT Article AB An overabundance of plateau pika(Ochotona curzoniae) populations along with increased numbers of livestock was suspected to have caused degradation of the alpine meadow on the Tibetan Plateau. In April 2007,we conducted fertility control of plateau pika populations in Guoluo District,south of Qinghai Province,China. We investigated abundances of pika and bird species observed at the study sites during August and September 2007 and 2008 in order to evaluate the effects of quinestrol,levonorgestrel and EP- 1 on plateau pikas,avian diversity and abundance. The results demonstrated that quinestrol reduced pika abundances significantly compared with control in the second year after delivering the baits, while bird diversity and species richness did not decline significantly. Abundances of white-rumped snowfinch were significantly lower in quinestrol group compared with control,while abundances of rufous-necked snowfinch were significantly higher in quinestrol groups compared with EP- 1 group. Quinestrol reduced pika population abundances,but had limited effects on avian diversity. Therefore,it was a potential approach that could be applied in the management of plateau pika on the Tibetan Plateau. Z4 高原鼠兔种群数量过多被认为是青藏高原草地退化的主要原因之一。2007年4月,在青海省果洛州大武镇开展了高原鼠兔不育控制实验。为了解3种不育剂(炔 雌醚、左炔诺孕酮和EP- 1)对高原鼠兔和土著鸟类的影响,分别在2007年和2008年8- 9月调查了高原鼠兔种群数量与鸟类多样性。结果表明,投药次年,炔雌醚能显著降低高原鼠兔各群数量,而对鸟类多样性和物种数均无显著影响;炔雌醚组白斑翅 雪雀的数量显著低于对照组,棕颈雪雀的数量显著高于EP- 1组。因此,炔雌醚能有效降低高原鼠兔种群数量,对土著鸟类多样性影响较小。使用炔雌醚开展不育控制是高原鼠兔种群管理的一种新途径。 C1 Qu Jiapeng, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Yang Min, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhang Yanming, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Liu Ming, Institute of Zoology,Chinese Academy of Sciences, State Key Laboratory of Integrated Management on Pest Insects and Rodents, Beijing 100101, China. Zhang Zhibin, Institute of Zoology,Chinese Academy of Sciences, State Key Laboratory of Integrated Management on Pest Insects and Rodents, Beijing 100101, China. Z6 曲家鹏, 中国科学院西北高原生物研究所,高原生物适应于进化重点实验室, 西宁, 青海 810001, 中国. 杨敏, 中国科学院西北高原生物研究所,高原生物适应于进化重点实验室, 西宁, 青海 810001, 中国. 张堰铭, 中国科学院西北高原生物研究所,高原生物适应于进化重点实验室, 西宁, 青海 810001, 中国. 刘明, 中国科学院动物研究所,农业虫害鼠害综合治理研究国家重点实验点, 北京 100101, 中国. 张知彬, 中国科学院动物研究所,农业虫害鼠害综合治理研究国家重点实验点, 北京 100101, 中国. EM zhangym@nwipb.cas.cn Z7 zhangym@nwipb.cas.cn Z8 1 Z9 8 UT CSCD:5432801 DA 2023-03-23 ER PT J AU Wang Jing Hu Jing Du Guozhen Z2 王静 胡靖 杜国祯 TI Effects of nitrogen and phosphorus on the soil nematode community in Tibetan Plateau alpine meadows Z1 施氮磷肥对青藏高原高寒草甸土壤线虫群落组成的影响 Z3 草业学报 SO Acta Prataculturae Sinica VL 24 IS 12 BP 20 EP 28 AR 1004-5759(2015)24:12<20:SDLFDQ>2.0.TX;2-D PY 2015 DT Article AB Soil nematodes are sensitive to environmental changes and are widely used as indicators of soil conditions. Here we monitored temporal dynamics of the soil nematode community using a multi-level N and P addition experiment in the eastern Tibetan Plateau alpine meadow under grazing conditions. The results showed N and P fertilizer applications slightly improved the diversity (H') and the total number of soil nematodes, but that the maturity index (MI) declined with increases in the fertilizer gradient. The abundance of fungivores and predators decreased whereas bacterivorous nematodes significantly increased after P input. With lower-level applications of N and P fertilizer, the abundance of herbivorous nematodes was low but that of omnivores was high. The abundance of cp-1 (colonizer-persister) and cp-3 group nematodes increased with increases in the fertilizer gradient. The largest abundance of cp-1 and cp-3 appeared in treatments with moderate N and P fertilizer applications. We found a significantly positive relationship between bacterivorous nematodes, cp-1 and available phosphorus. The response of soil nematodes to different kinds of fertilizer is probably caused by grazing. Z4 对典型高寒草甸放牧不施肥(G),放牧施氮肥(GN)(5,10,15 g/m~2)和放牧施磷肥(GP)(2,4,8 g/m~2)条件下的土壤线虫群落组成进行研究,结果表明,放牧草甸施肥条件下,土壤线虫多样性升高、成熟度指数随施肥梯度升高而降低,但各处理间土壤线 虫多样性指数、成熟度指数和数量没有显著差异。放牧施氮肥、放牧施磷肥处理中食真菌和捕食性土壤线虫数量降低,食细菌土壤线虫数量增加,且食细菌土壤线虫 在施磷肥处理中增加显著。在少量施氮肥和磷肥时,植食性土壤线虫数量较低,但杂食性土壤线虫数量较高。土壤线虫cp-1和cp-3类群的数量随施肥梯度的 升高而增多,其他类群的数量降低。除食细菌土壤线虫外,其他类群土壤线虫与土壤理化性质之间没有显著相关关系。 C1 Wang Jing, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou, Gansu 730020, China. Hu Jing, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Du Guozhen, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Z6 王静, 草地农业生态系统国家重点实验室, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 胡靖, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 杜国祯, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. EM jingwang2012@lzu.edu.cn; guozdu@lzu.edu.cn Z7 jingwang2012@lzu.edu.cn; guozdu@lzu.edu.cn Z8 5 Z9 7 UT CSCD:5592889 DA 2023-03-23 ER PT J AU Dong Shikui Wu Xiaoyu Liu Shiliang Su Xukun Wu Yu Shi Jianbin Li Xiaowen Zhang Xiang Xu Donghua Weng Jin Z2 董世魁 武晓宇 刘世梁 苏旭坤 吴娱 石建斌 李晓文 张翔 许东华 翁晋 TI Estimation of ecological carrying capacity for wild yak, kiang, and Tibetan antelope based on habitat suitability in the Aerjin Mountain Nature Reserve, China Z1 阿尔金山自然保护区基于野牦牛、藏野驴、藏羚羊适宜栖息地的生态容量估测 Z3 生态学报 SO Acta Ecologica Sinica VL 35 IS 23 BP 7598 EP 7607 AR 1000-0933(2015)35:23<7598:AEJSZR>2.0.TX;2-E PY 2015 DT Article AB Altun Mountain National Nature Reserve (AMNNR) on the Qinghai-Tibetan Plateau, China, is a major refuge for three wild ungulates; wild yak (Bos mutus), kiang (Equus kiang),and Tibetan antelope (Pantholops hodgsoni). This nature reserve is important for conserving these three wild endemic ungulates and their habitats. Over decades of conservation, the populations of these three ungulates have increased rapidly. However, the administrators of AMNNR considered that the kiang might have become overpopulated, which would result in habitat degradation. Thus, it is vital implement wildlife management planning based on the quantification of ecological carrying capacity for sustainable nature reserve management. In this study, vehicular transects were conducted to survey the distribution data and record the populations of wild yak, kiang, and Tibetan antelope from May to June, 2012, and June to July, 2013, in the AMNNR. We integrated remote sensing data analysis with on-the-ground plot surveys to identify suitable habitats (alpine steppe, alpine desert steppe, alpine desert, and alpine meadow) for all three ungulates, and we estimated habitat production. A dietary analysis of wild yak,kiang,and Tibetan antelope was completed to estimate the amount of edible grasses required for the three wild ungulates in suitable habitats. Using the empirical formula (calculation of the proper carrying capacity of rangelands) provided by the PRC Ministry of Agriculture, we quantified the carrying capacity for all three species in suitable habitats and in the whole natural reserve. The results showed that areas of suitable habitat for wild yak, kiang, and Tibetan antelope were 31866.07 km~2, 24035.51 km~2,and 24035.51 km~2, respectively. There were big overlaps in the suitable habitats for all three wild ungulates, which shared almost the same suitable habitats. Within the suitable habitats, alpine steppe, alpine desert steppe, alpine desert, and alpine meadow could potentially provide 3944.91 *10~4 kg, 3126.32* 10~4 kg, 138.19*10~4 kg, and 564.49*10~4 kg edible grasses,respectively for these three species. Considering the overlaps of suitable habitats and the different requirements of the three species,the maximum ecological carrying capacities of the whole nature reserve were estimated to be 7951 heads/year for wild yak,6907 heads/year for kiang,and 24959 heads/year for Tibetan antelope. The ecological carrying capacity ranges under different probabilities of food availability were 39767156 heads/year for wild yak, 34546216 heads/year for kiang, and 1354724385 heads/year for Tibetan antelope. Comparison of the actual population size and that which could be supported by the ecological carrying capacity of suitable habitats within the AMNNR,indicated that kiang are overpopulated, wild yak are close to the maximum ecological carrying capacity, and Tibetan antelope are underpopulated. Therefore, the best management practice should be applied to control the kiang population and to promote the Tibetan antelope population. Such action would balance the different wildlife species that share the same habitats and would maintain habitat health to sustain the AMNNR. Conservation efforts should focus on the long-term ecological monitoring of habitats in the reserve to avoid grassland degradation caused by the overpopulation of animals. Z4 阿尔金山国家级自然保护区保护了以野牦牛(Bos mutus)、藏野驴(Equus kiang)、藏羚羊(Pantholops hodgsoni)为代表的青藏高原特有野生动物及其栖息地,但是近年来野生动物数量的快速增长引发了栖息地退化的问题,科学量化阿尔金山自然保护区各类 栖息地对野牦牛、藏羚羊、藏野驴的生态容量,并提出相应的野生动物管理措施,是实现保护区可持续管理的根本途径。本文应用遥感技术和地面调查相结合的方法 ,系统分析了保护区内野牦牛、藏野驴和藏羚羊的栖息地需求,建立了植物生物量和NDVI的关系模型,结合三类野生动物的食性分析,估测了适宜栖息地(高寒 草原、高寒荒漠草原、高寒草甸、高寒荒漠)为三类野生动物提供的可食植物量,推算了适宜栖息地和整个保护区可以承载三类野生动物的生态容量。结果表明:阿 尔金山自然保护区内野牦牛、藏野驴和藏羚羊的适宜栖息地面积分别为31866.07、24035.51、24035.51 km~2,三类野生动物的适宜栖息地之间相互重叠,藏野驴和藏羚羊的适宜栖息地基本相同;全保护区内,高寒草原、高寒荒漠草原、高寒荒漠和高寒草甸分别提 供了3944.91 *10~4、3126.32* 10~4、138.19* 10~4、564.49* 10~4 kg可食植物量;结合三类野生动物的栖息地重叠程度及食物需求量分析,得出阿尔金山保护区的最大生态容量为野牦牛7951头/a、藏野驴6907头/a、 藏羚羊27094只/a;结合三类野生动物对食物资源的占有率估计,得出阿尔金山三类野生动物的生态容量变幅为野牦牛39767156头/a,藏野驴34 546216头/a、藏羚羊1354724385只/a。根据阿尔金山自然保护区各类栖息地对三类野生动物的生态容量,提出适当控制藏野驴种群数量、增加 藏羚羊种群数量的建议,以促进野生动物种群数量的持续增长和栖息地的有效保护。 C1 Dong Shikui, School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China. Wu Xiaoyu, School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China. Liu Shiliang, School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China. Su Xukun, School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China. Wu Yu, School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China. Shi Jianbin, School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China. Li Xiaowen, School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China. Zhang Xiang, Management Bureau of Altun Mountain National Nature Reserve, Kuerle, Xinjiang 841000, China. Xu Donghua, Management Bureau of Altun Mountain National Nature Reserve, Kuerle, Xinjiang 841000, China. Weng Jin, Management Bureau of Altun Mountain National Nature Reserve, Kuerle, Xinjiang 841000, China. Z6 董世魁, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 武晓宇, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 刘世梁, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 苏旭坤, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 吴娱, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 石建斌, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 李晓文, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 张翔, 阿尔金山国家级自然保护区管理局, 库尔勒, 新疆 841000, 中国. 许东华, 阿尔金山国家级自然保护区管理局, 库尔勒, 新疆 841000, 中国. 翁晋, 阿尔金山国家级自然保护区管理局, 库尔勒, 新疆 841000, 中国. EM wxyabcd1991@aliyun.com Z7 wxyabcd1991@aliyun.com Z8 6 Z9 14 UT CSCD:5594480 DA 2023-03-23 ER PT J AU Deng Changchun Jiang Xianmin Liu Yang Zhang Jian Chen Yamei He Runlian Z2 邓长春 蒋先敏 刘洋 张健 陈亚梅 和润莲 TI Litter decomposition of Rhododendron lapponicum in alpine timberline ecotone Z1 高山林线交错带高山杜鹃的凋落物分解 Z3 生态学报 SO Acta Ecologica Sinica VL 35 IS 6 BP 1769 EP 1778 AR 1000-0933(2015)35:6<1769:GSLXJC>2.0.TX;2-7 PY 2015 DT Article AB Litter decomposition is one of the key ecological processes in forest ecosystem, which plays an important role in ecosystem productivity,nutrient cycling and the formation of soil organic matter. In alpine ecosystem, freeze-thaw cycle and snow cover play an important role of litter decomposition processes. Climate change has changed the snow cover and circulation pattern of soil freezing and thawing in the alpine area, however, it could cause timberline upward shift and a trend for a shrub expansion, which will change community structure and species composition in the alpine region. Alpine timberline ecotone indicates the limit distribution of the forest and is a sensitive area of global climate change. From alpine coniferous forest to alpine shrub meadows, different vegetation types on snowfall distribution may cause dramatic variations in snow depth and snowmelt timing, soil temperatures and freezing depth in ecosystem, which in turn control litter decomposition process, and subsequently influence carbon and nitrogen cycle in alpine ecosystem. Rhododendron lapponicum is one of constructive species or dominant species in alpine/subalpine of western China,which was common in the fir forest and alpine scrub meadow. We present here one year study of R. lapponicum leaf litter decomposition in snowing season and growing seasonin alpine timberline ecotone located in the eastern Tibetan Plateau, China, where the ground is completely covered with snow for 5-6 months each year. A field experiment using litterbag method was carried out in different vegetations along an elevation gradient in an alpine timberline ecotone, mass loss, nutrient release and changes of leaf litter were studied. The results showed that: 1) both seasonal variation and vegetation type had significantly effects on leaf litter decomposition of R. lapponicum. Mass loss mainly occured in the growing season and showed the highest value in timberline compared with other vegetations. This may be relatively higher average temperatures in the growing season than snowing season, and there were the most dramatic temperature fluctuations and most frequent freeze-thaw cycles in the timberline. However, slightly higher mass loss in coniferous forest was observed in snowing season compared with that in growing season. 2) Litter mass loss (9.62%) was relatively slow with a coefficient k (0.145) in the first year decomposition in alpine timberline ecotone. 3) Change in quality of leaf litter was mainly reflected in a significant cellulose degradation that concentrated in snowing season,but not significantly degradation of lignin of R. Lapponicum. The C/N,C/P,lignin/N ratios changed little and C, N, P release performed stable and sustainable as the first year decomposition process in the timberline. The results suggested that seasonal snow cover do not only affect litter decomposition in the period of snowing season, but may further accelerate leaf litter decomposition of R. lapponicum in the beginning of the growing season according to frequent freeze-thaw cycles and snow melting in the alpine timberline ectone. In conclusion, with the reduction of snow cover,extension of growing season and the expansion of shrub community as R. lapponicum,would accelerate the litter decomposition of R. lapponicum in alpine timberline ecotone in the scenario of climate warming. Z4 凋落物分解是维持生态系统生产力、养分循环、土壤有机质形成的关键生态过程。高山林线交错带是陆地生态系统中对气候变化响应的敏感区域。季节变化和海拔梯 度上的植被类型差异可能会影响该区域凋落物的分解,进而对高山生态系统的碳氮循环产生重要影响。采用凋落物分解袋的方法,研究了川西高山林线交错带优势种 高山杜鹃(Rhododendron lapponicum)凋落叶在雪被期和生长季的分解特征。结果显示:(1)季节变化和植被类型对高山杜鹃凋落物的分解均具有显著影响(P<0.05), 凋落叶的质量损失主要发生在生长季且在高山林线最大,暗针叶林中雪被期的质量损失略高于生长季,但差异不显著;(2)林线交错带上高山杜鹃凋落叶分解缓慢 ,一年干物质失重率为9.62%,拟合分解系数k为0.145;(3)高山杜鹃凋落叶的质量变化主要体现在纤维素降解显著且集中在雪被期,木质素无明显降 解,在高山林线上C/N、C/P、木质素/N变化幅度较小且C、N、P 的释放表现得稳定而持续。结果表明,季节性雪被对林线交错带内高山杜鹃分解的影响不仅局限在雪被期内,雪被融化期间频繁的冻融作用和雪融水淋洗作用可能会 促进高山杜鹃凋落物在生长季初期的分解。总的来看,在气候变暖的情景下,雪被的缩减、生长季的延长和高山杜鹃群落的扩张可能加速高山林线交错带高山杜鹃凋 落物的分解。 C1 Deng Changchun, Key Laboratory of Ecological Forestry Engineering in Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Liu Yang, Key Laboratory of Ecological Forestry Engineering in Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Zhang Jian, Key Laboratory of Ecological Forestry Engineering in Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Chen Yamei, Key Laboratory of Ecological Forestry Engineering in Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. He Runlian, Key Laboratory of Ecological Forestry Engineering in Sichuan Province, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Jiang Xianmin, Forestry Bureau of Western Sichuan in Aba, Lixian, 623102. Z6 邓长春, 四川农业大学生态林业研究所林业生态工程重点实验室, 成都, 四川 611130, 中国. 刘洋, 四川农业大学生态林业研究所林业生态工程重点实验室, 成都, 四川 611130, 中国. 张健, 四川农业大学生态林业研究所林业生态工程重点实验室, 成都, 四川 611130, 中国. 陈亚梅, 四川农业大学生态林业研究所林业生态工程重点实验室, 成都, 四川 611130, 中国. 和润莲, 四川农业大学生态林业研究所林业生态工程重点实验室, 成都, 四川 611130, 中国. 蒋先敏, 四川省阿坝州川西林业局, 理县, 623102. EM sicauzhangjian@163.com Z7 sicauzhangjian@163.com Z8 11 Z9 14 UT CSCD:5392622 DA 2023-03-23 ER PT J AU Hao Nan Su Xue Wu Qiong Chang Libo Zhang Shihu Sun Kun Z2 郝楠 苏雪 吴琼 常立博 张世虎 孙坤 TI Reproductive allocation of dimorphic cleistogamous Viola tuberifera in alpine meadow of Qilian Mountain Z1 祁连山高寒草甸两型闭锁花植物块茎堇菜的繁殖分配 Z3 草业科学 SO Pratacultural Science VL 32 IS 4 BP 586 EP 592 AR 1001-0629(2015)32:4<586:QLSGHC>2.0.TX;2-S PY 2015 DT Article AB Viola tuberifera,which endemic to Qinghai-Tibetan Plateau and its neighbor region,is a typical dimorphic cleistogamous plant. V. tuberifera conducts sexual propagation via both open,chasmogamous ( CH) flowers and closed,obligate self-pollinating aerial and subterranean cleistogamous ( CL) flowers. In present research,V. tuberifera in alpine meadow of Qilian Mountain within different altitude gradients during cleistogamous full-blossom period was chosen to investigate characteristics of reproductive allocations for understanding behavior of balancing propagation resource to adapt alpine environment. The results showed that: 1) Trade-offs existed not only in vegetation and reproduction,but also in aerial and subterranean cleistogamous flowers sexual reproduction,and probably in sexual and asexual reproduction; 2) Sexual reproductive allocation was size-dependent,and it was negative power exponent correlation between size and sexual reproductive allocation; 3) With the increase of altitude,it was declined drastically that individual size,total sexual reproductive allocation,and also descend in reproductive allocation of aerial cleistogamous flowers,while had a slightly elevated tendency in reproductive allocation of subterranean cleistogamous flowers and bulbs. Furthermore,the reproductive strategies were also changed with altitudes. In the low altitude( 2 800 m) ,plants chose aerial cleistogamous flowers as major strategy,by contrast,preferring to subterranean cleistogamous flowers and bulbs in the high altitude. In a conclusion,the V. tuberifera may regulate reproductive allocations of aerial and subterranean flowers to gain maximum propagation success,adapting changes in high elevation and cold environment,ensuring survival and thrive of species in the alpine meadow ecosystem. Z4 青藏高原及其边缘地区特有的块茎堇菜(Viola tuberifera)是典型的两型闭锁花结实植物,通过开放花、地上、地下闭锁花进行有性繁殖。为探讨其如何通过繁殖资源权衡适应高海拔环境,选择祁连 山高寒草甸3个海拔梯度下块茎堇菜为对象,研究了其闭锁花盛花期的繁殖分配特征。结果发现,1)块茎堇菜营养生长和繁殖间、地上和地下闭锁花有性繁殖分配 间存在权衡关系,有性和无性繁殖间可能存在权衡;2)块茎堇菜的有性繁殖分配具个体大小依赖性,与个体大小呈负幂指数相关;3)随海拔升高,总生物量显著 减小(P<0.05),总有性繁殖分配下降,其中地上闭锁花繁殖分配下降,但地下闭锁花繁殖分配略有上升。繁殖方式也随海拔发生变化,在低海拔(2 800 m)以地上闭锁花为主,高海拔(3 100 m)以地下闭锁花和鳞茎为主。研究结果表明,块茎堇菜可能通过权衡地上和地下闭锁花的资源分配来获得最大的繁殖成效,以适应高海拔环境变化,保障在高寒环 境中的生存和繁衍。 C1 Hao Nan, College of Life Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Su Xue, College of Life Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Wu Qiong, College of Life Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Chang Libo, College of Life Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Zhang Shihu, College of Life Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Sun Kun, College of Life Science,Northwest Normal University, Lanzhou, Gansu 730070, China. Z6 郝楠, 西北师范大学生命科学学院, 兰州, 甘肃 730070, 中国. 苏雪, 西北师范大学生命科学学院, 兰州, 甘肃 730070, 中国. 吴琼, 西北师范大学生命科学学院, 兰州, 甘肃 730070, 中国. 常立博, 西北师范大学生命科学学院, 兰州, 甘肃 730070, 中国. 张世虎, 西北师范大学生命科学学院, 兰州, 甘肃 730070, 中国. 孙坤, 西北师范大学生命科学学院, 兰州, 甘肃 730070, 中国. EM haonan1022@126.com; suxue@nwnu.edu.cn; sunkun@nwnu.edu.cn Z7 haonan1022@126.com; suxue@nwnu.edu.cn; sunkun@nwnu.edu.cn Z8 2 Z9 2 UT CSCD:5414246 DA 2023-03-23 ER PT J AU Wei Maohong Lin Huilong Wang Zhaoqi Z2 魏茂宏 林慧龙 王钊齐 TI Study on the "Heat Island Effect" of Barren Patch on Degradation Sequences of Alpine Meadow in the Source Region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China Z1 江河源区高寒草甸退化序列秃斑热岛效应研究 Z3 中国草地学报 SO Chinese Journal of Grassland VL 37 IS 1 BP 22 EP 29 AR 1673-5021(2015)37:1<22:JHYQGH>2.0.TX;2-X PY 2015 DT Article AB The barren patch is distributed throughout alpine meadow in the source region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau. The barren patch was taken as research object, the dynamic of diurnal, monthly and seasonal temperature of surface soil in 5cm in depth and relationship between organic carbon and >0℃ annual accumulative temperature, >0℃ growth season's accumulative temperature were analyzed. The results showed that the highest temperature, heating (cooling) rate, and temperature range were the highest in middle slope of black beach degraded meadow in a day, which were respectively 3.52, 8.33(7.11) and 8.21 times higher than ones of middle slope of non-degraded meadow. In the growth season, the difference in temperature of middle slope of black beach degraded meadow was the highest in September, which was 3.96 times as many as one of low slope of non-degraded meadow in June. Besides, >0℃ monthly accumulative temperature was the highest in August, and one of middle slope of black beach degraded meadow was 1.5 times as many as one of low slope of non-degraded meadow. In contrast, the difference in temperature range and >0℃ accumulative temperature on Black beach degraded meadow and non-degraded meadow was very small in the non-growth season. >0℃ annual accumulative temperature and >0℃ growth season's accumulative temperature were significantly negative correlation with organic carbon. With increasing >0℃ annual accumulative temperature by 1000℃ in a year and in growth season, organic carbon decreased by 6.2% and 7.3% respectively. The barren patch showed the conspicuous heat island phenomenon. Besides, heat island effect; such as, organic carbon loss, water transpiration and soil erosion, may be the major reason why alpine meadow was degraded. Z4 秃斑是江河源区高寒草甸退化序列普遍存在的地理景观,以江河源区高寒草甸退化序列秃斑为对象,分析表土5cm处温度日动态、月动态和季节动态及土壤有机碳 与全年、生长季>0℃积温的关系,结果表明:温度日动态为黑土滩退化样地中坡最高温、升温(降温)速率和温差最大,分别是未退化样地中坡的3.52倍、8 .33(7.11)倍和8.21倍。生长季黑土滩退化样地中坡9月温差最大,未退化样地低坡6月温差最大,前者是后者的3.96倍;各样地8月>0℃月积 温最高,其中黑土滩退化样地中坡是未退化样地低坡的1.5倍;非生长季各样地最大温差和>0℃月积温相差较小。全年、生长季>0℃积温与土壤有机碳呈极显 著负相关,全年、生长季>0℃积温增加1000℃有机碳含量分别减少6.2%和7.3%。秃斑呈现突出的热岛现象,其热岛效应表现为土壤有机碳流失和水分 蒸散,继而土壤可蚀性增大,或是高寒草甸退化的内在动力。 C1 Wei Maohong, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Lin Huilong, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Wang Zhaoqi, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China. Z6 魏茂宏, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 林慧龙, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 王钊齐, 南京大学生命科学学院, 南京, 江苏 210093, 中国. EM weimh09@lzu.edu.cn; linhuilong@lzu.edu.cn Z7 weimh09@lzu.edu.cn; linhuilong@lzu.edu.cn Z8 6 Z9 8 UT CSCD:5356065 DA 2023-03-23 ER PT J AU Zong Ning Shi Peili Jiang Jing Song Minghua Meng Fengshou Xiong Dingpeng Zhang Xianzhou Shen Zhenxi Z2 宗宁 石培礼 蒋婧 宋明华 孟丰收 熊定鹏 张宪洲 沈振西 TI Effects of shallow plowing on soil and plant community of degraded alpine meadow in Tibetan plateau Z1 浅耕对西藏高原退化草甸土壤和植物群落特征的影响 Z3 草业科学 SO Pratacultural Science VL 31 IS 1 BP 8 EP 14 AR 1001-0629(2014)31:1<8:QGDXZG>2.0.TX;2-B PY 2014 DT Article AB Rangeland management plays important role in soil and vegetation.In order to understand the effects of shallow plowing on degraded alpine meadow,pair-comparison survey was conducted to quantify soil feature and community variation in Damxung county,Tibet Autonomous Region,China.Compared with degraded alpine meadow,soil water content and nutrient increased after 12-year shallow plowing practice with soil water content increased by 35% and bulk soil density decreased by 38.7%.Mineral nitrogen contents of soil increased by 3.2 and 1.7 times at depth of 0―10cm and 10―20cm,respectively. Furthermore,shallow plowing practice facilitated vegetation recovery in degraded alpine meadow.Coverage of alpine meadow vegetation significantly increased with the richness and dominance of weeds declined.The species composition changed with dominance of grass in terms of coverage and important value. The above-and under-ground biomass after shallow plowing significantly increased.It indicates that moderate shallow plowing practice can facilitate soil carbon and nitrogen accumulation and vegetation restoration in the degraded alpine meadow.However,it has risk to decrease species richness and community stability. Z4 草地管理对植被和土壤会产生重要的影响。为探讨浅耕措施对高寒草甸的影响,对西藏高原当雄县典型退化高寒草甸浅耕处理地块的土壤理化性质和植物群落变化进 行调查。结果显示,浅耕实施12年后,草地土壤性质得到改善,表层土壤含水量提高35%,而土壤容重降低了28%。0-10和10-20cm土壤可利用无 机氮含量分别显著提高了3.2倍和1.7倍。同时,植物群落组成也发生了改变,植被盖度显著增加,杂草类物种丰富度显著降低,可食性丛生类禾草植物重要值 显著升高,成为优势物种,草地生产力提高。试验结果表明,在退化高寒草甸适度浅耕有利于改善退化高寒草甸的水分、养分状况,提高可食性牧草的生产力,但从 物种多样性保护和群落稳定性维持角度来看仍存在一定的风险。 C1 Zong Ning, Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Shi Peili, Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Meng Fengshou, Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Xiong Dingpeng, Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Zhang Xianzhou, Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Shen Zhenxi, Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Jiang Jing, University of Chinese Academy of Sciences, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100049, China. Song Minghua, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Z6 宗宁, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101, 中国. 石培礼, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101, 中国. 孟丰收, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101, 中国. 熊定鹏, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101, 中国. 张宪洲, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101, 中国. 沈振西, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室拉萨高原生态试验站, 北京 100101, 中国. 蒋婧, 中国科学院大学, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100049, 中国. 宋明华, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM zongning2006@126.com; shipl@igsnrr.ac.cn Z7 zongning2006@126.com; shipl@igsnrr.ac.cn Z8 6 Z9 6 UT CSCD:5069822 DA 2023-03-23 ER PT J AU Zhang Chunhua Z2 张春花 TI Effects of grazing and fertilization on community productivity and species richness in eastern alpine meadow of Tibetan plateau Z1 放牧方式和施肥梯度对高寒草甸群落生产力和物种丰富度的影响 Z3 草业科学 SO Pratacultural Science VL 31 IS 12 BP 2293 EP 2300 AR 1001-0629(2014)31:12<2293:FMFSHS>2.0.TX;2-Z PY 2014 DT Article AB The community productivity,species richness and their interaction response to grazing and fertilization were analyzed in eastern alpine meadow of Tibetan Plateau with four nitrogen fertilizer levels and two grazing levels. Fertilization significantly reduced (P < 0. 001) the species richness and inhibited the growth of forbs group but increased the aboveground biomass and promoted the growth of grasses group,while grazing significantly increased (P< 0. 001) the species richness and promoted the growth of forbs group but decreased the aboveground biomass and inhibited the growth of grasses group. In the plots with both fertilized and grazed,there was no significant changes for species richness,whereas there were significant reductions ( P < 0. 001) in the fertilized plots without grazing. These results suggested that grazing was the main factor and the effects of fertilization was covered up by the grazing. There was a negative relationship between species richness and community biomass in the plots two only with grazing or fertilization. The moderate nitrogen fertilization can increase community productivity and the ratio of forage without effects on species richness. This management was optimal for loading more stocks to achieve more profits without degradation of grassland which can be applied in the local grassland. ested that moderate fertilization in the grassland of the study site would increase community productivity and have little effect on species richness. The reasonable solution is suitable for generalization in the local pasture.< 0. 001) the species richness and promoted the growth of forbs group but decreased the aboveground biomass and inhibited the growth of grasses group. In the plots with both fertilized and grazed,there was no significant changes for species richness,whereas there were significant reductions (P < 0. 001) in the fertilized plots without grazing. These results suggested that grazing was the main factor and the effects of fertilization was covered up by the grazing. There was a negative relationship between species richness and community biomass in the plots two only with grazing or fertilization. The moderate nitrogen fertilization can increase community productivity and the ratio of forage without effects on species richness. This management was optimal for loading more stocks to achieve more profits without degradation of grassland which can be applied in the local grassland. ested that moderate fertilization in the grassland of the study site would increase community productivity and have little effect on species richness. The reasonable solution is suitable for generalization in the local pasture. Z4 通过比较青藏高原东部高寒草甸植物群落的地上生物量、物种丰富度及其相关关系对两种放牧方式和4种施肥梯度的响应,分析了放牧方式和施肥梯度对该类草甸群 落的影响。结果表明,放牧显著增加了物种丰富度(P<0.001),减小了群落生物量,增加了杂类草在生物量中的比重,抑制了禾草类物种的生长,而施肥则 显著降低了物种丰富度(P<0.001),但是增加了群落生物量,抑制了杂类草类的生长,增加了禾草类在生物量中的比重。在全年放牧的所有施肥区,物种丰 富度均未呈现显著变化(P>0.05),而在全年封育的所有施肥区,物种的丰富度均显著下降(P<0.001),这表明放牧是主效应,施肥效应被放牧效应 所掩盖。在放牧处理或施肥处理下的所有试验小区中,群落生物量和物种丰富度均呈负相关关系,且这种负相关程度随着施肥水平增加或封育禁牧而显著增强。本研 究还发现在该地区牧场中进行适度的氮肥撒施可以既不影响物种的丰富度,又能增加群落的生产力,而且可以提高优质牧草在群落中的比重,这是一种最佳的群落性 能,能够承载更多的牲畜进而带来更高的经济效益且不会导致当地草原的退化,适宜在该地区牧场中进行推广。 C1 Zhang Chunhua, Gansu Normal University for Nationalities, Hezuo, 747000. Z6 张春花, 甘肃民族师范学院, 合作, 甘肃 747000, 中国. Z8 6 Z9 7 UT CSCD:5322107 DA 2023-03-23 ER PT J AU Zhang Fawei Wang Junbang Lin Li Li Yikang Du Yangong Cao Guangmin Z2 张法伟 王军邦 林丽 李以康 杜岩功 曹广民 TI Response of Plant Community of Alpine Kobresia Meadow to Degradation Succession in Qinghai-Tibetan Plateau Z1 青藏高原高寒嵩草草甸植被群落特征对退化演替的响应 Z3 中国农业气象 SO Chinese Journal of Agrometeorology VL 35 IS 5 BP 504 EP 510 AR 1000-6362(2014)35:5<504:QZGYGH>2.0.TX;2-C PY 2014 DT Article AB Alpine Kobresia meadow have a key function in carbon sequestration, water retention and biodiversity conservation on the Qinghai-Tibetan Plateau while degraded seriously. The response of plant community to degradation succession was not well understood. Based on the space-time substitution method, the experiment of degradation gradients (excellent,good, fair,and poor) on alpine meadow was conducted and plant community as well as soil characteristics and water retention was surveyed from mid-July to mid-August in 2012. The results showed that the minimum of aboveground biomass, topsoil water content and surface rain infiltration and the peak value of topsoil (0- 10cm) belowground biomass,topsoil organic matter,topsoil filed water content and mattic epipedon thickness all occurred in fair plots. The results of non-metric multidimensional scaling (NMDS) on plant community diversity and function groups along degradation gradients showed that the four stages were obviously distinguished. Canopy height, aboveground biomass,mattic epipedon thickness and rainfall infiltration rate accounted for the most variations of plant community. The response of plant community to degradation was non-equilibrium and the inflexion of plant community variations might occur during the period from fair plots to poor plots. The non-equilibrium degradation processes would play an indicative function in selecting recovery techniques on degraded alpine meadow. Z4 以空间代替时间的方法,于2012年7月中旬-8月中旬在青藏高原祁连山南麓分别选取原生、轻度、中度和重度4种不同退化梯度的高寒嵩草(Kobresi a)草甸,对其土壤理化、水分特征和植被群落进行研究,以探究高寒嵩草草甸生态功能退化过程中植被群落的变化特征。结果表明,中度退化样地的地上生物量、 表层(0-10cm)土壤含水量和降水地表入渗速率显著最小(P<0.01),表层地下生物量、表层土壤有机质、表层田间持水量和草毡层厚度显著最大(P <0.01)。基于退化高寒嵩草草甸群落的植被功能群和群落多样性的非度量多维排序结果表明,其退化过程可明确划分为原生植被、轻度退化、中度退化和重度 退化4个阶段,冠层高度、地上生物量、草毡层厚度和降水地表入渗速率对群落变化的相对贡献较大。植被群落对退化过程的响应为非平衡型(Non-equil ibrium),群落变化的分水岭存在于中度退化和重度退化之间。研究结果对退化嵩草草甸的恢复措施选择具有重要的指导意义。 C1 Zhang Fawei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Du Yangong, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Wang Junbang, Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. Z6 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 王军邦, 中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京 100101, 中国. EM fwzhang@nwipb.cas.cn; jbwang@igsnrr.ac.cn Z7 fwzhang@nwipb.cas.cn; jbwang@igsnrr.ac.cn Z8 13 Z9 16 UT CSCD:5256323 DA 2023-03-23 ER PT J AU Cao Shengkui Chen Kelong Cao Guangchao Zhu Jinfu Lu Baoliang Zhang Tao Wang Jiming Z2 曹生奎 陈克龙 曹广超 朱锦福 芦宝良 张涛 王记明 TI Characteristics of soil carbon density distribution of the Kobresia humilis meadow in the Qinghai Lake basin Z1 青海湖流域矮嵩草草甸土壤有机碳密度分布特征 Z3 生态学报 SO Acta Ecologica Sinica VL 34 IS 2 BP 482 EP 490 AR 1000-0933(2014)34:2<482:QHHLYA>2.0.TX;2-# PY 2014 DT Article AB Soil is the largest carbon stock in the terrestrial ecosystem, storing about two-thirds of organic carbon in the terrestrial biosphere. Our understanding on the dynamic change of soil organic carbon belongs to one one of the important issue in terrestrial carbon cycle. Kobrecia humilis meadow is one major grassland type on the Qinghai-Tibetan Plateau, which has the high organic matter in soil. Under the dual effects of natural and human activities, there had great influence on the carbon balance alpine because the Kobrecia humilis meadows appeared different degree of degradation. To provide basic data and theoretical reference on accurate assessments of the Qinghai-Tibetan Plateau alpine meadow ecosystem carbon source/ sink effect, this paper determined the soil organic density through measuring the soil bulk density and organic carbon content under different degrading Kobresia humilis meadow in the Qinghai Lake basin. Our results showed that there existed discrepant in the soil organic carbon content and variable characteristics under different degrading Kobresia humilis meadow. The average organic carbon content in the 0100 cm soil profiles respectively was estimated at (25.174.73) g/ kg, (17.513.06) g/ kg,(20.791.30) g/ kg and (14.531.20) g/ kg from no degrading to heavy degraded Kobresia humilis meadow. That is, no degradation>moderate one >slight one >heavy one. Moreover, the mean of organic carbon content in 020 cm soil profiles from no degrading to heavy degraded reduced from (64.4711.70) g/ kg to (14.521.52) g/ kg, and fallen by 77.48%. Variations of the soil organic carbon density in the different degrading Kobresia humilis meadow soil profiles had the same trends of soil organic carbon content. From no degrading to heavy degraded Kobresia humilis meadow, the total organic carbon density in the 0100 cm soil profiles respectively amounted to (18.164.12) kg/ m~3, (14.24 3.52) kg/ m~3, (18.642.82) kg/ m~3, and (13.272.28) kg/ m~3, respectively. That is, moderate degradation> no one > slight one >heavy one. Soil organic carbon content mainly concentrated in the 040 cm depth. The 040 cm soil organic carbon density respectively was (32.066.41) kg/ m~3,(25.104.20) kg/ m~3, (2 2.683.17) kg/ m~3, (17.102.77) kg/ m~3, higher than 76.53%, 76.25%, 21.68% and 28.88% in 0100 cm soil total organic carbon density. If we do not think other factors, those results indicated that the degradation of the Kobresia humilis meadow caused that soil gradually released the organic carbon and weakened the store carbon function. Especially, surface soil was more prone to release CO_2 to the atmosphere due to the continuous climatic warming. Moreover, soil organic densities in Kobresia humilis meadow were evidently higher than the mean of alpine grassland and meadow in the Qinghai-Tibetan Plateau and in the Qinghai Province and across the China, highlighting that we could not neglect it in evaluation soil organic stock across the whole Qinghai-Tibet plateau. Z4 通过对青海湖流域不同退化程度矮嵩草草甸土壤容重和有机碳含量的测定,确定了其土壤有机碳密度。结果表明:不同退化程度下矮嵩草草甸土壤有机碳含量和变化 特征各有不同。从未退化-重度退化,0100cm土壤剖面平均有机碳含量分别为(25.174.73)g/kg,(17.513.06)g/kg,(20 .791.30)g/kg和(14.531.20)g/kg,即未退化>中度退化>轻度退化>重度退化;020cm土壤平均有机碳含量从(64.4711 .70)g/kg减少为(14.521.52)g/kg,减少了77.48%。土壤剖面有机碳密度变化趋势与其有机碳含量变化趋势一致。0100cm土壤 剖面有机碳密度分别为(18.164.12)kg/m~3,(14.243.52)kg/m~3,(18.642.82)kg/m~3和(13.272. 28)kg/m~3,即中度退化>未退化>轻度退化>重度退化;土壤有机碳集中分布在040cm深度,从未退化到严重退化,该深度有机碳密度分别为(32 .066.41)kg/m~3,(25.104.20)kg/m~3,(22.683.17)kg/m~3和(17.102.77)kg/m~3,比整个 剖面有机碳密度高出76.53%,76.25%,21.68%和28.88%。不考虑其他因素,以空间尺度代替时间尺度,这一结果说明矮嵩草草甸的退化导 致土壤逐渐释放有机碳,其作为储存碳的功能在减弱,必须加强对矮嵩草草甸生态系统的保护,以防止其碳库变为碳源。 C1 Cao Shengkui, College of Life and Geographical Science, Qinghai Normal University, Qinghai Province Key Laboratory of Physical Geography And Environmental Process, Xining, Qinghai 810008, China. Chen Kelong, College of Life and Geographical Science, Qinghai Normal University, Qinghai Province Key Laboratory of Physical Geography And Environmental Process, Xining, Qinghai 810008, China. Cao Guangchao, College of Life and Geographical Science, Qinghai Normal University, Qinghai Province Key Laboratory of Physical Geography And Environmental Process, Xining, Qinghai 810008, China. Zhu Jinfu, College of Life and Geographical Science, Qinghai Normal University, Xining, Qinghai 810008, China. Zhang Tao, College of Life and Geographical Science, Qinghai Normal University, Xining, Qinghai 810008, China. Wang Jiming, College of Life and Geographical Science, Qinghai Normal University, Xining, Qinghai 810008, China. Lu Baoliang, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 曹生奎, 青海师范大学,生命与地理科学学院, 青海省自然地理与环境过程重点实验室, 西宁, 青海 810008, 中国. 陈克龙, 青海师范大学,生命与地理科学学院, 青海省自然地理与环境过程重点实验室, 西宁, 青海 810008, 中国. 曹广超, 青海师范大学,生命与地理科学学院, 青海省自然地理与环境过程重点实验室, 西宁, 青海 810008, 中国. 朱锦福, 青海师范大学,生命与地理科学学院, 西宁, 青海 810008, 中国. 张涛, 青海师范大学,生命与地理科学学院, 西宁, 青海 810008, 中国. 王记明, 青海师范大学,生命与地理科学学院, 西宁, 青海 810008, 中国. 芦宝良, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. EM ckl7813@163.com Z7 ckl7813@163.com Z8 14 Z9 14 UT CSCD:5049971 DA 2023-03-23 ER PT J AU Li Changlong Xu Xianying Jin Hongxi Wang Duoze Li Jingjing Z2 李昌龙 徐先英 金红喜 王多泽 李菁菁 TI Community structures and plant diversities in the desertification process of Maqu Alpine Meadow in Gansu Z1 玛曲高寒草甸沙化过程中群落结构与植物多样性 Z3 生态学报 SO Acta Ecologica Sinica VL 34 IS 14 BP 3953 EP 3961 AR 1000-0933(2014)34:14<3953:MQGHCD>2.0.TX;2-K PY 2014 DT Article AB Maqu alpine meadow is the important part of the Qinghai-Tibet Plateau and the main water conservation area in the upper reaches of Yellow River. But in recent years, the problems of the sandy desertification and soil erosion have become a serious threat to the ecological safety of the alpine meadow in the Qinghai-Tibet Plateau. To solve these problems, this paper examined the vegetation structure characteristics and the variation of alpha and beta diversity on the potential,slight, moderate and serve desertification meadows in Maqu alpine meadows using sampling survey methods from July to September 2008. The results showed that in the desertification processes of Mqu alpine meadows, 1) the community coverage dropped gradually(99.216%, 80.078%, 49.895% and 36.398%, respectively),the species number also reduced gradually (53, 32,14,13,respectively), community structure took a trend of simplification (the number of the dominant species were 28, 16,10,8,respectively). The typical dominant and companion species of the alpine meadow also withdrew from the communities gradually, and the species adapted to the sandy environment occupied an important position in these plant communities. The typical Maqu alpine meadow ecosystem was gradually changing to the desertification alpine ecosystem, and experienced four stages, i.e.,Carex moorcroftii+Poa alpina communitiesCarex moorcroftii + Saposhnikovia divaricata+ Kobresia pygmaea communities Kobresia pygmaea + Saposhnikovia divaricata + Carex moorcroftii communities Leymus paboanus+ Corispermum tibeticum + Carex moorcroftii + Saposhnikovia divaricata communities. 2) The species richness, Shannon-Wiener indexes and Simpson indexes were declining significantly. The Pielou evenness indexes and Alatalo evenness indexes showed a decreasing trend following the first increasing, and it reached the maximum in the slight desertification meadow, but their differences were not significant. The dominant index was increasing significantly, and there was extremely significant difference between the moderate desertification meadow and the slight one. 3) In terms of Whittaker index, there were extremely significant differences between the potential desertification meadow and other three ones, and there was significant difference between the moderate desertification meadow and the severe one, whereas there was no difference between the slight desertification meadow and the moderate one. 4) The community dissimilarity coefficient between the potential desertification meadow and other three ones were greater (the value in the range of 0.705 0.937),while the community common indexes between them were lower (the value in the range of 0.0340.173),and the trend between the slight desertification meadow and the severe one was similar. However, the community dissimilarity coefficients between the moderate desertification meadow and severe one and the slight desertification meadow and the moderate one were lower (the value in the range of 0.5450.553),and the community common indexes were higher (the value in the range of 0.2930.303). The analysis from all the results revealed that the slight and severe desertification stages were the most important phases in the desertification process of Maqu alpine meadow. So, the potential desertification meadow must be protected and managed scientifically in order to prevent desertification from occurring. Artificial measures, e.g., enclosure, rotational grazing and tending were applied. However, in the sandy desertification meadows, vegetation restoration measures,such as turf transplantation,reseeding,fertilization as well as sand control measures must be taken to prevent the exacerbating and spreading of desertification. Z4 针对玛曲高寒草甸沙质荒漠化和水土流失日趋严重的问题,采用群落样方调查的方法,研究了潜在、轻度、中度和重度4种典型高寒沙化草甸的植被结构特征和al pha多样性与beta多样性变化规律。结果表明:随着沙化程度的加剧,1)群落植被盖度持续下降(分别为99.216%, 80.078%,49.895%,36.398%)、物种数逐渐减少(分别为53,32,14,13)、群落结构趋向简单(重要值大于1的物种分别有28 ,16,10,8种),典型高寒草甸优势种和伴生种逐渐退出群落,而适应沙质荒漠的物种逐渐占据群落中的优势地位,玛曲高寒草甸生态系统有向高寒沙质荒漠 生态系统转化的趋势,群落以青藏苔草+高山早熟禾群落青藏苔草+防风+高山嵩草群落高山嵩草+防风+青藏苔草群落毛穗赖草+藏虫实+青藏苔草+防风群落的 方向演替;2)群落丰富度和植物多样性指数均呈下降趋势,差异显著;均匀度指数先增加后减小,在轻度沙化草甸达到最大,但差异不显著;而群落优势度逐渐增 加,在中度沙化草甸增加极显著;3)潜在沙化草甸与沙化草甸之间的Whittaker指数差异极显著,中度沙化草甸与重度沙化草甸之间差异显著,而轻度沙 化草甸与中度沙化草甸之间差异不显著。4)潜在沙化草甸与3种沙化草甸和轻度沙化草甸与重度沙化草甸之间群落相异性系数较高(0.7050.937),群 落共有度指数较低(0.0340.173),而重度沙化草甸与中度沙化草甸、轻度沙化草甸与中度沙化草甸之间群落相异性系数相对较低(0.5450.55 3),群落共有度指数相对较高(0.2930.303)。以上分析表明,玛曲高寒草甸在沙化过程中存在轻度沙化和重度沙化两个关键过程,因此对潜在沙化草 甸应采取封育、禁牧、轮牧、抚育等科学管护措施,而对沙化草甸应采取草皮移植、补播、施肥等植被快速恢复措施和流沙治理措施进行生态修复,防止草甸沙化的 加剧和蔓延。 C1 Li Changlong, State Key Laboratory of Desertification and Aeolian Sand Disaster Combating, Gansu Minqin National Field Observation and Research Station on Ecosystem of Desertification Rangeland, Gansu Desert Control and Research Institute, Lanzhou, Gansu 730070, China. Xu Xianying, State Key Laboratory of Desertification and Aeolian Sand Disaster Combating, Gansu Minqin National Field Observation and Research Station on Ecosystem of Desertification Rangeland, Gansu Desert Control and Research Institute, Lanzhou, Gansu 730070, China. Jin Hongxi, Gansu Minqin National Field Observation and Research Station on Ecosystem of Desertification Rangeland, Gansu Desert Control and Research Institute, Lanzhou, Gansu 730070, China. Wang Duoze, Gansu Minqin National Field Observation and Research Station on Ecosystem of Desertification Rangeland, Gansu Desert Control and Research Institute, Lanzhou, Gansu 730070, China. Li Jingjing, State Key Laboratory of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control and Research Institute, Lanzhou, Gansu 730070, China. Z6 李昌龙, 甘肃省治沙研究所, 甘肃省荒漠化与风沙灾害防治国家重点实验室;;甘肃民勤荒漠草地生态系统国家野外科学观测研究站, 兰州, 甘肃 730070, 中国. 徐先英, 甘肃省治沙研究所, 甘肃省荒漠化与风沙灾害防治国家重点实验室;;甘肃民勤荒漠草地生态系统国家野外科学观测研究站, 兰州, 甘肃 730070, 中国. 金红喜, 甘肃省治沙研究所, 甘肃民勤荒漠草地生态系统国家野外科学观测研究站, 兰州, 甘肃 730070, 中国. 王多泽, 甘肃省治沙研究所, 甘肃民勤荒漠草地生态系统国家野外科学观测研究站, 兰州, 甘肃 730070, 中国. 李菁菁, 甘肃省治沙研究所, 甘肃省荒漠化与风沙灾害防治国家重点实验室, 兰州, 甘肃 730070, 中国. EM lichlong1998@163.com Z7 lichlong1998@163.com Z8 20 Z9 23 UT CSCD:5202296 DA 2023-03-23 ER PT J AU Luo Yayong Meng Qingtao Zhang Jinghui Zhao Xueyong Qin Yu Z2 罗亚勇 孟庆涛 张静辉 赵学勇 秦彧 TI Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages Z1 青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 36 IS 5 BP 1298 EP 1305 AR 1000-0240(2014)36:5<1298:QZGYDY>2.0.TX;2-J PY 2014 DT Article AB To clarify the changes of species diversity and biomass in relation to soil properties of alpine meadows in different degradation stages, mild degraded meadow, moderate degraded meadow, severe degraded meadow and serious sandy meadow were chosen to measure species diversity, biomass and soil properties. The changes of vegetation and soil properties, followed by degraded process of alpine meadow, show the following trends: 1) vegetation diversity and biomass decrease gradually; 2) contents of soil moisture, soil clay, silt, soil organic carbon, total nitrogen (N), total phosphorous (P), available N and available potassium (K) decrease consistently, while content of soil sand and total K as well as pH value increase consistently. The correlation between species diversity or biomass and soil factors such as soil moisture, soil clay, silt, soil organic carbon, total N, total N, available N, available P and available K is significant positive, while the correlation between species diversity or biomass and soil factors such as content of soil sand and total K as well as pH value is significant negative. Therefore, changes of species diversity and biomass are governed by soil texture, soil nutrients, soil water content, pH and electrical conductivity. Z4 为了阐明高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系,在青藏高原东缘的玛曲县沿着高寒草甸退化梯度选取了轻度退化草甸、中度退化草甸 、重度退化草甸和沙化草甸,测定了高寒草甸退化过程中植物群落物种多样性、生产力与土壤理化性状.结果表明:从轻度退化到中度、重度和沙化草甸,植被地下 生物量分别降低了36%、48%和91%,总生物量分别降低了34%、47%和91%,土壤有机碳分别下降了18%、81%和97%,全N分别下降了25 %、82%和95%,全P含量分别下降了14%、33%和41%.随着高寒草甸的退化,植被群落的生物多样性和地上生物量呈先稳定后降低的趋势,土壤砂粒 含量、pH值和全K含量呈增加趋势,黏粉粒呈降低趋势,速效N、速效P和速效K呈先增加后降低的趋势.相关分析表明,群落物种多样性和生产力与土壤有机碳 、全N、全P、速效N、速效P、速效K、黏粒含量、粉粒含量、水分含量均呈显著正相关(P<0.01),而与土壤砂粒、全K和pH值均呈显著负相关(P< 0.05).因此,高寒草甸退化过程中,土壤质地、养分和水分等的复杂变化及其相互关系共同决定着高寒草甸群落物种多样性和生产力的变化.同时,植被生产 力和土壤碳、氮的降低产生明显的正反馈效应,导致在重度退化阶段和沙化阶段,植被生产力和土壤碳氮的急剧下降. C1 Luo Yayong, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Zhang Jinghui, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Zhao Xueyong, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Qin Yu, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Meng Qingtao, Research Institute of Ecology Environment of Inner Mongolia Coal Mine, Hohhot, Inner Mongolia 010020, China. Z6 罗亚勇, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 张静辉, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 赵学勇, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 秦彧, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 孟庆涛, 内蒙古煤炭建设生态环境研究院, 呼和浩特, 内蒙古 010020, 中国. EM luoyy@lzb.ac.cn Z7 luoyy@lzb.ac.cn Z8 54 Z9 56 UT CSCD:5299809 DA 2023-03-23 ER PT J AU Su Shulan Li Yang Wang Liya Guo Ding Kang Haijun Li Xudong Fu Hua Z2 苏淑兰 李洋 王立亚 郭丁 康海军 李旭东 傅华 TI Effect of Fencing on Plant Biomass and Functional Group Structure of Different Types of Degraded Grassland in Qinghai-Tibet Plateau Z1 围封与放牧对青藏高原草地生物量与功能群结构的影响 Z3 西北植物学报 SO Acta Botanica Boreali-Occidentalia Sinica VL 34 IS 8 BP 1652 EP 1657 AR 1000-4025(2014)34:8<1652:WFYFMD>2.0.TX;2-I PY 2014 DT Article AB Based on three types of degraded grassland: alpine meadow, alpine steppe and temperate desert steppe in Qinghai-Tibet plateau, we analyzed the effect of fencing and grazing on different types of degraded grassland communities.The research results indicate that : (1) The abovegound biomass of three types o grassland increased by 48.1%, 10.8% and 34.5%, respectively after five years of fencing.The responsing of underground biomass of three types of grassland were consistent with the aboveground biomass.(2)Th propotion of upper-layer(0-10cm) root biomass of alpine steppe and the root-shoot ratio of alpine mead ow indicating a ' clear decling trend'while compared with the grazing land.(3) The gramineous plants which occurred in a higher propotion in the total biomass in feacing grassland than it of grazing on alpin steppe and alpine meadow.Nevertheless,the proportion of troublesome weed in alpine steppe declined sig nificantly and had no significant effects in temperate desert-steppe. Z4 以青藏高原高寒草甸、高寒草原、温性荒漠草原的退化草地为基础,比较了5年围封样地与放牧样地的生物量和群落结构。结果表明:(1)围封后3类草地地上总 生物量较放牧样地分别显著增加了48.1%、10.8%、34.5%;地下生物量对围封的响应与地上总生物量一致,且围封后高寒草原0?10cm 土层根系生物量比例较放牧地显著下降。(2)围封显著降低了高寒草甸的根冠比,高寒草原和温性荒漠草原无显著变化。(3)与放牧地相比,围封显著增加了高 寒草甸和高寒草原禾本科植物的生物量比例,高寒草甸杂类草显著降低,温性荒漠草原功能群生物量比例无显著差异。 C1 Su Shulan, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grasslanf Agro-ecosystems, Lanzhou University, Lanzhou, Gansu 730020, China. Li Yang, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grasslanf Agro-ecosystems, Lanzhou University, Lanzhou, Gansu 730020, China. Guo Ding, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grasslanf Agro-ecosystems, Lanzhou University, Lanzhou, Gansu 730020, China. Li Xudong, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grasslanf Agro-ecosystems, Lanzhou University, Lanzhou, Gansu 730020, China. Fu Hua, College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grasslanf Agro-ecosystems, Lanzhou University, Lanzhou, Gansu 730020, China. Wang Liya, Grassland Service Station of Qinghai, Xining, Qinghai 810008, China. Kang Haijun, Grassland Service Station of Qinghai, Xining, Qinghai 810008, China. Z6 苏淑兰, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 李洋, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 郭丁, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 李旭东, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 傅华, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 王立亚, 青海省草原工作总站, 西宁, 青海 810008, 中国. 康海军, 青海省草原工作总站, 西宁, 青海 810008, 中国. EM sush108@lzu.edu.cn; fuhua@lzu.edu.cn Z7 sush108@lzu.edu.cn; fuhua@lzu.edu.cn Z8 17 Z9 20 UT CSCD:5235471 DA 2023-03-23 ER PT J AU Cai Xiaobu Peng Yuelin Wei Suzhen Yu Baozheng Z2 蔡晓布 彭岳林 魏素珍 于宝政 TI VARIATION OF ORGANIC CARBON AND HUMUS CARBON IN ALPINE STEPPE SOIL AND FUNCTIONS OF MICROORGANISMS THEREIN Z1 高寒草原土壤有机碳与腐殖质碳变化及其微生物效应 Z3 土壤学报 SO Acta Pedologica Sinica VL 51 IS 4 BP 834 EP 844 AR 0564-3929(2014)51:4<834:GHCYTR>2.0.TX;2-# PY 2014 DT Article AB Based on repeated sampling in a number of areas, variations of organic carbon (SOC), humus carbon (HC), humic acid carbon (HAC) and fulvic acid carbon (FAC) in the surface (0~10 cm) and sub-surface (10~20 cm) layers of alpine steppes different in state (normal, slightly degraded and severely degraded) in the Northern Tibetan Plateau as well as influences and effects of soil microbial community, microbial biomass carbon (MBC) and cellulolytic enzyme activity (CEA) on SOC, HC and HAC. Results show that the soil in cold and acid alpine environment is very low in HC/SOC ratio, but very high in PQ value (HAC/HC). On the whole, the contents of SOC, HC and HAC and the proportion of HC/SOC in steppes different in state declines to a varying extent with soil depth in profile, while PQ value increases to a certain extent. Relative to normal steppes, the increase in SOC declines slightly and in HC (HAC, FAC) rises dramatically in the surface soil layer, and both drop drastically in the sub-surface soil layer. In terms of contents of SOC, HC and HAC in the 0~20 cm soil layer, a decreasing ordeer of normal steppe>severely degraded steppe>slightly degraded steppe is found, and in terms of HC/SOC ratio and PQ value, a decreasing ordeer of severely degraded steppe>normal steppe>slightly degraded steppe, and of normal steppe>severely degraded steppe>slightly degraded steppe is respectively, which means degradation of a steppe promotes formation and accumulation of SOC and HC (HAC and FAC) in the surface soil layer, and also "stimulates" mineralization of the sub-surface soil layer, and especially decomposition of organic debris in severely degraded steppes. However, quality of the humus is not improved correspondingly along with the increasing degree of soil humification. The highly homogenous distribution MBC, CEA, SOC, HC and their components in the soil affects and decides the above-mentioned process. Steppe degradation is conductive to decomposition and transformation of organic debris in the soil by fungus and actinomycetes, especially in the sub-surface soil layer. Z4 基于多区域重复采样,研究了藏北高原不同状态(正常、轻度和严重退化)高寒草原表层(0~10 cm)、亚表层(10~20 cm)土壤有机碳(Soil organic carbon,SOC)、腐殖质碳(Humus carbon,HC)、胡敏酸碳(Humic acid carbon,HAC)和富里酸碳(Fulvic acid carbon,FAC)的变化,以及土壤微生物群落、微生物生物量碳(Microbial biomass carbon,MBC)、纤维素分解酶活性(Cellulolytic enzyme activity,CEA)对其产生的影响与作用。结果表明:高原寒旱环境中土壤的HC/SOC比例过低,但PQ值(HAC/HC)很高。随土层加深,不 同状态草地SOC、HC、HAC含量、HC/SOC比例在总体上趋于不同程度的下降,PQ值则均呈一定程度的提高。相对于正常草地,随草地退化加剧,表层 SOC、HC(HAC、FAC)增幅分别表现出略呈下降、大幅提高,亚表层降幅则均呈大幅下降。反映到0~20 cm土层,SOC、HC、HAC含量均表现出正常草地>严重退化草地>轻度退化草地,HC/SOC比例、PQ值则分别呈严重退化草地>正常草地>轻度退化 草地、正常草地>轻度退化草地>严重退化草地,说明草地退化在促进表层SOC、HC(HAC、FAC)形成与积累的同时,更"激发"了亚表层的矿化,尤其 是严重退化草地有机残体的分解过程,但腐殖质品质并未随土壤腐殖化程度的提高而得到相应改善。MBC、CEA与SOC、HC及组分高度一致的土体分布格局 影响并决定了上述过程,草地退化有利于真菌、放线菌对土壤、尤其是亚表层土壤有机残体的分解与转化。 C1 Cai Xiaobu, Department of Resources and Environment, Agricultural and Animal Husbandry College, Tibet University, Linzhi, Tibet 860000, China. Wei Suzhen, Department of Resources and Environment, Agricultural and Animal Husbandry College, Tibet University, Linzhi, Tibet 860000, China. Yu Baozheng, Department of Resources and Environment, Agricultural and Animal Husbandry College, Tibet University, Linzhi, Tibet 860000, China. Peng Yuelin, Department of Plant Science, Agricultural and Animal Husbandry College, Tibet University, Linzhi, Tibet 860000, China. Z6 蔡晓布, 西藏大学农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 魏素珍, 西藏大学农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 于宝政, 西藏大学农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 彭岳林, 西藏大学农牧学院植物科学学院, 林芝, 西藏 860000, 中国. EM xbcai21@sina.com Z7 xbcai21@sina.com Z8 8 Z9 9 UT CSCD:5207120 DA 2023-03-23 ER PT J AU Chu Lin Huang Chong Liu Gaohuan Liu Qingsheng Z2 褚琳 黄翀 刘高焕 刘庆生 TI Changes in ecological patterns of Maqu alpine wetland in Yellow River Source Area during 2000-2010 Z1 2000-2010年黄河源玛曲高寒湿地生态格局变化 Z3 地理科学进展 SO Progress in Geography VL 33 IS 3 BP 326 EP 335 AR 1007-6301(2014)33:3<326:22NHHY>2.0.TX;2-C PY 2014 DT Article AB Wetland as a unique ecosystem has important environment regulating functions and irreplaceable role in maintaining regional ecological balance, conserving biodiversity, and providing food, materials and water resources to humans. The Maqu alpine wetland located in the northeast of the Tibetan Plateau is an important water conserving and supplying area to the upper reach of the Yellow River. In the past 30 years, global warming has led to significant vegetation changes on the Tibetan Plateau. The Maqu alpine wetland is undergoing a process of prominent warming and drying, and degradation of its water conservation function is very significant in recent years. Wetland vegetation dynamics, regional differentiation and causes of degradation of the alpine wetland ecosystem were investigated using multi-source remote sensing data in this study. Land use information and ecological patterns of Maqu were extracted via analyzing Landsat-5/TM and Landsat-7/ETM+ satellite images of 2000 and 2010, through visual interpretation and supervised classification using GIS techniques. NDVI (Normalized Difference Vegetation Index) was used as an indicator in monitoring vegetation changes. MODIS NDVI time series data of 2000-2010(after applying the S-G filtering method and MVC) were used to detect temporal and spatial variations and evolution trend of wetland ecosystems. Point data from weather stations was interpolated using Kriging interpolation method. Based on long-term observations from weather stations,the relationship between Maqu wetland changes and climatic factors(temperature and precipitation) was examined using the least squares method. The results show that areas of rivers, inland beaches, ponds, and swamp meadows were decreasing. Summer NDVI of 2000-2010 in the study area also decreased. Areas with significant decline in NDVI are located in Cairima, Manrima and Hequmachang. Changes in vegetation type also occurred, as signified by swamp meadows shifting to subalpine meadows. The warming and dry climate appears to be a critical factor contributing to the degradation of the Maqu alpine wetland. The changes of the Maqu alpine wetland are related to the inter-annual variability of precipitation and temperature, with 61% and 51% of the total area showing a positive correlation between NDVI and annual precipitation as well as between NDVI and mean temperature respectively. A stronger correlation exists between NDVI and annual precipitation, indicating that the vegetation growth is more sensitive to the inter-annual variability of precipitation. Z4 玛曲湿地作为黄河上游重要的水源涵养以及补给区之一,对于调节黄河水量与泥沙量、维持生物多样性和区域生态平衡以及实现社会经济的可持续发展具有重要意义 。为揭示和分析近10年来玛曲高寒湿地系统动态变化特征及其区域差异性,应用2000年、2010年两期Landsat TM卫星影像提取玛曲景观类型信息,对玛曲湿地分布格局变化进行分析;利用S-G滤波以及最大值合成法处理后的2000-2010年MODIS归一化植被 指数(NDVI)数据,进行一元线性回归分析,模拟湿地生态系统的空间演变趋势;运用长期气候观测数据,采用最小二乘法对玛曲湿地变化与气候之间的相关关 系进行分析与探讨。结果表明:近10年来玛曲夏季年际NDVI值呈现波动减小的趋势,黄河第一弯玛曲腹地的阿万仓处NDVI减少明显,且存在沼泽草甸向亚 高山草甸类型转化趋势。另外,玛曲高寒湿地变化与降水量及温度的年际变化均有关系,但与降水量的相关关系更强。 C1 Chu Lin, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Huang Chong, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Liu Gaohuan, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Liu Qingsheng, State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Z6 褚琳, 中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京 100101, 中国. 黄翀, 中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京 100101, 中国. 刘高焕, 中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京 100101, 中国. 刘庆生, 中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京 100101, 中国. EM chul@lreis.ac.cn; huangch@lreis.ac.cn Z7 chul@lreis.ac.cn; huangch@lreis.ac.cn Z8 12 Z9 13 UT CSCD:5106150 DA 2023-03-23 ER PT J AU Zhao Haidi Liu Shiliang Dong Shikui Su Xukun Zhang Xiang Z2 赵海迪 刘世梁 董世魁 苏旭坤 张翔 TI Study on spatio-temperal change of Tibetan Antelope's habitat based on vegetation coverage Z1 基于植被覆盖度的藏羚羊栖息地时空变化研究 Z3 生态学报 SO Acta Ecologica Sinica VL 34 IS 12 BP 3285 EP 3292 AR 1000-0933(2014)34:12<3285:JYZBFG>2.0.TX;2-P PY 2014 DT Article AB The distribution and dynamics of vegetation can reflect the distribution and changes of wildlife habitat to some extent. Tibetan Antelope,well-known asthe numen of plateau',is an endemic animal on the Qinghai-Tibetan Plateau. However,the survival and distribution of Tibetan Antelope have been threatened by environmental deterioration and illegal poaching. This animal has been listed as an Class I species by the Convention on International Trade in Endangered Species(CITES) and as Category I by the Key Protected Wildlife List of China. This situation has attracted a great deal of attentions from government and conservation professionals. The population distribution of Tibetan Antelope remains unkown in Altun National Nature Reserve. The Altun National Nature Reserve,the largest inland nature reserve of China established in May of 1983,is one of the fourno man' s-landsin China. Due to its unique natural conditions,this reserve is preserving the rich natural resources,rare wild animals and plants. In this study,we analyzed the dynamics of vegetation in Altun National Nature Reserve based on remote sensing image data and GIS tool. The Normalized Difference Vegetation Index (NDVI) data were collected in 2000,2005 and 2010. We merged the regions,which were covered by vegetation in the study years and the suitable habitats were identified through interpreting vegetation types,which can be used by Tibetan Antelopes as grazing pastures. Based on NDVI datasets collected in different years,we calculated the vegetation coverage and analyzed the spatial and temporal variations of vegetation coverage. Moreover,the changes of habitat were analyzed on the basis of vegetation coverage variations. The results showed that the vegetation coverage of the reserve was at a low level,and grids with low vegetation coverage took up about 50% of the regions that were covered by vegetation. The grids with high vegetation coverage were mainly distributed in the southwest of Kardun inspection station. The vegetation coverage in the regions where Tibetan Antelopes mainly lived was relatively higher,and that in the regions where the animal lambed was lower. The upward trends of vegetation coverage over time reflected the increase of the reserve's carrying capacity for animals,and it may also imply that the area of suitable habitat of this animal increased. The vegetation coverage of alpine steppe dominated by feather grass experienced a significant upward trend,also suggesting that carrying capacity of the reserve for Tibetan Antelope increased. The change of spatial distribution of feather grass steppe coverage indicated that habitat of Tibetan Antelopes might spread from east to southwest. The relationship between the altitude and vegetation coverage was not significant correlated. The study of habitat variations based on vegetation coverage is meaningful and can be used for better protecting this wildlife. Furthermore,we suggested that more factors could be integrated with vegetation coverage to precisely identify suitable habitat for animals,and more field surveys and monitoring should be conducted in the future. Z4 植被的分布及动态变化在一定程度上反映了动物栖息地的分布与变化。基于植被遥感影像数据及GIS空间分析,对阿尔金山国家级自然保护区植被景观的变化进行 分析,同时通过植被类型要素识别出适宜藏羚羊生存的主要区域,对其植被覆盖度的时空变化进行分析。结果表明:保护区的植被覆盖度处于较低水平,低覆盖度植 被区域占总植被覆盖区的50%左右,且植被覆盖度高的区域均集中在卡尔墩检查站的东南部。植被覆盖度在2000年、2005年、2010年间的增长趋势表 明保护区植被对于动物的承载能力不断增大,植被的分布表明藏羚羊的活动区域植被覆盖度较高,而产羔区域的植被覆盖度较低且海拔较高。对藏羚羊取食植被针茅 草原植被覆盖度的变化分析表明,针茅草原植被覆盖度随时间而有所提高,藏羚羊栖息地的面积可能有所增大,覆盖度分布的变化表明藏羚羊栖息地有向保护区西南 方向扩散的趋势。对植被覆盖度与海拔关系的分析表明,高海拔区域植被覆盖度较低,中度海拔区域植被覆盖度较高,但是两者并不存在显著地相关性。 C1 Zhao Haidi, School of Environment,State Key Laboratory of Water Environment Simulation,Beijing Normal University, Beijing 100875, China. Liu Shiliang, School of Environment,State Key Laboratory of Water Environment Simulation,Beijing Normal University, Beijing 100875, China. Dong Shikui, School of Environment,State Key Laboratory of Water Environment Simulation,Beijing Normal University, Beijing 100875, China. Su Xukun, School of Environment,State Key Laboratory of Water Environment Simulation,Beijing Normal University, Beijing 100875, China. Zhang Xiang, Nature Reserve Administration of Altun National Nature Reserve, Korla, Xinjiang 841000, China. Z6 赵海迪, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 刘世梁, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 董世魁, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 苏旭坤, 北京师范大学环境学院, 水环境模拟国家重点实验室, 北京 100875, 中国. 张翔, 阿尔金山国家级自然保护区管理局, 库尔勒, 新疆 841000, 中国. EM shiliangliu@bnu.edu.cn Z7 shiliangliu@bnu.edu.cn Z8 9 Z9 10 UT CSCD:5188674 DA 2023-03-23 ER PT J AU Chen Bin Li Haidong Cao Xuezhang Z2 陈斌 李海东 曹学章 TI Advances in Studies on Degradation and Re-vegetation of Typical Ecosystems on Tibetan Plateau, China Z1 西藏高原典型生态系统退化及植被恢复技术综述 Z3 世界林业研究 SO World Forestry Research VL 27 IS 5 BP 18 EP 23 AR 1001-4241(2014)27:5<18:XZGYDX>2.0.TX;2-Y PY 2014 DT Review AB The fragile alpine ecosystems on the Tibetan Plateau have been subject to disturbances and damages to varied extents as the results of global warming and increasing human activities, which constitutes a serious potential threat to the ongoing program of Protection and Construction of National Ecological Security Shelter Zone. Therefore, this paper analyzed the performances of typical degraded ecosystems (grassland degradation, wetland degradation, vegetation deterioration in engineering disturbed area, and spreading of aeolian sandy land) in the Tibetan Plateau, and then identified the driving factors (climate change, overgrazing and engineering disturbance). Based on these analyses, the re-vegetation technologies for degraded ecosystems on the Plateau were summarized and refined, mainly including grassland enclosure, artificial seeding, classification recovery of different types of engineering disturbance area, screening of adaptive plant species, sand barrier construction, etc. The study was expected to provide decision-making bases and scientific and technological supports to further enhance the protection and restoration of degraded ecosystems and promote the construction of National Ecological Security Shelter Zone on Tibetan Plateau. Z4 全球变暖和人类活动导致西藏高原脆弱生态系统遭到不同程度的干扰和破坏,对正在进行的国家生态安全屏障保护与建设构成严重的潜在威胁。文中在全面梳理西藏 高原典型退化生态系统的主要表现(草地退化、湿地退化、工程扰动区植被破坏、风沙化土地不断扩张)、识别其驱动因素(气候变化、过度放牧和工程扰动)的基 础上,总结了西藏高原典型退化生态系统植被恢复的技术措施(围栏封育、人工种草、工程扰动分类恢复、适生植物种选择、沙障设置等),以期为进一步加强西藏 高原退化生态系统保护与恢复治理、促进国家生态安全屏障建设提供决策依据和技术支撑。 C1 Chen Bin, School of Remote Sensing, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China. Li Haidong, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, Jiangsu 210042, China. Cao Xuezhang, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, Jiangsu 210042, China. Z6 陈斌, 南京信息工程大学遥感学院, 南京, 江苏 210044, 中国. 李海东, 环境保护部南京环境科学研究所, 南京, 江苏 210042, 中国. 曹学章, 环境保护部南京环境科学研究所, 南京, 江苏 210042, 中国. EM chb01270@163.com; caoxuezhan@126.com Z7 chb01270@163.com; caoxuezhan@126.com Z8 7 Z9 8 UT CSCD:5283379 DA 2023-03-23 ER PT J AU Ma Yinshan Du Guozhen Zhang Shiting Z2 马银山 杜国祯 张世挺 TI The effects of light intensity and fertilization on the growth of Elymus nutans Z1 光照强度和肥力变化对垂穗披碱草生长的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 34 IS 14 BP 3908 EP 3916 AR 1000-0933(2014)34:14<3908:GZQDHF>2.0.TX;2-# PY 2014 DT Article AB Elymus nutans Griseb. (Poaceae : Triticeae) is a tall (shoot height usually 60-120 cm) sparse bunchgrass with broad leaves that is native to the alpine meadows of the Qinghai-Tibetan plateau,China. The study was conducted in the Hezuo Sub-alpine Meadow Ecosystem Field Station of Lanzhou University. Field experiments based on a factorial design were used to measure the effects of illumination and fertilization on the growth parameters of E. nutans to assess the ability of E. nutans to adapt to heterogeneous environments. The experiment began in April, 2006 as part of mowing trials and included eighteen 1.3 m x 0.8 m plots with a total of six treatment combinations of light and fertilization, 80 of plants per plot, 30 that were marked. The plots were separated by 0.5 m. To simulate the effects of attenuated light beneath the canopy on plant growth, green shade nets that did not fundamentally change the spectral composition of sunlight were used in this trial to create three illumination conditions similar to those in the natural environment. The three light intensities were high (100% illumination), moderate (43.5%), and low (6.74%), and plots were either fertilized with diammonium hydrogen phosphate (50 g/m~2) or left unfertilized. On 10th October, we harvested 15 individual plants (five marked individuals per plot) from each treatment. Harvested plants were dug up and washed. For each plant, the number of tillers (including withered ones) was recorded, and it was separated into leaves, stem (including leaf sheaths), inflorescences, and roots. Separated plant tissues were dried in an oven (80 ℃) for 48 h and then weighed. The results show that as illumination intensities decreased from high to moderate, the above-ground biomass and number of tillers of E. nutans did not change, while plant height increased. However, as the light intensity declined to 6.74%,the above-ground biomass, number of tillers, and plant height were all reduced. The specific leaf area increased as illumination intensity was attenuated, while the relative growth rate decreased, which suggested that fertilization had no effect on either specific leaf area or relative growth rate. The differences in root-to-shoot ratios at moderate and low illumination levels were not significant, while the root-to-shoot ratios increased with the application of fertilizer under high illumination. After fertilization, allocation to leaf biomass increased while allocation to reproductive structures decreased as the light intensity was attenuated. Without fertilization, there were no significant differences in biomass allocations to either leaves or inflorescences at high and moderate illumination levels, while allocations to leaves and to reproductive structures decreased at the low illumination level. After fertilization, the stem allocations were highest at the moderate illumination intensity, intermediate at the high illumination intensity, and lowest at the low illumination intensity. Without fertilization, there were no differences in the stem allocations at the high and moderate illumination levels, while the allocation to stem tissue decreased under low illumination. The results of this study show that E. nutans is an illumination-tolerate grass species that can grow normally even when the light intensity is reduced to half of full sun exposure. Elymus nutans adapts to low-illumination environments by increasing its height and by producing large thin leaves,and its resources are balanced through altered allocations to leaf biomass, stem tissue, and reproductive structures. Z4 在野外条件下,采用析因设计,对光照和肥力变化影响下垂穗披碱草的生长参数进行测定,评估垂穗披碱草对异质环境的适应特性。光照分为高光照(100%光照 强度)、中度光照(43.5%光照强度)与低光照(6.74%光照强度);肥力分为施肥与不施肥。结果表明,垂穗披碱草在光照强度由高光照(100%)向 中度光照(43.5%)变化情况下,地上生物量、分蘖数无变化,株高增大,光照强度减小到6.74%时,地上生物量、分蘖数、株高均减小。比叶面积(SL A)随光照强度的减弱而增加,相对生长率(RGR)随光照强度的减弱而减小,施肥对SLA和RGR无影响。根冠比在中度光照和低光照下各处理之间差异均不 显著,高光照(100%)下增加肥力,根冠比增大。施肥时,叶分配随光照强度的减弱而增加,繁殖分配减小,不施肥时,叶分配与繁殖分配在高光照(100% )和中度光照(43.5%)下无差异,低光照(6.74%)下,叶分配增大,繁殖分配减小。施肥时茎分配在中度光照强度(43.5%)下最大,高光照强度 (100%)下次之,低光照强度(6.74%)下最小,不施肥时,茎分配在高光照(100%)和中度光照(43. 5%)下无差异,低光照(6.74%)下减小。研究表明:垂穗披碱草是一个光照耐受型物种,光照强度减小到全光照一半时仍可正常生长。在低光环境中,垂穗 披碱草通过增加株高和大而薄的叶片,来适应环境,资源主要在叶分配、茎分配、繁殖分配之间进行了权衡。 C1 Ma Yinshan, Biology Department of Hexi University, Zhangye, Gansu 734000, China. Du Guozhen, College of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China. Zhang Shiting, College of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China. Z6 马银山, 河西学院农业与生物技术学院, 张掖, 甘肃 734000, 中国. 杜国祯, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 张世挺, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. EM zhangsht@lzu.edu.cn Z7 zhangsht@lzu.edu.cn Z8 14 Z9 15 UT CSCD:5202290 DA 2023-03-23 ER PT J AU Wu Qihua Li Hongqin Zhang Fawei Liu Xiaoqin Mao Shaojuan Z2 吴启华 李红琴 张法伟 刘晓琴 毛绍娟 李英年 TI Distribution patterns of vegetation- and soil carbon and nitrogen density in an alpine forb meadow under short-term grazing gradient. Z1 短期牧压梯度下高寒杂草类草甸植被/土壤碳氮分布特征 Z3 生态学杂志 SO Chinese Journal of Ecology VL 32 IS 11 BP 2857 EP 2864 AR 1000-4890(2013)32:11<2857:DQMYTD>2.0.TX;2-H PY 2013 DT Article AB In order to obtain the equilibrium mode of grassland carbon sequestration and grazing management to provide a scientific basis for carbon sequestration management of grassland ecosystem, this paper studied the vegetation- and soil carbon and nitrogen density under a short-term grazing gradient in an alpine forb meadow ecosystem on the northeastern Qinghai-Tibetan Plateau, China. Under the grazing gradient, the existing total vegetation carbon storage decreased with increasing grazing intensity, i.e., no grazing (SCK) > light grazing (SL) > moderate grazing (SM) > heavy grazing (SH). The annual net primary carbon production was in the order of SM >SL >SH > SCK, indicating that moderate grazing could promote vegetation carbon storage, while overgrazing or no grazing was in reverse. In the soil layers of 0-40 cm, the total organic carbon density and total nitrogen density had the same variation pattern, i.e., SCK > SH> SM > SL. However, in topsoil (0-10 cm), the organic carbon density was in the order of SH > SM > SL > SCK, while the total nitrogen density was of SH > SCK > SM > SL. In 10-20 cm, 20-30 cm, and 30-40 cm soil layers, both the organic carbon density and the total nitrogen density declined in the order of SCK > SH > SL > SM. A slight difference was observed in the soil carbon and nitrogen density between 0-10 cm and 10-40 cm layers, indicating that short-term grazing had different effects on the soil carbon and nitrogen between surface layer and deeper layers. Under the grazing gradient, soil C/N in different layers of 0-40 cm had somewhat difference. Overall, the soil C/N under the grazing gradient except CK was suitable for microbial mineralization. Regression analysis showed that under the grazing gradient, soil carbon density in all layers was positively correlated with soil nitrogen density (P<0.01). Z4 讨论了牧压梯度下高寒杂草类草甸植被/土壤碳氮密度,以期构建草地固碳作用与放牧管理的平衡模式,为草地生态系统固碳技术的管理提供科学依据。结果表明: 牧压梯度下,植被现存总碳量为对照(SCK)>轻牧(SL)>中牧(SM)>重牧(SH),表现出随放牧强度的增大而减小。年净初级生产碳量表现为SM> SL>SH>SCK,说明适度放牧能促进植被碳素的积累,过度放牧或禁牧不利于碳素的积累。0~40 cm土壤总有机碳密度和全氮密度分布状况相同,由大到小依次为SCK、SH、SM、SL。其中0~10 cm 层次,土壤有机碳密度为SH>SM>SL>SCK,全氮密度为SH>SCK>SM>SL。在10~20 cm、20~30 cm和30~40 cm各层次,土壤有机碳密度和土壤全氮密度由大到小均为SCK>SH>SL>SM。0~10 cm与10~40 cm各层次的土壤碳氮密度变化趋势略有不同,说明短期放牧对土壤表层和深层的碳氮密度影响不同。牧压梯度下,0~40 cm 各层次的土壤碳氮比和变化趋势不尽相同。总体来看,牧压梯度下的碳氮比适合微生物的矿化。回归分析表明,牧压梯度下,不同层次的土壤碳氮密度之间呈极显著 正相关(P<0.01)。 C1 Wu Qihua, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Liu Xiaoqin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Mao Shaojuan, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Hongqin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota, Xining, Qinghai 810001, China. Z6 吴启华, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 刘晓琴, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 毛绍娟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李红琴, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. 李英年, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. EM wqh5859@126.com Z7 wqh5859@126.com; ynli@nwipb.cas.cn Z8 4 Z9 5 UT CSCD:4977211 DA 2023-03-23 ER PT J AU Wu Pengfei Zhang Hongzhi Cui Liwei Zhong Hongmei Wang Yong Z2 吴鹏飞 张洪芝 崔丽巍 钟红梅 王永 TI RESPONSE OF SOIL MACROFAUNA COMMUNITIES TO DEGRADATION OF ALPINE MEADOW Z1 大型土壤动物群落对高寒草甸退化的响应 Z3 土壤学报 SO Acta Pedologica Sinica VL 50 IS 4 BP 786 EP 799 AR 0564-3929(2013)50:4<786:DXTRDW>2.0.TX;2-M PY 2013 DT Article AB Zoig? alpine wetland meadow, located on the eastern edge of the Qinghai-Tibetan Plateau, is degrading under the impact of global climate change and the increasingly heavy burden of livestock in recent years, demonstrating four typical phases,i.e. swampy meadow, grassland meadow, degraded meadow and desertifying meadow in the process. From April 2009 to October 2010, seven investigations were conducted of soil macrofauna communities in the four phases for analysis of impacts of the degradation on soil macrofauna. Results show that differences existed between the phases in taxonomic composition and dominant groups of the soil macrofauna communities. Statistical analysis shows that the impacts of the degradation on richness, density and Shannon diversity index of the soil macrofauna communities were extremely significant (p<0.01 or p<0.05) in the last two phases. Principal Component Analysis (PCA) shows that in the phase of graded meadow, Polydesmida and Coleoptera larvae increased significantly (p<0.05), while in the phase of desertifying meadow the dominant groups decreased significantly in density (p<0.05) and some common and rare groups disappeared. Correlation analysis shows that richness, density and diversity of soil macrofauna communities were closely related to species and biomass of the plants and physical and chemical properties of the soils (p<0.01 or p<0.05), especially available phosphorus and readily available potassium, in the meadows. And soil macrofauna communities also responded to changes in season significantly in abundance and diversity, and the responses varied from phase to phase of the degradation process (p<0.01 or p<0.05). All the findings indicate that moderate degradation of alpine meadows may increase soil macrofauna community in diversity, whereas severe degradation (desertification) significantly reduces the diversity, and moreover, seasonal dynamics of soil macrofauna communities varies from phase to phase of the degradation process. Z4 为了查明大型土壤动物群落对高寒草甸退化的响应,2009至2010年间对青藏东缘若尔盖湿地的沼泽草甸、草原草甸、退化草甸和沙化草甸4个退化阶段的大 型土壤动物群落进行了7次调查。结果表明:高寒草甸的不同退化阶段大型土壤动物群落的类群组成和优势类群存在差异,且退化和沙化对大型土壤动物群落的丰富 度、密度、Shannon多样性和群落结构均有显著影响(p<0.01或 p<0.05)。其中退化可使带马陆目(Polydesmida)和鞘翅目幼虫(Coleoptera)等多个类群的密度显著增加(p<0.05),而沙 化则使优势类群密度显著降低(p<0.05)、常见类群和稀有类群消失。植物种类、生物量和土壤理化性质,尤其是有效磷和速效钾含量与大型土壤动物的丰富 度、密度和多样性间存在显著相关关系(p<0.01或 p<0.05)。季节变化对大型土壤动物的群落密度和多样性有显著影响(p<0.01或 p<0.05),但不同退化阶段的大型土壤动物对季节变化的响应存在差异。研究结果表明高寒草甸的中度退化能够增加大型土壤动物群落多样性,而严重退化( 即沙化)则显著降低土壤动物群落多样性,且不同退化阶段大型土壤动物群落的季节动态不同。 C1 Wu Pengfei, College of Life Science and Technology,Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Zhang Hongzhi, College of Life Science and Technology,Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Cui Liwei, College of Life Science and Technology,Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Zhong Hongmei, College of Life Science and Technology,Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Wang Yong, College of Life Science and Technology,Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Z6 吴鹏飞, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 张洪芝, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 崔丽巍, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 钟红梅, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 王永, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. EM wupf@swun.cn Z7 wupf@swun.cn Z8 18 Z9 19 UT CSCD:4882858 DA 2023-03-23 ER PT J AU Zhou Jianwei Hua Limin Zuo Songtao Su Junhu Wang Qiaoling Z2 周建伟 花立民 左松涛 苏军虎 王巧玲 TI Research progress in habitat selection of plateau zokor Z1 高原鼢鼠栖息地的选择 Z3 草业科学 SO Pratacultural Science VL 30 IS 4 BP 647 EP 653 AR 1001-0629(2013)30:4<647:GYFSQX>2.0.TX;2-X PY 2013 DT Article AB Plateau zokor(Myospalax baileyi)is one of special species in the Qinghai-Tibet plateau, which live primarily underground and feed on plant root and tubers. Plateau zokors mainly distribute on the alpine meadow and alpine steppe. They play an important role in the grassland ecosystem and their status in the grassland ecosystem can not be replaced by terrestrial herbivorous animals. However, the over-increased population of plateau zokor can also break the pattern of dynamic balance of the soil-grass-animal-mouse,results in the decline of grassland productivity and biodiversity, and become a serious threat to grassland environment security. This paper described the factors, which might affect the plateau zokor on choosing habitats, and reviewed recent advances on research about plateau zokor. It also discussed prospects for further research on plateau zokor control. Z4 高原鼢鼠(Myospalax baileyi)是青藏高原的特有鼠种,营地下生活,靠采食植物根茎为生,主要分布在青藏高原高寒草甸和高寒草原区,在草地生态系统中具有重要的功能和地 位,有着地面植食性动物不可替代的作用。然而,由于高原鼢鼠种群密度上升,打破了原有土-草-畜-鼠的动态平衡,导致草地生产力下降,生物多样性丧失,进 而形成草原鼠害。在鼠害严重危害区会形成次生裸地(黑土滩、鼠荒地等),严重威胁着草地生态环境安全。高原鼢鼠种群数量上升与其栖息地适合度增强密切相关 ,选择适宜栖息地也是导致高原鼢鼠扩散的主要原因之一。通过破坏栖息地环境来降低高原鼢鼠生境适合度,进而降低其种群密度是目前取代化学灭鼠的趋势。本研 究详细阐述了影响高原鼢鼠对栖息地选择的因素,以及国外对地下鼠生境选择的研究,并对高原鼢鼠生态防治的研究及新型技术在其研究方面的应用做出了进一步的 展望。 C1 Zhou Jianwei, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Hua Limin, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Zuo Songtao, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Su Junhu, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Wang Qiaoling, College of Pratacultural Science,Gansu Agricultural University, Lanzhou, Gansu 730070, China. Z6 周建伟, 甘肃农业大学草业学院甘肃农业大学-梅西大学草地生物多样性研究中心, 兰州, 甘肃 730070, 中国. 花立民, 甘肃农业大学草业学院甘肃农业大学-梅西大学草地生物多样性研, 兰州, 甘肃 730070, 中国. 左松涛, 甘肃农业大学草业学院甘肃农业大学-梅西大学草地生物多样性研, 兰州, 甘肃 730070, 中国. 苏军虎, 甘肃农业大学草业学院甘肃农业大学-梅西大学草地生物多样性研, 兰州, 甘肃 730070, 中国. 王巧玲, 甘肃农业大学草业学院甘肃农业大学-梅西大学草地生物多样性研, 兰州, 甘肃 730070, 中国. EM zhou_319336@163.com; hua-lm@263.net Z7 zhou_319336@163.com; hua-lm@263.net Z8 22 Z9 22 UT CSCD:4823059 DA 2023-03-23 ER PT J AU Xu Manhou Xue Xian Z2 徐满厚 薛娴 TI Correlation among vegetation characteristics,temperature and moisture of alpine meadow in the Qinghai-Tibetan Plateau Z1 青藏高原高寒草甸植被特征与温度、水分因子关系 Z3 生态学报 SO Acta Ecologica Sinica VL 33 IS 10 BP 3158 EP 3168 AR 1000-0933(2013)33:10<3158:QZGYGH>2.0.TX;2-F PY 2013 DT Article AB Climate warming has become a credible fact,owing to the increase of greenhouse gases. It is generally believed that ecosystem responses to elevated temperature are highly sensitive and rapid in high-latitude and high-elevation regions,especially in the Qinghai-Tibetan Plateau (QTP). The QTP has been considered as an ideal region for studying responses of terrestrial ecosystems to global climate changes. Representing a typical QTP vegetation type,alpine meadows are extremely fragile and highly sensitive to climate warming. Once they are destroyed,it is very difficult for these meadows to recover quickly,which results in their degradation or desertification. Therefore,it is extremely important and urgent to investigate the relationship between vegetation characteristics and environmental factors under climate warming in the QTP. We used infrared heaters to control experimental warming. Fifteen experimental warming plots (EWPs) of 2 m * 2 m area and 60 non-experimental plots (NEPs) of 20 cm * 20 cm or 30 cm * 30 cm areas were established in an alpine meadow. EWPs included three treatments: 0 W/m~2 (control,T0),130 W/m~2 (increasing ground temperature by about 1°C,T1),and 150 W/m~2 (increase of about 3°C,T2). Each type of treatment had five replications. Vegetation height,coverage,above- and belowground biomass were measured in NEPs. In EWPs,vegetation height,coverage,species richness,plus temperature and moisture were investigated after 1 year of warming. Then,detrended correspondence analysis (DCA),redundancy analysis (RDA),stepwise regression analysis,and path analysis were used to find correlations among vegetation characteristics,temperature and moisture. Our results show that log-transformed species richness was significantly linearly correlated with the reciprocal of absolute temperature in the alpine meadow. Air temperature at 20 cm height,ground temperature,and soil temperature in the 0-20 cm layer had greater impacts on species diversity (R~2>0.6,P<0.01) than deep soil temperature in the 40-100 cm layer (R~2<0.5,P<0.05). Average activation energy of metabolism in alpine meadow vegetation (0.998-1.85 eV) was greater than that of the metabolic theory of biodiversity (0.6-0.7 eV). This indicates that the activation energy of alpine meadow vegetation was high,enabling it to survive such harsh conditions as low temperature,drought,and gales. In DCA ordination,the relationship between vegetation characteristics and environmental factors fit the linear model best. Therefore,RDA ordination was chosen to study correlation among vegetation characteristics,temperature,and moisture. In RDA ordination,temperatures had a greater impact on aboveground vegetation,whereas soil moisture had more influence on above-and belowground vegetation. In a certain range,both elevated temperature and increased soil moisture enhanced vegetation growth most significantly in the meadow. In the stepwise regression and path analyses,soil moisture at 40 cm and 60 cm depths affected aboveground vegetation directly,whereas atmospheric relative humidity at 20 cm height and soil temperature at 40 cm depth affected it indirectly. Belowground vegetation was directly affected by soil temperature at 40 cm and soil moisture at 60 cm,and it was indirectly affected by soil surface temperature. It was also found that deep soil temperature and moisture influenced the growth of alpine meadow vegetation to a degree. We believe that this may be related to the melting of frozen soil caused by warming. Z4 以广布于青藏高原的高寒草甸为研究对象,进行模拟增温实验,探讨高寒草甸植被特征与温度、水分因子关系,并试图论证高寒草甸植被是否符合生物多样性代谢理 论。结果表明:① 高寒草甸植被物种多样性的对数与绝对温度的倒数呈显著线性递减关系,空气-地表-浅层土壤(0-20 cm)温度(R~2>0.6,P<0.01)较深层土壤(40-100 cm)温度(R~2<0.5,P<0.05)对物种多样性影响大;其植被新陈代谢平均活化能为0.998-1.85 eV,高于生物多样性代谢理论预测值0.6-0.7 eV,这是高寒草甸植被对长期低温环境适应进化的结果。② 除趋势对应分析和冗余分析显示,温度对植被地上部分影响较大,而土壤水分对全株影响均较大,适当的增温与降水均可极显著促进高寒草甸植被生长。③ 逐步回归和通径分析显示,40 cm、60 cm深度土壤水分对植被地上部分产生直接影响,20 cm高度空气相对湿度和40 cm深度土壤温度对其产生间接影响;40 cm深度土壤温度和60 cm深度土壤水分对植被地下部分产生直接影响,红外地表温度对其产生间接影响。深层土壤温度和水分对高寒草甸植被具有影响作用,这可能与增温后冻土的融化 有关,但其机理尚待进一步研究。 C1 Xu Manhou, Key Laboratory of Desert and Desertification,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Xue Xian, Key Laboratory of Desert and Desertification,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 徐满厚, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. 薛娴, 中国科学院寒区旱区环境与工程研究所, 中国科学院沙漠与沙漠化重点实验室, 兰州, 甘肃 730000, 中国. EM xianxue@lzb.ac.cn Z7 xianxue@lzb.ac.cn Z8 21 Z9 26 UT CSCD:4832631 DA 2023-03-23 ER PT J AU Zhang Qilin Yuan Minglong Z2 张棋麟 袁明龙 TI Research status and prospect of grassland caterpillars(Lepidoptera:Lymantriidae) Z1 草原毛虫研究现状与展望 Z3 草业科学 SO Pratacultural Science VL 30 IS 4 BP 638 EP 646 AR 1001-0629(2013)30:4<638:CYMCYJ>2.0.TX;2-3 PY 2013 DT Review AB Grassland caterpillars (Lepidoptera, Lymantriidae, Gynaephora) are among the most important insect pests damaging alpine meadow of the Tibetan Plateau. Grassland caterpillars not only feed on high quality forages, leading to the shortage of food for livestocks, changing plant community structure, aggravating grassland degeneration and environmental deterioration, but also cause livestock poisoning, which heavily hinders to the sustainable development of animal husbandry of the Tibetan Plateau. In addition, grassland caterpillars mainly distribute on high mountains and arctic areas, so they are good model systems for studing the evolutionary mechanism of adaption to the extreme environments (e.g. cold and hypoxia). This paper summarized the research status on taxonomy, biology, ecology and control of grassland caterpillars; and suggested the promising research directions, in order to promote the basic and apply researches of grassland caterpillars, which was helpful to plan appropriate strategies for controlling these pests. Z4 草原毛虫属鳞翅目(Lepidoptera)毒蛾科(Lymantriidae)草原毛虫属(Gynaephora),是我国青藏高原高寒草地的主要害虫 之一。该虫不仅取食优良牧草,造成家畜食物短缺,改变草地植物群落结构,加剧草地退化和草地生态环境恶化,而且还会导致家畜中毒,严重阻碍青藏高原畜牧业 的健康发展。此外,草原毛虫主要分布于高山或北极地区,为研究生物对严寒、缺氧等极端生态环境的适应性进化机制,提供了一个良好的模式系统。本研究综述了 草原毛虫的分类、生物学、生态学及防治等方面的研究现状,并对今后研究重点进行了展望,以期推动我国草原毛虫的基础及应用研究,为该虫的可持续控制提供参 考。 C1 Zhang Qilin, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agricultural Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Yuan Minglong, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agricultural Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Z6 张棋麟, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 袁明龙, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM qlzhang11@lzu.edu.cn; yuanml@lzu.edu.cn Z7 qlzhang11@lzu.edu.cn; yuanml@lzu.edu.cn Z8 9 Z9 26 UT CSCD:4823058 DA 2023-03-23 ER PT J AU Xu Cui Zhang Linbo Du Jiaqiang Guo Yang Wu Zhifeng Xu Yanda Li Fen Wang Fengyu Z2 徐翠 张林波 杜加强 郭杨 吴志丰 徐延达 李芬 王风玉 TI Impact of alpine meadow degradation on soil water conservation in the source region of three rivers Z1 三江源区高寒草甸退化对土壤水源涵养功能的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 33 IS 8 BP 2388 EP 2399 AR 1000-0933(2013)33:8<2388:SJYQGH>2.0.TX;2-G PY 2013 DT Article AB Research on the effects of grassland degradation on soil water conservation in the Sanjiangyuan region of China is essential as it can provide a scientific basis for evaluating and monitoring water conservation in this important water conservation area. Its regional strategic position is extremely important as 1.2% of the total water in the Yangtze River, 40% of the total water in the Yellow River, and 15% of the total water in the Lancang River comes from this area. As a result of climate change and human activity, grassland degradation had been more severe in the Sanjiangyuan region since the 1970s. Rangeland degradation not only impacts vegetation, it can also have great effects on soil physical and chemical properties. Changes to the physical and chemical properties of soil can subsequently affect the efficiency of soil water conservation. The vegetation in this region is dominated by grassland. In grassland ecosystems 99% of water conservation capacity comes from the capacity of soil to retain water. While soil water conservation efficiency is influenced by many factors such as vegetation type, land use and land cover, studies have shown that water yield in this region has decreased year by year and that water conservation capacity has declined sharply. These findings show that further studies exploring the impacts of grassland degradation on the function of soil water conservation are of great significance. Field surveys and experimental analyses were applied to detect vegetation biomass, soil moisture and physical characteristics, and soil water conservation capacity of alpine meadows in different soil types in this area. Results showed that above-ground biomass, under-ground biomass, capillary porosity, total porosity, natural water-holding capacity, maximum water holding capacity, and soil water conservation capacity decreased significantly at severely degraded alpine meadows (P <0.05). When an alpine meadow deteriorated from not degraded alpine meadow status to moderately degraded and severely degraded alpine meadows, soil bulk density increased gradually. Soil non-capillary porosity, minimum water-holding capacity and capillary water-holding capacity did not change dramatically. The ranges of soil water conservation capacity at the three degradation stages were 1884.321897.44t/hm~2, 1360.041707.79t/hm~2 and 1082.381550.10t/hm~2 respectively. Compared with not degraded alpine meadows with different soil types, soil water conservation capacity was reduced by 9.37% 10.35% at moderately degraded meadows, and by 18.31% 27.82% at severely degraded meadows. Reduced soil water conservation capacity was caused by diminished total porosity and capillary porosity and was also indirectly caused by a reduction of above-ground biomass and under-ground biomass associated with the degradation of the alpine meadows. The contribution of capillary porosity to water conservation should be taken into account when evaluating alpine meadow soil water conservation capacity in the Sanjiangyuan region. The results of the correlation analysis showed that soil water conservation capacity was positively correlated with above-ground biomass and under-ground biomass (P < 0.05). In addition to promoting the evaluation of water conservation function, our findings can be used to provide guidelines and methods for water conservation function monitoring in the Sanjiangyuan region by remote sensing. Z4 三江源区是我国重要的水源涵养区,研究草地退化对土壤水源涵养功能的影响,可为三江源区水源涵养功能的科学评估与合理监测提供科学依据。以实地采样与室内 测试分析相结合的方法研究了三江源区内不同土壤类型高寒草甸生物量特征、土壤水文物理性质及土壤水源涵养量。结果表明:高寒草甸在重度退化阶段地上生物量 、地下生物量、毛管孔隙度、总孔隙度、自然含水量、最大持水量、土壤水源涵养量显著低于未退化和中度退化阶段(P<0.05)。随着高寒草甸退化程度加剧 ,土壤容重逐渐增大,且非毛管孔隙度规律不显著。未退化、中度退化、重度退化草甸的土壤水源涵养量范围分别为1884.321897.44t/hm~2、 1360.041707.79t/hm~2、1082.381550.10t/hm~2。中度退化草甸土壤水源涵养量比未退化草甸低9.37%10.35 %,重度退化草甸低18.31%27.82%。草甸退化进程中土壤总孔隙度与毛管孔隙度的降低是影响土壤水源涵养量下降的直接原因,而草甸退化进程中地上 生物量与地下生物量的减少则是间接原因。度量三江源区高寒草甸土壤水源涵养功能时应着重考虑毛管孔隙度的蓄水作用。研究表明高寒草甸地上生物量与土壤水源 涵养量之间存在显著的正相关关系(P<0.05),该结果能够推动水源涵养功能评估向空间化、精细化发展,为探索利用遥感技术监测三江源区水源涵养功能提 供参考依据。 C1 Xu Cui, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Zhang Linbo, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Du Jiaqiang, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Guo Yang, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Wu Zhifeng, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Xu Yanda, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Li Fen, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Wang Fengyu, Chinese Research Academy of Environmental Sciences,State Environment Protection Key Laboratory of Regional Eco-process and Function Assessment,State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China. Z6 徐翠, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. 张林波, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. 杜加强, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. 郭杨, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. 吴志丰, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. 徐延达, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. 李芬, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. 王风玉, 中国环境科学研究院, 国家环境保护区域生态过程与功能评估重点实验室;;环境基准与风险评估国家重点实验室, 北京 100012, 中国. EM zhanglb@craes.org.cn Z7 zhanglb@craes.org.cn Z8 56 Z9 60 UT CSCD:4822505 DA 2023-03-23 ER PT J AU Li Yanan Zhang Li Liao Jingjuan Wang Cuizhen Z2 李亚楠 张丽 廖静娟 王翠珍 TI Remote Sensing Monitoring of Grassland Degradation in the Central of the Northern Tibet Z1 藏北中部地区草地退化遥感监测 Z3 遥感技术与应用 SO Remote Sensing Technology and Application VL 28 IS 6 BP 1069 EP 1075 AR 1004-0323(2013)28:6<1069:ZBZBDQ>2.0.TX;2-Y PY 2013 DT Article AB Northern Tibet is located in the hinterland of the Qinghai-Tibet Plateau,and abounds in grassland resources.While in recent years,Northern Tibet has experienced serious grassland degradation.In order to investigate the grassland degradation and its main driving factors in the central of the Northern Tibet during recent 20 years,the grassland landscape were classified using hybrid classification method and Landsat images for years of 1990,2000 and 2010.The classification accuracy was 78.0% based on the field data in 2010.The characteristics of the landscape patterns and grassland degradation were analyzed through calculating landscape indices,which included dominance index,evenness index,fragmentation index and diversity index.Finally,the main driving force for the grassland degradation was discussed using the Gray correlation method and the meteorological data.The results showed:the area of degraded grassland increased in 1990~2000,while decreased from 2000 to 2010.After the year of 2000,the grassland degradation is easing due to grassland restoration measures and grassland contract responsibility system.The change of climate has great influence on grassland degradation,and the major influence factors are precipitation,temperature,sunshine duration,and evaporation.The alpine meadows grass was mainly influenced by the average relative humidity and precipitation.The alpine grassland grass was mainly influenced by evaporation,the average relative humidity,precipitation,average minimum temperature,average maximum temperature,and sunshine duration.The desert grass has a close relationship with the average maximum temperature,sunshine duration,and evaporation. Z4 为了探讨藏北中部地区近20年来的草地退化状况及主要驱动力,基于1990、2000及2010年的Landsat影像,采用混合分类方法对研究区主要景 观类型进行分类,并利用景观指数分析景观格局及草地退化特征。另外,基于气象数据,利用灰色关联度方法分析草地退化的主要驱动力。结果表明:草地退化面积 在1990~2000年呈增加趋势,在2000~2010年呈减少趋势,2000年之后研究区草地退化状况趋于缓和。造成草地退化的主要气候因素为降水量 、气温、日照时数、平均相对湿度和蒸发量等,其中,高寒草甸草地主要受平均相对湿度及降水量的影响,高寒草原草地受蒸发量、日照时数、平均最低气温、降水 量、平均相对湿度和平均最高气温的影响均较大,高寒荒漠草地与平均最高气温、日照时数和蒸发量的关系最为密切。 C1 Li Yanan, Key Laboratory of Digital Earth Sciences,Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China. Zhang Li, Key Laboratory of Digital Earth Sciences,Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China. Liao Jingjuan, Key Laboratory of Digital Earth Sciences,Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China. Wang Cuizhen, Department of Geography,University of Missouri-Columbia, Missouri, 65211, USA. Z6 李亚楠, 中国科学院遥感与数字地球研究所, 中国科学院数字地球重点实验室, 北京 100094, 中国. 张丽, 中国科学院遥感与数字地球研究所, 中国科学院数字地球重点实验室, 北京 100094, 中国. 廖静娟, 中国科学院遥感与数字地球研究所, 中国科学院数字地球重点实验室, 北京 100094, 中国. 王翠珍, 美国密苏里大学哥伦布分校地理系, 密苏里州, 65211, 美国. EM liyanan1701@126.com; lizhang@ceode.ac.cn Z7 liyanan1701@126.com; lizhang@ceode.ac.cn Z8 4 Z9 4 UT CSCD:5012411 DA 2023-03-23 ER PT J AU Li Yuanyuan Dong Shikui Zhu Lei Wen Lu Li Xiaoyan Wang Xuexia Z2 李媛媛 董世魁 朱磊 温璐 李小艳 王学霞 TI Adaptation strategies of reproduction of plant community in response to grassland degradation and artificial restoration Z1 青藏高原高寒草地退化与人工恢复过程中植物群落的繁殖适应对策 Z3 生态学报 SO Acta Ecologica Sinica VL 33 IS 15 BP 4683 EP 4691 AR 1000-0933(2013)33:15<4683:QZGYGH>2.0.TX;2-P PY 2013 DT Article AB In this study, we selected the artificial grasslands with different restoration years and natural grasslands with different degradation levels to explore the changes of vegetation reproduction mode, aiming to find the feasible restoration approaches derived from the theoretical study. We found that grassland degradation and establishing artificial grassland had significant effect on the number and biomass of asexual and sexual shoots. The main conclusions are as follows: asexual reproduction dominated in the native alpine grassland. The number and biomass of asexual shoots of natural grasslands were basically lower than those of cultivated grasslands. The number of asexual shoots increased with the cultivation ages(P<0. 05), and decreased with the degradation degree(P<0. 05). On the contrary, the number and biomass of the sexual shoots presented opposite trend with those of the asexual shoots. With the increase of restoration years, the components of asexual and sexual shoots were close to non-degraded grassland. At the functional groups level, the number and biomass of asexual shoots were decreased with the restoration years(P<0. 05), while those of sexual shoots were presented on the opposite trend; moreover, the components of grasses were significantly higher than other two groups(P<0. 05). At the same time, we found that forbs accounted for absolute advantage, the similar change can be seen about degraded grassland as compared with artificial grasslands along the degradation levels. The above conclusions indicated that grassland degradation had altered the reproductive allocation and strategies about plant community, and establishing artificial grasslands is an efficient method to restore degraded alpine grasslands. Z4 以三江源区不同退化程度高寒草甸和不同恢复年限人工草地作为研究对象,通过野外调查与采样、实验室分析,探究了高寒地区退化天然草地与人工恢复草地的植被 群落繁殖构件数量变化。结果表明:在群落水平上,天然草地退化和人工草地建植会对植物繁殖构件的数量和生物量产生影响。随着天然草地退化程度的增加,营养 枝数量和生物量则明显下降,而繁殖枝的数量和生物量明显升高(P<0.05);随着人工草地恢复年限的增加,营养枝的数量和生物量逐渐增加,而繁殖枝的数 量和生物量则逐渐降低(P<0.05);随着恢复年限的增加,人工草地繁殖构件的变化逐渐接近未退化天然草地。在功能群水平上,植物繁殖构件数量亦随草地 退化程度和人工恢复年限而变化。随着恢复年限的增加,禾本科、莎草科、杂类草的营养枝数量和生物量均呈现显著增加(P<0.05),而繁殖枝数量和生物量 则显著下降,禾本科的繁殖构件数量远远大于莎草科和杂类草;随着退化程度的增加,三大功能群的营养枝枝数和生物量显著增加(P<0.05),而繁殖枝则呈 现相反的趋势。本研究实证了草地退化和人工恢复改变植物群落繁殖分配对策的科学假设,为高寒草地植被恢复重建技术的发展和更新提供理论支撑。 C1 Li Yuanyuan, School of Environment, Beijing Normal University, Beijing 100875, China. Dong Shikui, School of Environment, Beijing Normal University, Beijing 100875, China. Zhu Lei, School of Environment, Beijing Normal University, Beijing 100875, China. Wen Lu, School of Environment, Beijing Normal University, Beijing 100875, China. Li Xiaoyan, School of Environment, Beijing Normal University, Beijing 100875, China. Wang Xuexia, School of Environment, Beijing Normal University, Beijing 100875, China. Z6 李媛媛, 北京师范大学环境学院, 北京 100875, 中国. 董世魁, 北京师范大学环境学院, 北京 100875, 中国. 朱磊, 北京师范大学环境学院, 北京 100875, 中国. 温璐, 北京师范大学环境学院, 北京 100875, 中国. 李小艳, 北京师范大学环境学院, 北京 100875, 中国. 王学霞, 北京师范大学环境学院, 北京 100875, 中国. EM dongshikui@sina.com Z7 dongshikui@sina.com Z8 15 Z9 16 UT CSCD:4918897 DA 2023-03-23 ER PT J AU Lin Li Li Yikang Zhang Fawei Guo Xiaowei Cao Guangmin Z2 林丽 李以康 张法伟 郭小伟 曹广民 TI A study on carbon storage administration in alpine Kobresia humilis meadow in relation to influence of human activity Z1 人类活动对高寒矮嵩草草甸的碳容管理分析 Z3 草业学报 SO Acta Prataculturae Sinica VL 22 IS 1 BP 308 EP 314 AR 1004-5759(2013)22:1<308:RLHDDG>2.0.TX;2-4 PY 2013 DT Article AB Alpine Kobresia meadow is the main vegetation type in the Qinghai-Tibetan Plateau. Grassland degradation is one of the prominent problems in this area. The distribution of organic carbon storage in plants, soil and the plant soil systems, and variation characteristics of the organic carbon sinks in different grassland degradation succession stages were studied. A spatial series instead of time series method was used and the alpine Kobresia meadows degradation succession series were selected. They were gramineae forbrich communities: A Kobresia humilis community, a normal Kobresia pygmae community phase, a K. pygmae community mattic epipedon crazing phase, a K. pygmae community mattic epipedon collapse phase and a herb black soil stage. The organic carbon storage in aboveground plant parts significantly decreased from (145.96.7) g/m~2 to (84.95.5) g/m~2 (P<0.05), while that of the plant underground parts of the K. pygmae community mattic epipedon crazing phase was the highest with a value of (3 011.6114.3) g/m~2. The lowest was (121.614.9) g/m~2 in the herb black soil stage. The normal K. pygmae community has the largest soil organic carbon storage capacity (16 805.94856.5 g/m)~2 which was higher than that of the herb black soil stage (8 255.152671.5 g/m~2) which had the lowest organic carbon storage in this kind of grassland degradation succession series. The highest organic carbon storage occurred in three phases, namely, normal K. humilis community, K. pygmae community phase and K. pygmae community mattic epipedon crazing phase, but there was no significant difference in the organic carbon storage capacities between these three phases. The alpine Kobresia meadows recovery series were artificial pasture vegetation succession series. After 14 years of artificial pasture cultivation, the plant organic carbon storage capacity in aboveground, underground and total plant system were 3.3 times, 2.7 times and 2.9 times respectively of the herb black soil stage, while the plant soil system organic carbon storage capacity increased from (8 550.8169.7) g/m~2 to (13 648.828.7) g/m~2. The K. humilis community is the optimum stage in alpine Kobresia meadows degradation succession series, because the plant soil system in this stage retains the highest organic carbon storage, higher livestock loading and system stabilization, and it can be the optimum stage for carbon storage administration. It is an effective method to cultivate artificial pasture in herb black soil stage for its obvious improvement of the organic carbon storage capabilities in plant, soil and plant soil system, while the cultivated artificial grassland can also offer more edible forage for livestock. Choosing a proper stage and restoration methods to carry out the corresponding administrative management in the degradation ecosystem in alpine K. humilis meadow can result in the best ecological service ability and production ability. Z4 应用空间尺度代替时间尺度的方法研究青藏高原高寒矮嵩草草甸退化演替系列与人工草地恢复演替系列植物、土壤及植物-土壤系统有机碳分布及储量特征,以探讨 该类型草地的适宜碳容管理方式。结果表明,随着草地退化程度的加剧,草地载畜能力逐渐下降;地上植物有机碳储量逐渐降低,最高值出现在禾草-矮嵩草草甸, 为(145.96.7)g/m~2;土壤有机碳储量和土壤-植物系统有机碳储量均先增高后降低,最高值均出现在矮嵩草草甸,其土壤及植物-土壤系统有机碳 储量分别为(14023.1289.5)g/m~2和(18555.7879.7)g/m~2。对极度退化的高寒矮嵩草草甸(黑土滩-杂类草次生裸地)进 行人工草地建植,随着建植年限的增加,地上植物、土壤及植物-土壤系统有机碳储量较建植前有不同程度提高。说明矮嵩草草甸是该退化演替系列中碳储能力、经 济生产服务能力及生态系统稳定性配比最合理的阶段,是该退化演替系列的适宜碳容管理阶段;对黑土滩-杂类草次生裸地建植人工草地后围栏禁牧,可以明显提高 草地的生态及生产服务能力,是该类草地的适宜碳容管理方式。 C1 Lin Li, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, Qinghai 810001, China. Guo Xiaowei, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, Qinghai 810001, China. Z6 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM hanxiao_2000_00@126.com; caogm@nwipb.ac.cn Z7 hanxiao_2000_00@126.com; caogm@nwipb.ac.cn Z8 9 Z9 10 UT CSCD:4760404 DA 2023-03-23 ER PT J AU Lin Li Li Yikang Zhang Fawei Du Yangong Guo Xiaowei Li Jing Liu Shuli Cao Guangmin Z2 林丽 李以康 张法伟 杜岩功 郭小伟 李婧 刘淑丽 曹广民 TI Soil nitrogen and phosphorus stoichiometry in a degradation series of Kobresia humulis meadows in the Tibetan Plateau Z1 高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征 Z3 生态学报 SO Acta Ecologica Sinica VL 33 IS 17 BP 5245 EP 5251 AR 1000-0933(2013)33:17<5245:GHASCQ>2.0.TX;2-L PY 2013 DT Article AB Alpine Kobresia humilis meadows are one of dominant vegetation types in Qinghai-Tibet Plateau. In the past decades, increasing human activities have resulted in dramatic changed in these alpine meadows. As a result, alpine meadows are experiencing different degrees of degradation. The degradation succession stages have been identified as six stations: gramineous grass-Kobresia humilis community, Kobresia humilis community, thickening in mattic epipedon Kobrecia pygmaea community, cracks in mattic epipedon Kobrecia pygmaea community, collapse in mattic epipedon Kobrecia pygmaea community, and forbs-"black soil beach". Kobresia humilis alpine meadows degradation processes involved variations in soil elements and community structure and composition. Ecological stoichiometry has been developed to understand the relationships between organisms and ecosystem structure and function. Because nitrogen (N) and phosphorus (P) are the two most important elements limiting plant growth in a variety of ecosystems, biomass N:P stoichiometry is most used in this respect. In this study, we investigated N/P ratios of soil and plants in a degradation series of the Kobresia humilis alpine meadows in Qinghai-Tibetan Plateau. Furthermore, we analyzed the relationships between of the key factors to affect community succession process and N/P ratios of plant and soil. We found that total N and total P content of soil decreased firstly and then increased with increasing degradation.The maximum values appeared in the Kobresia humilis community or in the thickening in mattic epipedon Kobrecia pygmaea community. Available N and available P of soil decreased with increasing degradation. Soil N:P ratio also decreased with the degradation process, and thus the highest soil N/P values appeared in the gramineous grass-Kobresia humilis community. By comparison, no significant difference in biomass N/P ratios were observed at community level among succession stages. This indicates that soil N and P cycling decoupled during grassland successional process and led to more P accumulation than N. Consequently, the unbalance of plant nutrition occurs in degraded soils. Insignificant biomass N/P ratios between different plant communities could be ascribed to their homeostasis. These findings provide important implications that soil available N content and available P content as well soil N/P ratios were more sensitive indexes to represent plant community degradation succession process while biomass N/P ratios cannot be used as the index because of it inertness. Z4 运用历史资料与实地调查相结合的方法,以多元数量统计为手段确定采样地点,以空间尺度代替时间尺度,确定演替系列,以生态化学计量学为基础探讨了高寒矮嵩 草草甸退化演替系列氮(N)磷(P)含量及化学计量学特征,发现:1)高寒矮嵩草草甸土壤全量N、P含量随退化演替程度的加深而呈倒"V"字形变化趋势, 速效N、P含量随退化程度的加深呈降低趋势,但土壤草甸全量及速效N/P化学计量学特征则呈现降低趋势;2)地上植物N/P化学计量学特征在整个退化演替 过程没有明显的差异。说明高寒矮嵩草群落退化改变了土壤中全量及速效N、P的积累和分解速率,打破了土壤系统养分平衡模式,但并没有明显改变植物地上部分 整体的N/P化学计量学特征,因此在退化演替过程中植物N/P比为草地退化诊断的惰性指标;土壤N/P化学计量学特征变化同草地退化演替过程具有较好的同 步性,其对草地退化演替的敏感性较高,有可能成为未来草地退化诊断的生态指示指标。 C1 Lin Li, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Du Yangong, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Guo Xiaowei, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Jing, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Liu Shuli, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Z6 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李婧, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 刘淑丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM caogm@nwipb.ac.cn Z7 caogm@nwipb.ac.cn Z8 26 Z9 32 UT CSCD:4933847 DA 2023-03-23 ER PT J AU Duan Chunhua Yu Xiaojun Xu Changlin Zhang Degang Z2 段春华 鱼小军 徐长林 张德罡 TI Effects of soaking with Tibetan sheep rumen fluid on the seed germination of 11 plant species on alpine meadow of Qinghai-Tibetan Plateau,China Z1 藏羊瘤胃内容物浸泡对11种高寒草甸植物种子萌发的影响 Z3 生态学杂志 SO Chinese Journal of Ecology VL 32 IS 6 BP 1483 EP 1489 AR 1000-4890(2013)32:6<1483:ZYLWNR>2.0.TX;2-E PY 2013 DT Article AB To clarify the effects of soaking with Tibetan sheep rumen fluid on the seed germination characteristics of the plants on the alpine meadow of Qinghai-Tibetan Plateau,the seeds of 11 common plant species in the northeastern part of Qinghai-Tibetan Plateau were collected and soaked with the fresh rumen fluid from Tibetan sheep,and a germination test was conducted after the seeds were soaked in the rumen fluid for 12,24,36,48,60,and 72 h,respectively. The seeds were incubated at 25 ℃ for 8 h and at 15 ℃ for 16 h under natural light conditions. The results showed that the seed germination was affected by soaking time,seed coat treatment,and plant species. As compared with the control,the germination percentages of the scarified seeds of Oxytropis ochrocephala,coat-cut seeds of Carex enervis,and coat-cut or intact seeds of Anemone rivularis were increased significantly after soaking for 12 h,12 h,and 12-36 h,respectively. The germination percentages of both the scarified and the intact seeds of Elymus nutans,Pedicularis kansuensis,Achnatherum inebrians,Poa crymophila,and Medicago ruthenia var. inschanica were declined significantly by any exposure to rumen fluid. The seed germination percentages of Kobresia humilis,Rumex acetosa,and Polygonum sibiricum were not affected by short duration treatment,but inhibited with increasing processing time. The germination of scarified seeds was more sensitive to the soaking,as compared to the intact seeds,and the latter was relatively stable. The germination index (GI) of the coat-cut seeds of A. rivularis and O. ochrocephala and of the scarified seeds of C. enervis was increased significantly in short duration treatments of 12-24 h,12 h,and 12 h,respectively,but decreased gradually with the extension of processing time. It was suggested that the seed germination of the plant species on alpine meadow performed differently (enhanced,inhibited,or not affected) under the treatments of soaking with Tibetan sheep rumen fluid,which might affect the seedling recruitment,interspecific competition,and plant community structure on alpine meadow. Z4 为明确藏系绵羊对青藏高原高寒草甸植物种子萌发特性的影响,利用藏羊瘤胃内容物对11种青藏高原东北缘常见植物种子浸泡处理12、24、36、48、60 和72h后进行萌发试验。结果表明:供试11种高寒草甸植物种子的萌发因藏羊瘤胃内容物处理时间、种皮(果皮)完整性以及植物不同而异。划破种皮的黄花棘 豆(Oxytropis ochrocephala)、去除果皮的无脉苔草(Carex enervis)、完整或去除果皮的草玉梅(Anemone rivularis)种子经藏羊瘤胃内容物分别处理12、12、12~36h的发芽率显著高于对照(P<0.05)。藏羊瘤胃内容物处理均显著抑制了破皮 和完整的垂穗披碱草(Elymus nutans)、甘肃马先蒿(Pedicularis kansuensis)、醉马草(Achnatherum inebrians)、冷地早熟禾(Poacrymophila)、阴山扁蓿豆(Medicago ruthenia var.inschanica)种子的发芽率。短时间处理对矮生嵩草(Kobresia humilis)、酸模(Rumex acetosa)、西伯利亚蓼(Polygonum sibiricum)种子发芽率无影响而长时间则表现出抑制作用。破皮(划破种皮或去除果皮)种子的萌发响应比完整种子敏感,而完整种子变化趋势则相对平 缓。短时间处理提高了去除果皮的草玉梅(12~24h)、无脉苔草(12h)和划破种皮黄花棘豆(12h)种子的发芽指数(P<0.05);随着处理时间 的延长,发芽指数呈逐渐减小趋势。藏羊瘤胃内容物浸泡处理对高寒草甸种子萌发有促进、抑制和无影响3种作用,继而潜在影响高寒草甸幼苗的形态建成、种间竞 争和群落结构。 C1 Duan Chunhua, College of Pratacultural Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of Ministry of Education/Sino-U.S. Centers for Grazing Land Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Yu Xiaojun, College of Pratacultural Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of Ministry of Education/Sino-U.S. Centers for Grazing Land Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Xu Changlin, College of Pratacultural Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of Ministry of Education/Sino-U.S. Centers for Grazing Land Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Zhang Degang, College of Pratacultural Science, Gansu Agricultural University/Key Laboratory of Grassland Ecosystem of Ministry of Education/Sino-U.S. Centers for Grazing Land Ecosystem Sustainability/Pratacultural Engineering Laboratory of Gansu Province, Lanzhou, Gansu 730070, China. Z6 段春华, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 鱼小军, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 徐长林, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. 张德罡, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心;;甘肃省草业工程实验室, 兰州, 甘肃 730070, 中国. EM flyduansingle@163.com; yuxj@gsau.edu.cn Z7 flyduansingle@163.com; yuxj@gsau.edu.cn Z8 6 Z9 6 UT CSCD:4852228 DA 2023-03-23 ER PT J AU 王景升 张宪洲 陈宝雄 石培礼 张俊龙 沈振西 陶建 武建双 Z2 Wang Jingsheng Zhang Xianzhou Chen Baoxiong Shi Peili Zhang Junlong Shen Zhenxi Tao Jian Wu Jianshuang TI Causes and Restoration of Degraded Alpine Grassland in Northern Tibet Z1 藏北高寒草地退化现状、原因与恢复模式 Z3 资源与生态学报 SO Journal of Resources and Ecology VL 4 IS 1 BP 43 EP 49 AR 1674-764X(2013)4:1<43:CARODA>2.0.TX;2-# PY 2013 DT Article AB Grassland in northern Tibet plays an important role in the eco-security of the Qinghai-Tibet Plateau and the restoration of deserted and degraded grassland is now a focus for governments. We used remote sensing, simulations and field surveys to analyze the current status, trends and causes of grassland degradation across northern Tibet. We develop several recovery models for degraded grassland based on field experiments in the region. We found that slightly degraded grassland covers 62% and that moderate to severely degraded grassland occupied 15.1% in the Chang Tang Plateau. The amount of degraded alpine steppe increased from 1991, and the amount of area classified as severely degraded increased sharply from 2000. The cause of degraded steppe in northwestern Tibet may be the result of warming and an arid climate; the cause of severe degradation in mid and eastern regions was mainly from overgrazing. Three restoration models are proposed for different levels of degradation: enclosures for slightly degraded areas, enclosures with fertilization for moderately degraded areas, and enclosure with oversowing and fertilization for severely degraded areas. Z4 藏北高寒草地系统生态脆弱且区位重要,草地退化和沙化的治理是目前学者们重点关注的领域之一。本文采用遥感解译、模型模拟、地面取样验证等相结合的方法, 分析了藏北高寒草地生态系统退化的现状、趋势和原因,以实验为基础,总结了退化草地恢复的几种重要模式。数据分析表明:藏北羌塘高原轻度退化草地占62. 0%,中度和重度退化草地占15.1%,1991年以来,退化面积快速增加,2000年以来重度退化面积增加趋势明显。藏北西部的草地轻度退化可能由气候 暖干化所引起,而中部、东部的重度退化主要由超载过牧引起。总结出轻度退化草地的"封育"、中度退化草地的"施肥+封育"、重度退化草地的"补播+施肥+ 封育"三种草地恢复模式。提出了退化草地恢复和保护的间接途径"南草北上"生态工程的战略构想。 C1 Wang Jingsheng, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Chen Baoxiong, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Shi Peili, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Shen Zhenxi, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Tao Jian, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Wu Jianshuang, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Zhang Junlong, School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China. Z6 王景升, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 张宪洲, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 陈宝雄, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 石培礼, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 沈振西, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 陶建, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 武建双, 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 北京 100101, 中国. 张俊龙, 中国人民大学环境学院, 北京 100872, 中国. EM zhangxz@igsnrr.ac.cn Z7 zhangxz@igsnrr.ac.cn Z8 9 Z9 27 UT CSCD:4828438 DA 2023-03-23 ER PT J AU Wang Jianbing Zhang Degang Cao Guangmin Tian Qing Z2 王建兵 张德罡 曹广民 田青 TI Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Plateau Z1 青藏高原高寒草甸退化演替的分区特征 Z3 草业学报 SO Acta Prataculturae Sinica VL 22 IS 2 BP 1 EP 10 AR 1004-5759(2013)22:2<1:QZGYGH>2.0.TX;2-F PY 2013 DT Article AB The degradation succession characteristics of alpine meadow on Qinghai-Tibetan Plateau were studied comprehensively from 2005 to 2012. The results indicated that the typical zonal vegetation on Qinghai-Tibaten Plateau was Gramineae and Kobresia humilis community. The degraded grassland in Guoluo of Qinghai Province was characterized with large-scale erosion of mattic epipedon in Kobresia pygmaea community and forbs-black soil. It was at the stage of succession from K. humilis to K. pygmaea community in Yushu of Qinghai Province. The alpine meadow successes from K. humilis to K. pygmaea community, or it remains the normal K. pygmaea community in the north part of Tibetan Plateau. The reduced excellent edible forage of Gramineae and Cyperaceae, and the increased forbs coverage were the main characteristic of alpine meadow degradation. Meanwhile, this degradation caused the increased soil compaction and the topsoil was more sensitive. The bulk densities of different layers in 0 to 10 cm, 10 to 20 cm and 20 to 40 cm were increased by (0.500.08) g/m~3, (0.160.07) g/m~3 and (0.040.03) g/m~3 respectively. Meanwhile, The soil organic matter content was greatly reduced by 19.3% to 53.2% and the reduction slowed down with the soil depth. Z4 2005-2012年,进行了青藏高原高寒草甸主要分布地区草地状况的调查,禾草-矮嵩草群落是青藏高原高寒嵩草草甸的典型地带性植被,对处于不同退化程 度的小嵩草群落采取封育或减牧后,均可恢复到禾草-矮嵩草群落,但由于退化程度的不同,恢复所需要的时间具有极大的差异。青海果洛地区高寒草甸多处于以小 嵩草群落草毡表层剥蚀和杂类草-黑土型退化草地演替阶段,玉树地区处于矮嵩草群落向小嵩草群落的演替阶段,祁连山区处于禾草-矮嵩草群落,藏北高原则处于 矮嵩草群落向小嵩草群落转化期或正常小嵩草群落时期。禾本科、莎草科等可食牧草逐渐减少和杂类草盖度急剧增加的趋势反映了高寒草甸退化演替过程植被变化的 基本特征,草地退化造成了土壤容重增加,且表层土壤对放牧的敏感性高于底层,土壤0~10,10~20和20~40cm容重分别增加了(0.500.08 )g/m~3,(0.160.07)g/m~3和(0.040.03)g/m~3。同时,有机质大幅降低,其降低幅度高达19.3%~53.2%,并随着 土层的加深,降幅趋于减小。 C1 Wang Jianbing, Pratacultural College of Gansu Agricultural University, Lanzhou, Gansu 730070, China. Zhang Degang, Pratacultural College of Gansu Agricultural University, Lanzhou, Gansu 730070, China. Tian Qing, Pratacultural College of Gansu Agricultural University, Lanzhou, Gansu 730070, China. Cao Guangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xi'ning, 810001. Z6 王建兵, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 张德罡, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 田青, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM wjb120@126.com; zhangdg@gsau.edu.cn Z7 wjb120@126.com; zhangdg@gsau.edu.cn Z8 39 Z9 44 UT CSCD:4810092 DA 2023-03-23 ER PT J AU Luo Dongliang Jin Huijun Lin Lin You Yanhui Yang Sizhong Wang Yongping Z2 罗栋梁 金会军 林琳 游艳辉 杨思忠 王永平 TI Distributive Features and Controlling Factors of Permafrost and the Active Layer Thickness in the Bayan Har Mountains along the Qinghai-Kangding Highway on Northeastern Qinghai-Tibet Plateau Z1 巴颜喀拉山青康公路沿线多年冻土和活动层分布特征及影响因素 Z3 地理科学 SO Scientia Geographica Sinica VL 33 IS 5 BP 635 EP 640 AR 1000-0690(2013)33:5<635:BYKLSQ>2.0.TX;2-S PY 2013 DT Article AB Permafrost on the Qinghai-Tibet Plateau (QTP) is elevational, where the permafrost accounts for approximately 75% of the elevational permafrost in the Northrn hemisphere. Located in the transition zone from the Qinghai-Tibet Plateau higher than 4 500 m a. s. l. to the Loess Plateau at less than 2 000 m a. s. l., the Bayan Har Mountains (BHM) have typical alpine permafrost. The intensive uplifts of the BHM have resulted in a great variety in climate, permafrost and landscapes on the north and south slopes. Based on field investigations and ground temperature measurements between 2008-2012, the distributive features and controlling/influencing factors of permafrost in the BHM are revealed in detail in this paper. Most permafrost in the BHM is warm (>-1℃), except that at some mountain tops such as Chalaping and the Bayan Har Mountain Pass. The ground temperature in the BHM is principally controlled by elevations. The lowest MAGT of -1.8℃ and the thickest permafrost of 74 m are found at Chalaping higher than 4 700 m a. s. l. The lapse rate of MAGT with rising elevation is 6℃/km on the north slopes and 4℃/km on the south slopes, respectively. The MAGTs are -0.2℃ in Borehole YNG-1 at the north-slope toes, and +0.3℃ in Borehole QSH-1 at the south-slope toes. Permafrost thins rapidly downwards at both slope toes. The MAGTs are lower than -0.5℃ at elevations above 4 570 m a. s. l. on the south slopes and above 4 527 m a. s. l. on the north slopes. The MAGTs are lower than -1℃ at elevations above 4 670 m a. s. l. on the south slopes and above 4 615 m a. s. l. on the north slopes. The zone boundaries of -0.5℃ in mean annual ground temperatures largely coincide with the lower limits of sporadic (discontinuous) permafrost, and zone boundaries of -1℃ correspond to the lower limits of continuous permafrost. The active layer thickness, which usually affected by the lithology (soil types) and moisture conditions, is about 1 m at the Bayan Har Mountain Pass and Chalaping on the north slopes. It increases with declining elevation. However, on the south slopes, it is greatly influenced by some local factors, such as vegetative coverage and soil moisture contents. For example, the active layer is more than 4 m deep in Borehole CLQ-1 at 4 642 m a. s. l., where the surface vegetation coverage is low, and soils and alpine meadows are broken by rodent and insect activities. Z4 巴颜喀拉山是较典型的高海拔多年冻土区。南、北坡迥异的气候、土壤及地表景观控制和影响其多年冻土空间分布。2008~2012年冻土调查及测温资料表明 ,该山以高温冻土(>-1℃)为主。海拔是冻土主要影响因素。年均地温随海拔升高而降低的高程递减率在北坡6℃/km,南坡4℃/km。北坡查拉坪及巴颜 喀拉山口一带,活动层厚度约1 m,活动层随海拔降低而增厚;南坡活动层厚度受局地因素影响较大,与海拔无明显相关。 C1 Luo Dongliang, State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Jin Huijun, State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Lin Lin, State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. You Yanhui, State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Yang Sizhong, State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Wang Yongping, State Key Laboratory of Frozen Soils Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 罗栋梁, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 金会军, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 林琳, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 游艳辉, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 杨思忠, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 王永平, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. EM luodongliang@gmail.com; hjjin@lzb.ac.cn Z7 luodongliang@gmail.com; hjjin@lzb.ac.cn Z8 7 Z9 14 UT CSCD:4843611 DA 2023-03-23 ER PT J AU Cai Xiaobu Peng Yuelin Yu Baozheng Z2 蔡晓布 彭岳林 于宝政 TI Soil aggregates organic carbon change and its influence in Tibetan alpine steppe Z1 西藏高寒草原土壤团聚体有机碳变化及其影响因素分析 Z3 农业工程学报 SO Transactions of the Chinese Society of Agricultural Engineering VL 29 IS 11 BP 92 EP 99 AR 1002-6819(2013)29:11<92:XZGHCY>2.0.TX;2-O PY 2013 DT Article AB The alpine steppes, mainly distributed in cold and drought terrains in the Northern Tibetan Plateau at over 4,500 meters above mean sea level, is a grassland ecosystem with the largest area, most important ecological state, and most characteristic soil-forming process. In recent decades, its natural degenerative process of the steppe is taking a turn for the worse due to desertification. Thus, it is of great significance to explore the changing process of soil aggregates organic carbon (SAOC) and its impacts on soil structure, and to seek methods for maintenance and stability of soil structure in the alpine steppe. Three alpine steppes were selected randomly as research areas in this study, and each research area was spaced at 50-100 kilometers, and included three sampling areas, namely, normal steppe (vegetation coverage of 45%-65% and light surface layer desertification), light degraded steppe (vegetation coverage>20%-<45%, and significant surface layer desertification), and severely degraded steppe (vegetation coverage<20% and severe surface layer desertification). Three sampling micro-areas were set randomly in each sampling area, and each micro-area contained three sampling points. The soil samples were collected separately by surface layer (0-10 cm) and the subsurface layer (10-20 cm) at each sampling point. Three samples at the same layers in the same micro-area made up one mixing soil sample (the undisturbed sample was hard to collect because the tested soil was sandy soil). The mass fraction of soil aggregates in a different particle size was tested by the wet screening; the soil organic carbon (SOC) and soil aggregates organic carbon (SAOC) were determined by the potassium dichromate volumetric method - external heating method. The results show as follows: 1) The mass fraction is not significant for SAOC in the same grain diameter in different soil layers of the normal steppe, and the mass fractions for SAOC in the same grain diameter for the degraded steppe present an obvious increase with soil layer deepening. Except light degraded steppe surface layer, the mass fraction for organic carbon of microaggregates (<0.25 mm) is greater than that of macroaggregates (>0.25 mm) in different soil layers in different states of steppes. 2) The SAOC change for alpine steppe is special, and mainly shows SAOC mass fractions go down at 0-10 cm and 10-20 cm soil layers in the degraded steppe, but its decreasing amplitude becomes low with the aggravation of the grassland degradation. 3) Compared with the light degraded steppe, the loss of macroaggregates organic carbon increases by 2.87 g/kg, and the loss of microaggregates organic carbon decreases by 2.90 g/kg in the severely degraded steppe surface layer; the losses of macroaggregates and microaggregates organic carbon reduce by 1.40 and 0.34 g/kg respectively in the subsurface layer. It is seen obviously that the soil anti-corrosion in the severely degraded steppe is lower than that of the light degraded steppe, and soil environment in a severely degraded steppe becomes more unstable because of the bigger loss of its macroaggregates organic carbon. 4) The SOC mass fraction is extremely significant (p<0.01) and has a positive correlation with that of SAOC in different particle sizes; soil moisture content shows significant (p<0.05) and has a negative correlation with the mass fraction of SAOC in different particle sizes; and the volume weight and temperature of soil have a very slight impact on SAOC. Z4 土壤结构的维持和稳定对高寒草原生态系统的稳定具有重要意义。为了探明高寒草原土壤结构的变化过程,研究了藏北正常、轻度和严重退化高寒草原表层(0~1 0cm)、亚表层(>10~20cm)不同粒径土壤团聚体有机碳(soil aggregates organic carbon,SAOC)的变化及对土壤结构的影响。结果表明:1)正常草地不同土层相同粒径团聚体有机碳质量分数均无显著差异,退化草地相同粒径SAO C质量分数随土层加深则呈显著提高的趋势;除轻度退化草地表层,不同状态草地各土层微团聚体(<0.25mm)有机碳质量分数显著高于大团聚体(>0.2 5mm)有机碳。2)退化草地表层、亚表层SAOC质量分数均呈显著下降,降幅随草地退化加剧却有所降低。但与轻度退化草地相比,严重退化草地表层大团聚 体、微团聚体有机碳损失量分别增、减2.87、2.90g/kg,亚表层损失量则分别减少1.40、0.34g/kg,由于大团聚体有机碳损失量较大,其 土壤抗蚀能力低于轻度退化草地。3)高原寒旱环境中,SAOC质量分数随SOC质量分数、土壤含水率的增加分别呈极显著(p<0.01)提高、显著(p< 0.05)下降的趋势,土壤温度、土壤容重对SAOC质量分数的影响则均不显著。该文可为进一步探寻高寒草原生态系统维持与稳定的理论和方法提供参考。 C1 Cai Xiaobu, Agricultural and Animal Husbandry College, Tibet University, Linzhi, Tibet 860000, China. Peng Yuelin, Agricultural and Animal Husbandry College, Tibet University, Linzhi, Tibet 860000, China. Yu Baozheng, Agricultural and Animal Husbandry College, Tibet University, Linzhi, Tibet 860000, China. Z6 蔡晓布, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 彭岳林, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. 于宝政, 西藏大学农牧学院, 林芝, 西藏 860000, 中国. EM caitw21@sohu.com Z7 caitw21@sohu.com Z8 11 Z9 12 UT CSCD:4852632 DA 2023-03-23 ER PT J AU Zhao Zhiping Wu Xiaopu Li Guo Li Junsheng Z2 赵志平 吴晓莆 李果 李俊生 TI The cause of grassland degradation in Golog Tibetan Autonomous Prefecture in the Three Rivers Headwaters Region of Qinghai Province Z1 青海三江源区果洛藏族自治州草地退化成因分析 Z3 生态学报 SO Acta Ecologica Sinica VL 33 IS 20 BP 6577 EP 6586 AR 1000-0933(2013)33:20<6577:QHSJYQ>2.0.TX;2-1 PY 2013 DT Article AB Grassland degradation was the deterioration of the grassland ecosystem function, such as structure, energy flow and material circulation, during its evolution process. This result is due to grassland coverage declining, yield of grass decrease and poison rank grass overgrowing, caused by human activities interference or adverse natural factors. Since the grim situation, the quality of grassland decline, Grassland productivity, economic potential and service function deteriorate, biodiversity complexity level descend, recovery function weaken or disappear, which threat region ecological security. Therefore, grassland degradation and its ecological impact have been an important research area of ecology. Located at the east of Tibet Plateau, the three rivers headwater region is the source region of Yangtze River, Yellow River and lancang River, and regard as the water tower of China. Under the influences of climate change and human activities,the grassland degradation presented a general situation in the Three Rivers Headwaters Region of Qinghai Province in last decades. Mainly located in the source region of Yellow River,the alpine meadow degradation and alpine steppe desertification were common phenomena. Grassland degradation was the result under joint action of long-term climate change and unreasonable grazing. By using long-term historical data,this paper investigated the cause of grassland degradation in the aspects of climate change effect and grazing influence to grassland productivity in Golog Tibetan Autonomous Prefecture since 1960s. The result showed that this region was sensitive to global warming. From 1961 to 2010,the annual average temperature ascending,annual precipitation slightly decreasing and moisture condition descending were the general trend. Nevertheless,the net primary productivity (NPP) was in the upward trend by the simulation of Miami Model,Thornthwaite Memorial Model and Synthetic Natural Vegetation Net Primary Productivity Model (Synthetic Model). The climate change improved the grassland productivity in generally. Hence,from macro point of view,climate change was not the cause of grassland degradation in the research area. The livestock amount at the end of year increased sharply in 1960s and reached the peak in 1970s. Large grassland current carrying capacity meant grassland overload and overgrazing. After that, the grassland deteriorated. The livestock amount at the end of year had extremely significant correlation (P < 0.01) with NDVI condition. Therefore,long-term grassland overload and overgrazing was the cause of grassland degradation. The key points of degraded grassland recover and governance were controlling grassland current carrying capacity and relieving grassland livestock carrying pressure. Since 2000,with the declining of grassland current carrying capacity,degraded grassland began to recover. Z4 利用长期历史资料,分析了气候变化和人类放牧活动对草地生产力的影响,探讨20世纪60年代以来青海三江源区果洛藏族自治州草地退化主要原因,结果显示: 研究区是全球变暖的敏感地区,1961-2010年研究区气温升高、年降水略有下降、湿润程度下降,Miami模型、Thornthwaite Memorial模型和综合自然植被净第一性生产力模型(综合模型)模拟的该区植被净初级生产力(NPP)均具有上升趋势,近50年来研究区气候变化总体 上有利于该区草地生产力改善;研究区家畜年末存栏数60年代剧烈上升,至70年代达到顶峰,家畜年末存栏数与植被NDVI呈极显著负相关关系(P < 0.01),草地实际载畜量过大造成牲畜对草地过度啃食,导致草地退化。研究区退化草地恢复治理的重点应放在减轻载畜压力、控制草地现实载畜量方面。 C1 Zhao Zhiping, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Wu Xiaopu, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Li Guo, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Li Junsheng, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Z6 赵志平, 中国环境科学研究院, 北京 100012, 中国. 吴晓莆, 中国环境科学研究院, 北京 100012, 中国. 李果, 中国环境科学研究院, 北京 100012, 中国. 李俊生, 中国环境科学研究院, 北京 100012, 中国. EM lijsh@craes.org.cn Z7 lijsh@craes.org.cn Z8 12 Z9 14 UT CSCD:4976966 DA 2023-03-23 ER PT J AU 赵玉萍 张宪洲 石培礼 王景升 武建双 Z2 Zhao Yuping Zhang Xianzhou Shi Peili Wang Jingsheng Wu Jianshuang TI Impact of Drought Stress on Net CO_2 Exchange above an Alpine Grassland Ecosystem in the Central Tibetan Plateau Z1 干旱对青藏高原腹地高寒草地生态系统净CO_2交换的影响 Z3 资源与生态学报 SO Journal of Resources and Ecology VL 4 IS 4 BP 327 EP 336 AR 1674-764X(2013)4:4<327:IODSON>2.0.TX;2-B PY 2013 DT Article AB Drought may impact the net ecosystem exchange of CO_2 (NEE) between grassland ecosystems and the atmosphere during growth seasons. Here, carbon dioxide exchange and controlling factors in alpine grassland under drought stress in the hinterland of Tibetan Plateau (Damxung, Tibet, China) were investigated. Data were obtained using the covariance eddy technique in 2009. Severe drought stress appeared in the early growing season (May to early July) and September. Drought conditions during the early growing season limited grass production and the green leaf area index (GLAI) increased slowly, with an obvious decline in June. When encountering severe water stress, diurnal patterns of NEE in the growth season altered with a peak carbon release around 16:00 h or a second carbon uptake period before sunset. NEE variations in daytime related most closely with theta other than PAR when daily averaged theta<0.1 m~3 m~(-3). Seasonal patterns of gross primary production (GPP) and NEE were also influenced by drought: the maximum and minimum of daily-integrated NEE were 0.9 g C m~(-2) d~(-1) on 3 July 2009, and -1.3 g C m~(-2) d~(-1) on 12 August 2009 with a GPP peak (-2.3 g C m~(-2) d~(-1)) on the same day, respectively. Monthly NEE from May to July remained as carbon release and increased gradually; peak values of monthly NEE and GPP both appeared in August, but that of ecosystem respiration (Reco) was reached in July. Annual NEE, GPP and Reco of the alpine grassland ecosystem were 52.4, -158.1 and 210.5 g C m~(-2), respectively. Therefore, the grassland was a moderate source of CO_2 to the atmosphere in this dry year. Interannual variation in NEE was likely related to different water conditions in the growing season. The three greatest contributors to seasonal variation in NEE, GPP and Reco respectively were GLAI>Ta>theta, GLAI>theta>PPT, and Ta>GLAI>PAR. Seasonality of GLAI explained 60.7% and 76.1% of seasonal variation in NEE and GPP, respectively. GPP or NEE was more sensitive than Reco to variation in GLAI, and ecosystem water conditions. Z4 干旱对草地生态系统NEE有深刻影响。基于涡度相关技术提供的碳通量及小气候数据,研究了2009年当雄高寒草地生态系统的碳交换特征及其主控因子,同时 分析了干旱的可能影响。5-7月初及9月发生的干旱导致草地GLAI、ALB和GPP较低,6月中旬到7月初碳吸收一度下降。干旱使6、7月份NEE日变 化进程发生改变。同时,NEE和GPP的季节变化也受到干旱影响。由于干旱导致生态系统吸收能力降低,7月3日出现NEE日净碳排放最高值(0.9 g C m~(-2) d~(-1))。5-7月的NEE月总量均大于0,且逐月增加。该草地2009年的GPP和NEE分别为-158.1和52.4 g C m~(-2)。日均theta<0.1时,theta成为影响白天NEE变化的主控因子。GLAI、Ta和theta是3个对NEE季节变异影响最大的指 标,且其影响程度依次降低。GPP季节变化的主控因子是GLAI、theta、PPT、VPD和Ta,生态系统水分状况(theta、PPT或VPD)对 GPP的影响大于Ta。Reco主要受控于Ta、GLAI、PAR和PPT,且其影响力依次降低。GLAI的季节变化可解释NEE和GPP变异的60.7 %和76.1%。当雄高寒草地生态系统水分条件的年际变化可能是影响NEE年际变异的主要因子。 C1 Zhao Yuping, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Shi Peili, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Wang Jingsheng, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Wu Jianshuang, Institute of Geographic Sciences and Natural Resources Research, CAS, Key Laboratory of Ecosystem Network Observation and Modeling, CAS, Beijing 100101, China. Z6 赵玉萍, 生态系统网络观测与模拟重点实验室,中国科学院地理科学与资源研究所, 北京 100101, 中国. 张宪洲, 生态系统网络观测与模拟重点实验室,中国科学院地理科学与资源研究所, 北京 100101, 中国. 石培礼, 生态系统网络观测与模拟重点实验室,中国科学院地理科学与资源研究所, 北京 100101, 中国. 王景升, 生态系统网络观测与模拟重点实验室,中国科学院地理科学与资源研究所, 北京 100101, 中国. 武建双, 生态系统网络观测与模拟重点实验室,中国科学院地理科学与资源研究所, 北京 100101, 中国. EM zhaoyuping100@163.com Z7 zhaoyuping100@163.com Z8 3 Z9 3 UT CSCD:5021326 DA 2023-03-23 ER PT J AU Zheng Wei Dong Quanmin Li Shixiong Liu Yu Z2 郑伟 董全民 李世雄 刘玉 TI Effects of grazing on niche of major plant populations in alpine steppe in Qinghai Lake Region Z1 放牧对环青海湖高寒草原主要植物种群生态位的影响 Z3 草业科学 SO Pratacultural Science VL 30 IS 12 BP 2040 EP 2046 AR 1001-0629(2013)30:12<2040:FMDHQH>2.0.TX;2-7 PY 2013 DT Article AB Alpine steppe is the major vegetation community around Qinghai Lake Region. It is regarded as an important ecological barrier of the Qinghai-Tibetan Plateau and a rich site forage base for yak and sheep production. However, the alpine steppe vegetation degraded by overstocking. Therefore, its important to study the effects of grazing on community of alpine steppe around Qinghai Lake Region. In this study, the vegetation under different grazing intensity were investigated, based on grazing trial for 3years in alpine steppe around Qinghai Lake Region. Levins niche breadth and Pianka niche overlap index were used to calculate niche characteristics of major plant populations under different grazing gradients to explain the mechanism of grazing succession of community. Our results showed that dominant species of community had changed after grazing 3years. The dominance of plants with good palatability(Stipapurpurea, Poa sp., Medicago ruthenica, etc.)decreased and the dominance of plants with grazing resistance or bad palatability(Kobresia humilis, Thermopsis lanceolata, etc.)increased with the increase of grazing intensity. S. purpurea had the widest niche breadth, and after then was Thermopsis lanceolata, with the values being 0.994and 0.959, respectively. Potentilla multifida and Astragalus polycladus had wider niche breadth because of its stronger environmental adaptation ability. The niche breadths of Elymus nutans and K. cristata under different grazing gradients were narrow, indicating that grazing restricted the growth of high grasses. Species with wider niche breadth had higher niche overlap with other species. The narrower niche overlap could be seen as the result of interspecific differentiation on resource utilization. The major plant populations had niche differentiation result from grazing. With increasing grazing intensity, community with S. purpureaand Poasp. being the dominant populations may be in degradation direction on community with K. humilis, K. pygmaea and T. lanceolata being the dominant populations, indicating that habitat of community had obviously degraded. Therefore, its important to control grazing intensity of rangeland. Z4 以环青海湖高寒草原为研究对象,对不同放牧强度下草地植被进行调查,并运用Levins生态位宽度和Pianka生态位重叠指数对不同放牧率梯度下主要植 物种群生态位特征进行计算,以期从生态位角度解释植物群落的放牧演替机制。结果表明,经过3年的放牧,群落优势种发生了改变,随着放牧强度的增加,适口性 好的植物[紫花针茅(Stipapurpurea)、早熟禾(Poasp.)、萹蓄豆(Medicago ruthenica)等]优势度降低,家畜不喜食或不食的和耐牧的植物[披针叶黄华(Thermopsis lanceolata)、矮嵩草(Kobresia humilis)等]优势度增加。紫花针茅生态位宽度最大,披针叶黄华次之,分别为0.994和0.959,多裂委陵菜(Potentilla multifida)和多枝黄芪(Astragalus polycladus)环境适应能力较强,生态位宽度较大。在放牧率梯度上垂穗披碱草(Elymus nutans)和溚草(Koeleria cristata)的生态位宽度较小,说明放牧抑制了高大禾草的层片发育。生态位宽度较大的物种与其他种群间有较大的生态位重叠,生态位重叠度较小是种间 对资源需求分化的结果。放牧使主要植物种群生态位发生了分化,随着放牧强度的增加,群落可能从以紫花针茅和早熟禾等为优势种群向以矮嵩草、高山嵩草(K. pygmaea)和披针叶黄华为优势种群的方向发展,表明生境有了明显的退化。因此,控制草地的放牧强度是维持种群健康发展的关键。 C1 Zheng Wei, Graduate College of Qinghai University, Xining, Qinghai 810003, China. Liu Yu, Graduate College of Qinghai University, Xining, Qinghai 810003, China. Dong Quanmin, Qinghai Academy of Animal and Veterinary Sciences, Xining, Qinghai 810016, China. Li Shixiong, Qinghai Academy of Animal and Veterinary Sciences, Xining, Qinghai 810016, China. Z6 郑伟, 青海大学研究生院, 西宁, 青海 810003, 中国. 刘玉, 青海大学研究生院, 西宁, 青海 810003, 中国. 董全民, 青海省畜牧兽医科学院, 西宁, 青海 810016, 中国. 李世雄, 青海省畜牧兽医科学院, 西宁, 青海 810016, 中国. EM zhengwei8794@163.com; dqm850@sina.com;qm;;Dong@qhmky.com Z7 zhengwei8794@163.com; dqm850@sina.com;qm;;Dong@qhmky.com Z8 13 Z9 14 UT CSCD:5068718 DA 2023-03-23 ER PT J AU Liu Jumei Si Wantong Z2 刘菊梅 司万童 TI Correlation between population density of plateau pika and community structure of grassland Z1 高原鼠兔种群密度与草场植被群落结构的相关性 Z3 南方农业学报 SO Journal of Southern Argiculture VL 43 IS 12 BP 2083 EP 2086 AR 2095-1191(2012)43:12<2083:GYSTZQ>2.0.TX;2-H PY 2012 DT Article AB [Objective] The plateau pika population density and grassland vegetation community structure interaction were investigated in order to provide scientific basis for grassland protection and pika population control.[Method]Using the alpine meadow area from Yushu Tibetan Autonomous Prefecture Longbaotan National Nature Reserve in Qinghai Province as the research subject, the different pika vegetation community structures in local population density areas were analyzed, including weed/grass proportions, vegetation species richness, above-ground biomass, vegetation coverage, species diversity, etc.[Result]Vegetation biomass and coverage had significant linear correlation with pika population density, in which the correlation coefficients of R were respectively 0.1933 and 0.1919, and the linear equations were respectively y=12.686+0.216x and y=1.130+0.270x. High grassland vegetation biomass and community structure coverage inhibited the population increases of plateau pika density, but proper pika density maintenance has certain positive role on the poisonous weeds proportion reduction in grassland vegetation and biodiversity.[Conclusion]Pika pest damages did not directly lead to local grassland degradation and desertification, but it increased the excessive grazing meadow grassland deterioration rate and the vicious spiral formation; therefore, the pika density needs to be monitored at all time and proper control of rotational grazing needs to be taken to promote effective grassland protection. Z4 [目的]调查研究高原鼠兔种群密度与草场植被群落结构间的相互关系,为草原草场保护和鼠害防治提供科学依据。[方法]以青海省玉树藏族自治州隆宝滩国家级 自然保护区的高寒草甸区为研究对象,对当地不同鼠兔种群密度区的植被群落结构进行分析,包括毒杂草/牧草比例、植被物种丰富度、生物量、盖度、物种多样性 等。[结果]植被生物量和盖度与鼠兔种群密度均存在显著的线性相关,其相关系数(r)分别为0.1933和0.1919,线性方程分别为:y=12.68 6+0.216x和y=1.130+0.270x。高生物量和盖度的草场植被群落结构对高原鼠兔种群密度增加有一定的抑制作用,但适当的鼠兔种群密度对保 持草场植被生物多样性和降低毒杂草比例有一定的积极作用。[结论]鼠害并不能直接导致草场退化和荒漠化,只是在过度放牧的草地上加剧了草场的退化速度而形 成恶性循环,因此,对鼠兔种群密度进行实时监控,采取轮牧等方式适当控制放牧密度,是保护草原草场的有效措施。 C1 Liu Jumei, Institute of Bioengineering and Technology, Inner Mongolia Scientific and Technical University, Baotou, Inner Mongolia 014010, China. Si Wantong, Institute of Bioengineering and Technology, Inner Mongolia Scientific and Technical University, Baotou, Inner Mongolia 014010, China. Z6 刘菊梅, 内蒙古科技大学生物工程与技术研究所, 包头, 内蒙古 014010, 中国. 司万童, 内蒙古科技大学生物工程与技术研究所, 包头, 内蒙古 014010, 中国. EM liujm1225@126.com; siwt02@imust.cn Z7 liujm1225@126.com; siwt02@imust.cn Z8 6 Z9 6 UT CSCD:4742643 DA 2023-03-23 ER PT J AU Zhang Yongchao Niu Decao Han Tong Chen Hongyang Fu Hua Z2 张永超 牛得草 韩潼 陈鸿洋 傅华 TI Effect of reseeding on productivity and plant diversity on alpine meadows Z1 补播对高寒草甸生产力和植物多样性的影响 Z3 草业学报 SO Acta Prataculturae Sinica VL 21 IS 2 BP 305 EP 309 AR 1004-5759(2012)21:2<305:BBDGHC>2.0.TX;2-M PY 2012 DT Article AB The effects of reseeding on community productivity,the structure of functional groups and on plant diversity have been carried out since May 2010 in a reseeding experiment on Maqu degraded alpine meadow in the east of the Tibetan Plateau.After reseeding,the productivity,species richness and the richness index of Margalef significantly increased.Comparing the treatment without reseeding to that with reseeding,the productivity increased 31%-44%.The productivity of gramineae and sedge increased along with an increased quantity of reseeding,especially with sedges in which productivity was 2.7 times that in the treatment without reseeding.The proportion of forbs in the community was greatly reduced in response to the reseeding.In conclusion,proper reseeding could raise the utility value of alpine meadows but in the meantime it is better to recover degraded grassland and maintain the stability of the ecosystem. Z4 为了解补播对高寒草甸退化草地恢复过程中群落生产力、功能群结构和物种多样性方面的影响,于2010年5月以位于青藏高原东段的玛曲高寒草甸为研究对象, 进行了补播试验。结果表明,补播显著提高地上生物量,同时物种数和丰富度指数Margalef也有显著增加,其中补播处理地上生物量是不补播处理的1.3 1~1.44倍。补播后莎草类和禾草类地上生物量都呈增长趋势,补播后禾草类地上生物量显著提高,其中最高是不补播的2.7倍,杂类草在群落中所占比例显 著降低。适量补播既可以使草地的经济价值得以提高,同时也有利于高寒退化草地的恢复和生态系统的稳定。 C1 Zhang Yongchao, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Niu Decao, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Han Tong, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Chen Hongyang, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Fu Hua, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Z6 张永超, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 牛得草, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 韩潼, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 陈鸿洋, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 傅华, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM zhangych10@lzu.cn; fuhua@lzu.edu.cn Z7 zhangych10@lzu.cn; fuhua@lzu.edu.cn Z8 36 Z9 39 UT CSCD:4506481 DA 2023-03-23 ER PT J AU Zhang Yanbo Luo Peng Sun Geng Mou Chengxiang Wang Zhiyuan Wu Ning Luo Guangrong Z2 张艳博 罗鹏 孙庚 牟成香 王志远 吴宁 罗光荣 TI Effects of grazing on litter decomposition in two alpine meadow on the eastern Qinghai-Tibet Plateau Z1 放牧对青藏高原东部两种典型高寒草地类型凋落物分解的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 32 IS 15 BP 4605 EP 4617 AR 1000-0933(2012)32:15<4605:FMDQZG>2.0.TX;2-1 PY 2012 DT Article AB Litter decomposition is an important component of nutrient cycling and carbon decomposition in grassland ecosystems,and livestock grazing has been a major human intervention to these process.The effects of grazing on litter decomposition vary with climate environment conditions and grassland vegetation types.Alpine mesophytic meadow and alpine semi-hydric marsh meadow are the two rangeland ecosystems commonly seen on the eastern Qinghai-Tibet Plateau,which differentiate themselves by not only the physic/bio environments but also the plant species composition and therefore the litter qualities.In order to understand grazing effects on the litter decomposition of these two meadows,grazed and fenced plots were set respectively on the both meadows.The rates of decomposition and nutrient release were measured for the three littler samples(mesophytic meadow mixed litter,Deschampsia caespitos litter,and Potentilla anserine litter) in the alpine mesophytic meadow plots,and three litter samples(semi-hydric marsh mixed litter,Carex muliensis litter、Kobresia tibetica litter) in the semi-hyddric marsh meadow plots.The four species generally also represented the dominant species showing respectively in the reverse succession series driven by grazing and climate warming.It was found that there were significant differences in litter decompositions for the dominant species.In alpine mesophytic meadow,Potentilla anserine decomposed faster than Deschampsia caespitos,while in alpine semi-hydric meadowKobresia tibetica decomposed more quickly.Grazing accelerated the litter decomposition in general,but the responses varied with the species.On the other hand,Deschamp siacaespitos and Carex muliensis have lower decomposition rates in the grazed plots.Grazing has little effect on organic carbon decomposition and the release of C,but positively affected on the release of N and P from the litters.The patterns of litter decomposition and nutrient release of the dominant species suggested that there might exist a positive feedback effect in the alpine marsh meadow degradation due to the accelerating decomposition rate and C release along the reverse succession series.In addition,Potentilla anserine,a typical dominant species of in degraded meadow,was found to have higher litter quality and faster decomposition rate than the other species,reflecting that in the mesophytic community,the plant adopted evasion strategy rather than resistance strategy in response to heavy grazing. Z4 为认识放牧对青藏高原东部中生性的高寒草甸草地和半湿生的沼泽草地凋落物分解的影响,在这两种草地上分别设置了围栏和放牧样地,研究了其各自的混合凋落物 样品和4个优势物种(发草Deschampsiacaespitos、鹅绒委陵菜Potentilla anserine、木里苔草Carexmuliensis、藏嵩草Kobresiatibetica)凋落物的分解和养分释放动态,这4个优势物种也大致 代表了当地沼泽草地生态系统在放牧和气候变暖驱动下逆行演替不同阶段的优势物种类群。结果表明,各优势物种凋落物的分解速率有显著差异;放牧在总体上促进 了凋落物的分解,但不同物种的响应有所不同;放牧对凋落物C的释放影响不显著或有抑制作用,但对N、P的释放具有一定促进作用。对各优势物种凋落物分解和 养分释放模式的分析表明,群落逆行演替过程中,凋落物分解和C释放加速,可能促进沼泽湿地退化的正反馈效应。草甸草地的退化标志物种鹅绒委陵菜具有较高的 凋落物质量和分解速度,反映了中生条件下植物应对牲畜啃食采用"逃避"而非"抵抗"策略的趋向。 C1 Zhang Yanbo, Key Laboratory of Mountain Ecological Restoration and Bio-Resource Utilization,Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Luo Peng, Key Laboratory of Mountain Ecological Restoration and Bio-Resource Utilization,Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Sun Geng, Key Laboratory of Mountain Ecological Restoration and Bio-Resource Utilization,Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Mou Chengxiang, Key Laboratory of Mountain Ecological Restoration and Bio-Resource Utilization,Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Wang Zhiyuan, Key Laboratory of Mountain Ecological Restoration and Bio-Resource Utilization,Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Wu Ning, Key Laboratory of Mountain Ecological Restoration and Bio-Resource Utilization,Chengdu Institute of Biology,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Luo Guangrong, Longri Pedigree Station of Sichuan, Aba, 624401. Z6 张艳博, 中国科学院成都生物研究所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 罗鹏, 中国科学院成都生物研究所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 孙庚, 中国科学院成都生物研究所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 牟成香, 中国科学院成都生物研究所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 王志远, 中国科学院成都生物研究所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 吴宁, 中国科学院成都生物研究所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 罗光荣, 四川省龙日种畜场, 阿坝, 624401. EM luopeng@cib.ac.cn Z7 luopeng@cib.ac.cn Z8 18 Z9 21 UT CSCD:4605545 DA 2023-03-23 ER PT J AU Bai Wanqi Zhang Yili Liu Linshan Zhang Qinqin Du Changjiang Z2 摆万奇 张镱锂 刘林山 张琴琴 杜长江 TI Adaptation of Tibetan Nomadism to Climate Change in the Source Region of the Yellow River Z1 黄河源地区藏族游牧对气候变化的适应性 Z3 自然资源学报 SO Journal of Natural Resources VL 27 IS 12 BP 2030 EP 2038 AR 1000-3037(2012)27:12<2030:HHYDQZ>2.0.TX;2-W PY 2012 DT Article AB Based on family questionnaire, meteorological and statistical data,remote sensing and field survey, a case study of Darlag County in the source region of the Yellow River has been conducted to understand the process of alpine grassland degradation and the behaviors of Tibetan nomads'response and adaptation to climate warming. The results show that there was an increase of 0.29 ℃/10 a on average in annual temperature during 1956-2009 in Darlag County, which indicated more obvious warming effect than that in the Tibetan Plateau and the whole country. With the impacts of climate warming and grazing, 29.39% grassland degraded between the 1970s and 2000. For dealing with the consequences of grassland degradation, local nomads have taken various adaptive measures in livestock production, such as earlier moving from summer pasture to winter pasture, making fence for pasture, adjusting the amount and structure of livestock, increasing the amount and ratio of livestock for sale, supplementing fodder in winter, planting grasses, etc., and simultaneously changes in lifestyle and ideology have also happened correspondingly. This demonstrates that the Tibetan nomadism essentially possesses the nature and mechanism of adaptation to climate change, and is capable of adjusting production and living to a certain extent actively or passively. Therefore, with adaptive modification Tibetan nomadism will prove to be an important adaptation mode of climate change in the source region of the Yellow River. Z4 以黄河源地区达日县为案例,在牧户调查的基础上,结合气象资料、遥感和地面调查,分析了气候变暖背景下的草地退化过程和藏族游牧民的响应与适应行为。结果 显示,研究地区1956-2009年期间年平均温度每10 a增加0.29 ℃,比青藏高原和全国增温作用更加明显;在气候变暖和放牧活动的共同影响下,1970年代-2000年期间,29.39%的草地出现退化;为应对草地退化 后果,牧民通过提前转场放牧、建造围栏、调整畜群数量与结构等生产措施加以缓解,同时生活方式和思想观念也发生了相应变化。这表明,藏族游牧本质上具有适 应气候变化的内在机制和属性,可以在一定范围内主动或被动地调整生产生活方式,经过适应性改造的藏族游牧业能够成为黄河源地区重要的气候变化适应模式。 C1 Bai Wanqi, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Zhang Yili, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Liu Linshan, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Zhang Qinqin, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Du Changjiang, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Z6 摆万奇, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张镱锂, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 刘林山, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张琴琴, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 杜长江, 中国科学院地理科学与资源研究所, 北京 100101, 中国. EM baiwq@igsnrr.ac.cn; zhangyl@igsnrr.ac.cn Z7 baiwq@igsnrr.ac.cn; zhangyl@igsnrr.ac.cn Z8 5 Z9 7 UT CSCD:4719947 DA 2023-03-23 ER PT J AU Zhu Weixin Suo Nanji Gu Zhenkuan Chen Dongdong Zhang Shihu Du Guozhen Z2 朱炜歆 索南吉 顾振宽 陈懂懂 张世虎 杜国祯 TI Soil properties associated with microbe in different types of Gannan grassland Z1 甘南草地土壤微生物与理化特性 Z3 草业科学 SO Pratacultural Science VL 29 IS 10 BP 1491 EP 1496 AR 1001-0629(2012)29:10<1491:GNCDTR>2.0.TX;2-6 PY 2012 DT Article AB In Gannan region of Gansu province,the numerical sizes of respiration rates of different grassland type soils are: swamping meadow>alpine shrub meadow>alpine meadow>sub-alpine meadow>upland meadow(0-15 cm),swamping meadow>sub-alpine meadow>upland meadow>alpine shrub meadow>alpine meadow(15-30 cm),and swamping meadow>upland meadow>sub-alpine meadow>alpine meadow>alpine shrub meadow(30-60 cm).The numerical sizes of soil microbial biomass carbon of different grassland type soils are: swamping meadow>alpine shrub meadow>alpine meadow>sub-alpine meadow>upland meadow(0-15,15-30 cm),and swamping meadow>sub-alpine meadow>alpine shrub meadow>alpine meadow>upland meadow(30-60 cm).Respiration and microbial biomass carbon of different grassland type soils decreased with soil depth,while respiratory quotient increased and microbial quotient has no significant change.There was a significant positive correlation(P<0.01) between respiration,microbial biomass carbon and soil moisture,total organic carbon,total nitrogen,and a significant negative correlation(P<0.01) between respiratory quotient and soil moisture,total organic carbon,total nitrogen.A significant positive correlation(P<0.01) exists between microbial quotient and soil moisture,total nitrogen,while a significant negative correlation(P<0.01) exists between microbial quotient and total organic carbon. Z4 在甘肃省甘南州境内,土壤微生物呼吸强度在不同草地类型草地上由大到小的顺序:0~15cm深度为沼泽化草甸>高寒灌丛草甸>高寒草甸>亚高寒草甸>山地 草原,15~30cm深度为沼泽化草甸>亚高寒草甸>山地草原>高寒灌丛草甸>高寒草甸,30~60cm深度为沼泽化草甸>山地草原>亚高寒草甸>高寒草 甸>高寒灌丛草甸;微生物碳在不同草地类型草地上由大到小的顺序:0~15cm与15~30cm深度均为沼泽化草甸>高寒灌丛草甸>高寒草甸>亚高寒草甸 >山地草原,30~60cm深度为沼泽化草甸>亚高寒草甸>高寒灌丛草甸>高寒草甸>山地草原。同一草地类型的土壤呼吸强度、微生物碳都在各自土壤深度下 随深度增加而减小,代谢熵的变化趋势刚好相反,微生物商的变化趋势不明显。土壤呼吸强度、微生物碳均分别与土壤含水量、有机碳、全氮呈极显著正相关(P< 0.01),而代谢熵与之呈极显著负相关(P<0.01),微生物商与含水量、全氮呈极显著正相关(P<0.01),而与有机碳呈极显著负相关(P<0. 01)。 C1 Zhu Weixin, Key Laboratory of Arid and Grassland Ecology with the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Suo Nanji, Key Laboratory of Arid and Grassland Ecology with the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Gu Zhenkuan, Key Laboratory of Arid and Grassland Ecology with the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Du Guozhen, Key Laboratory of Arid and Grassland Ecology with the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Chen Dongdong, The Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Key Laboratory of Adaptation and Evolution of Plateau Biota,Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhang Shihu, School of Sciences,Northwest Normal University, Lanzhou, Gansu 730070, China. Z6 朱炜歆, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 索南吉, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 顾振宽, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 杜国祯, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 陈懂懂, 中国科学院西北高原生物研究所, 中国科学院高原生物适应与进化重点实验室, 西宁, 青海 810001, 中国. 张世虎, 西北师范大学生命科学学院, 兰州, 甘肃 730070, 中国. EM zhuweixin1987@126.com; guozdu@lzu.edu.cn Z7 zhuweixin1987@126.com; guozdu@lzu.edu.cn Z8 2 Z9 2 UT CSCD:4664667 DA 2023-03-23 ER PT J AU Li Yuanyuan Dong Shikui Li Xiaoyan Wen Lu Z2 李媛媛 董世魁 李小艳 温璐 TI Effect of Grassland Enclosure on Vegetation Composition and Production in Headwater of Yellow River Z1 围栏封育对黄河源区退化高寒草地植被组成及生物量的影响 Z3 草地学报 SO Acta Agrestia Sinica VL 20 IS 2 BP 275 AR 1007-0435(2012)20:2<275:WLFYDH>2.0.TX;2-F PY 2012 DT Article AB The plant community structure and primary production of the alpine grasslands under different degradation degrees were investigated in Maqin County of Qinghai Province,the headwater area of Yellow River.The structure of the plant community had significant variation relating grassland degradation with fencing.The coverage and height of plants inside fences were higher than those outside fences and declined with the increase of degradation degrees.Similar results were found for the plant diversity index.The aboveground biomass,coverage and height of the grassland along degradation gradients showed a declining trend.These parameters were significantly higher in the fenced grasslands than the unfenced ones.Aboveground biomass/underground biomass ratios of the grassland were decreased by degradation and increased by fencing.The ratios of dry to fresh weight of aboveground biomass declined with the increase of degradation degree and increased after fencing.It can be concluded that grassland enclosure is a feasible approach to restore grassland vegetation in the headwater areas of the Qinghai-Tibetan Plateau.Plant cover,plant biomass and species biodiversity can be used as indicators to assess grassland restoration intervention. Z4 在黄河源区-青海省果洛藏族自治州玛沁县选取4个不同退化程度的天然草地,以围栏内封育和围栏外自由放牧草地作比较,采用样方法调查草地围栏内外的群落结 构特征和草地初级生产力生物量,并通过计算地上与地下生物量比值以及植物群落干鲜比来评价围栏封育的效果。结果表明:不同退化程度围栏内外的植被组成存在 显著差异;随着退化程度的加剧,植物群落的盖度、高度以及多样性指数有下降趋势,且围栏内的盖度、高度及多样性指数均大于围栏外的;植物群落高度、盖度、 地上生物量和生物量干鲜比随着退化程度加剧有减小的趋势。围栏封育有利于改善青藏高原退化高寒草地的植物群落结构,提高草地植物群落的盖度和生物量,促进 其恢复演替。 C1 Li Yuanyuan, School of Environment,Beijing Normal University, Beijing 100875, China. Dong Shikui, School of Environment,Beijing Normal University, Beijing 100875, China. Li Xiaoyan, School of Environment,Beijing Normal University, Beijing 100875, China. Wen Lu, School of Environment,Beijing Normal University, Beijing 100875, China. Z6 李媛媛, 北京师范大学环境学院, 北京 100875, 中国. 董世魁, 北京师范大学环境学院, 北京 100875, 中国. 李小艳, 北京师范大学环境学院, 北京 100875, 中国. 温璐, 北京师范大学环境学院, 北京 100875, 中国. EM yuanyuanhaha1989@163.com; dongshikui@sina.com Z7 yuanyuanhaha1989@163.com; dongshikui@sina.com Z8 33 Z9 39 UT CSCD:4502619 DA 2023-03-23 ER PT J AU Li Yuanyuan Dong Shikui Li Xiaoyan Wen Lu Z2 李媛媛 董世魁 李小艳 温璐 TI Effect of Enclosure on Vegetation Photosynthesis and Biomass of Degraded Grasslands in Headwater Area of Qinghai-Tibetan Plateau Z1 围栏封育对三江源区退化高寒草地植物光合作用及生物量的影响 Z3 草地学报 SO Acta Agrestia Sinica VL 20 IS 4 BP 621 EP 625 AR 1007-0435(2012)20:4<621:WLFYDS>2.0.TX;2-W PY 2012 DT Article AB Plant community structure,biomass,photosynthesis rate and leaf area index(LAI) of grasslands at different degraded degrees inside and outside the fence were investigated in Maqin county of Qinghai province.Photosynthesis rate,LAI and biomass of plant communities decreased with the increase of degraded degrees.Three indicators inside the fence were significantly higher than outside.Correlation among photosynthesis rate,LAI and biomass were also calculated.Results indicated that these three indicators had positive correlation.The conclusion was that enclosure could improve degraded grasslands of Oinghai-Tibetan Plateau,and also promote the stability and sustainable development of alpine grasslands. Z4 在青海省果洛藏族自治州玛沁县选取4个不同退化程度的天然草地,以围栏封育和围栏外自由放牧草地作比较,调查草地围栏内外不同退化程度的植物群落组成和生 物量,分别测定各植物群落光合速率和叶面积指数。结果表明:植物群落光合速率、叶面积指数和生物量随着退化程度的加剧而减小,围栏内植物群落的光合速率和 叶面积指数和生物量均大于围栏外的植物群落(P<0.05);不同退化程度下围栏内外植物群落的光合速率、叶面积指数与生物量之间成显著正相关关系(P< 0.05),且围栏内植物这3项指标间的相关系数大于围栏外植物(除光合速率和叶面积指数间的相关系数外)。围栏封育可以改变草地植物群落的光合作用速率 和叶面积指数,有利于退化草地植物的生物量积累和植被恢复。 C1 Li Yuanyuan, School of Environment,Beijing Normal University, Beijing 100875, China. Dong Shikui, School of Environment,Beijing Normal University, Beijing 100875, China. Li Xiaoyan, School of Environment,Beijing Normal University, Beijing 100875, China. Wen Lu, School of Environment,Beijing Normal University, Beijing 100875, China. Z6 李媛媛, 北京师范大学环境学院, 北京 100875, 中国. 董世魁, 北京师范大学环境学院, 北京 100875, 中国. 李小艳, 北京师范大学环境学院, 北京 100875, 中国. 温璐, 北京师范大学环境学院, 北京 100875, 中国. EM yuanyuanhaha1989@163.com; dongshikui@sina.com Z7 yuanyuanhaha1989@163.com; dongshikui@sina.com Z8 11 Z9 12 UT CSCD:4615582 DA 2023-03-23 ER PT J AU Li Xueling Lin Huilong Z2 李学玲 林慧龙 TI Cellular automata simulation of barren patch connectivity effect in degradation sequence on alpine meadow in the source region of the Yangtze and Yellow rivers,Qinghai-Tibetan Plateau,China Z1 江河源区高寒草甸退化序列上秃斑连通效应的元胞自动机模拟 Z3 生态学报 SO Acta Ecologica Sinica VL 32 IS 9 BP 2670 EP 2680 AR 1000-0933(2012)32:9<2670:JHYQGH>2.0.TX;2-3 PY 2012 DT Article AB The source region of Yangtze River and Yellow River plays an important role in the carbon source/sink cycle and is a focal point for ecological environment management;however,it is also one of China′s most vulnerable ecological systems.This vulnerability is due to human and livestock population expansion;large area of alpine meadow are experiencing overgrazing and climate change,with barren patches developing and connecting with each other.Barren patches develop in a range of sizes and shapes,presenting an infertile "black soil" type landscape in the final stage of grassland degradation.The driving mechanisms of alpine meadow degradation are complex and remain controversial,making it difficult to determine individual causes of degradation and to take effective measures to counter them.Thus,this investigation employed "black box" theory to avoid these uncertain elements in its examination of spatial patterns and temporal evolution in barren patches.This investigation aimed to clarify the role barren patch evolution and connectivity plays in alpine meadow degradation,providing an increased understanding of alpine meadow ecosystems as the basis for ecological maintenance,restoration and management. A simulation method of complexity science,cellular automata,was used to model the development of barren patches in this study.The initial iteration data for the model were obtained from observations of moderately degraded meadows with the lowest barren patch percentage,and were used to draw a matrix in which each cell was represented as either 0 or 1;0 representing a cell where vegetation cover was lower than 50% and 1 representing cells where vegetation cover was over 50%.Based on field observations of barren patch percentage and landscape structure,including the experience of local herdsman whose livelihoods are inextricably linked to the grassland,the simulation time step was set to one year per iteration.Further field observations of barren patch evolution and other features of their spatial distribution at different stages of degradation were used to define the rules of the model,and Matlab 7.0 was used as a platform for simulation.Cell neighborhoods were defined as the Moore type and cellular space was treated according to the reflective boundary rule.Using this combination of field research techniques and cellular automata simulation,realistic developmental graphs modeling the connectivity of barren patches from the initial degradation stage to the collapse of the alpine meadow system were established.The goodness of fit for the simulation analyses averaged 93.9%.Results further indicated that in the degradation sequence,there were three defined degradation stages: a low-speed connectivity stage from 0 to 2 years,a jump stage from 2 to 7 years and an irreversible connectivity stage from 7 to 9 years.Additionally,a sudden change was found to occur at the beginning of each stage,identifying a threshold characteristic in the process of barren patch connectivity.Through comparative analysis of the performances of grassland ecology and restoration between the jump stage and the irreversible connectivity stage,the connectivity threshold was calculated at 54.5% as a protection index of the alpine meadow.The irreversibility of ecological harm associated with large barren patches highlights the importance of determining and using the connectivity threshold to identify and determine priority sites for restoration. Z4 高寒草甸草毡层"秃斑"是高寒草甸退化进程中最活跃的表征,明确其在退化序列上的演变时空规律是揭示草地退化动力学机制的关键之一。采用实地调研结合元胞 自动机模拟的方法,对高寒草甸退化序列上秃斑格局动态进行了模拟,是对退化序列上秃斑的连续动态图谱表达,建立了高寒草甸由初步退化到系统崩溃的符合实际 的草地秃斑连通的图谱序列,模拟吻合度达93.9%。通过对图谱序列关系的分析表明,秃斑连通进程分为3个阶段:低速连通期第02年、跃变期第27年、连 通不可逆转期第79年;最大秃斑面积、最大秃斑面积-秃斑总面积比的跃变过程,是草地退化等级的质变过程;通过对跃变期和连通不可逆转期相应的草地生态与 恢复性能的对比分析,确定了连通阈值为54.5%;秃斑连通的过程伴随着临界阈现象的发生。由于连通不可逆转期"黑土滩"形成过程的不可逆性及形成后的巨 大危害性,连通阈值的确定将为高寒草甸生态系统安全预警及其退化恢复治理提供依据。 C1 Li Xueling, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Lin Huilong, State Key Laboratory of Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. Z6 李学玲, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. 林慧龙, 兰州大学草地农业科技学院, 草地农业生态系统国家重点实验室, 兰州, 甘肃 730020, 中国. EM linhuilong@lzu.edu.cn Z7 linhuilong@lzu.edu.cn Z8 4 Z9 5 UT CSCD:4539557 DA 2023-03-23 ER PT J AU Li Chunjie Wang Genxu Sun Xiangyang Bai Wei Z2 李春杰 王根绪 孙向阳 白炜 TI Dynamic Characteristics of Condensed Water in Soils of Fenghuoshan Basin in Qinghai-Tibet Plateau Z1 青藏高原风火山流域凝结水动态特征分析 Z3 水土保持通报 SO Bulletin of Soil and Water Conservation VL 32 IS 6 BP 80 EP 83 AR 1000-288X(2012)32:6<80:QZGYFH>2.0.TX;2-9 PY 2012 DT Article AB Using micro-lysimeter, we observed the condensed water in the soils of variously degraded alpine meadows in Fenghuoshan basin of the QinghaiTibet Plateau.The formation mechanism of condensed soil water was further analyzed according to the observation data.The results showed that condensed soil water came mainly from two sources:water vapor in the air and in the vadose zone migrated upward under the action of the geothermal gradient.The water vapor from the vadose zone was significantly greater than that from the air.The condensation mainly occurred during night from 20:00pm to 8:00am in the next day, and the largest amount of water was condensed in early morning between 6:00am and 8:00am.Meanwhile, the condensation mainly occurred within the upper 5cm of the soil profile.The amount of condensed water decreased with the degradation of alpine meadows, and the occurrence of condensation was of great significance in maintaining the balance of alpine meadow ecological system. Z4 采用微型蒸渗仪对青藏高原风火山流域不同退化高寒草甸凝结水进行了实地观测实验,根据观测数据分析了风火山流域凝结水的形成规律。研究结果表明,青藏高原 风火山流域凝结水主要来源于两个方面,空气中的水汽,包气带向上迁移的水汽。其中来源于包气带的凝结水显著大于来源于空气的凝结水。凝结水基本发生在夜间 20:00至次日8:00的时段内,并且在次日6:00-8:00之间凝结量最大,其形成深度主要集中在0-5cm土壤剖面范围内。该区凝结水量随着高寒 草甸的退化表现为减小趋势,凝结水对于青藏高原高寒草甸生态系统平衡的维持具有十分重要的意义。 C1 Li Chunjie, Institute of Mountain Hazards and Environment,CAS, Chengdu, Sichuan 610041, China. Wang Genxu, Institute of Mountain Hazards and Environment,CAS, Chengdu, Sichuan 610041, China. Sun Xiangyang, Institute of Mountain Hazards and Environment,CAS, Chengdu, Sichuan 610041, China. Bai Wei, School of Resources and Environmental Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Z6 李春杰, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 王根绪, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 孙向阳, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 白炜, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. EM lichunjie@imde.ac.cn Z7 lichunjie@imde.ac.cn Z8 0 Z9 1 UT CSCD:4746026 DA 2023-03-23 ER PT J AU Lin Li Li Yikang Zhang Fawei Han Daorui Li Jing Cao Guangmin Z2 林丽 李以康 张法伟 郭小伟 韩道瑞 李婧 曹广民 TI Principal Component Analysis on Alpine Kobresia humilis Meadow Degradation Succession in Qinghai-Tibetan Plateau Z1 青藏高原高寒矮嵩草草甸退化演替主成分分析 Z3 中国草地学报 SO Chinese Journal of Grassland VL 34 IS 1 BP 24 EP 30 AR 1673-5021(2012)34:1<24:QZGYGH>2.0.TX;2-D PY 2012 DT Article AB Alpine Kobresia humilis meadows were extensively distributed in Qinghai-Tibetan plateau.The alpine Kobresia humilis meadows were degraded by human disturbing.Using space scale instead of time scale,the plant communities quantity characteristics and soil physical and chemical properties were analyzed at typical alpine Kobresia humilis meadows degradation succession stage.The results showed that,firstly,the alpine Kobresia humilis meadows degradation succession process could be divided into four stages by using Euclidean Distance Clustering method and Fishers Discriminant Analysis.Fishers Discriminant Analysis could discriminate the Kobrecia pygmaea communitys stage into three phases.So those indexes could be used as index system to divide typical alpine Kobresia humilis meadows degradation succession stages.Secondly,it could draw four principal components(all principal components eigenvalues were grater than 1) by using Principal Component Analysis.All those principal component factors together could explain 97.6% variance of the sums squared lading.Grassland degradation succession is a process that all factors cooperatively change in the system,and is asynchronism.It also showed that there were two important factors in grassland degradation succession process,one was sensitive factors,which can rapidly change while the grassland ecological system has been changed,another one was buffer factors which play the role in delaying grassland ecological system change.But that how the factors feedback the ecological change and which one is the sensitivity factor,which one is the buffer factor need to be further researched. Z4 选取青藏高原高寒矮嵩草草甸典型退化演替阶段代表样地为研究对象,以空间尺度代替时间尺度的方法,对其植物群落和土壤理化性质(19个指标)进行数量特征 分析。结果表明:欧式聚类分析和Fishers判别分析可以明确划分高寒矮嵩草草甸退化的4个演替阶段,且Fishers判别分析能够明确区分小嵩草草甸 的3个重要时期,说明可以此指标组构建高寒矮嵩草草甸退化演替阶段划分的指标体系。主成分分析(PCA)提取出4个特征值大于1的主成分因子,其载荷能力 依次为44.8%、28.3%、17.2%和7.2%,对演替过程总变异的解释能力累计达97.6%。草地退化是一个系统内各因子协同变化的过程,且它们 具有不同步性,进而导致了原有变量对草地退化演替细微阶段划分的不完全性。说明草地生态系统存在两种作用因子,即敏感因子(其数量特征随草地发生变化而迅 速变化)和缓冲因子(对生态系统变化的反应具有一定的滞后性和缓冲性),但这两者如何应对生态系统干扰,其协同及分异特征以及其对草地退化反应的敏感程度 还需要深入研究。 C1 Lin Li, Northwest Plateau Institute of Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Li Yikang, Northwest Plateau Institute of Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Plateau Institute of Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Han Daorui, Northwest Plateau Institute of Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Li Jing, Northwest Plateau Institute of Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Cao Guangmin, Northwest Plateau Institute of Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Z6 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 韩道瑞, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李婧, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM hanxiao_2000_00@126.com; caogm@nwipb.ac.cn Z7 hanxiao_2000_00@126.com; caogm@nwipb.ac.cn Z8 16 Z9 19 UT CSCD:4439004 DA 2023-03-23 ER PT J AU Liang Kunlun Jiang Wenqing Zhou Zhiyu Guo Xia Li Xiaozhong Dai Wanan Wang Rui Liu Xueyun Z2 梁坤伦 姜文清 周志宇 郭霞 李晓忠 代万安 王瑞 刘雪云 TI Variation in main morphological characteristics of Amorpha fruticosa plants in the Qinghai-Tibet Plateau Z1 青藏高原紫穗槐主要形态特征变异分析 Z3 生态学报 SO Acta Ecologica Sinica VL 32 IS 1 BP 311 EP 318 AR 1000-0933(2012)32:1<311:QZGYZS>2.0.TX;2-W PY 2012 DT Short Paper AB This paper investigated the variation in 17 main morphological characteristics of 3 Amorpha fruticosa populations inhabiting three sites(Lhasa,Qushui and Maqu) of the Qinghai-Tibet Plateau.Our results showed that there were striking differences in some of the morphological characteristics within and among A.fruticosa populations when compared the average coefficients of variation in these morphological characteristics.The average coefficients of the variation of 17 main morphological characteristics across the three populations were 0.090.37,with the average coefficient of new branch length variation being largest.In addition,the average coefficient of population variation in the Lhasa site greater than that for the other two sites.Principal component analysis(PCA) indicated that the accumulated contribution of the first four principal components was 86.6%,but the contribution of the first principal component was 40.9%,suggesting that the first four principal components explained most of the variation in the morphological characteristics.New branch length,new branch diameter,old branch diameter,taproot diameter and total length of the second-order lateral root explained the majority of the variation in morphological characteristics of A.fruticosa populations.Correlation analysis also indicated that there were complicated relationships between main factors(soil organic carbon,total nitrogen and so on) in the rhizosphere and the above five morphological characteristics.New branch length,taproot diameter showed significant positive or negative correlations(P < 0.05) with the contents of soil nutrients,and in particular the content of soil organic carbon,total nitrogen,total phosphorus were significantly and negatively correlated(P<0.05) with the five morphological characteristics.In addition,our results showed some of the differences in the distribution frequency of the first-order and second-order lateral root lengths of A.fruticosa plants within and among populations.The distribution frequency of the first-order lateral root lengths(1020 cm and 2030 cm)was generally larger than that for the other first-order lateral root lengths in the three sites,and the distribution frequency of the second-order lateral root lengths(010 cm,1020 cm,2030 cm,3040 cm,≥40 cm) showed a decline trend in the Lhasa and Maqu sites.Moreover,the distribution frequency of the first-order and second-order lateral root lengths(≥ 40 cm) in the Maqu population was significantly greater than that for the populations of the Lhasa and Qushui sites.This study reported in the first time the variation in the main morphological characteristics of A.fruticosa plants in the alpine regions,which may have important implications for the management of such alpine grasslands in China. Z4 应用数量统计方法,对在西藏拉萨市、曲水县和甘肃玛曲县等青藏高原区首次种植的紫穗槐3个居群的17项形态特征指标进行比较分析。变异系数分析结果表明: 不同居群内及居群间的形态特征存在一定程度的变异。采用主成分分析方法,找到了积累贡献率达86.603%的4个主成分,新枝长、新枝直径、老枝直径、主 根直径、二级侧根总长5个性状是造成紫穗槐形态变异的主要因素,并分析了其与根际土壤生境的相关性。通过对紫穗槐一级侧根与二级侧根根长频率分布研究,表 明:(1)不同居群内及居群间各个阶段根长存在差异;(2)居群3(玛曲)中一级侧根和二级侧根根长≥40 cm的频率明显高于另外两个居群。 C1 Liang Kunlun, School of Pastoral Agriculture Science and Technology, Lanzhou, Gansu 730020, China. Jiang Wenqing, School of Pastoral Agriculture Science and Technology, Lanzhou, Gansu 730020, China. Zhou Zhiyu, School of Pastoral Agriculture Science and Technology, Lanzhou, Gansu 730020, China. Guo Xia, School of Pastoral Agriculture Science and Technology, Lanzhou, Gansu 730020, China. Wang Rui, School of Pastoral Agriculture Science and Technology, Lanzhou, Gansu 730020, China. Liu Xueyun, School of Pastoral Agriculture Science and Technology, Lanzhou, Gansu 730020, China. Li Xiaozhong, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, Tibet 850000, China. Dai Wanan, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, Tibet 850000, China. Z6 梁坤伦, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 姜文清, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 周志宇, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 郭霞, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 王瑞, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 刘雪云, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 李晓忠, 西藏自治区农科院, 拉萨, 西藏 850000, 中国. 代万安, 西藏自治区农科院, 拉萨, 西藏 850000, 中国. EM zyzhou@lzu.edu.cn Z7 zyzhou@lzu.edu.cn Z8 8 Z9 8 UT CSCD:4435451 DA 2023-03-23 ER PT J AU Li Jing Du Yangong Zhang Fawei Guo Xiaowei Han Daorui Liu Shuli Cao Guangmin Z2 李婧 杜岩功 张法伟 郭小伟 韩道瑞 刘淑丽 曹广民 TI Mattic Epipedon Impact on Water Conservation in Alpine Meadow Z1 草毡表层演化对高寒草甸水源涵养功能的影响 Z3 草地学报 SO Acta Agrestia Sinica VL 20 IS 5 BP 836 EP 841 AR 1007-0435(2012)20:5<836:CZBCYH>2.0.TX;2-7 PY 2012 DT Article AB Alpine meadow covering about 60% of the area in the Tibetan plateau is a main component for water conservation.Alpine meadow presents the degraded features of multi-pattern,multi-gateway,serious danger during recent decades,while safety of water resource in our country has been challenged.Alpine Kobresia humilis meadow was selected as the research target in this study.The degraded succession of alpine meadows was divided into four stages: Graminoids + Kobresia humilis community,Kobresia humilis community,Kobresia pygmaea community and forb-"black soil type" grassland.The coupling process and mechanism between the capacity of water conservation and Mattic epipedon(M.E.) of alpine meadow were investigated to understand the influence of soil factors on water conservation using spatial-time metathesis research methods.Result indicted that the change of soil saturation and field moisture capacity appeared a single peak curve.The maximum was in K.pygmaea stage and was 117.08% and 105.75%,respectively.However,the minimum was in forb-"black soil type" grassland stage and was 70.00% and 60.92%,respectively.Soil bulk density,soil porosity,volume ration of live root and soil mineral substance(R.M.),M.E.and biological crust(B.C) had influence on soil water conservation.Soil water conservation had a significant positive correlation with soil porosity or the volume ration of R.E.,whereas it had a negative correlation with soil bulk density.The adsorption of live root to moisture was an important mechanism of soil moisture entreasure in alpine meadows.Thickening of M.E.was helpful to increase water conservation.The extreme development of B.C.prevented water infiltration.A suitable depth of M.E.(about 4.3 cm) is the suggested optimal stage for water conservation of alpine meadow. Z4 高寒草甸占青藏高原面积的60%,是高原水源涵养功能发挥的主体基质。近几十年来高寒草甸呈现多模式、多途径、重危害的退化特征,已对我国水资源安全造成 威胁。因此,在青海省果洛州和海北州,以典型高寒矮嵩草(Kobresia humilis)草甸为研究对象,采取时空互代的方法,对其草毡表层厚度对土壤持水功能的影响进行研究,并分析影响水源涵养功能发挥的土壤因子,明晰人类 活动干扰对高寒草甸水源涵养功能的作用。结果表明:随着高寒矮嵩草草甸由禾草-嵩草群落向矮嵩草群落、小嵩草(Kobresia pygmaea)群落和杂类草-"黑土型"次生裸地的演替,其土壤饱和持水量和田间持水量均呈单峰变化曲线,最高值出现于小嵩草群落时期(草毡表层开裂期 ),分别为117.08%和105.75%,最低值出现于杂类草-"黑土型"退化草地时期,分别为70.00%和60.92%;在自然条件下,草地自然含 水量表现出随退化演替持续降低的趋势,土壤持水能力和草地自然含水量呈现出不同的行为分异特征。土壤容重、孔隙度、活根/土体积比、草毡表层厚度和地表生 物结皮发育程度均是影响高寒矮嵩草草甸土壤持水能力发挥的主要因子,持水量与土壤孔隙度和活根/土体积比成正比,与土壤容重成反比,土壤中牧草活根对水分 的吸附是高寒矮嵩草草甸水源涵养的主要机制。土壤降水入渗速率与土壤持水量无关,但却与草地自然含水量成显著相关关系。草毡表层的加厚,有利于土壤持水能 力的提高,但伴随着生物结皮扩张与老化,会导致降水入渗速率的降低。保持适度厚度的草毡表层是保障高寒矮嵩草草甸水源涵养生态功能发挥的关键。 C1 Li Jing, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinhai 810001. Du Yangong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinhai 810001. Zhang Fawei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinhai 810001. Guo Xiaowei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinhai 810001. Han Daorui, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinhai 810001. Liu Shuli, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinhai 810001. Cao Guangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinhai 810001. Z6 李婧, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 韩道瑞, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 刘淑丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM foolplayer@163.com; Caogm@nwipb.cas.cn Z7 foolplayer@163.com; Caogm@nwipb.cas.cn Z8 11 Z9 17 UT CSCD:4674434 DA 2023-03-23 ER PT J AU Li Honglin Xu Danghui Du Guozhen Z2 李宏林 徐当会 杜国祯 TI Effect of change of plant community composition along degradation gradients on water conditions in an alpine swamp wetland on the Qinghai-Tibetan Plateau of China Z1 青藏高原高寒沼泽湿地在退化梯度上植物群落组成的改变对湿地水分状况的影响 Z3 植物生态学报 SO Acta Phytoecologica Sinica VL 36 IS 5 BP 403 EP 410 AR 1005-264X(2012)36:5<403:QZGYGH>2.0.TX;2-P PY 2012 DT Article AB Aims Wetlands degradation has drawn increased concern recently.Many researchers have reported the changes of plant communities and the relevant degradation mechanism of wetlands.However,few studies have explored the effects of plant community change on the water conditions of swamp meadow.Our objective was to investigate how change of alpine swamp meadow along degradation gradients affects its water conditions.Methods The study was conducted at the Research Station of Alpine Meadow and Wetland Ecosystems of Lanzhou University(Maqu Branch Station)(33°39 N,101°53 E).We examined 47 species(15 families) selected from a degradation gradient of alpine swamp meadow.Net photosynthesis rate(Pn),transpiration rate(Tr) and stomatal conductance(Gs) were measured simultaneously with a portable gas exchange system LI-6400(Li-COR,Lincoln,NE,USA).Measurements were performed from 9:00 am to 12:00 am on clear days in mid-July and mid-August,using photosynthetically active radiation(PAR) = 1 800 mumol.m-2.s-1 and flow = 750 mumol.s-1.The value of water use efficiency(WUE) was determined by Pn/Tr.We also investigated the cover of different functional groups(grasses,sedges,legumes and other forbs) at different degradation levels.Important findings The photosynthetic physiology traits were different among species and functional groups(p < 0.01).The sequence of Pn values of functional groups was grasses > sedges > legumes and other forbs,and WUE was sedges > grasses > legumes and other forbs.Species composition of the plant community had been changed due to the degradation of the swamp meadow.The abundance of forbs increased with degradation.WUE was lower for forbs than other functional groups,which implied that more soil water is transpired,exacerbating the drought condition of degraded meadows.Successful restoration requires protection and replenishment of the typical native species. Z4 对青藏高原东缘玛曲高寒沼泽湿地分属于15科的47种主要植物进行光合测定,结合对不同退化类型植物群落的样方调查,分析了各种植物之间以及不同功能群之 间的净光合速率、气孔导度、蒸腾速率和水分利用效率等光合参数的差异。结果表明:1)玛曲高寒湿地的主要物种在净光合速率、气孔导度、蒸腾速率和水分利用 效率4个光合特性参数上的差异显著,表明各植物种以各自独特的方式适应高寒湿地环境;在功能群水平上,各功能群之间的差异亦显著。光合速率从大到小依次为 禾草>莎草>豆科和其他双子叶类杂草,水分利用效率则是莎草>禾草>豆科和其他双子叶类杂草;2)湿地退化导致其群落组成发生明显改变,其中最明显的特点 是双子叶类杂草的比例大大增加;而双子叶类杂草普遍较低的水分利用效率将会增大土壤水分通过光合作用的蒸腾散失,在大气降水对水分补充变化不大的条件下, 这将会进一步加剧群落生境的干旱化,不利于退化湿地的恢复和附近湿地的保护。研究结果表明,在湿地保护和退化湿地恢复过程中,典型湿地土著物种的保存和补 充具有重要意义。 C1 Li Honglin, Key Laboratory of Arid and Grassland Ecology of Ministry of Education,College of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Xu Danghui, Key Laboratory of Arid and Grassland Ecology of Ministry of Education,College of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Du Guozhen, Key Laboratory of Arid and Grassland Ecology of Ministry of Education,College of Life Sciences,Lanzhou University, Lanzhou, Gansu 730000, China. Z6 李宏林, 兰州大学生命科学学院, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 徐当会, 兰州大学生命科学学院, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 杜国祯, 兰州大学生命科学学院, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. EM guozdu@lzu.edu.cn Z7 guozdu@lzu.edu.cn Z8 28 Z9 35 UT CSCD:4543755 DA 2023-03-23 ER PT J AU Li Changming Zhang Xinfan Zhao Lin Cheng Guodong Xu Shijian Z2 李昌明 张新芳 赵林 程国栋 徐世健 TI Phylogenetic Diversity of Bacteria Isolates and Community Function in Permafrost-Affected Soil along Different Vegetation Types in the Qinghai-Tibet Plateau Z1 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 34 IS 3 BP 713 EP 725 AR 1000-0240(2012)34:3<713:QZGYDN>2.0.TX;2-T PY 2012 DT Article AB Microbial community abundance and diversity were analysis by cultivation and BIOLOG Ecoplates methods in permafrost-affected soil,along different vegetation types in Qinghai-Tibet Plateau.The results showed that soil moisture,total carbon and nitrogen decreased from alpine swamp meadow to desert,while pH increased,forming the degradation gradient.Culturable bacterial numbers ranged from 2.97*10~6 to 2.88*10~7 CFU·g~(-1),positively correlated with the soil moisture,total carbon and nitrogen contents.Actinobacteria(51.4%) and gamma-proteobacteria(31.7%) were the predominant phylums.alpha-proteobacteria was only present at swamp meadow sites while absent in others.Numbers of beta-proteobacteria and bacterioidetes have a positive correlation with soil moisture,total carbon and nitrogen.Along the degradation gradient,microbial activity and Shannon index,which has a negative correlation with pH value,are both declined.The relative utilization of polymers replaced amino acids,becoming the main carbon source to microbial communities.The whole results demonstrated that accompanying by the dynamic succession of different vegetation in permafrost regions of Qinghai-Tibet Plateau,culturable bacterial abundance,activity,phylogenetic and metabolic functional diversity shifted as well. Z4 以青藏高原腹地不同植被类型多年冻土区土壤细菌为研究对象,分析了可培养菌群数量、多样性和生理代谢功能的变化及其与环境因子间的关系.结果显示:从沼泽 草甸到高寒荒漠,土壤水分、总碳、总氮含量逐渐降低,pH值升高,可培养细菌数量在2.97*10~6~2.88*10~7 CFU.g~(-1),与含水量、总碳、总氮显著正相关;Actinobacteria(51.4%)和gamma-Proteobacteria(31 .7%)为优势菌群,alpha-prote-bacteria仅在沼泽草甸中有分布,beta-protebacteria、Bacterioidet es丰度与含水量、总碳、总氮间显著正相关;自沼泽到荒漠,菌群代谢活性和Shannon功能多样性指数降低,pH与Shannon指数显著负相关,继氨 基酸类碳源之后,多聚物逐渐成为被细菌群落主要利用的碳源种类.研究表明,伴随冻土退化地上植被逆向演替的过程,青藏高原多年冻土地下土壤微生物群落丰度 、遗传和代谢功能多样性均发生了不同程度的响应. C1 Li Changming, School of Life Science,Lanzhou University, Lanzhou, Gansu 730000, China. Zhang Xinfan, School of Life Science,Lanzhou University, Lanzhou, Gansu 730000, China. Xu Shijian, School of Life Science,Lanzhou University, Lanzhou, Gansu 730000, China. Zhao Lin, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Cheng Guodong, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 李昌明, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 张新芳, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 徐世健, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 赵林, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 程国栋, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. EM zhangxinfang@lzu.edu.cn; xushijian@lzu.edu.cn Z7 zhangxinfang@lzu.edu.cn; xushijian@lzu.edu.cn Z8 16 Z9 22 UT CSCD:4573373 DA 2023-03-23 ER PT J AU Wang Junbang Huang Mei Lin Xiaohui Z2 王军邦 黄玫 林小惠 TI Review on Carbon Budget of the Grassland Ecosystems on the Qinghai-Tibet Plateau Z1 青藏高原草地生态系统碳收支研究进展 Z3 地理科学进展 SO Progress in Geography VL 31 IS 1 BP 123 EP 128 AR 1007-6301(2012)31:1<123:QZGYCD>2.0.TX;2-2 PY 2012 DT Article AB Terrestrial ecosystem carbon budget is a hot topic in the research on global climate change.The grassland of Qinghai-Tibet Plateau,which is sensitive to climate change,plays an important role in the regional carbon balance.However,there is great uncertainty in the estimation on the spatial-temporal pattern of carbon budget due to different methods and some other reasons.To some extent,climate warming results in the increase of vegetation primary productivity and biomass in the alpine meadow ecosystem,which may compensate the decomposition release of soil organic carbon.Hence,the Qinghai-Tibet Plateau grassland still functions as a carbon sink.The effects of human activities,such as overgrazing,on grassland ecosystems are very complex.Therefore,under the impacts of future climate change and human activities,how to distinguish the influence of climate change from that of human activities on ecosystems,and how to quantitatively assess carbon source / sink pattern,are a very interesting research field,but also a great challenge,especially on the plateau. Z4 陆地生态系统碳收支仍然是当前全球气候变化研究的重要内容,青藏高原作为全球气候变化的敏感区,使青藏高原草地生态系统在区域碳收支平衡中占有主导地位, 但研究方法等不同使得碳收支估算结果存在很大的不确定性。气候变暖在一定程度上提高了高寒草地生态系统的植被初级生产力和生物量,由此补偿了气候变暖导致 的土壤有机碳分解释量,使青藏高原草地植被仍然发挥着碳汇的功能。而人类放牧活动对草地生态系统的影响较为复杂。因此,如何区分气候变化和人类活动对生态 系统的影响机制,定量评价未来气候变化和人类活动影响下,青藏高原生态系统碳源/汇格局的可能变化,是一个非常重要的研究方向,也是一个极大的挑战。 C1 Wang Junbang, Institute of Geographic Sciences and Nature Resources Research,CAS, Beijing 100101, China. Huang Mei, Institute of Geographic Sciences and Nature Resources Research,CAS, Beijing 100101, China. Lin Xiaohui, School of Geography and Environment,Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Z6 王军邦, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 黄玫, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 林小惠, 江西师范大学地理与环境学院, 南昌, 江西 330022, 中国. EM jbwang@igsnrr.ac.cn Z7 jbwang@igsnrr.ac.cn Z8 15 Z9 16 UT CSCD:4437313 DA 2023-03-23 ER PT J AU Wang Bin Li Jie Jiang Weiwei Zhao Liang Gu Song Z2 王斌 李洁 姜微微 赵亮 古松 TI Impacts of the rangeland degradation on CO_2 flux and the underlying mechanisms in the Three-River Source Region on the Qinghai-Tibetan Plateau Z1 草地退化对三江源区高寒草甸生态系统CO_2通量的影响及其原因 Z3 中国环境科学 SO China Environmental Science VL 32 IS 10 BP 1764 EP 1771 AR 1000-6923(2012)32:10<1764:CDTHDS>2.0.TX;2-J PY 2012 DT Article AB To assess the effect of rangeland degradation on CO_2 exchange,the eddy covariance technique was used to measure CO_2 flux,biological and environmental factors for one year(from December 2006 to November 2007) in a degraded alpine meadow ecosystem in Three-River Source Region located on the Qinghai-Tibetan Plateau.The results showed that the degradation had a significant impact on the CO_2 flux in this region.Compared with non-degraded ecosystem,annual GPP and R_(eco)of the degraded alpine meadow ecosystem decreased by 36.6%,7.9%,respectively.Also the value of annual NEE raised from negative(carbon uptake) to positive(carbon emission) in the deagraded ecosystem,and its difference between degraded and non-degraded alpine meadow ecosystem was 132.5gC/(m~2·a).It is suggested that the alpine meadow ecosystem changed from a carbon sink to a carbon resource due to degradation.Those results can be caused by the reduction in the plant aboveground biomass and plant diversity,shorter growing season length(the days of NEE<0),and declining of soil water content after the rangeland degradation. Z4 为了揭示草地退化对三江源地区高寒草甸生态系统碳通量的影响,利用涡度相关技术,于2006年12月1日~2007年11月30日对三江源地区的退化高寒 草甸生态系统的碳通量及生物和环境因子进行观测.结果发现:草地退化对高寒草甸生态系统的碳通量产生了深刻影响,与未退化的高寒草甸生态系统相比,退化高 寒草甸生态系统全年总初级生产力(GPP)下降了36.6%,全年生态系统呼吸(R_(eco))下降了7.9%,全年净生态系统CO_2交换(NEE) 也由退化前的负值(碳吸收)转变为正值(碳排放),二者相差132.5gC/(m~2·a),生态系统由原来的碳汇转变为目前的碳源.这些变化与高寒草甸 退化后,生态系统植物地上生物量锐减、植物生长期缩短(NEE<0的天数)、植物多样性下降、土壤含水量降低等因素密切相关. C1 Wang Bin, College of Life Sciences, Nankai University, Tianjin 300071, China. Li Jie, College of Life Sciences, Nankai University, Tianjin 300071, China. Jiang Weiwei, College of Life Sciences, Nankai University, Tianjin 300071, China. Gu Song, College of Life Sciences, Nankai University, Tianjin 300071, China. Zhao Liang, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Z6 王斌, 南开大学生命科学学院, 天津 300071, 中国. 李洁, 南开大学生命科学学院, 天津 300071, 中国. 姜微微, 南开大学生命科学学院, 天津 300071, 中国. 古松, 南开大学生命科学学院, 天津 300071, 中国. 赵亮, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. EM songgu@nankai.edu.cn Z7 songgu@nankai.edu.cn Z8 24 Z9 30 UT CSCD:4652663 DA 2023-03-23 ER PT J AU Hu Mengyao Zhang Lin Luo Tianxiang Shen Wei Z2 胡梦瑶 张林 罗天祥 沈维 TI Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang,China Z1 西藏紫花针茅叶功能性状沿降水梯度的变化 Z3 植物生态学报 SO Acta Phytoecologica Sinica VL 36 IS 2 BP 136 EP 143 AR 1005-264X(2012)36:2<136:XZZHZM>2.0.TX;2-A PY 2012 DT Article AB Aims Stipa purpurea is the dominant species in alpine arid and semi-arid grasslands on the Tibetan Plateau.Our objectives are to determine if this species exhibits a strategy shift in its specific leaf area(SLA) to nitrogen(N) concentration relationship along a rainfall gradient and to detect possible effects of environmental factors on re-lated leaf traits.Methods We investigated variations in leaf traits of S.purpurea associated with climatic and soil factors along an east-west transect with a rainfall gradient(69-479 mm) but similar altitudes(4 300-4 700 m).Five locations from east to west are Damxung,Namco,Gerze,Mount Qomolangma and Rutog.We measured SLA,mass-and area-based leaf N concentration(N_(mass),N_(area)),leaf density and thickness and soil total N along the transect.Important findings In pooled data,SLA and N_(mass) varied little with the growing season mean temperature and precipitation and the soil total N concentration.The SLA-N_(mass) relationship in S.purpurea did not shift between the semi-humid areas(ratio of rainfall to evaporation > 0.11) and the arid and semi-arid areas(ratio < 0.11),al-though there was a positive correlation between SLA and N_(mass) across the five locations.Variation in SLA was mainly determined by leaf density in the semi-humid areas and by leaf thickness in the arid and semi-arid areas;both were negatively correlated with SLA.With increasing temperature or declining precipitation,leaf density de-creased and leaf thickness increased,leading to non-significant relationships between SLA and climatic factors.The increase of leaf density in the semi-humid areas was correlated with the increase of N_(area),but the increase of leaf thickness in the arid and semi-arid areas did not lead to change of N_(area),resulting in unchanged Narea along the rainfall gradient.A positive correlation was detected between aboveground biomass and N_(area) in S.purpurea,indi-cating that increased N_(area) may increase plant productivity.Our findings suggest that alpine plants in arid and semi-arid areas may maintain a constant N_(area) by increased leaf thickness in order to achieve a similar photosyn-thetic productivity and water use efficiency compared to the relatively humid areas.The relative impacts of leaf density and leaf thickness on SLA shifted between the semi-humid areas and the arid and semi-arid areas,which may provide insight in detecting the threshold of water limitation in alpine grasslands. Z4 植物叶功能性状与环境因子的关系是近10年来植物生态学的研究热点。该文以广泛分布于青藏高原干旱、半干旱草地的优势植物种紫花针茅(Stipa purpurea)为研究对象,沿降水梯度(69-479mm)系统测定了日土、改则、珠峰、当雄和纳木错5个调查地点紫花针茅比叶面积(SLA)、单位 重量和单位面积叶氮含量(N_(mass),N_(area))、叶密度和厚度等叶功能性状以及土壤全氮含量等因子,试图验证干旱胁迫地区同一物种内SL A-N_(mass)关系沿降水梯度的策略位移现象是否具有普遍性,并对是否出现策略位移现象提出可能的解释。研究结果表明:1)SLA和N_(mass )与生长季温度和降水以及土壤全氮含量均没有显著关系,SLA与N_(mass)的关系在干旱半干旱区(年降水/蒸发比<0.11)与半湿润区(年降水/ 蒸发比>0.11)之间并没有出现典型的位移现象;2)叶密度是决定半湿润区SLA变化的主导因子,而叶厚度则是干旱半干旱区SLA变化的控制因子,两者 与SLA均呈负相关,随着温度增加或降水减少,叶厚度增加而叶密度降低,导致SLA随温度和降水变化不明显;3)半湿润区的叶密度增加引起N_(area )增加,而干旱半干旱区的叶厚度增加并没有造成N_(area)的显著变化,导致N_(area)沿降水梯度没有显著变化;4)紫花针茅地上生物量与N_ (area)具有显著正相关关系,表明N_(area)的增加有助于提高植被生产力。结果表明,在干旱胁迫下,植物通过增加叶厚度来维持不变的N_(ar ea)可能有助于保持与较湿润地区相似的光合生产和水分利用效率。叶厚度和叶密度对比叶面积的相对影响在干旱半干旱区与半湿润区之间发生转变,这为进一步 检测高寒草地植被的水分限制阈值提供了新思路。 C1 Hu Mengyao, Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100085, China. Zhang Lin, Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100085, China. Luo Tianxiang, Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100085, China. Shen Wei, Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences, Beijing 100085, China. Z6 胡梦瑶, 中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京 100085, 中国. 张林, 中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京 100085, 中国. 罗天祥, 中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京 100085, 中国. 沈维, 中国科学院青藏高原研究所, 中国科学院青藏高原环境变化与地表过程重点实验室, 北京 100085, 中国. EM zhanglin@itpcas.ac.cn Z7 zhanglin@itpcas.ac.cn Z8 17 Z9 26 UT CSCD:4457846 DA 2023-03-23 ER PT J AU Guo Xiaowei Han Daorui Du Yangong Lin Li Zhang Fawei Li Yikang Li Jing Liu Shuli Cao Grangmin Z2 郭小伟 韩道瑞 杜岩功 林丽 张法伟 李以康 李婧 刘淑丽 曹广民 TI Methane Flux of Dominant Species of Alpine Meadow on the Qinghai-Tibetan Plateau Z1 青藏高原高寒草甸优势植物种对大气甲烷行为分异机制 Z3 山地学报 SO Journal of Mountain Science VL 30 IS 4 BP 470 EP 477 AR 1008-2786(2012)30:4<470:QZGYGH>2.0.TX;2-J PY 2012 DT Article AB To determine the methane flux of dominant species of alpine meadow,we had done a indoor cultivation of 15 kinds of dominant species by using closed chamber-GC method from may to august in 2009,and did a comparative study on cross-section treatment and longitudinal treatment to find the effect factors of plants methane emission rate.The result shows that,8 species of them emitted methane,the other 7 absorbed methane,7 out of 11 herb species emitted methane and 3 out of 5 shrub species sborbed methane;Mehtane flux rate remarkably influenced by temperature(p<0.05),Q10 of these methane emission plants was 1.75,then Q10 of the asorbtion plants was 1.44;methane emission rate increased by 10.9%~244.06% after the cross-section treament,and plants methane emission rate increased by 27.04%~37.44% to longitudinal treament,all the shrub species methane flux decline after cross-section and longitudinal treament.The methane emission rate to longitudinal treament was significantly higher than the other two treatments(p<0.05). Z4 采集青藏高原高寒草甸15种优势植物进行室内沙培实验,利用静态箱-气相色谱法测定其甲烷通量,以确定其对大气甲烷的源汇效应;对植物体实施横切、纵切处 理,研究植物甲烷排放的机制。结果显示:8种植物为大气甲烷的源,多为草本植物,7种为大气甲烷的汇,多数灌木植物吸收甲烷;横切、纵切处理对于植物甲烷 释放速率的影响显著(p<0.05),释放甲烷的植物中5种植物纵切后甲烷释放速率增加,增幅10.9%~244.06%,6种植物横切后甲烷释放速率增 加,增幅27.04%~37.44%,灌丛植物在横切、纵切处理后甲烷通量都呈降低的趋势;对植物纵切处理后甲烷释放速率显著高于未处理与横切处理后植物 甲烷释放速率,推测是由于几种处理间对于植物维管束处的气腔破坏程度不同造成的;温度对于植物的甲烷行为影响显著(p<0.05),随着温度的升高植物甲 烷的源/汇效应均呈现增加趋势,甲烷源植物Q10=1.75,甲烷汇植物Q10=1.44。 C1 Guo Xiaowei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Han Daorui, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Du Yangong, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Jing, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Liu Shuli, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Cao Grangmin, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Z6 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 韩道瑞, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李婧, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 刘淑丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM xwguo1206@163.com; Caogm@nwipb.cas.cn Z7 xwguo1206@163.com; Caogm@nwipb.cas.cn Z8 3 Z9 5 UT CSCD:4626489 DA 2023-03-23 ER PT J AU Yu Jianlong Shi Hongxiao Z2 于健龙 石红霄 TI Changes of Microbes Population in the Different Degraded Alpine Meadows on the Qinghai-Tibetan Plateau Z1 高寒草甸不同退化程度土壤微生物数量变化及影响因子 Z3 西北农业学报 SO Acat Agriculturae Boreali-Occidentalis Sinica VL 20 IS 11 BP 77 EP 81 AR 1004-1389(2011)20:11<77:GHCDBT>2.0.TX;2-P PY 2011 DT Article AB Quantity of bacteria, fungi and actinomycetes were studied at different degraded Alpine Meadow by the way of pour plate method on the Qinghai-Tibetan Plateau. The results showed that microbes population, especially fungi population sharply decreased because belowground- biomass, aboveground-biomass, soil organic matter, total-N, total-P decreased significantly(P<0.05). Obviously, belowground biomass was positively correlated to microbes population (P<0.05) just as soil organic matter and microbes population. Moreover, there was significant correlation between total-N and microbes population. What was more, biomass, dominated biomass, soil organic matter and total-N had significant negatively correlated to fungi population (P<0.05). In contrast, altitude, bared area had significant negative correlation with fungi population (P<0.05). Z4 应用稀释平板法对青藏高原不同退化程度高寒草甸土壤0~30 cm土层的细菌、真菌和放线菌数量特征进行对比分析。结果表明,随着高寒嵩草草甸退化程度的加剧,地下生物量、生物量、优良牧草生物量、土壤有机质、全氮 及全磷都显著降低(P<0.05),土壤微生物数量随之大幅度减少,尤其是真菌数量显著降低(P<0.05)。植被地下生物量、土壤有机质及全氮与土壤微 生物数量显著正相关(P<0.05)。植被地下生物量、优良牧草生物量、有机质、全氮与真菌数量呈显著正相关(P<0.05);海拔和裸地面积与真菌数量 呈显著负相关(P<0.05)。 C1 Yu Jianlong, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China. Shi Hongxiao, Grassland Research Institute of Chinese Academy of Agriculture Science, Hohhot, Inner Mongolia 010000, China. Z6 于健龙, 兰州大学草地农业科技学院, 兰州, 甘肃 730000, 中国. 石红霄, 中国农业科学院草原研究所, 呼和浩特, 内蒙古 010000, 中国. EM yujl09@lzu.edu.cn Z7 yujl09@lzu.edu.cn Z8 11 Z9 12 UT CSCD:4373227 DA 2023-03-23 ER PT J AU Yu Kailiang Chen Ning Yu Sisheng Wang Gang Z2 余开亮 陈宁 余四胜 王刚 TI Effects of species composition on canopy rainfall storage capacity in an alpine meadow, China Z1 物种组成对高寒草甸植被冠层降雨截留容量的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 31 IS 19 BP 5771 EP 5779 AR 1000-0933(2011)31:19<5771:WZZCDG>2.0.TX;2-W PY 2011 DT Article AB Canopy rainfall storage capacity (S) strongly affects the rainfall interception (I) processes and is therefore a parameter that is required in rainfall interception models. Most investigations of rainfall interception loss concentrate on forests, while a paucity of information is available for alpine meadow interception. Previous studies suggest that meadow degradation leads to reduced aboveground biomass, leaf area index (LAI) and subsequent reduction in S. However, the effect of changes in species composition on S is poorly understood. In this paper, we estimted herbaceous S along three different stages of alpine meadow degeneration (non-degraded, lightly degraded and moderately degraded) in the Qinghai-Tibetan Plateau, China, and evaluated the effect of changes in species composition on S. The water soakage method and the water budget balance method using rain simulations were used to estimate S. While evaluating the effect of changes in species composition on S, K-means clustering was used to objectively classify all the species into four groups with the greatest possible differences of specific storage capacity per unit one-sided leaf area (S L ) between their average values and the minimum variance within each group. We found that alpine meadow degeneration significantly reduced S (P <0.05). In non-degraded, lightly degraded and moderately degraded alpine meadows, S estimated using the water soakage method were 0.612 mm, 0.289 mm, 0.217 mm, respectively; S estimated using the water budget balance method were 0.979 mm, 0.493 mm, 0.419 mm, respectively. This implies the importance of considering the evaporation(E )during rainfall in evaluating the eco-hydrological significance of significant reduction in S during meadow degeneration. The effect of changes in species composition on S was highlighted by the fact that the reduction in S was firstly more than and then less than the proportional reduction in LAI along the three different stages of alpine meadow degradation. This could be explained by the following: (1) In non-degraded meadow, Potentilla arserina was the dominant species, accounting for 31.18% of the total leaf area; in lightly degraded meadow, graminoid plants were the dominant species, accounting for 44.41% of the total leaf area, while Potentilla arserina was a rare species with a leaf area of only 3.76%; in moderately degraded meadow, Potentilla arserina was the dominant species with a leaf area of 19.91%, respectively; (2) S L of Potentilla arserina was approximately 2.5 times greater than that of graminoid plants. We concluded that the difference of S L among different species and the magnitude of change in each species leaf area relative to the total leaf area during meadow degeneration together determined the effect of changes in species composition on S. The larger the difference of S L among different species and the magnitude of change in species leaf area relative to the total leaf area are, the larger the effect of changes in species composition on S will be. Z4 高寒草甸退化减少地上生物量、叶面积指数(LAI),因而减少冠层降雨截留容量(S)。但是,未有研究评价物种组成改变对S的影响。用水浸泡法和水量平衡 法研究青藏高原高寒草甸3个不同退化阶段下(未退化、轻度退化、中度退化)的S变化规律,并评价物种组成改变对S的影响。结果表明:高寒草甸退化显著减少 S(P<0.05)。在未退化、轻度退化、中度退化的高寒草甸,水浸泡法测得的S分别为0.612 mm,0.289 mm 和0.217 mm;水量平衡法测得的S分别为0.979 mm,0.493 mm 和0.419 mm。物种组成改变对S的影响表现为:随着高寒草甸的3个不同退化阶段,S减少的幅度先大于后小于LAI减少的幅度。原因是:(1)在未退化的草甸,鹅绒 委陵菜(Potentilla arserina)的叶面积占有显著优势,占总叶面积的31.18%;在轻度退化的草甸,禾本科植物(Graminoid)的叶面积占有显著优势,占总叶 面积的44.41%,而鹅绒委陵菜是稀有种,仅占总叶面积的3.76%;在中度退化的草甸,鹅绒委陵菜的叶面积占有显著优势,占总叶面积的19.91%; (2)鹅绒委陵菜的叶单位面积吸附水量(SL )是禾本科植物的大约2.5倍。 C1 Yu Kailiang, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China. Wang Gang, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China. Chen Ning, School of Life Science, Lanzhou University, Lanzhou 730000, China 2 Ezhou Academy of Forest Sciences, Lanzhou, Gansu 730000, China. Yu Sisheng, Ezhou Academy of Forest Sciences, Ezhou, 436062. Z6 余开亮, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 陈宁, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 王刚, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. 余四胜, 鄂州林业科学研究所, 鄂州, 436062. EM wgmg36@lzu.edu.cn Z7 wgmg36@lzu.edu.cn Z8 8 Z9 8 UT CSCD:4355565 DA 2023-03-23 ER PT J AU LIU Lin SUN Geng WU Yan HE Yixin WU Ning ZHANG Lin XU Junjun Z2 刘琳 孙庚 吴彦 何奕忻 吴宁 张林 徐俊俊 TI Effect of Seasonal Snow Cover on Soil Nitrogen Mineralization in an Alpine Meadow on the Eastern Tibetan Plateau Z1 季节性雪被对青藏高原东缘高寒草甸土壤氮矿化的影响 Z3 应用与环境生物学报 SO Chinese Journal of Applied and Environmental Biology VL 17 IS 4 BP 453 EP 460 AR 1006-687X(2011)17:4<453:JJXXBD>2.0.TX;2-E PY 2011 DT Article AB Transects of three snow cover regimes with different snow depths and duration,which included a shallow and short duration snowpack (SS),a moderate snow depth and medium duration snowpack (MS),as well as a deep and long duration snowpack (DS),were laid out in an alpine meadow on the eastern Tibetan Plateau of China based on the natural snow distribution pattern.The soil temperature and moisture under different snow conditions were measured continuously,and the soil net ammonification rate,net nitrification rate and net N mineralization rate,as well as the soil ammonium and nitrate contents were measured monthly with in-situ incubation method for the different snow regimes during the autumnwinter transition.The results indicated that the relationship between daily mean,maximum soil temperature in each month and snow depth was significant and well fitted with quadratic regression respectively (R2 = 0.576,0.685).Mean values of daily maximum soil temperatures were highly correlated with snow cover depths,and 25 cm depth of snow cover effectively decoupled the soil temperature from air temperature.Soil moisture markedly affected snow depth and soil temperature.At the end of the autumn-winter transition,nitrate content declined significantly under SS.Furthermore,net N mineralization rate was significantly correlated to mean values of daily mean,maximum and minimum soil temperature in each month under snow cover respectively (R2 = 0.589,0.541,0.601).The results showed that seasonal snow cover affected soil nitrogen mineralization significantly resulting from its marked effect on the soil temperature and moisture,and deeper snowpack could lead to faster rates of net ammonification,nitrification and N mineralization.Fig 7,Tab 2,Ref 36 Z4 依据自然雪被分布的差异,在青藏高原东缘高寒草甸中设置3条样带(即深雪、中等厚度雪被和浅雪),于2008年的秋冬过渡期,连续监测各样带中的雪被厚度 和土壤温度,并采用原位培养法测定每月的土壤氮素氨化、硝化和矿化速率,以研究不同厚度雪被对高寒草甸土壤氮矿化的影响,结果表明,月均土温、每月日最高 土温均值分别与雪被厚度极显著相关,二次函数关系拟合较好(R2= 0.576,0.685),且根据每月日最高土温均值与雪被厚度的二次函数关系方程可知,25 cm厚的雪被可以起到较好的隔绝效果;土壤含水量受雪被厚度和土壤温差两个因素的显著影响.在秋冬过渡期末,浅雪梯度下土壤硝态氮含量显著降低,且雪被下 的净氮矿化速率与月均土温、每月日最高土温均值、每月日最低土温均值都分别呈极显著相关,二次函数关系拟合较好(R2= 0.589,0.541,0.601).研究表明,不同厚度的雪被对土壤温度和含水量影响显著,从而显著地影响着土壤氮的矿化,深雪更有利于氨化、硝化和 氮矿化.图7表2参36 C1 LIU Lin, ECORES Lab,Chengdu Institute of Biology,Chinese Aeademy of Sciences, Ya'an, sichuan 610041, China. SUN Geng, ECORES Lab,Chengdu Institute of Biology,Chinese Aeademy of Sciences, Chengdu, Sichuan 610041, China. WU Yan, ECORES Lab,Chengdu Institute of Biology,Chinese Aeademy of Sciences, Chengdu, Sichuan 610041, China. HE Yixin, ECORES Lab,Chengdu Institute of Biology,Chinese Aeademy of Sciences, Chengdu, Sichuan 610041, China. WU Ning, ECORES Lab,Chengdu Institute of Biology,Chinese Aeademy of Sciences, Chengdu, Sichuan 610041, China. ZHANG Lin, ECORES Lab,Chengdu Institute of Biology,Chinese Aeademy of Sciences, Chengdu, Sichuan 610041, China. XU Junjun, College of Animal Science and Technology,Sichuan Agricultural University, Ya'an, sichuan 625014, China. Z6 刘琳, 中国科学院成都生物所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 孙庚, 中国科学院成都生物所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 吴彦, 中国科学院成都生物所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 何奕忻, 中国科学院成都生物所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 吴宁, 中国科学院成都生物所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 张林, 中国科学院成都生物所, 中国科学院生态恢复重点实验室, 成都, 四川 610041, 中国. 徐俊俊, 四川农业大学动物科技学院, 雅安, 四川 625014, 中国. EM wuning@cib.ac.cn Z7 wuning@cib.ac.cn Z8 8 Z9 8 UT CSCD:4275528 DA 2023-03-23 ER PT J AU WU Pengfei YANG Daxing Z2 吴鹏飞 杨大星 TI Effect ofhabitat degradation on soil meso-and microfaunal communities in the ZoigeAlpine Meadow,Qinghai-Tibetan Plateau Z1 若尔盖高寒草甸退化对中小型土壤动物群落的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 31 IS 13 BP 3745 EP 3757 AR 1000-0933(2011)31:13<3745:REGGHC>2.0.TX;2-X PY 2011 DT Article AB Soil fauna plays an important role in nutrient cycling and energy flow,and is also an important driver of ecosystem succession.The Qinghai-Tibetan Plateau,with an area of 2.5 million square kilometers,and elevation of over 4,500 meters,has been called "the third polar area of the earth".The wetlands of the Qinghai-Tibetan Plateau are an important biodiversity area.The Zoige Wetland,located on the eastern Qinghai-Tibetan Plateau,is a typical example of an alpine meadow.Since the 1950s,the Zoige Wetland has degraded as a result of global change and human activity,and parts have become desert-like with little plant coverage.The effect of this degradation on the structure and diversity of the below-ground soil biota is unknown.To investigate the effects of degradation on the soil meso-and microfauna in Zoige Alpine Meadow,three degradation stages(marsh meadow,grassland meadow and sand meadow)were selected,and examined in July and October,2008.A total of 9,450 individuals were captured from the soil meso-and microfauna,and classified into 4 phyla,5 classes,12 orders,70 families and 104 taxa.The community was found to be dominated by nematodes,accounting for 85.79% of the individuals.Other common taxonomic groups were Arachnida(8.73%),Collembola(3.24%),Oligochaeta(1.32%),and insects(0.88%).In both July and October,abundance,richness and diversity in soil meso-and microfaunal communities were observed to be significantly less(P<0.01 and P<0.05)for each degradation stage.Differences among the three degradation stages were more significant in October.No significant changes were recorded in the Shannon diversity index,Pielou′s index,and Simpson′s diversity index(P>0.05).Percentages in each taxonomic group varied,without an obvious trend.The sand meadow had a greater relative abundance of Arachnida to Collembola than did the marsh meadow or the grassland meadow.The Sorensen similarity index showed a decline as degradation progressed,but this was not observed with the Morisita-Horn similarity index.Degradation thus had a greater influence on composition of the soil meso-and microfaunal community than on individuals belonging to dominant taxonomic groups.Diversity was higher in October than in July,as indicated by the higher values obtained for the taxonomic groups,diversity index,Sorenson similarity index and Morisita-Horn similarity index.This suggested that seasonal change can influence the structure and composition of the soil community.Furthermore,seasonal similarities between the three meadow stages,as shown by the Sorenson and Morisita-Horn indices,indicated that seasonal changes have a greater effect on taxonomic composition in the sand meadow than in the grassland meadow.The opposite pattern was observed for the abundance of dominant taxonomic groups.A greater number of individuals and taxonomic groups were found in the surface layer of the soil as degradation increased.Serious degradation of alpine meadows can significantly reduce taxonomic diversity and structural complexity within these meso-and microfaunal soil communities.Clearly this influences the ecological functions of alpine meadows. Z4 土壤动物是陆地生态系统物质循环和能量流动的中心环节,也是生态系统演化的重要驱动因子。为了查明青藏东缘若尔盖高寒草甸生态系统退化过程对中小型土壤动 物群落的影响,2008年7月和10月分别对若尔盖高寒草甸沼泽草甸、草原草甸和沙化草甸3个不同退化阶段的中小型土壤动物群落进行了调查。共分离到中小 型土壤动物9450个,隶属于4门5纲12目70科104类(科、属等小类群);优势大类群中,线虫(Nematode)个体数占85.79%;蜱螨目( Arachnida)、弹尾目(Collembola)、寡毛纲(Oligochaeta)和昆虫纲(Insect)依次占8.73%、3.24%、1. 32%和0.88%。群落密度、类群数、Margalef丰富度指数和密度-类群指数均在7、10两月份均随高寒草甸的退化而显著降低(P<0.01或P <0.05),10月份的差异更明显。Shannon多样性指数、Pielou均匀性指数和Simpson优势度指数无显著变化(P>0.05)。各主要 类群个体数在群落中所占的比例呈波动性变化,但沙化可使蜱螨目与弹尾目的数量比值(A/C)相对提高。随退化程度的加重,3个退化阶段的Sorenson 群落相似性逐渐降低,而Morisita-Horn相似性的变化则不同,说明高寒草甸的退化对中小型土壤动物群落物种组成的影响较大,对群落优势类群数量 的影响较小。10月份的群落密度、多样性和群落相似性均高于7月份,表明群落结构组成受季节的影响;但是各退化阶段的Sorenson和Morisita -Horn季节相似性比较说明,季节变化对沙化草甸土壤动物种类组成的影响大于草原草甸,对草原草甸土壤动物群落优势类群数量的影响大于沙化草甸。个体密 度和类群数的表聚性程度也随退化加重而降低。以上研究结果表明,高寒草甸的退化能够降低土壤动物群落的组成种类和结构复杂性,将会影响其生态服务功能。 C1 WU Pengfei, College of Life Science and Technology,Southwest University for Nationalities, Chengdu, Sichuan 610041, China. YANG Daxing, College of Life Science and Technology,Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Z6 吴鹏飞, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 杨大星, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. EM wupf@swun.cn Z7 wupf@swun.cn Z8 30 Z9 33 UT CSCD:4310954 DA 2023-03-23 ER PT J AU Xiang Zeyu Wang Changting Song Wenbiao Silangshenggen Garongrenqing Dawazeren Zhaxiluobu Z2 向泽宇 王长庭 宋文彪 四郎生根 呷绒仁青 达瓦泽仁 扎西罗布 TI Advances on soil enzymatic activities in grassland ecosystem Z1 草地生态系统土壤酶活性研究进展 Z3 草业科学 SO Pratacultural Science VL 28 IS 10 BP 1801 EP 1806 AR 1001-0629(2011)28:10<1801:CDSTXT>2.0.TX;2-U PY 2011 DT Article AB Soil enzymes play an important role in the soil ecosystem nutrient cycling and energy flow. Therefore, the study of soil enzymatic activities has important significance to investigate the structure, function and sustainable development of grassland ecosystem. The research of soil enzymes has experienced three different historical periods which were foundation period(Before 1950s), fast development period(1950-1980s) and mutual penetration with other disciplines period(1980s). Soil enzymes are mainly derived from soil microbe. They can be divided into six categories which were oxidoreductase, hydrolase, transferase, lyase, ligase and isomerase. This paper summarizes several factors affecting soil enzymatic activities of grassland ecosystem, such as degradation levels, fertilization, grazing, soil microbe, season and so on. Based on previous research, we concluded that: 1) soil enzymatic activities tend to decrease with the aggravation of degradation, 2) soil enzymatic activities could be increased to some extent by fertilization, 3) soil enzymatic activities increased by light grazing but reduced by heavy grazing, 4) soil enzymatic activities positively correlated with soil microbe, 5) soil enzymatic activities varied with season. Finally, aprospect to the research and development of the relationship between degradation, restoration and improvement of Qinghai-Tibet plateau alpine meadow ecosystem and soil enzymatic activities was made. Z4 土壤酶在土壤生态系统的物质循环和能量流动方面扮演着重要角色, 研究土壤酶活性对于探讨草地生态系统结构、功能及其可持续发展有着重要的意义。土壤酶的研究历经20世纪50年代以前的奠定时期, 20世纪50-80年代的迅速发展时期和20世纪80年代以后与其他学科相互渗透的时期。土壤酶主要来源于土壤微生物, 分为六大类, 即氧化还原酶、水解酶、转移酶、裂合酶、连接酶和异构酶。本研究总结了不同退化程度、施肥、放牧、土壤微生物、季节变化等因素对草地生态系统土壤酶活性的 影响, 结果表明, 随着退化程度的加重, 土壤酶活性呈降低趋势; 施肥在一定程度上能增强土壤酶活性; 轻度放牧会使土壤酶活性增加, 重度放牧会使土壤酶活性降低; 土壤微生物与土壤酶活性呈显著正相关关系; 土壤酶活性随季节变化有一定的规律性波动。最后, 本研究对青藏高原高寒草甸生态系统的退化、恢复和治理与土壤酶活性关系的研究发展前景进行了展望。 C1 Xiang Zeyu, College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Wang Changting, College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Song Wenbiao, Huangyuan Agricultural Technology Promotion Center in Qinghai Province, Huangyuan, Qinghai 812100, China. Silangshenggen, Daofu Agriculture and Animal Husbandry and Technology Bureau in Sichuan Province, Daofu, Sichuan 626400, China. Garongrenqing, Daofu Agriculture and Animal Husbandry and Technology Bureau in Sichuan Province, Daofu, Sichuan 626400, China. Dawazeren, Daofu Agriculture and Animal Husbandry and Technology Bureau in Sichuan Province, Daofu, Sichuan 626400, China. Zhaxiluobu, Daofu Agriculture and Animal Husbandry and Technology Bureau in Sichuan Province, Daofu, Sichuan 626400, China. Z6 向泽宇, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 王长庭, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 宋文彪, 青海省湟源县农业技术推广中心, 湟源, 青海 812100, 中国. 四郎生根, 四川省道孚县农牧和科技局, 道孚, 四川 626400, 中国. 呷绒仁青, 四川省道孚县农牧和科技局, 道孚, 四川 626400, 中国. 达瓦泽仁, 四川省道孚县农牧和科技局, 道孚, 四川 626400, 中国. 扎西罗布, 四川省道孚县农牧和科技局, 道孚, 四川 626400, 中国. EM xiang0712@foxmail.com; wangct@swun.edu.cn Z7 xiang0712@foxmail.com; wangct@swun.edu.cn Z8 32 Z9 32 UT CSCD:4342293 DA 2023-03-23 ER PT J AU Wu Hong An Ru Li Xiaoxue Qu Chunmei Lu Ling Yang Renmin Gong Tianyu Z2 吴红 安如 李晓雪 曲春梅 陆玲 杨仁敏 龚天宇 TI Remote sensing monitoring of grassland degradation based on NPP change in the Maduo County of the sources region of Yellow River Z1 基于净初级生产力变化的草地退化监测研究 Z3 草业科学 SO Pratacultural Science VL 28 IS 4 BP 536 EP 542 AR 1001-0629(2011)28:4<536:JYJCJS>2.0.TX;2-S PY 2011 DT Article AB Maduo County is a typical grassland degradation area in the sources region of Yellow River or even in the sources region of the Sanjiangyuan(the Yangtze River, the Yellow River, and the Lancang River).In this study, the net primary productivity(NPP) of the grassland was derived from the Landsat TM data and the relative auxiliary data in 2008 based on CASA model. Furthermore, taking the reduced percentage of the NPP as measurement index, grassland degradation information was obtained. Compared the grassland degradation information in 2008 to those in 1997, this study showed that the area of severely degraded grassland decreased by 5 944 km2;and distributing in the north region of Maduo County. The monitoring results also showed that grassland degradation level was related to grassland type. Alione steppe was severe degradation, and alpine meadow was middle degradation, wetland was light degradation Z4 青海省玛多县是黄河源乃至整个三江源地区草地退化的典型区域.本研究利用2008年玛多县TM影像数据结合相关辅助数据,以光能利用率模型为基础,反演研 究区草地净初级生产力(net primary productivity,NPP).并以NPP减少的百分数D(由实际NPP和潜在NPP计算)作为指标,提取2008年玛多县草地退化信息.通过与玛 多县1997年草地资源调查结果对比,至2008年玛多县重度退化草地面积减少了5 944 km2,且主要发生在北部.对监测结果进行分析发现,草地退化与草地类型有关系,表现为高寒草原类草地退化最为严重,高寒草甸其次,沼泽类草地情况较好 C1 Wu Hong, School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China. An Ru, School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China. Li Xiaoxue, School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China. Qu Chunmei, School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China. Lu Ling, School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China. Yang Renmin, School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China. Gong Tianyu, School of Earth Sciences and Engineering, Hohai University, Nanjing, Jiangsu 210098, China. Z6 吴红, 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国. 安如, 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国. 李晓雪, 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国. 曲春梅, 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国. 陆玲, 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国. 杨仁敏, 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国. 龚天宇, 河海大学地球科学与工程学院, 南京, 江苏 210098, 中国. EM whkybs123@126.com Z7 whkybs123@126.com Z8 13 Z9 15 UT CSCD:4184645 DA 2023-03-23 ER PT J AU Sun Feida Long Ruijun Guo Zhenggang Liu Wei Gan Youmin Chen Wenye Z2 孙飞达 龙瑞军 郭正刚 刘伟 干友民 陈文业 TI Effects of rodents activities on plant community and soil enVironment in alpine meadow Z1 鼠类活动对高寒草甸植物群落及土壤环境的影响 Z3 草业科学 SO Pratacultural Science VL 28 IS 1 BP 146 EP 151 AR 1001-0629(2011)28:1<146:SLHDDG>2.0.TX;2-T PY 2011 DT Article AB The Three-River Headwaters Region is main part of Qinghai-Tibetan plateau, known as China' "watertower", and is the assembling region with rich biodiversities and a gene pool of plateau biology. However, the climate warming, glacier decreasing, over grazing cause the grassland to degenerate in the recent years, and high-intensity rodents activities undoubtedly exacerbated the pace and process of grassland degradation. Rodent activities not only play positive role in the alpine meadow ecosystem but also play negative role in the alpine meadow ecosystem, and scientifically qualifying threshold of rodent activities is urgent. Based on field survey data in Guoluo autonomous prefecture, Qinghai province, and many documents. this study summarized the effectiveness of rodent activities on plant community and soil environment in alpine meadow, and suggested that the rational rodent population density benefited sustainable utilization of grassland resources and grassland conservation Z4 三江源区是青藏高原的重要组成部分,素有"中华水塔"之称,同时也是世界高海拔区生物多样性最丰富、最集中的地区,有"高原生物基因库"之称.但由于近年 来气候变暖、冰川退缩、过度放牧等因素致使三江源区草地退化严重,其中频繁的鼠类活动无疑进一步加剧了草地退化的速度和进程.鼠类活动对三江源区整个草甸 生态系统既有消极的作用,又有积极作用,但是目前尚缺乏系统科学的量化研究.本文在对三江源区典型区域青海省果洛州主要鼠类种群调查和查阅大量文献资料的 基础上,探讨了鼠类活动对三江源区高寒草句植物群落及土壤环境的影响,结果表明,维持适宜的鼠类种群密度对于三江源区高寒草句的可持续发展和草地资源保护 具有重要的作用 C1 Sun Feida, Department of Grassland Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China. Liu Wei, Department of Grassland Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China. Gan Youmin, Department of Grassland Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China. Long Ruijun, International Centre for Tibetan Plateau Ecosystem Managemert, Lanzhou, Gansu 730020, China. Guo Zhenggang, International Centre for Tibetan Plateau Ecosystem Managemert, Lanzhou, Gansu 730020, China. Chen Wenye, Gansu Forestry Science and Technology Research Academy, Lanzhou, Gansu 730020, China. Z6 孙飞达, 四川农业大学草业科学系, 雅安, 四川 625014, 中国. 刘伟, 四川农业大学草业科学系, 雅安, 四川 625014, 中国. 干友民, 四川农业大学草业科学系, 雅安, 四川 625014, 中国. 龙瑞军, 兰州大学青藏高原生态系统管理国际中心, 兰州, 甘肃 730020, 中国. 郭正刚, 兰州大学青藏高原生态系统管理国际中心, 兰州, 甘肃 730020, 中国. 陈文业, 甘肃省林业科学研究院, 兰州, 甘肃 730020, 中国. EM sunfd08@163.com Z7 sunfd08@163.com Z8 26 Z9 35 UT CSCD:4116381 DA 2023-03-23 ER PT J AU ZHANG Yulong LU Xiaoliang YANG Chende Z2 张宇龙 卢小良 杨成德 TI A Preliminary Study on the Isolation and Characterization of Inorganic Phosphate-solubilizing Bacteria in Soil of Alpine Grasslands in Eastern Qilian Mountains Z1 东祁连山高寒草地土壤无机磷溶解菌分离及溶磷能力初探 Z3 草地学报 SO Acta Agrestia Sinica VL 19 IS 4 BP 560 EP 564 AR 1007-0435(2011)19:4<560:DQLSGH>2.0.TX;2-S PY 2011 DT Article AB Inorganic phosphate-solubilizing bacteria were isolated from soil of five different alpine grassland types in the Eastern Qilian Mountains of the Qinghai-Tibetan Plateau,west of China.Physiological and biochemical characteristics were investigated to understand their potential utilization.Three phosphate-solubilizing bacteria strains and nitrogen fixation bacteria,wp1,wp2 and wp3 possess strong inorganic phosphorus solubility.Results also show that three bacteria have positive response to oxidase and catalase,but negative response to gelatin,nitrate reduction and V.P..The wp1 can use glutamic acid and extractum carnis on the tested nitrogen source,but wp2 cannot use cysteine and ammonia chloride.The wp3 can use glutamic acid,cystine and catalase.When pH>9,wp1 and wp3 grow declined,but wp2 grows well.Both wp2 and wp3 are tolerant to salt concentration in excess of 3%(NaCl),while wp1 is tolerant to 6% NaCl. Z4 使用传统的微生物分离培养法,对5种不同类型的高寒草地土壤中无机磷溶解菌进行了分离培养,并对优势溶磷细菌生理生化特征进行测定,以期为其开发利用提供 依据。结果表明:从不同类型的高寒草地土壤中分离和筛选出28种固氮、溶磷细菌,其中wp1,wp2和wp3菌株溶磷能力较强,其氧化酶、接触酶反应均呈 阳性,对明胶、硝酸和V.P.均呈阴性;对供试氮源wp1仅可以利用谷氨酸和牛肉膏,wp2不能利用胱氨酸和氯化铵,wp3可以利用谷氨酸、胱氨酸、牛肉 膏;当pH>9时,wp3和wp1生长开始下降,wp2仍表现生长良好;当氯化钠浓度大于3%,wp2和wp3生长受到胁迫,大于6%时,wp1生长受到 胁迫。 C1 ZHANG Yulong, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem,Ministry of Education;;Sino-U.S.Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China. YANG Chende, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem,Ministry of Education;;Sino-U.S.Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China. LU Xiaoliang, College of Agriculture,South China Agricultural University, Guangzhou, Guangdong 510642, China. Z6 张宇龙, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 杨成德, 甘肃农业大学草业学院, 草业生态系统教育部重点实验室;;中-美草地畜牧业可持续发展研究中心, 兰州, 甘肃 730070, 中国. 卢小良, 华南农业大学农学院, 广州, 广东 510642, 中国. EM long333999@163.com; yangcd@gsau.edu.cn Z7 long333999@163.com; yangcd@gsau.edu.cn Z8 5 Z9 5 UT CSCD:4273901 DA 2023-03-23 ER PT J AU ZHU Tianhong CHENG Shulan FANG Huajun YU Guirui ZHENG Jiaojiao LI Yingnian Z2 朱天鸿 程淑兰 方华军 于贵瑞 郑娇娇 李英年 TI Early responses of soil CO_2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan Plateau Z1 青藏高原高寒草甸土壤CO_2排放对模拟氮沉降的早期响应 Z3 生态学报 SO Acta Ecologica Sinica VL 31 IS 10 BP 2687 EP 2696 AR 1000-0933(2011)31:10<2687:QZGYGH>2.0.TX;2-D PY 2011 DT Article AB Soil-atmosphere carbon dioxide (CO_2)exchange is a key carbon cycling process in terrestrial ecosystems.To assess the effects of atmospheric N deposition on the C budget of an alpine meadow ecosystem on the Qinghai-Tibetan Plateau,it is necessary to explore the responses of soil-atmosphere CO_2 exchange to N addition.Since 2007,a multi-form,low-level N addition experiment has been conducted at the Haibei Alpine Meadow Ecosystem Research Station on the Qinghai Tibetan Plateau.Three N fertilizers,NH4Cl,(NH4)SO4,and KNO3,were added at four rates:control (0 kg N hm~(-2)a~(-1)),low N (10 kg N hm~(-2)a~(-1)),medium N (20 kg N hm~(-2)a~(-1)),and high N (40 kg N hm~(-2)a~(-1)).Each N treatment has three replicates.Each plot has an area of 9 m2(3 m x 3 m)and a 2 m isolation band is set between adjacent plots.During the growing season (May to September),soil CO_2 effluxes were monitored weekly by static chamber and gas chromatograph techniques.Parallel to the flux measurements,soil temperature at the soil surface and at 5 cm and 10 cm depth and soil moisture at 10 cm depth were recorded.Soil ammonium and nitrate contents and aboveground biomass were measured monthly to examine the key factors driving soil CO_2 efflux.N addition did not alter soil temperature,but significantly changed soil moisture content.Both low and high levels of N addition tended to reduce soil moisture,whereas a medium level of N input maintained soil moisture.This mainly depended on the soil moisture balance of precipitation,soil evaporation and plant transpiration.N addition slightly increased the soil NH4-N pool but did not significantly change the NO-N pool.Competition for soil available N between plants and soil microorganisms,priority use of nitrate by plants,and removal by livestock grazing are responsible for this lack of significant accumulation in the soil nitrate pool.In control plots,soil CO_2 efflux from alpine meadow soils ranged from 120.9 to 1000.4 mg CO_2 m~(-2)h~(-1),with an average of 544.7 40.0 mg CO_2 m~(-2)h~(-1).N addition significantly increased aboveground biomass and soil CO_2 efflux.Ammonium-N fertilizer promoted soil CO_2 efflux more significantly than did nitrate-N fertilizer,which was mainly attributed to competition and cooperation in the use of multi-form nitrogen between plants and soil microorganisms.Soil CO_2 efflux was mainly driven by soil temperature,followed by aboveground biomass and the NH-N pool.This indicates that the contribution of heterotrophic respiration to CO_2 efflux from the alpine meadow soil is greatest,followed by autotrophic respiration from plant roots.Soil NH:-N accumulation can increase the contribution of root autotrophic respiration and soil microbial heterotrophic respiration,suggesting that CO_2 emissions from alpine meadow soil are sensitive to exogenous N input.Chronic atmospheric N deposition will stimulate CO_2 emission from alpine meadow soils on the Qinghai-Tibetan Plateau in the short term.We can also deduce that chronic N deposition may accelerate degradation of the grazing alpine meadow ecosystem. Z4 研究大气氮沉降输入对青藏高原高寒草甸土壤-大气界面CO_2交换通量的影响,对于准确评价全球变化背景下区域碳平衡至关重要。通过构建多形态、低剂量的 增氮控制试验,利用静态箱-气相色谱法测定土壤CO_2排放通量,同时测定相关土壤变量和地上生物量,分析高寒草甸土壤CO_2排放特征及其主要驱动因子 。研究结果表明:低、高剂量氮输入倾向于消耗土壤水分,而中剂量氮输入有利于土壤水分的保持;施氮初期总体上增加了土壤无机氮含量,铵态氮累积效应更为显 著;施氮显著增加地上生物量和土壤CO_2排放通量,铵态氮的促进效应显著高于硝态氮。另外,土壤CO_2排放通量主要受土壤温度驱动,其次为地上生物量 和铵态氮储量。上述结果反映了氮沉降输入短期内可能刺激了植物生长和土壤微生物活性,加剧了土壤-大气界面 CO_2排放。 C1 ZHU Tianhong, Graduate University of Chinese Academy of Sciences, Beijing 100049, China. CHENG Shulan, Graduate University of Chinese Academy of Sciences, Beijing 100049, China. ZHENG Jiaojiao, Graduate University of Chinese Academy of Sciences, Beijing 100049, China. FANG Huajun, Institute of Geographical Sciences and Natural Resources Research Chinese Academy of Sciences, Beijing 100101, China. YU Guirui, Institute of Geographical Sciences and Natural Resources Research Chinese Academy of Sciences, Beijing 100101, China. LI Yingnian, Northwest Plateau Institute of Biology,CAS, Xining, Qinghai 810001, China. Z6 朱天鸿, 中国科学院研究生院, 北京 100049, 中国. 程淑兰, 中国科学院研究生院, 北京 100049, 中国. 郑娇娇, 中国科学院研究生院, 北京 100049, 中国. 方华军, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 于贵瑞, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 李英年, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM slcheng77@yahoo.com Z7 slcheng77@yahoo.com Z8 25 Z9 30 UT CSCD:4205093 DA 2023-03-23 ER PT J AU DU Yue LIU Baokang GUO Zhenggang Z2 杜玉娥 刘宝康 郭正刚 TI Changes of forage biomass of grasslands during the growing season in the Qinghai-Tibetan Plateau based on MODIS data Z1 基于MODIS的青藏高原牧草生长季草地生物量动态 Z3 草业科学 SO Pratacultural Science VL 28 IS 6 BP 1117 EP 1123 AR 1001-0629(2011)28:6<1117:JYMDQZ>2.0.TX;2-G PY 2011 DT Article AB Grassland biomass is an important indicator to evaluate the ecological vulnerability and sensitivity,and is also an important indicator to assess the grassland degradation.In this study,the NDVI index and EVI index from MODIS data and the field data from 326 plots in the grassland were used to establish and optimize the prediction models of grassland biomass for different grassland types,and then established model was applied to estimate the annual and monthly grassland biomass during the period from 2002 to 2009.This study showed that the alpine meadow biomass retrieval model was y=6.202 5x2-574.89x+14 586,here,x was NDVI;alpine steppe biomass retrieval model was y=0.1 665 5x17 732,here,x was EVI.The biomass of alpine steppe and meadow showed a fluctuant trend during the period 2002-2009,and the fluctuation range of alpine meadow was bigger than that of alpine steppe.The biomass of alpine steppe and meadow increased from June to August,and decreased from August to September,the fluctuation range of alpine steppe was bigger in July and smaller in August than that of alpine meadow,however,the fluctuation range in June and September was not obvious between alpine meadow and alpine steppe. Z4 草地生物量是评价青藏高原生态脆弱性和敏感性的重要指标,也是度量草地退化的重要指标。本研究利用MODIS植被指数NDVI和EVI资料及青藏高原三江 源地区326个样方实测数据,构建并优化了研究区不同类型草地生物量的预测模型,估算了2002-2009年期间草地生物量年际和月际变化特征。结果表明 ,高寒草甸地上生物量适宜植被指数为NDVI,反演模型为,y=6.202 5x2-574.89x+14 586,高寒草原地上生物量适宜植被指数为EVI,反演模型为,y=0.165 5x1.773 2。高寒草甸和高寒草原生物量在2002-2009年表现为波动状态,但高寒草甸比高寒草原波动幅度大。高寒草甸和高寒草原生物量在6-8月间均持续增加 ,9月开始下降,但7月高寒草原生物量波动大于高寒草甸,8月高寒草原生物量波动小于高寒草甸,6月和9月两种草地类型生物量波动不明显。 C1 DU Yue, College of Pastoral Agriculture Science and Technology,Lanzhou University,Key Laboratory of Grassland and Agro-Ecosystems,Ministry of Agriculture, Lanzhou, Gansu 730020, China. LIU Baokang, College of Pastoral Agriculture Science and Technology,Lanzhou University,Key Laboratory of Grassland and Agro-Ecosystems,Ministry of Agriculture, Lanzhou, Gansu 730020, China. GUO Zhenggang, College of Pastoral Agriculture Science and Technology,Lanzhou University,Key Laboratory of Grassland and Agro-Ecosystems,Ministry of Agriculture, Lanzhou, Gansu 730020, China. Z6 杜玉娥, 兰州大学草地农业科技学院, 兰州大学草地农业科技学院农业部草地农业生态系统学重点开放实验室, 兰州, 甘肃 730020, 中国. 刘宝康, 兰州大学草地农业科技学院, 兰州大学草地农业科技学院农业部草地农业生态系统学重点开放实验室, 兰州, 甘肃 730020, 中国. 郭正刚, 兰州大学草地农业科技学院, 兰州大学草地农业科技学院农业部草地农业生态系统学重点开放实验室, 兰州, 甘肃 730020, 中国. EM guozhg@lzu.edu.cn Z7 guozhg@lzu.edu.cn Z8 2 Z9 5 UT CSCD:4220140 DA 2023-03-23 ER PT J AU Xiong Yuanqing Wu Pengfei Zhang Hongzhi Cui Liwei He Xianjin Z2 熊远清 吴鹏飞 张洪芝 崔丽巍 何先进 TI Dynamics of soil water conservation during the degradation process of the Zoige Alpine Wetland Z1 若尔盖湿地退化过程中土壤水源涵养功能 Z3 生态学报 SO Acta Ecologica Sinica VL 31 IS 19 BP 5780 EP 5788 AR 1000-0933(2011)31:19<5780:REGSDT>2.0.TX;2-U PY 2011 DT Article AB Zoige wetland, located on the eastern Qinghai-Tibetan Plateau, is the largest area alpine wetland and headwaters of Yangtse Rive and Yellow River, and plays an important role in the water cycling. But in recent decades, Zoige wetland degraded seriously under the influence of global change and human disturbance. The investigations were conducted at three degradation stages of swampy meadow, grassland meadow and sandy meadow to study the dynamics of soil water conservation functions during the alpine wetland degradation progress. The result showed that: (1) the soil bulk density increased significantly (P<0.01), and the capillary porosity and total porosity decreased significantly (P<0.01) during the alpine wetland degenerating from swampy meadow to grassland meadow and sandy meadow, with change of vertical distribution along soil profile, (2) significant decreases (P<0.01) were recorded in the natural water holding-capacity, capillary water-holding capacity, minimum water-holding capacity and maximum water-holding capacity during the degradation process; (3) the maximum water-holding capacity within 0100 cm soil depth significantly reduced (P<0.01) from 8486.27 t/hm2 of swampy meadow to 4944.98 t/hm2 of grassland meadow and 4637.96 t/hm2 of sandy meadow and (4) the soil water-holding capacities are positively correlated (P<0.01) with the soil organic material content, capillary porosity and total porosity, but negatively with soil bulk density (P<0.01), as well as influenced by plant coverage and depth of peat soil indirectly. These results indicated that the degradation of Zoige alpine wetland can led to the decline of soil water conservation function and the decreases of plant coverage, soil organic material and peat soil depth are the basically reasons for the reduce of water conservation function. Z4 若尔盖湿地是青藏高原上面积最大的沼泽湿地,也是长江、黄河两大河流的水源区,对区域水循环起重要调节作用。近年来在全球变化及放牧的影响下,若尔盖湿地 出现了不同程度的退化。为了查明若尔盖湿地退化过程中水源涵养功能的变化趋势,2009年8月对该区域的沼泽草甸、草原草甸和沙化草甸3个阶段的土壤水源 涵养功能进行了调查。结果为:若尔盖湿地由沼泽草甸向草原草甸和沙化草甸的退化过程中,土壤容重显著增加(P<0.01),毛管孔隙度和总孔隙度显著下降 (P<0.01),且容重和孔隙度在土壤剖面自然分布规律也发生变化;沼泽草甸的土壤自然含水量、毛管持水量、最小持水量和最大持水量均显著高于草原草甸 和沙化草甸(P<0.01);0100 cm 深度范围内的沼泽草甸土壤的最大持水量(8486.27 t/hm2 )显著高于草原草甸(4944.98 t/hm2 )和沙化草甸(4637.96 t/hm2 )(P<0.01)。土壤持水量与有机质含量、毛管孔隙度和总孔隙度有显著正相关(P<0.01),与土壤容重呈显著负相关(P<0.01),并受植被盖 度和泥炭层厚度的影响。研究结果表明,若尔盖湿地退化过程中植被盖度、土壤有机质含量及泥炭层厚度的下降和土壤质地沙化是导致若尔盖湿地水源涵养功能下降 的主要原因。 C1 Xiong Yuanqing, Ruoergai Forestry Bureau in Aba Autonomous Prefecture in Sichuan Province, Ruoergai, 624500. Cui Liwei, Ruoergai Forestry Bureau in Aba Autonomous Prefecture in Sichuan Province, Ruoergai, 624500. He Xianjin, Ruoergai Forestry Bureau in Aba Autonomous Prefecture in Sichuan Province, Ruoergai, 624500. Wu Pengfei, Life Sciences and Technologies of Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Zhang Hongzhi, Life Sciences and Technologies of Southwest University for Nationalities, Chengdu, Sichuan 610041, China. Z6 熊远清, 四川省阿坝州若尔盖县林业局, 若尔盖, 624500. 崔丽巍, 四川省阿坝州若尔盖县林业局, 若尔盖, 624500. 何先进, 四川省阿坝州若尔盖县林业局, 若尔盖, 624500. 吴鹏飞, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. 张洪芝, 西南民族大学生命科学与技术学院, 成都, 四川 610041, 中国. Z8 45 Z9 49 UT CSCD:4355566 DA 2023-03-23 ER PT J AU WANG Yibo WU Qingbai NIU Fujun Z2 王一博 吴青柏 牛富俊 TI The Impact of Thermokarst Lake Formation on Soil Environment of Alpine Meadow in Permafrost Regions in the Beiluhe Basin of the Tibetan Plateau Z1 长江源北麓河流域多年冻土区热融湖塘形成对高寒草甸土壤环境的影响 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 33 IS 3 BP 659 EP 667 AR 1000-0240(2011)33:3<659:CJYBLH>2.0.TX;2-S PY 2011 DT Article AB One objective of this paper is to investigate the influence of thermokarst lake formation on the soil environment and properties(including soil texture,water content,bulk density,soil nutrient)of alpine meadow in permafrost regions of the Beilu River basin.Especially,the soil organic matter,total nitrogen,other chemical substances and nutrients of the soils with various degree of vegetation degradation at the topsoil have been influenced considerably.Among all the components,the content of organic matter and total nitrogen have changed most evidently,and the content of organic matter and total nitrogen in non-degraded slash is the richest,followed by the moderately degraded slash,and that in the severely degradation slash is the poorest.Whereas,change in total P and total K contents is the least.Correlation analysis demonstrates that there is a deep relation between thermokarst lake formation and vegetation degradation.Formation and developing of thermokarst lake result in soil texture and soil nutrient changing.Finally,the conclusion can be drawn that there is a significant impact of thermokarst lake formation on ecological environment in permafrost regions. Z4 通过对长江源北麓河流域多年冻土区热融湖塘及湖塘影响周边条件下高寒草甸土壤理化性质的比较研究,结果表明:热融湖塘的形成对高寒草甸土壤环境产生了明显 影响,热融湖塘形成对土壤质地、含水量、容重以及土壤养分等产生强烈改变,尤其表层土壤;土壤机质(SOM)、全氮(N)等化学物质和其他养分成分在不同 退化的土壤中都有所改变.有机质和全N的含量随植被退化变化最多,呈现原始未退化迹地>热融湖塘影响迹地>湖塘核心迹地的趋势,全P和全K的含量变化较小 ,土壤水分含量也有相同的变化趋势.通过分析发现,热融湖塘的形成和发展导致土壤环境退化增强,土壤质地的改变和土壤养分成分的改变有严格的相关性,与土 壤物质之间的变化有密切的关系,说明热融湖塘的形成对冻土区生态环境产生一定的影响. C1 WANG Yibo, State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, Gansu 730000, China. WU Qingbai, State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, Gansu 730000, China. NIU Fujun, State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, Gansu 730000, China. Z6 王一博, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 吴青柏, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 牛富俊, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. EM yibo_wang@163.com Z7 yibo_wang@163.com Z8 23 Z9 26 UT CSCD:4254900 DA 2023-03-23 ER PT J AU Tian Fuping Chen Zixuan Z2 田福平 陈子萱 TI Effects of Artificial Disturbance on Maqu Alpine Degraded Meadow Z1 人为干扰对玛曲高寒退化草地的影响 Z3 中国农学通报 SO Chinese Agricultural Science Bulletin VL 27 IS 20 BP 1 EP 5 AR 1000-6850(2011)27:20<1:RWGRDM>2.0.TX;2-# PY 2011 DT Article AB In recent years, degradation of Tibetan plateau Maqu alpine meadow has become increasingly serious. Maqu County of Gansu Province located in the first bend of the Yellow River, which is the main catchment area and the important water sources conservation areas of upper Yellow River, it added Yellow River water about 45%. However, nearly 90% of the natural meadow has appeared degradation and made wetlands shrinking in Maqu County for increasing in population and livestock, the predatory business to serious degradation of meadows. Desertification area of more than 5*10 4 hm 2, and the annual increasing rate is 10.8%. The author reviewed recent effects of artificial disturbance on Maqu alpine degraded meadow. It had important significance to Maqu County of alpine grassland ecological environment restoration and desertification control. Z4 近年来玛曲高寒草地退化日趋严重,位于黄河第一弯的甘肃省玛曲县是黄河径流重要的汇集区和黄河上游至源头的重要水源涵养区。补充黄河水量约达45%,但由 于人口和牲畜的增加,掠夺式经营使草场退化严重,湿地萎缩。全县近90%的天然草地出现了不同程度的退化和沙化,其中沙化面积达5*10~4 hm~2以上,且每年以10.8%的速度蔓延。笔者综述了近年来人为干扰对玛曲高寒退化草地的影响,对玛曲县高寒草地生态环境恢复和沙漠化防治有重要意义 。 C1 Tian Fuping, Institute of Biotechnology, Gansu Academy of Agricultural Sciences, The Lanzhou Scientific Observation and Experiment Field Station of Ministry of Agriculture for Ecological System in Loess Plateau Areas, Lanzhou, Gansu 730070, China. Chen Zixuan, Pratacultural College of Gansu Agricultural University, Lanzhou, Gansu 730070, China. Z6 田福平, 甘肃省农业科学院生物技术研究所, 农业部兰州黄土高原生态环境重点野外科学观测试验站, 兰州, 甘肃 730070, 中国. 陈子萱, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. EM tianfp@163.com; chenzxv@163.com Z7 tianfp@163.com; chenzxv@163.com Z8 2 Z9 2 UT CSCD:4385847 DA 2023-03-23 ER PT J AU Hu Wenxiang Li Wei Du Guozhen Z2 胡文祥 李伟 杜国祯 TI Responses of two dominant grasses to fertilization based on species traits in an alpine meadow Z1 基于物种性状的两种高寒草甸优势禾草对施肥的响应 Z3 兰州大学学报. 自然科学版 SO Journal of Lanzhou University. Natural Science VL 47 IS 6 BP 68 EP 74 AR 0455-2059(2011)47:6<68:JYWZXZ>2.0.TX;2-Q PY 2011 DT Article AB Using dominant grass Elymus nutans and Kobresia capillfolia in the eastern Qinghai-Tibetan plateau as target plants, the responses of height, number of tillers, number of leavers, specific leaf area, leaf N content and species relative abundance of the plants to different fertilization treatments were studied in the field condition. The results showed that Elymus nutans possessed a high plasticity in all five traits and SRA and they increased significantly with each additional fertilization rate. The height and leaf N content of Kobresia capillfolia also increased significantly, but the increase rate was less than Elymus nutans; fertilization had no significant effect on the number of tillers, number of leaves and of Kobresia capillfolia; species relative abundance (SRA) of Kobresia capillfolia significantly declined with fertilization, which was inverse with Elymus nutans. Differences in the morphological plasticity and species relative abundance between Kobresia capillfolia and Elymus nutans indicated that they had different plasticity to fertilization. Elymus nutan was more adaptive to high fertilization than Kobresia capillfolia. Z4 以青藏高原东部高寒草甸优势牧草垂穗披碱草和线叶嵩草为研究对象,在野外条件下,研究了垂穗披碱草和线叶嵩草的高度、分蘖数、叶片数、比叶面积、叶氮质量 分数等五个植物性状以及它们在群落中相对多度对四种不同施肥处理的响应.结果表明:随着施肥量的增加,垂穗披碱草的高度、分蘖数、叶片数、比叶面积、叶氮 质量分数和相对多度显著增加.线叶嵩草的高度、叶氮质量分数随着施肥量的增加显著增加,但增加幅度小于垂穗披碱草的;施肥对线叶嵩草的分蘖数、叶片数和比 叶面积没有显著影响;随着施肥量的增加,线叶嵩草的相对多度显著下降,这与垂穗披碱草相反.两种优势牧草的物种性状以及它们在群落中的相对多度的显著差异 反映出两种牧草对施肥有不同的可塑性,垂穗披碱草比线叶嵩草更能适应高施氮条件. C1 Hu Wenxiang, Key Laboratory of Arid and Grassland Ecology with the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Li Wei, Key Laboratory of Arid and Grassland Ecology with the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Du Guozhen, Key Laboratory of Arid and Grassland Ecology with the Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Z6 胡文祥, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 李伟, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 杜国祯, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. EM guozdu@lzu.edu.cn Z7 guozdu@lzu.edu.cn Z8 0 Z9 1 UT CSCD:4409467 DA 2023-03-23 ER PT J AU CAI Xiaobu PENG Yuelin Z2 蔡晓布 彭岳林 TI Influence of Bacterial Quantitiy in Mycorrhizosphere on Species Diversity of Arbuscular Mycorrhizal Fungi in an Alpine Grassland on the Tibetan Plateau Z1 高寒草原菌根围细菌数量对丛枝菌根真菌物种多样性的影响 Z3 应用与环境生物学报 SO Chinese Journal of Applied and Environmental Biology VL 17 IS 4 BP 473 EP 479 AR 1006-687X(2011)17:4<473:GHCYJG>2.0.TX;2-I PY 2011 DT Article AB Based on spore identification,the influence of bacterial quantity in mycorrhizosphere of dominant grasses on species diversity of arbuscular mycorrhizal fungi (AMF)was investigated in an alpine grassland on North Tibetan Plateau.The results indicated that:1)When the bacterial number was in the range of 1.02 x 106 to 2.96 x 106 and 3.01 x 106 to 6.06 x 106 g-1,Glomus and Acaulospora were the dominant genera and Scutellospora was the common genera.The spore density,isolation frequency,relative abundance,importance value and species richness (SN,SR)of AMF showed the similar trend of Glomus > Acaulospora > Scutellospora.2)When the bacterial number was below 3.0 x 106 g-1,spore density of each AMF genus and species richness (SR)were relatively high.The Shannon-Weiner index and species evenness index were 1.774 and 0.127,respectively.3)The spore density of AMF declined slightly with the increase of bacterial number,whereas the root infection rate,infection intensity and arbuscule richness of AMF tended to increase.The effect was remarkable when the bacterial number was over 3.0 x 106 g-1.4)Regardless of bacterial number,the species of AMF was mainly composed of common species and dominant species (Glomus was the main genus),and rare species and unique species were less reported.Spore density,relative abundance and importance value differed greatly among different genera of AMF.Fig 6,Tab 3,Ref 25 Z4 基于丛枝菌根真菌(Arbuscular mycorrhizas fungi,AMF)孢子形态学鉴定,研究了藏北高寒草原主要建群植物菌根围细菌数量对AMF物种多样性的影响,结果表明:1)细菌数量1.02x10~ 6~2.96x10~6、3.Olx10~6~6.06x10~6个/g范围内,Glomus、Acaulospora均为优势属,Scutellosp ora则均为最常见属;AMF孢子密度、分离频度、相对多度、重要值和种的丰度(SN、SR)均呈Glomus>Acaulospora> Scutellospora属的趋势.2)细菌数量较低时(<3.Ox10~6个/g),AMF各属孢子密度、种的丰度(SR)相对较高,Shannon -Weiner指数、物种均匀度指数亦较高,分别达1.774和0.127.3)不同细菌数量条件下,孢子密度随细菌数量的增加而均呈微弱下降,菌根侵染 率、侵染强度、丛枝丰度则均呈不同程度的提高.细菌数量>3.OX10~6个/g时,菌根侵染率、侵染强度和丛枝丰度随细菌数量增加而提高的趋势尤为明显 .4)不同细菌数量条件下,AMF种的构成呈共有种、共有优势种较多(Glomus属均占绝对比重),特有种、稀有种较少,以及不同优势种孢子密度、相对 多度和重要值差异均较悬殊的分布特征,图6表3参25 C1 CAI Xiaobu, College of Resources and Environment,China Agricultural University, Beijing 100094, China. PENG Yuelin, College of Resources and Environment,China Agricultural University, Beijing 100094, China. Z6 蔡晓布, 中国农业大学资源与环境学院, 北京 100094, 中国. 彭岳林, 中国农业大学资源与环境学院, 北京 100094, 中国. EM caitw21@suhu.com Z7 caitw21@suhu.com Z8 0 Z9 0 UT CSCD:4275531 DA 2023-03-23 ER PT J AU Feng Ruizhang Zhou Wanhai Long Ruijun Ma Yushou Z2 冯瑞章 周万海 龙瑞军 马玉寿 TI Characteristics of Soil Physical, Chemical and Biological Properties on Degraded Alpine Meadows in the Headwater Areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau Z1 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究 Z3 土壤通报 SO Journal of Soil Science VL 41 IS 2 BP 263 EP 269 AR 0564-3945(2010)41:2<263:JHYQBT>2.0.TX;2-O PY 2010 DT Article AB The series of physical, chemical, biological properties and their relationships of Alpine pasture soil of three layers (0 - 10, 10 - 20, 20 - 30 cm) at four different degradation successional stages (undegraded, lightly degraded, moderately degraded and heavily degraded) in the headwater region of Yangtze and Yellow rivers were analyzed in this study. The results showed that under the ecological conditions of the Qing-hai Tibetan Plateau, Alpine meadow degradation had consistent effects on soil physical, chemical and biological properties. With increased meadow degradation grades, soil bulk density at all of the 0 - 30 cm layers showed a increasing trend, while soil moisture content and water stable aggregates ( > 0.25 mm) content at three layers decreased significantly. Soil organic carbon contents as well as available N, the activities of soil enzymes (catalase, urease, neutral phosphatase), the quantities of soil microorganisms (Bacteria, Fungi and total Microorganisms) at 0 - 10 cm and 10 - 20 cm soil layers showed a decreasing trend with meadow degradation. Soil total N, P, available K, quantities of soil actinomycetes at 0 - 10 cm and 10 - 20 cm soil layers were increased in lightly degradation meadow but decreased in moderately and heavily degraded meadows compared with no degradation meadow. There were significantly (P < 0.05 or P < 0.01) positive relationships between the quantities of soil microorganisms (Bacteria, Fungi and Actinomycetes), the activities of three mentioned soil enzymes (except for soil urease and neutral phosphatase related insignificant); three mentioned soil enzymes and three soil microorganisms groups were significantly related to the soil moisture content, bulk density, organic C, total N, available N and available K; soil water stable aggregates were also significantly related to soil microorganisms groups and neutral phosphatase Z4 以不同退化梯度的高寒草地土壤为研究对象,研究草地退化对不同层次(0~10cm、10~20cm和20~30cm)土壤物理、化学和生物学特征的影响. 结果表明:江河源区高寒生态条件下草地退化对土壤物理、化学和生物学性质具有相对一致的影响,随草地退化程度的加重,各土层土壤含水量和水稳性团聚体百分 数逐渐下降,土壤容重则呈增加趋势. 草地退化导致土壤各种营养物质含量(除全钾)、土壤微生物群落和土壤酶活性显著下降,其中土壤有机质、速效氮、过氧化氢酶、脲酶、磷酸酶、土壤细菌、真菌 和微生物总量在0~10cm土层表现为未退化>轻度退化>中度退化>重度退化,而土壤全氮、全磷、速效钾和放线菌数量在0~10cm土层表现为轻度退化> 未退化>中度退化>重度退化,在10~30cm土层,则表现为严重退化草地的有些指标有一定程度升高. 相关性分析结果表明,各种土壤酶和微生物群落之间呈显著或极显著正相关(除土壤脲酶和中性磷酸酶之间无显著相关性外);土壤水分,容重、有机碳、全氮、速 效氮、速效钾与各种土壤酶和各种微生物均具有显著相关性;水稳性团聚体与各种微生物和中性磷酸酶具有显著相关性 C1 Feng Ruizhang, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhou Wanhai, College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Long Ruijun, International Centre for Tibetan Plateau Ecosystem Management of Lanzhou University, Lanzhou, Gansu 730010, China. Ma Yushou, Institute of Grassland Science, Qinghai Academy of Animal and Veterinary Science, Xining, Qinghai 810003, China. Z6 冯瑞章, 中国科学院西北高原生物研究所, 西宁, 青海 810008, 中国. 周万海, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 龙瑞军, 兰州大学草青藏高原生态系统管理国际中心, 兰州, 甘肃 730010, 中国. 马玉寿, 青海省畜牧兽医科学院草原研究所, 西宁, 青海 810003, 中国. EM ruizhangfeng@126.com; longrj@lzu.edu.cn Z7 ruizhangfeng@126.com; longrj@lzu.edu.cn Z8 51 Z9 55 UT CSCD:3957443 DA 2023-03-23 ER PT J AU Burenbayin Xu Guangping Duan Jichuang Chang Xiaofeng Zhang Zhenhua Wang Shiping Z2 布仁巴音 徐广平 段吉闯 常小峰 张振华 汪诗平 TI Primary productivity and its main affecting factors of Alpine meadows on the Tibetan plateau Z1 青藏高原高寒草甸初级生产力及其主要影响因素 Z3 广西植物 SO Guihaia VL 30 IS 6 BP 760 EP 769 AR 1000-3142(2010)30:6<760:QZGYGH>2.0.TX;2-T PY 2010 DT Article AB Alpine meadows and shrublands are approximately 7*108 hm2 which is about 50% of the natural grasslands on the Tibtean plateau and accounts for about 16.2% of the total grassland area in China. Alpine meadow is dominated by Kobresia meadow, including K.humilis meadow, Potentilla fruticosa shrub meadow, Kobresia tibetica meadow,K.parva meadow and K.pygmaea meadow. The average aboveground biomass of the five meadows was 354.2,422.4,445.1,227.3 and 368.5 g/m2, respectively, while the belowground biomass of 0-40 or 0-50 cm soil depth was 3 389.6,3 548.3,11 922.7,4 439.3 and 5 604.8 g/m2, respectively. Their ratios of belowground and aboveground biomass were 10.55,10.15,27.82,14.82 and 15.21 respectively, which were much higher than that of the default value(2.895%)recommended by IPCC(2006). The belowground biomass or belowground net primary productivity was more sensitive to the climate change and heavy grazing than above-grassland biomass did. Drought and heavy grazing decreased the ratio of belowground to aboveground biomass, even its value was less than 2 under extreme degradation conditions. Natural restoration is possible for light or moderate degraded alpine meadow for 3-8 years. However,it should be re-constructed for heavy or extreme degraded alpine meadow due to soil quality decrease and poison plant species and weeds invasion Z4 青藏高原有各类天然草地14*108hm2,其中高寒草甸和高寒灌丛约占青藏高原天然草地面积的50%,占全国草地总面积的16.2%.嵩草草甸是高寒草 甸的主体,包括矮嵩草草甸,金露梅灌丛草甸,藏嵩草草甸,小嵩草草甸和高山嵩草草甸等,这5类高寒草甸平均地上生物量分别为354.2,422.4,44 5.1,227.3和368.5g/m2,地下生物量分别为3389.6,3548.3,11922.7,4439.3,5604.8g/m2,地下与地 上生物量的比例分别为10.55,10.15,27.82,14.82和15.21,远大于IPCC(2006)报告中地下/地上生物量比例的默认值(2 .895%).地下生物量对气候变化和放牧的反应比地上生物量更敏感,干旱和重度放牧均降低了地下/地上生物量的比例.在极度退化状态下地下/地上生物量 的比例<2.对于轻度和中度退化的高寒草甸应以围封禁牧为主要恢复措施,但如果结合补播和施肥,则恢复速率会加快;对于重度和极度退化的高寒草甸,由于草 地植物群落中优良牧草的比例极低,仅靠自然恢复很难进行恢复或需要的年限很长,所以必须采用人工重建的措施,并结合毒杂草防除和施肥等措施进行恢复,通过 建立人工或半人工草地的措施予以重建 C1 Burenbayin, Key Laboratory of Adaptation and Evolution of Plateau Biota, Haibei Alpine Meadow Ecosystem Research Station, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Duan Jichuang, Key Laboratory of Adaptation and Evolution of Plateau Biota, Haibei Alpine Meadow Ecosystem Research Station, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Chang Xiaofeng, Key Laboratory of Adaptation and Evolution of Plateau Biota, Haibei Alpine Meadow Ecosystem Research Station, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhang Zhenhua, Key Laboratory of Adaptation and Evolution of Plateau Biota, Haibei Alpine Meadow Ecosystem Research Station, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China. Xu Guangping, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, Guangxi 541006, China. Wang Shiping, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China. Z6 布仁巴音, 中国科学院研究生院, 中国科学院西北高原生物研究所高原生物适应与进化重点实验室, 西宁, 青海 810008, 中国. 段吉闯, 中国科学院研究生院, 中国科学院西北高原生物研究所高原生物适应与进化重点实验室, 西宁, 青海 810008, 中国. 常小峰, 中国科学院研究生院, 中国科学院西北高原生物研究所高原生物适应与进化重点实验室, 西宁, 青海 810008, 中国. 张振华, 中国科学院研究生院, 中国科学院西北高原生物研究所高原生物适应与进化重点实验室, 西宁, 青海 810008, 中国. 徐广平, 广西壮族自治区中国科学院广西植物研究所, 桂林, 广西 541006, 中国. 汪诗平, 中国科学院青藏高原研究所, 北京 100085, 中国. EM burenbayin@163.com; wangship2008@yahoo.cn Z7 burenbayin@163.com; wangship2008@yahoo.cn Z8 0 Z9 2 UT CSCD:4097249 DA 2023-03-23 ER PT J AU Zhang Lirong Niu Haishan Wang Shiping Li Yingnian Zhao Xinquan Z2 张立荣 牛海山 汪诗平 李英年 赵新全 TI Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species,Qinghai-Tibetan Plateau Z1 增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 30 IS 24 BP 6961 EP 6969 AR 1000-0933(2010)30:24<6961:ZWYFMD>2.0.TX;2-9 PY 2010 DT Article AB Low temperature is widely recognized as the primary limiting factor in plant growth in alpine meadows of the Qinghai-Tibetan plateau.Warming is thus supposed to alleviate temperature limitation in the area.Livestock grazing is the predominant land use in the area and is the main anthropogenic factor affecting plant growth.Grazing,while diminishing total leaf area,may raise the level of nutrient elements in the soil,and thus have the opposite effect on plant growth.Stomata apparatus play important roles in controlling the passage of CO2 into and out from plants.Since it is difficult to directly measure photosynthesis rates for most species in the area,changes in stomatal characteristics could be used as proxies to understand how the assimilation rates of plants change under warming or grazing treatments.A two-way factorial design(warming*grazing) experiment was carried out at the Haibei Research Station in Qinghai province,China.A temperature free-air controlled enhancement(T-FACE) system with arrays of infrared radiation heaters deployed by Kimball et al. was used to elevate vegetation canopy temperatures.The setpoint differences in summer were 1.2℃ in daytime and 1.7℃ at night-time,while in winter daytime and night time differences were 1.5℃ and 2.0℃ respectively.Two sheep per plot(3 m2) grazed once a month from July to September,representing a moderate level of above ground biomass utilization.Four alpine meadow species were selected in August 2008 after two years of treatment: Thalictrum aplinum,Kobresia humilis,Gentiana straminea,Elymus nutans Griseb.Fully mature leaves were selected to measure stomatal density(SD) and stomatal length(SL) and the length between the junctions of the guard cells at each end of the stoma using a Motic microscope system(Motic BA200,China).Warming decreased the SL of all four species(P=0.037),by 3.3%,1.9%,3.9%,2.7% in T.aplinum,K.humilis,G.straminea.E.nutans,respectively.Warming affected SD in a species-specific way,as indicated by a marginally significant(P=0.086) interaction between warming and species in ANOVA.Grazing increased the SD of all four species,by 12.5%,15.7% and 15.9%,2.4% in T.aplinum,K.humilis,G.straminea.E.nutans respectively.Grazing had no statistically significant effects on SL(P=0.907).Potential conductance index(PCI) was also calculated for all four species using the formula(stomatal length)2 stomatal density.Grazing increased the PCI for all four species(P=0.000),while warming decreased the PCI,but with a lower level of significance(P=0.068).There were no significant interaction effects between warming and grazing on SD,SL and PCI.The decline in SL subjected to warming might be the result of warming-generated soil drought.The rise in SD and PCI induced by grazing may imply an increase in assimilation rate per leaf area at a given grazing intensity.Since both SD and SL contributed to maximum stomatal conductance,their responses to grazing and warming counteracted each other in the case of maximum stomatal conductance.It may be the tendency that SD increase and SL decrease in grazing alpine meadow under future warming Z4 设计增温和放牧耦合试验研究增温和放牧对高寒植物气孔密度和气孔长度的影响,选择矮嵩草(Kobresia hum ilis),高山唐松草(Thalictrum aplinum),垂穗披碱草(Elymus nutans Griseb.)和麻花艽(Gentiana stram inea)作为试验材料.结果表明增温与放牧分别影响这4个物种气孔形态参数的不同方面:温度使4个物种气孔长度一致性地变小(P<0.05),放牧使气 孔密度和潜在气孔导度指数(PCI)一致性地上升(P<0.05).气孔密度对增温的响应趋势和气孔长度对放牧的响应趋势在不同物种间存在差异.气孔长度 减小可能是对增温引起的水分胁迫的响应,气孔密度和潜在气孔导度指数上升反映出四种植物在本研究相应的放牧强度下存在补偿性生长的可能 C1 Zhang Lirong, Graduate University of Chinese Academy of Sciences, Beijing 100049, China. Niu Haishan, Graduate University of Chinese Academy of Sciences, Beijing 100049, China. Wang Shiping, Key Laboratory of Adaptation and Evolution of Biota,Northern Institute of Plateau Biology,CAS, Xining, Qinghai 810001, China. Li Yingnian, Key Laboratory of Adaptation and Evolution of Biota,Northern Institute of Plateau Biology,CAS, Xining, Qinghai 810001, China. Zhao Xinquan, Key Laboratory of Adaptation and Evolution of Biota,Northern Institute of Plateau Biology,CAS, Xining, Qinghai 810001, China. Z6 张立荣, 中国科学院研究生院, 北京 100049, 中国. 牛海山, 中国科学院研究生院, 北京 100049, 中国. 汪诗平, 中国科学院西北高原生物研究所, 中国科学院植物适应与进化重点实验室, 西宁, 青海 810001, 中国. 李英年, 中国科学院西北高原生物研究所, 中国科学院植物适应与进化重点实验室, 西宁, 青海 810001, 中国. 赵新全, 中国科学院西北高原生物研究所, 中国科学院植物适应与进化重点实验室, 西宁, 青海 810001, 中国. EM niuhs@gucas.ac.cn Z7 niuhs@gucas.ac.cn Z8 28 Z9 38 UT CSCD:4102719 DA 2023-03-23 ER PT J AU YANG Zhao-ping OUYANG Hua SONG Ming-hua ZHOU Cai-ping YANG Wen-bin LIU Xiao-ping Z2 杨兆平 欧阳华 宋明华 周才平 杨文斌 刘小平 TI Species diversity and above-ground biomass of alpine vegetation in permafrost region of Qinghai-Tibetan Plateau Z1 青藏高原多年冻土区高寒植被物种多样性和地上生物量 Z3 生态学杂志 SO Chinese Journal of Ecology VL 29 IS 4 BP 617 EP 623 AR 1000-4890(2010)29:4<617:QZGYDN>2.0.TX;2-X PY 2010 DT Article AB Based on quadrat investigation,this paper studied the species composition of alpine vegetation in permafrost region of Qinghai-Tibetan Plateau,calculated the diversity index and evenness index,and approached the effects of permafrost degradation on the species diversity.During the permafrost degradation,the family number and species richness decreased,and the hygrophytes and mesophytes were gradually replaced by meso-xerophytes and xerophytes.Permafrost degradation lowered the species diversity and primary productivity,giving negative effects on the stability of alpine grassland ecosystem.There was a close parabolic relationship between species diversity and primary productivity. Z4 基于样方调查统计了青藏高原多年冻土区高寒草地生态系统植物的科属组成,计算了多样性指数和均匀度指数,探讨了多年冻土退化对高寒草地物种多样性的影响. 结果表明:多年冻土退化过程中物种组成在属和物种丰富度上呈现降低趋势,湿、中生植物逐渐被旱中生和旱生植物替代;青藏高原多年冻土退化会导致高寒草地生 态系统的物种多样性和初级生产力的降低,影响高寒草地生态系统的稳定性;物种多样性与初级生产力具有密切的抛物线型关系. C1 YANG Zhao-ping, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. OUYANG Hua, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. SONG Ming-hua, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. ZHOU Cai-ping, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. YANG Wen-bin, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. LIU Xiao-ping, Monitoring Station of Environmental Protection Center of Ordos, Ordos, Inner Mongolia 017000, China. Z6 杨兆平, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 欧阳华, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 宋明华, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 周才平, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 杨文斌, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 刘小平, 鄂尔多斯市环境保护中心检测站, 鄂尔多斯, 内蒙古 017000, 中国. EM yangzp04@163.com; ohua@igsnrr.ac.cn Z7 yangzp04@163.com; ohua@igsnrr.ac.cn Z8 13 Z9 15 UT CSCD:3849597 DA 2023-03-23 ER PT J AU Lin Huilong Wang Zhaoqi Shang Zhanhuan Z2 林慧龙 王钊齐 尚占环 TI Features on Fractal Dimension of Barren Patch and Mouse Hole among Different Degenerated Succession Stages on Alpine Meadow in the Source Region of the Yangtze and Yellow River, Qinghai-Tibetan Plateau, China Z1 江河源区"黑土滩"退化草地秃斑与鼠洞的分形特征 Z3 草地学报 SO Acta Agrestia Sinica VL 18 IS 4 BP 477 EP 484 AR 1007-0435(2010)18:4<477:JHYQHT>2.0.TX;2-# PY 2010 DT Article AB In recent years, the alpine meadow in the Source Region of the Yangtze and Yellow River had diverse degrees of degradation due to natural and human disturbance. Comprehensive analysis of formulational law for bare-ground gaps(mouse holes and barren patch) on the alpine meadow is crucial to reveal the degradation mechanisms of alpine meadow. During July-August 2009,a survey and analysis features of bare-ground gaps(mouse holes and barren patch) on the alpine meadow in different gradient of degraded meadow were conducted. Results indicate that the Patch diversity index in heavy degraded meadows is 2.8 times than that observed in medium degraded meadows. Barren patch density in Medium degraded meadow is 2.83 than that of mouse holes, meanwhile the number of mouse holes on the sample lines is 2.8 times the barren patch seen in Heavy degraded meadows. The mouse holes mainly occurr in medium, low slope and sub-low slope of heavy degraded meadows, while the relationship between total area and fragmentation de gree of mouse holes has a negative correlation. The shape index and fractal dimension of mouse holes relate the degree of degradation. There are no linear relationships between total area and fragmentation degree of barren patch. The shape index of barren patch relates the degree of degradation. The graphics of barren patch have the self similarity at the same degradation area. The hierarchical structure of barren patches is constituted among different degradation stages. As different patches have different functions for grazing-induced erosion, the significance regarding different shape characteristics of patches for grazing-induced erosion remains further investigating Z4 近年由于自然和人为因素的双重影响,导致三江源高寒草甸发生不同程度的退化. 综合分析草地土壤斑块(鼠洞和秃斑)形成的规律,对揭示高寒草甸退化机理极为重要. 于2009年7-8月对高寒草甸在不同退化梯度下的标志之一----土壤斑块(鼠洞和秃斑)特征进行了调查与分析. 结果表明:重度退化区斑块多样性指数是中度退化区的5.14倍;中度退化区秃斑斑块密度为鼠洞的2.83倍,而重度退化区样线上鼠洞的个数是秃斑的2.8 倍;重度退化区中、低和亚低坡是鼠害高发区,各坡段鼠洞总面积和鼠洞破碎度指数大体呈现反变关系,鼠洞形状和分形维数与退化程度相关;各坡段秃斑总面积和 秃斑破碎度指数并不严格呈现反变关系;秃斑形状与退化程度相关;在同一退化程度的尺度范围秃斑图形具有统计自相似性,不同的退化程度构成了秃斑的等级结构 . 由于不同斑块对于放牧侵蚀的功能不同,因此,不同斑块的不同形状特征对于土壤侵蚀的意义有待进一步探索 C1 Lin Huilong, International Center for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou, Gansu 730020, China. Wang Zhaoqi, International Center for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou, Gansu 730020, China. Shang Zhanhuan, International Center for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou, Gansu 730020, China. Z6 林慧龙, 兰州大学, 青藏高原生态系统管理国际中心, 兰州, 甘肃 730020, 中国. 王钊齐, 兰州大学, 青藏高原生态系统管理国际中心, 兰州, 甘肃 730020, 中国. 尚占环, 兰州大学, 青藏高原生态系统管理国际中心, 兰州, 甘肃 730020, 中国. EM linhuilong@lzu.edu.cn Z7 linhuilong@lzu.edu.cn Z8 9 Z9 13 UT CSCD:3979915 DA 2023-03-23 ER PT J AU Cao Guangmin Long Ruijun Zhang Fawei Li Yikang Lin Li Guo Xiaowei Han Daorui Li Jing Z2 曹广民 龙瑞军 张法伟 李以康 林丽 郭小伟 韩道瑞 李婧 TI A method to estimate carbon storage potential in alpine Kobresia meadows on the Qinghai-Tibetan Plateau Z1 青藏高原高寒矮嵩草草甸碳增汇潜力估测方法 Z3 生态学报 SO Acta Ecologica Sinica VL 30 IS 23 BP 6591 EP 6597 AR 1000-0933(2010)30:23<6591:QZGYGH>2.0.TX;2-# PY 2010 DT Article AB Alpine meadows widely distribute on the Qinghai-Tibetan Plateau and store a large amount of carbon(C) in soil.Since 70ths last century,a large area of alpine meadows have been suffering from degradation with increasing human activities(e.g.increasing grazing intensity) under climate change.There is a great potential of C storage for these large area of degenerated grassland if they are recovered in future.However,it is difficult to estimate the potential because of many uncertain factors.Base on our understanding about C processes occurred in the Kobresia meadows on the Plateau,this paper here used a time-space substitution method to investigate the location of C storage,the capacity of C storage at different stages during grassland succession and its spatial variability.And also assessed the method used for estimating the potential of C storage in alpine meadows.Mattic epipedon(M.E) is a main storage horizon in soils,which is mainly consisted of dead roots and clay.Its thickness strongly controls the capacity of C storage in alpine meadows because of high C content in M.E..The thickness of M.E.increases normally with grassland degeneration succession.The degeneration succession of alpine meadows can be divided into seven stages:(1) graminoid-Kobresia community,(2) K.humilis community,(3) K.pygmaea community,(4) M.E.thickening of K.pygmaea community,(5) M.E.cracking of K.pygmaea community,(6) M.E denuding of K.pygmaea community,and(7) Forb-black soil land.Organic C storage in roots and clay of M.E.reaches a saturated level at the M.E denuding stage,but its collapse at this stage leads to a break of ecosystem stability.A half amount of stored C can be lost due to the loss of M.E.at the black-soil type stage.Alpine meadows on the Qinghai-Tibetan Plateau are observed to be at different stages,i.e.M.E.thickening of K.pygmaea community in the northern part of the Plateau,M.E denuding of K.pygmaea community and black-soil type in the three river region and graminoid-Kobresia community in the Qilian Mountain region.The thickness of M.E.is greater in both the three river region and the northern part of the Plateau than in the Qilian Mountain region.Therefore,the potential of C storage is in an order as follows:the three river region > the Qilian Mountain region > the Sorthern Tibetan plateau.This clearly indicates that the capacity of C storage depends on M.E.thickness and grassland succession stage,with significant spatial variability across the whole plateau.Soil bulk density as an important factor in estimating the potential to store C shows a continuous decrease and thus leads to a feint of C loss with restoration of degraded grasslands because of raised soil depth by roots.This indicates that it should be corrected by the soil/root(volume) ratio when estimate C sequestration in soils.Considering both biomass production and C ecological service,alpine meadows should be maintained at the stage of graminoid-Kobresia community or K.humilis community.A suitable thickness of M.E.is about 2.0-3.1cm Z4 以广布于青藏高原的高寒矮嵩草草甸为研究对象,研究了草甸碳储存的场所,碳库容量随草甸演替的变化过程及其碳增汇潜力的空间分布格局,同时探讨了高寒草甸 碳增汇潜力估测的困惑与解决方法.结果表明,高寒草甸生态系统碳增汇潜力空间分布格局差异极大,主要受到土层厚度和草地演化进程的影响.高寒草甸碳主要贮 存于草毡表层,其增汇潜力在于退化草地草毡表层的恢复与重建.保持适宜厚度的草毡表层是协调高寒草甸生产与碳生态服务功能的关键.随着退化高寒草甸的恢复 ,土壤容重呈现下降趋势,计算其系统碳增汇潜力,需要用根土体积比进行土层深度的校正.高寒草甸具有较大的固碳潜力,但其潜力的发挥受到气候和草地恢复与 管理措施的影响,比较漫长 C1 Cao Guangmin, Gansu Agriculture University, Lanzhou, Gansu 730070, China. Long Ruijun, Gansu Agriculture University, Lanzhou, Gansu 730070, China. Zhang Fawei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Guo Xiaowei, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Han Daorui, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Jing, Northwest Institute of Plateau Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Z6 曹广民, 甘肃农业大学, 兰州, 甘肃 730070, 中国. 龙瑞军, 甘肃农业大学, 兰州, 甘肃 730070, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 郭小伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 韩道瑞, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李婧, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM longrj@lzu.edu.cn Z7 longrj@lzu.edu.cn Z8 20 Z9 22 UT CSCD:4081140 DA 2023-03-23 ER PT J AU Cao Guangmin Lin Li Zhang Fawei Li Yikang Han Daorui Long Ruijun Z2 曹广民 林丽 张法伟 李以康 韩道瑞 龙瑞军 TI A review of maintenance, loss and recovery of stability of alpine Kobresia humilis meadow on Tibetan Plateau Z1 青藏高原高寒矮嵩草草甸稳定性的维持、丧失与恢复 Z3 草业科学 SO Pratacultural Science VL 27 IS 8 BP 34 EP 38 AR 1001-0629(2010)27:8<34:QZGYGH>2.0.TX;2-C PY 2010 DT Article AB Alpine Kobresia humilis meadows are the main vegetation types on Tibetan Plateau, theirs strong ecosystem stability can play a role in maintaining the plateau ecosystem service functions. The alpine K.humilis meadow stability, including it's stability maintain mechanism, loss processes and rehabilitating ways were reviewed in order to provide the theoretical basis of sustainable utilization and recovery methods to the degraded grassland of alpine K.humilis meadow on Tibetan Plateau Z4 高寒矮嵩草(Kobresia humilis)草地是青藏高原的主要植被类型之一,其稳定性的维持对保证高原生态屏障功能发挥具有十分重要的意义. 对青藏高原高寒矮嵩草草甸稳定性的维持机制、丧失过程与恢复途径与措施,进行了综述,拟为青藏高原高寒草地的可持续利用和退化高寒草地的恢复,提供理论依 据 C1 Cao Guangmin, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Lin Li, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Zhang Fawei, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Li Yikang, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Han Daorui, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Long Ruijun, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, China. Z6 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 林丽, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 张法伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李以康, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 韩道瑞, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 龙瑞军, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM caogm@nwipb.ac.cn Z7 caogm@nwipb.ac.cn Z8 20 Z9 22 UT CSCD:3976791 DA 2023-03-23 ER PT J AU Li Xiaoyan Dong Shikui Zhu Lei Wen Lu Z2 李小艳 董世魁 朱磊 温璐 TI Net carbon dioxide exchange of plant communities on degraded and restored alpine grasslands in headwater area of Three Rivers in China Z1 三江源区高寒草地退化与恢复过程中二氧化碳净交换特征 Z3 生态学杂志 SO Chinese Journal of Ecology VL 29 IS 10 BP 1944 EP 1949 AR 1000-4890(2010)29:10<1944:SJYQGH>2.0.TX;2-F PY 2010 DT Article AB By the method of carbon assimilation chamber,we measured the photosynthetic rate, dark respiration rate, and net carbon dioxide (CO2) exchange of plant communities on the natural grasslands at different degradation levels and the artificial grasslands having been planted for different years in the Maqin County of Qinghai Province. On the natural grasslands at different degradation levels, the photosynthetic rate and dark respiration rate of plant communities had a variation trend of moderately degraded grassland < heavily degraded grassland < extremely degraded grassland < non-degraded grassland. A certain amount of CO2 was absorbed by the plant communities on the non-degraded, moderately degraded, and heavily degraded grasslands, while 1.20 mumol CO2·m-2·s-1 was released from the extremely degraded grassland. After the artificial restoration of the extremely degraded grassland, the CO2 release reduced. The mono-cultured Elymus nutans grassland established in 2000 and 2004 absorbed much more CO2 than did the mixed cultivated grassland established in 2002 and 2005. With the increasing established year of mono-cultured and mixed cultivated grasslands, the net CO2 absorption by the plant communities decreased. From the viewpoint of carbon management in Qinghai-Tibet Plateau,it was suggested that the moderately and heavily degraded alpine grasslands should be prevented from being further degraded, and the extremely degraded alpine grassland should be artificially restored in time to effectively increase the CO2 absorption by plant community Z4 采用同化箱法测定了青海省南部果洛藏族自治州玛沁县不同退化程度天然草地及不同建植年限人工草地植物群落光合作用,暗呼吸及CO2净交换量.结果表明,天 然草地植物群落光合作用过程CO2吸收量与暗呼吸作用CO2释放量的变化趋势为:中度退化草地<重度退化<极度退化<未退化草地;未退化,中度及重度退化 高寒草地植物群落净吸收CO2,而极度退化高寒草地植物群落净释放CO2.对"黑土滩"型极度退化草地进行人工恢复后,植物群落通过光合作用吸收CO2量 增加;2000和2004年建植的垂穗披碱草(Ely-musnutans)单播人工草地植物群落净吸收CO2量分别为1.33和2.3mumol CO2.m-2.s-1,大于2002和2005年混播人工草地;对单播或混播人工草地而言,随着建植年限增加,草地出现一定程度的退化现象,CO2净吸 收量也逐渐下降.从青藏高原碳管理的角度,中,重度退化草地要防止退化为"黑土滩"型极度退化草地,使其恢复到未退化程度;极度退化草地要及时进行人工恢 复,有效增加碳的吸收量 C1 Li Xiaoyan, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China. Dong Shikui, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China. Zhu Lei, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China. Wen Lu, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China. Z6 李小艳, 北京师范大学, 水环境模拟国家重点实验室, 北京 100875, 中国. 董世魁, 北京师范大学, 水环境模拟国家重点实验室, 北京 100875, 中国. 朱磊, 北京师范大学, 水环境模拟国家重点实验室, 北京 100875, 中国. 温璐, 北京师范大学, 水环境模拟国家重点实验室, 北京 100875, 中国. EM lxynmu.2008@163.com; dongshiku@isina.com Z7 lxynmu.2008@163.com; dongshiku@isina.com Z8 12 Z9 13 UT CSCD:4035767 DA 2023-03-23 ER PT J AU Wang Haijun Jin Xiaohua Li Hailong Zhang Bo Dai Shengpei Z2 王海军 靳晓华 李海龙 张勃 戴声佩 TI NDVI variation and coupling analysis with climate change in northwest of China based on GIS and RS Z1 基于GIS和RS的中国西北NDVI变化特征及其与气候变化的耦合性 Z3 农业工程学报 SO Transactions of the Chinese Society of Agricultural Engineering VL 26 IS 11 BP 194 EP 203 AR 1002-6819(2010)26:11<194:JYGHRD>2.0.TX;2-V PY 2010 DT Article AB The paper researched temporal-spatial variation of NDVI and analyzed coupling with climate changes in thenorthwest of China from 1982 to 2006 years based on the GIS and remote sencing. The results show that the NDVI of alpine meadow and deciduous needle-leaf forests increased with a rate of p=0.21%/10 a, the NDVI was ascending(p=0.27%/10 a) which attributed to the growing season delayed. Air temperature increased in Qinghai-Tibet Plateau, the south of Tianshan mountains in spring and northern Xinjiang\Hanzhong in autumn, and the range of variation of precipitation was great in boundary of semi-humid and semi-arid. The correlation coefficient was 0.62 between NDVI and temperature in the Yellow River and Yangtze River source regions. There was a great correlations between NDVI and precipitation in Hexi-Alxa\southern Xinjiang with a coefficient of 0.65. NDVI decline was attributed to precipitation too much in the Hanzhong, Qilian, Tianshan mountains in summer and autumn;NDVI of the cold regions was more sensitive to the changes of temperature and the NDVI was not raised sharply until the average monthly temperature reached to 8℃. NDVI began to decline when the temperature was more than 22℃. The NDVI came to the peak with temperature rising(19-20℃) in the non-cold and arid regions. NDVI was linear increment with the rising of precipitation,if the temperature conditions met the needs of vegetation growth in the cold region .The threshold value of monthly precipitation was 60 mm(start) and 220 mm(stop) in the arid region;The changing of NDVI was lag when the air temperature and precipitation changed in North of China Z4 整合遥感和地理信息技术,对中国西北地区近25a来NDVI时空变化特征及其与气候变化的耦合关系进行了研究,结果表明:高寒草甸和落叶针叶林的NDVI 增加趋势较明显,线性倾向率p=0.2%/10a.枯黄期推后导致NDVI明显增加,线性倾向率达0.27%/10a;青藏高原,天山南脉的春季气温和北 疆,汉中地区的秋季气温上升较明显,半湿润和半干旱过渡地区降水变幅较大;江河源地区NDVI和气温的相关系数达到0.6,河西-阿拉善,南疆等干旱地区 NDVI和降水的相关性较高,相关系数为0.65.夏,秋季汉中,祁连和天山等地区,持续降水会导致NDVI值下降;寒区NDVI对气温变化较敏感,月均 温度达到8℃,NDVI值出现快速上升.旱区温度超过22℃,植被NDVI值出现明显的回落.非寒旱区,月气温在19~20℃左右,NDVI达到峰值.寒 区当温度条件满足植被生长需要时,NDVI随降水线性增加.旱区月均降水超过60mm后NDVI开始快速上升,直到植被需水的饱和点.生长季内西北地区N DVI随气温,降水的变化存在明显滞后现象 C1 Wang Haijun, Engineering and Technical College of Chengdu University of Technology, Leshan, Sichuan 614007, China. Li Hailong, Engineering and Technical College of Chengdu University of Technology, Leshan, Sichuan 614007, China. Jin Xiaohua, Key Lab of Marine Remote Sensing Science and Marine Dynamic Information System Technology, State Oceanic Administration, Qingdao, Shandong 266061, China. Zhang Bo, College of Geography and Environmental Science, Northwest Normal University, Lanzhou, Gansu 730070, China. Dai Shengpei, College of Geography and Environmental Science, Northwest Normal University, Lanzhou, Gansu 730070, China. Z6 王海军, 成都理工大学工程技术学院, 乐山, 四川 614007, 中国. 李海龙, 成都理工大学工程技术学院, 乐山, 四川 614007, 中国. 靳晓华, 国家海洋局第一海洋研究所, 国家海洋局海洋遥感与信息系统重点实验室, 青岛, 山东 266061, 中国. 张勃, 西北师范大学地理与环境科学院, 兰州, 甘肃 730070, 中国. 戴声佩, 西北师范大学地理与环境科学院, 兰州, 甘肃 730070, 中国. EM wanghaibo.2006@163.com Z7 wanghaibo.2006@163.com Z8 31 Z9 32 UT CSCD:4065221 DA 2023-03-23 ER PT J AU XIAO Tong WANG Jun-bang CHEN Zhuo-qi Z2 肖桐 王军邦 陈卓奇 TI Vulnerability of Grassland Ecosystems in the Sanjiangyuan Region Based on NPP Z1 三江源地区基于净初级生产力的草地生态系统脆弱性特征 Z3 资源科学 SO Resources Science VL 32 IS 2 BP 323 EP 330 AR 1007-7588(2010)32:2<323:SJYDQJ>2.0.TX;2-R PY 2010 DT Article AB As a part of the Qinghai-Tibet Plateau, the grassland ecosystems in the Sanjiangyuan Region (the source regions of the Yangtze River, Yellow River, and Lancang River) is suffering an obvious eco-environmental degradation, which would greatly impact the downstream areas. Quantitative assessment of ecosystem vulnerability is critical for a better understanding of the functions and processes of ecosystems. In this present study, the authors utilized the concepts and approaches suggested by the Intergovernmental Panel on Climate Change (IPCC) to simulate spatial patterns of vulnerability in grassland ecosystems. NPP was employed to describe the ecosystem vulnerability and the concepts of adaptation and sensitivity were introduced to quantify the changes in ecosystems. If the adaptation is greater than the sensitivity, which represents a kind of characteristic sensitive to external environment changes, the ecosystem is deemed stable, vice versa. Spatial distribution of the vulnerability was derived based on NPP. The authors categorized it as four degrees, i.e., slight vulnerability, moderate vulnerability, severe vulnerability and extreme vulnerability. Through comparing the spatial distribution of the vulnerability with that of precipitation and moisture index, characteristic contours describing the vulnerability were derived. At last, it was concluded that the vulnerability across the areas exhibits an explicit trend from the west to the east. The slight vulnerability and moderate vulnerability were estimated to account for nearly 90% of the entire region, with showing larger contribution of the moderate vulnerability. The slight and moderate vulnerability are primarily distributed in the middle and eastern parts having better hydrothermal conditions. A line through Zaduo, Zhiduo, Qumalai and Chengduo counties was clearly presented and extracted to differentiate the moderate vulnerability from the slight vulnerability. The vulnerability areas in all counties and degradation districts were investigated. In this region, desertification is a major driving force responsible for severe and extreme vulnerability. In the eastern part of the Sanjiangyuan Region, there exists a moderate vulnerability portion influenced by intensive human activities, which is located in Xinghai and Tongde where there are significant changes in land use. With increases in elevation, the vulnerability increases across the region because of lower temperature and less precipitation over the high-elevation areas. Through comparing the derived vulnerability with precipitation, it was found that contours of 500 mm, 400 mm and 350 mm can generally differentiate slight, moderate, severe and extreme degrees of vulnerability. Compared vulnerability with moisture index, when the moisture index was less than 30, it can differentiate the slight vulnerability and other degrees well. Alpine grassland ecosystems dominate the study region. Alpine meadow ecosystems show slight vulnerability and moderate vulnerability whereas the alpine steppe shows the moderate vulnerability. Z4 三江源区作为青藏高原的一部分,在目前日益加剧的全球变暖和人类活动现状下,其内部的草地生态系统发生了明显的退化现象,这种退化过程极大的影响了下游地 区的生态安全.本文从生态系统最基本的净初级生产力(NPP)出发,利用IPCC提供的生态系统脆弱性的概念,建立了三江源地区基于NPP的脆弱性空间分 布格局,同时对其进行了脆弱性等级划分,发现脆弱度等级随平均高程的增加而增高,根据插值得到的降雨量和湿润指数的空间分布,发现中度以上脆弱度主要分布 在500mm等降雨量线以西,重度以上脆弱度主要分布在400mm等降雨量线以西,极度脆弱区主要分布在350mm等降雨量线以西.可见该区的脆弱度与降 雨量有很大关系.湿润指数-30等值线很好的标示了大部分中度以上脆弱度,因此可见在这一区域水热交互作用是影响植物生长的更重要的因子. C1 XIAO Tong, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. WANG Jun-bang, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. CHEN Zhuo-qi, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Z6 肖桐, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 王军邦, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 陈卓奇, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. EM xt.earth@gmail.com; jbwang@igsntt.ac.cn Z7 xt.earth@gmail.com; jbwang@igsntt.ac.cn Z8 9 Z9 15 UT CSCD:3844599 DA 2023-03-23 ER PT J AU Chen Shengyun Zhao Lin Qin Dahe Yue Guangyang Ren Jiawen Li Yuanshou Zhao Yonghua Z2 陈生云 赵林 秦大河 岳广阳 任贾文 李元寿 赵拥华 TI A Preliminary Study of the Relationships between Alpine Grassland Biomass and Environmental Factors in the Permafrost Regions of the Tibetan Plateau Z1 青藏高原多年冻土区高寒草地生物量与环境因子关系的初步分析 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 32 IS 2 BP 405 EP 413 AR 1000-0240(2010)32:2<405:QZGYDN>2.0.TX;2-5 PY 2010 DT Article AB In order to quantitatively analyze the relationships between the biomass and the environmental factors for the three types of alpine grasslands (alpine marsh meadow, alpine meadow and alpine steppe) in the permafrost regions of Tibetan Plateau, six active layer plots in the plateau were selected. The results show that the underground biomass contributes a large percentage of the total biomass in the alpine grasslands, which concentrates in the depth range from 0 to 10 cm. The factors affecting total biomass and underground biomass rank in the order: soil salinity, soil moisture content and air temperature. However, the factors affecting the aboveground biomass rank in the order: soil moisture content, soil salinity and air temperature. It is also observed that the soil temperature has a negative correlation with biomass. Furthermore, with permafrost degradation, the soil temperature significantly increases, the soil moisture content decreases gradually and the soil salinity continuously increases throughout different soil depths of the active layer (10~50 cm); As a result, a retrograde succession from alpine marsh meadow, alpine meadow to alpine steppe occurs in the alpine grasslands vegetation, and then a obvious decreasing trend will occur for the total coverage and biomass. Z4 以青藏高原多年冻土区3种高寒草地植被为研究对象,设置6个样地,并结合附近活动层观测场环境因子数据,定量分析生物量与环境因子的关系.结果表明,各高 寒草地地下生物量对总生物量的贡献率最大,而地下生物量在0~10 cm集中分布; 对于总生物量和地下生物量,各因子影响程度大小次序为:土壤盐分< 土壤含水量< 空气温度,而对地上生物量,依次为土壤含水量< 土壤盐分< 空气温度; 土壤温度同生物量存在负相关关系.同时,伴随多年冻土退化,活动层表层不同深度(10~ 50 cm)土壤温度明显升高,含水量逐渐降低,土壤盐分不断增加,从而使高寒草地植被类型出现由高寒沼泽草甸、高寒草甸至高寒草原的逆向演替过程,群落总盖度 及生物量均表现出明显降低的趋势. C1 Chen Shengyun, State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, Gansu 730000, China. Zhao Lin, State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, Gansu 730000, China. Qin Dahe, State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, Gansu 730000, China. Ren Jiawen, State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, Gansu 730000, China. Yue Guangyang, Observation and Research Station of Qinghai-Tibet Plateau, CAREERI, CAS; State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, Gansu 730000, China. Li Yuanshou, Observation and Research Station of Qinghai-Tibet Plateau, CAREERI, CAS; State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, Gansu 730000, China. Zhao Yonghua, Observation and Research Station of Qinghai-Tibet Plateau, CAREERI, CAS; State Key Laboratory of Cryospheric Sciences, CAREERI, CAS, Lanzhou, Gansu 730000, China. Z6 陈生云, 中国科学院寒区旱区环境与工程研究所, 冰冻圈科学国家重点实验室, 兰州, 甘肃 730000, 中国. 赵林, 中国科学院寒区旱区环境与工程研究所, 冰冻圈科学国家重点实验室, 兰州, 甘肃 730000, 中国. 秦大河, 中国科学院寒区旱区环境与工程研究所, 冰冻圈科学国家重点实验室, 兰州, 甘肃 730000, 中国. 岳广阳, 中国科学院寒区旱区环境与工程研究所, 冰冻圈科学国家重点实验室, 兰州, 甘肃 730000, 中国. 任贾文, 中国科学院寒区旱区环境与工程研究所, 冰冻圈科学国家重点实验室, 兰州, 甘肃 730000, 中国. 李元寿, 中国科学院寒区旱区环境与工程研究所, 冰冻圈科学国家重点实验室, 兰州, 甘肃 730000, 中国. 赵拥华, 中国科学院寒区旱区环境与工程研究所, 冰冻圈科学国家重点实验室, 兰州, 甘肃 730000, 中国. EM sychen@lzb.ac.cn Z7 sychen@lzb.ac.cn Z8 31 Z9 34 UT CSCD:3897839 DA 2023-03-23 ER PT J AU LI Na WANG Gen-xu GAO Yong-heng JI Chang-zhi Z2 李娜 王根绪 高永恒 籍长志 TI On Soil Organic Carbon of Alpine Ecosystem in Qinghai-Tibet Plateau Z1 青藏高原生态系统土壤有机碳研究进展 Z3 土壤 SO Soils VL 41 IS 4 BP 512 EP 519 AR 0253-9829(2009)41:4<512:QZGYST>2.0.TX;2-Y PY 2009 DT Review AB As the "world's third polar", the Qinghai-Tibet Plateau is a complex and unique system. In consequence, the alpine soil has its distinct characters due to the particular natural and geographic environment. Firstly, this paper summarized the advances in soil organic carbon (SOC) pool of the Qinghai-Tibet Plateau ecosystem, discussed the reasons that caused the differences of the results, then illustrated the observations and experiments on the alpine SOC emission, and investigated the impacts of climatic change on SOC of the alpine ecosystem. At present, the trend of global warming is aggravating, in the latest 40 years, the temperature of Qinghai-Tibet plateau has increased 0.3 ~ 0.4℃, the frozen soil area has degraded extensively, which lead to the decrease of the vegetation coverage, shrink of the area of alpine meadow and grassland, and the decrease of the productivity of vegetation and the input of soil organic matter, representing the dramatic degradation of the alpine eco-system. But the rising temperature accelerates the decomposition rate of SOC and therefore influences the carbon cycle and storage of the alpine eco-system. It has been a hot topic about the source and sink of SOC in the Qinghai-Tibet plateau, but so far it is still unclear how the rising temperature influences SOC dynamically there, thus, long-term observations and experiments should be conducted in order to explain the effects of the carbon source and sink which change with the climatic change. Z4 作为"世界第三极"的青藏高原,高寒生态系统是青藏高原主要的生态系统之一.它本身是一个复杂而又特殊的系统,因其独特的自然地理环境而形成的高寒土壤更 有其独特的性质.本文首先综述了青藏高原高寒生态系统的土壤有机碳储量、估算方法的研究进展及造成估算结果差异的原因,随后对高寒土壤有机碳排放的观测试 验进行了综述,探讨了气候变化对高寒生态系统土壤有机碳源汇效应的影响.目前,全球变暖的趋势正在加剧,40 年来,青藏高原气温平均上升了约 0.3 ~ 0.4℃,冻土面积正广泛退缩,这直接导致青藏高原高寒生态系统发生了以植被覆盖度减少、高寒草原草甸面积萎缩等为主要形式的显著退化,植被生产力和土壤 有机碳输入量都减少,而温度升高加快了土壤有机碳分解速率,从而影响到高寒生态系统的碳循环和碳储量.青藏高原土壤有机碳的源汇效应问题已成为研究的热点 ,但是到目前为止,温度升高到底如何影响土壤有机碳的动态变化没有明确的定论,为此,我们必须从长期的观测试验来说明气候变化对土壤碳库的源汇效应. C1 LI Na, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. WANG Gen-xu, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. GAO Yong-heng, Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. JI Chang-zhi, The College of Architecture and Civil Engineering,Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China. Z6 李娜, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 王根绪, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 高永恒, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 籍长志, 内蒙古科技大学建筑与土木工程学院, 包头, 内蒙古 014010, 中国. EM bluena820@163.com; wanggx@imde.ac.cn Z7 bluena820@163.com; wanggx@imde.ac.cn Z8 24 Z9 26 UT CSCD:3695393 DA 2023-03-23 ER PT J AU DU Changjiang ZHANG YiLi LIU Linshan WANG Zhaofeng ZHANG Jiping ZHOU Qiang Z2 杜长江 张镱锂 刘林山 王兆锋 张继平 周强 TI Herdsmen's Adaptation to Alpine Grassland Degradation:a case study of dalag county,china Z1 草甸退化胁迫下的适应性探讨以青海省达日县为例 Z3 资源科学 SO Resources Science VL 31 IS 6 BP 973 EP 979 AR 1007-7588(2009)31:6<973:CDTHXP>2.0.TX;2-G PY 2009 DT Article AB Research of the herdsmens adaptation to alpine grassland degradation is not only meaningful to mitigate the impacts of grassland degradation on herdsmen,but also helpful to the government to formulate the environmental policy.The spot check of the herdsmen,taken in May 2004,November 2006,September 2007 and September 2008 in Dalag County by the methods of stratified random sampling and participatory rural appraisal (PRA) and its tools,was conducted to analyze the adaptive changes of the herdsmen under alpine grassland degradation.Results showed that the numbers of yaks and Tibetan sheep reduced from 1976 to 2006,and that of bulls reduced from 2004 to 2007.In view of the use patterns of pasture,the ratio of herdsmen that took pasture-transfer before May in the years of 2004,2006 and 2007 showed an increasing trend year by year.After the adoption of the ecological immigration policy,the ratio of the number of immigrants increased slowly year by year from 2002 to 2006.Since the starting of the policy of limiting livestock based on grassland carrying capacity,severe overgrazing has emerged in all the towns,except for Shanghongke,Tehetu,Moba and Sangrima villages with a rate of less than 0.The main reason for the poor implementation of national adaptive policy is that the lives of herdsmen were miserable.Their production and living expenses were far greater than their income.The immigration could not dominate the production in the alpine grassland regions. Z4 在土地退化胁迫下,当前黄河源区牧业存在的主要问题是牲畜结构不合理,草场尤其是冬季草场严重不足,这些问题成为制约区域经济发展与生态建设的突出因素. 本文采用分层随机抽样和参与式农村评估等方法,于2004年5月、2006年11月、2007年9月、2008年9月对达日县牧户进行了四期抽样调查,分 析了高寒草甸退化胁迫下政府和牧民适应措施的变化.研究结果显示:①在牲畜结构方面表现为牲畜存栏数减少;牦牛母畜比例上升.1976年-2006年藏羊 存栏数减少60.90%;马存栏数减少了57.78%;牦牛存栏数减少25.96%.2004年以来,成年母畜在牦牛畜群中比例逐渐增加;②在草场利用方 式上,表现为转夏场时间提前.5月前转场牧民比例由2004年的41.50%提高到2007年的61.00%.这暂时平衡了冬夏草场的压力,缓解了冬季牲 畜草料供应短缺的问题;但这种调整加大了夏季草场的压力,可能会加速夏季草场的退化.因此,一是要进一步加大草场保护和生态恢复建设,遏止草场持续退化的 态势;二要结合区域特点,建议以生态补偿形式从相邻省区或饲草(料)基地购入(/调入)草料,缓解草地压力过大的状况;③生态移民方面,移民户数增长缓慢 .调查区2003年有105户迁移,到2008年也仅有115户移出.2005年实施以草定畜后,除上红科、莫坝、特合土、桑日麻等乡镇外,其余乡镇超载 严重.牧户经济基础差、移民支配生产的能力差等因素,可能是导致生态移民和以草定畜措施执行效果不佳的主要原因.因此,如何提升生态移民的经济与生态效果 ,如何构建搬迁牧民的社会保障体系,如何扶持发展畜牧业的替代产业等,仍是近期黄河源区生态建设与退化草地恢复的核心问题. C1 DU Changjiang, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. ZHANG YiLi, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. LIU Linshan, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. WANG Zhaofeng, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. ZHANG Jiping, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences, Beijing 100101, China. ZHOU Qiang, Qinghai Normal University, Xining, Qinghai 810800, China. Z6 杜长江, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张镱锂, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 刘林山, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 王兆锋, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张继平, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 周强, 青海师范大学, 西宁, 青海 810800, 中国. Z8 5 Z9 6 UT CSCD:3516184 DA 2023-03-23 ER PT J AU LI Jun-jie LI Yong WANG Yang-lin WU Jian-sheng Z2 李俊杰 李勇 王仰麟 吴健生 TI Study of Soil Erosion on the East-West Transects in the Three-Rivers Headwaters Region Using ~(137)Cs and ~(210)Pb_(ex) Tracing Z1 三江源区东西样带土壤侵蚀的~(137)Cs和~(210)Pb_(ex)示踪研究 Z3 环境科学研究 SO Research of Environmental Sciences VL 22 IS 12 BP 1452 EP 1459 AR 1001-6929(2009)22:12<1452:SJYQDX>2.0.TX;2-P PY 2009 DT Article AB A combination of ~(137)Cs and ~(210)Pb_(ex) tracing is applied to ascertain the background value and change characteristics of ~(137)Cs and ~(210)Pb_(ex), soil erosion rate, distribution characteristics and main influencing factors of the East-West transects of the Three-Rivers Headwaters region of the Tibetan Plateau. The results indicate that: (1) in the East-West transects of the Three-Rivers Headwaters region of the Tibetan Plateau, the background values of ~(137)Cs and ~(210)Pb_(ex) are in the range 453-1,714 and 2,612-7,377 Bq/m~2, respectively. With changes in elevation of the East-West transects, differences in the background values of ~(137)Cs and ~(210)Pb_(ex) are evident. The regional distribution of ~(137)Cs (x) and ~(210)Pb_(ex) (y) background values shows significant correlation;the equation of the correlation is y=3.587,2x+1,463.4, R2=0.951,7. (2) The ~(137)Cs tracing result in the Tuotuo River at the Changjiang headstream region indicates that the Changjiang headstream region centered by the Tuotuo River is a typical wind erosion area, with soil erosion rate of 2.5 t/(hm~2·a). This area is one of the important sources of dust storms on the Tibetan Plateau. (3) The results of ~(137)Cs and ~(210)Pb_(ex) tracing in the Maduo typical slope at the Yellow River headstream region indicate that in the last 40 years, livestock-based human activities in Maduo have caused more disturbance to the soil than the impact of natural factors. (4) Comparative study between Dongqinggou and Junmuchang in Maqin indicates that the alpine meadow in Dongqinggou is more effective in soil and water conservation than other vegetation studied, and the animal husbandry activities in Junmuchang have caused serious disturbance to the surface soil. (5) In the Jungongzhen region of Maqin, the ~(137)Cs and ~(210)Pb_(ex) results of soil profile from a typical site with serious water erosion show that the lack of ~(137)Cs and ~(210)Pb_(ex) was caused by heavy rain during extreme weather events in the region during the 1950s to 1960s. The water erosion caused by the destruction of vegetation in the Jungongzhen region of Maqin is serious;the erosion rate is 8.0 t/(hm~2·a). (6) In the past 40 years, increased human activity and global warming have lead to the emergence of the sand-dust source regions in the Three-Rivers Headwaters region of the Tibetan Plateau. Z4 运用~(137)Cs和~(210)Pb_(ex)联合示踪技术,考察青藏高原三江源区东西样带~(137)Cs和~(210)Pb_(ex)面积浓度的 背景值和变化特征,以及东西样带土壤侵蚀速率、分布特征和主要影响因素. 结果表明:①青藏高原三江源区东西样带~(137)Cs和~(210)Pb_(ex)面积浓度背景值分别为453~1 714和2 612~7 377 Bq/m~2,~(137)Cs和~(210)Pb_(ex)背景值从西向东样带随海拔高度的变化差异明显.~(137)Cs(x)和~(210)Pb_ (ex)(y)面积浓度的背景值区域分布呈显著线性相关,相关性关系式为y=3.587 2x+1 463.4,R2=0.951 7.②长江源区沱沱河~(137)Cs的示踪结果表明,以沱沱河为中心的长江源区是典型的风蚀区,年侵蚀速率2.5 t/(hm~2·a),该区是青藏高原重要的沙尘暴源区之一.③黄河源区玛多典型坡面~(137)Cs和~(210)Pb_(ex)的示踪结果表明,近4 0年来,玛多畜牧业为主的人类活动造成的土壤扰动比自然因素的影响大.④玛沁东倾沟乡和军牧场的比较研究结果表明,玛沁东倾沟乡高山草甸的水土保持效果较 好,而玛沁军牧场的畜牧业活动造成了地表土壤的强烈扰动.⑤玛沁军功镇典型水蚀地貌土壤剖面~(137)Cs和~(210)Pb_(ex)的结果表明,2 0世纪50-60年代,该区的极端暴雨事件导致了严重的水土流失,土壤剖面中出现~(137)Cs和~(210)Pb_(ex)的空白区. 植被破坏导致玛沁军功镇出现了严重水蚀,净侵蚀速率为8.0 t/(hm~2·a).⑥近40年来,随着人类活动的加剧和全球气候变暖,导致青藏高原三江源区出现了沙尘暴的传输源地. C1 LI Jun-jie, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China. WANG Yang-lin, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China. WU Jian-sheng, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China. LI Yong, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Z6 李俊杰, 北京大学深圳研究生院, 深圳市城市人居环境科学与技术重点实验室, 深圳, 广东 518055, 中国. 王仰麟, 北京大学深圳研究生院, 深圳市城市人居环境科学与技术重点实验室, 深圳, 广东 518055, 中国. 吴健生, 北京大学深圳研究生院, 深圳市城市人居环境科学与技术重点实验室, 深圳, 广东 518055, 中国. 李勇, 中国农业科学院农业环境与可持续发展研究所, 北京 100081, 中国. EM lijunjie981@126.com Z7 lijunjie981@126.com Z8 18 Z9 22 UT CSCD:3769109 DA 2023-03-23 ER PT J AU WANG Jun-feng WANG Gen-xu WU Qing-bai Z2 王俊峰 王根绪 吴青柏 TI Influence of degradation of the swamp and alpine meadows on CH_4 and CO_2 fluxes on the Qinghai-Tibetan Plateau Z1 沼泽与高寒草甸退化对CH_4和CO_2通量的影响 Z3 中国环境科学 SO China Environmental Science VL 29 IS 5 BP 474 EP 480 AR 1000-6923(2009)29:5<474:ZZYGHC>2.0.TX;2-N PY 2009 DT Article AB In the Fenghuoshan region on the Qinghai-Tibetan Plateau, the CH_4 and CO_2 fluxes and the corresponding environmental factors of the swamp and alpine meadows with different degradation degrees were determined for one year. The swamp meadows with different degradation degrees all showed the characteristics of CH_4 and CO_2 emitting and the emission intensities reduced with the degradation degrees increased; the different degraded alpine meadows showed the characteristics of CO_2 emitting but CH_4 being absorbed and all the fluxes increased with the degradation degrees pricked up. In the future climate conditions, degradations of the swamp and alpine meadows on the Qinghai-Tibetan Plateau would play a promotion role during the regional warming. Air temperature, soil temperature and moisture at the 5cm depth and biomass were the major environmental factors influencing the CH_4 and CO_2 fluxes. Z4 在青藏高原风火山地区,对不同退化程度沼泽和高寒草甸CH_4和CO_2通量以及相应的环境因子进行了为期1年的观测.结果表明,不同退化程度沼泽草甸C H_4和CO_2通量均表现出排放特征,排放强度随退化程度的增加而降低;不同退化程度高寒草甸对CO_2表现为排放特征,而对CH_4却表现为吸收特征 ,且均随着退化程度的加剧而增强.未来气候模式下,沼泽与高寒草甸退化将对区域气温升高起到一定的促进作用.气温、5cm土壤温度和土壤水分含量以及生物 量是影响CH_4和CO_2的通量的主要环境因子. C1 WANG Jun-feng, Cold and Arid Regions Environmental and Engineering Research, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. WU Qing-bai, Cold and Arid Regions Environmental and Engineering Research, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. WANG Gen-xu, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Z6 王俊峰, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 吴青柏, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 王根绪, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. EM gxwang@lzb.ac.cn Z7 gxwang@lzb.ac.cn Z8 7 Z9 12 UT CSCD:3557487 DA 2023-03-23 ER PT J AU HUANG Lin LIU Jiyuan SHAO Quanqin Z2 黄麟 刘纪远 邵全琴 TI Alpine Grassland Degradation in the Source Region of Yangtze River in the Past 30 YearsZhidoi County as A Case Study Z1 近30年来长江源头高寒草地生态系统退化的遥感分析以青海省治多县为例 Z3 资源科学 SO Resources Science VL 31 IS 5 BP 884 EP 895 AR 1007-7588(2009)31:5<884:J3NLCJ>2.0.TX;2-X PY 2009 DT Article AB Alpine grassland in hinterland of the Tibetan Plateau is unique and the largest fragile ecosystem at the highest altitude in the world. It has degraded continuously and therefore attracted interests of scientists. It's the important material base for the development of plateau husbandry and ecological protective screen for water conservation, biodiversity conservation and carbon fixation. However, the degradation of alpine grassland not only decreased animal husbandry economy, but also resulted in desertification, biodiversity loss, aggravated soil erosion and carbon losses. Having integrated the Landsat images in 1970s, 1990s and 2004, meteorological data, DEM, grassland distribution and social statistics data, we took Zhidoi County in Qinghai Province as the typical alpine grassland in the source region of Yangtze River to analysis the spatial-temporal pattern, processes and driver, and the degree and mechanism of degraded grassland in order to provide scientific basis for the recovery and management of alpine grassland and regional sustainable development. The results show that grassland degradation is presented by decreasing area, reducing degree and compound type to single type from the southeast to northwest of Zhidoi County. Such similar trend is also shown in the status and redistribution water and heat resources in this region. The eastern part of Zhidoi suffers the most serious degradation, and western part in northern Tanggula Mountain mainly suffers slight decrease in coverage due to minor underlying surface. The general trend of temporal process shows continuous degradation with further aggravation during the latter period. The proportion and degree also aggravate gradually with net increase of 9.86% form 1990s to 2004 compared with the period of 1970s to 1990s. Despite of the obvious warming and drying trend since 1960s, climate change has affected the grassland chronically and slowly. We found that the degradation patterns of grassland was formed before 1970s and aggravated since 1990s, due to the intra-annual distribution of precipitation especially in growing seasons. It was also realized that human activities, especially overgrazing, appeared to be the primary cause of grassland degradation based on the analysis of population and livestock. The shady slope in the altitude ranging from 4500 to 4900m and slope of 5%~15° appeared to be the main degraded region, where 39.21% degradation located in the slope of 5%~15° and 43.55% in shady slope. Degradation aggravated as altitude goes higher but it turns to decrease when the altitude is above 4900m. Z4 为了对长江源头高寒草地退化的时空过程规律取得全面客观的科学认识,本文利用20世纪70年代末、90年代初和2004年的陆地卫星遥感影像为信息源,结 合气象数据、DEM、草地分布图及社会统计数据等辅助资料,以青海省治多县为例分析了近30年来长江源头的高寒草地生态系统退化的时空格局与过程及其驱动 因素,从新的视角阐释高寒草地退化的过程与机理,为退化高寒草地的恢复、治理与区域可持续发展提供了科学依据.结果表明,研究区高寒草地生态系统的退化呈 现自东南向西北,退化面积减少、退化程度降低、退化类型由复合型向单一型过渡的总体趋势.研究区东部是草地退化最严重的区域,主要表现为沿着原退化草地癍 块的扩张,而西部即唐古拉山以北的广大地区由于下垫面起伏较低则以草地覆盖度的轻度下降退化为主.草地退化时间过程特征的总体趋势是持续退化、后期加剧, 前后两个时段对比可以看出草地退化比重和程度皆呈逐渐加剧的趋势,退化面积比重净增9.86%.地形因素的影响分析亦发现,研究区高寒草地退化主要发生在 海拔4500~4900m、坡度5~15°范围内的阴坡.研究区草地退化格局在20世纪70年代以前就已经形成,气候变化对高寒草地退化的影响是长期、缓 慢的,而研究区人口和家畜数量变化的分析可以得出人类活动特别是过度放牧是草地退化发生的最重要诱因. C1 HUANG Lin, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. LIU Jiyuan, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. SHAO Quanqin, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Z6 黄麟, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 刘纪远, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 邵全琴, 中国科学院地理科学与资源研究所, 北京 100101, 中国. EM huanglin@lreis.ac.cn; liujy@igsnrr.ac.cn Z7 huanglin@lreis.ac.cn; liujy@igsnrr.ac.cn Z8 14 Z9 16 UT CSCD:3520328 DA 2023-03-23 ER PT J AU REN Qingji Cui Xianliang Zhao Banban Z2 仁青吉 崔现亮 赵彬彬 TI Effects of grazing impact on community structure and productivity in an alpine meadow Z1 放牧对高寒草甸植物群落结构及生产力的影响 Z3 草业学报 SO Acta Prataculturae Sinica VL 17 IS 6 BP 134 EP 140 AR 1004-5759(2008)17:6<134:FMDGHC>2.0.TX;2-T PY 2008 DT Article AB Degradation of rangeland is an important problem in stock breeding. We compared grazed and nongrazed grassland plots in the Qinghai-Tibetan Plateau. From September 2005 to September 2007, we sampled ten square (0.5 m*0.5 m) randomly arranged plots of each treatment: Long-term grazing and grazing exclusion for six years. We divided species into five functional groups: Legumes, cyperaceous, poisonous forbs, forbs and grasses. We measured species richness, abundance (number of individuals), community height and cover in each square, and above-ground biomass according to group functions. Plant samples were dried at 80℃ and weighed with a sartorius balance to the nearest 10^-3 g. Grazing resulted in a significant reduction in community productivity. Functional groups had different responses to grazing from 2005 to 2007. Biomass of graminoids was significantly reduced from an average of 76.6% to 57.4%, while that of legumes, forbs and weeds increased. The largest plant community was reduced from 46.8 to 22.4 plants per square. Biodiversity and individual density both increased: Biodiversity from an average 26.5 species per square to 30. 9 and abundance from an average of 215.7 per square to 304.6. Total percentage cover did not differ significantly between grazed and non-grazed plots. We did not find any evidence that the grassland had become more degraded during the three experimental years. Z4 草地的退化是当前畜牧生产面临的一个主要问题,本试验选取青藏高原高寒草地自然群落中等放牧强度和不放牧2个梯度进行对比研究,探讨当前的普遍放牧强度对 群落生产力、不同功能群产量分配和群落结构的影响。结果表明,3年中放牧使群落总体生产力下降,其中不同功能群所占比例也有所变化,禾草和莎草比例由平均 76.6%下降到57.4%,杂草、豆科和毒草的比例上升;群落高度降低,平均最大高度由46.8cm下降到22.4cm;物种多样性和多度增加,多样性 由单位样方平均26.5种增加到30.9种,多度由单位样方215.7株增加到304.6株;总盖度并没有明显差异,禾草和莎草盖度减小,杂草盖度增加, 群落结构由垂直分层为主演化为水平生态位分化为主。3年中放牧的影响没有显示出草地的进一步退化趋势。 C1 REN Qingji, Grassland Work Station of Autonomous Prefecture of Tibetan of Gannan, Hezuo, 747000. Cui Xianliang, Key Laboratory Lanzhou of Arid and Grassland Ecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Zhao Banban, Key Laboratory Lanzhou of Arid and Grassland Ecology of Ministry of Education, Lanzhou University, Lanzhou, Gansu 730000, China. Z6 仁青吉, 甘肃省甘南州草原工作站, 合作, 甘肃 747000, 中国. 崔现亮, 兰州大学, 干旱与草地教育部重点实验室, 兰州, 甘肃 730000, 中国. 赵彬彬, 兰州大学, 干旱与草地教育部重点实验室, 兰州, 甘肃 730000, 中国. EM zhaobb05@lzu.cn Z7 zhaobb05@lzu.cn Z8 52 Z9 56 UT CSCD:3451181 DA 2023-03-23 ER PT J AU FENG Yiming WU Bo LU Qi WANG Xuequan YANG Henghua SUN Defu Z2 冯益明 吴波 卢琦 王学全 杨恒华 孙德福 TI Dynamics Analysis on Landscape Pattern of Alpine-cold Desertified Area in the Qinhai-Tibetan Plateau:A Case Study in Guinan County,Qinghai Province Z1 青藏高原高寒沙区景观格局变化分析以青海贵南县为例 Z3 林业科学研究 SO Forest Research VL 21 IS 2 BP 182 EP 187 AR 1001-1498(2008)21:2<182:QZGYGH>2.0.TX;2-Q PY 2008 DT Article AB Landuse cover and landscape patterns of 3 periods(1976,1996,2006) in Guinan County,Qinhai,China were studied by using remote sensing and GIS techniques,as well as the dynamics of landscape pattern.The results were as follows.(1) The grassland was the basic landscape background of the general terrain character of Guinan County,at the same time,lots of deserted landscape elements(such as sandy land and drying ravines) were distributed among grasslands.In 1970s,the landscape disturbed by human being was relatively few,and up to 1990s,the landscape disturbed by human being was increased.(2) In 1976,significant differences in dominance were found among patch types,landscape fragmentation value was small,and landscape diversification was simple.After 1996,there were obvious change in the pattern of patch and the landscape became complicated.(3) In the last 30 years,the transformation speed of landscape elements(including grassland,crop land,forest land,building land and unused land) to other landscape elements displayed a accelerating state.During 19761996,a vast area of grasslands was reclaimed into cultivated land.During 19962006,the phenomena to protect and to destroy ecological environment existed simultaneously.Moreover,the unused land that transformed to other landscape elements was small.Hence,to control the ecological environment of Guinan County comprehensively would be a long way.(4) The forecasted results on landscape pattern of Guinan County in 2016 indicated that the area of grassland,forest land and water area would be increased and the area of cultivated land and unused land would be decreased,so the ecological environment of Guinan County would become better slowly. Z4 运用遥感和GIS技术,对青海省贵南县3个时期土地利用变化的景观格局进行了分析和预测.结果表明:(1)贵南县大的地貌特征是以草地为基本景观基质,在 广布的草地基质中,又大量分布荒漠(如干沟、沙地等)景观.20世纪70年代的景观受人为干扰相对较少,20世纪90年代以后,人为对景观的干扰力度增大 ;(2) 1976年,景观斑块类型间优势度差异显著,景观破碎化指数小,多样性低;1996年以后,斑块格局发生了明显变化,景观趋于复杂;(3) 30年来,贵南县景观要素中草地、耕地、林地、建筑用地、以及未利用地向其他类型转化的速度总体呈加速状态.在1976-1996年期间,大面积草地被开 垦为耕地;在1996-2006年期间,生态环境的保护与破坏共存.另外,大面积的未利用地向其他景观类型转移数量很少,贵南县生态环境综合治理任重道远 .(4) 贵南县2016年景观格局预测显示:到2016年,草地、建筑用地、林地、水域面积增加,耕地、未利用地面积下降,贵南县生态环境逐渐趋于好转. C1 FENG Yiming, Research Institute of Forest Resources Information Techniques;CAF;Key Laboratory of Forest Remote Sensing;State Forestry Administration, Beijing 100091, China. WU Bo, Research Institute of Forestry;CAF;Key Laboratory of Tree Breeding and Cultivation;State Forestry Administration, Beijing 100091, China. LU Qi, Research Institute of Forestry;CAF;Key Laboratory of Tree Breeding and Cultivation;State Forestry Administration, Beijing 100091, China. WANG Xuequan, Research Institute of Forestry;CAF;Key Laboratory of Tree Breeding and Cultivation;State Forestry Administration, Beijing 100091, China. YANG Henghua, Shazhuyu Sand Control Experimental Station of Qinghai Province, Gonghe, Qinghai 813005, China. SUN Defu, Shazhuyu Sand Control Experimental Station of Qinghai Province, Gonghe, Qinghai 813005, China. Z6 冯益明, 中国林业科学研究院资源信息研究所, 国家林业局林业遥感与信息技术重点实验室, 北京 100091, 中国. 吴波, 中国林业科学研究院林业研究所, 中国林业科学研究院林木培育重点实验室, 北京 100091, 中国. 卢琦, 中国林业科学研究院林业研究所, 中国林业科学研究院林木培育重点实验室, 北京 100091, 中国. 王学全, 中国林业科学研究院林业研究所, 中国林业科学研究院林木培育重点实验室, 北京 100091, 中国. 杨恒华, 青海省沙珠玉治沙站, 共和, 青海 813005, 中国. 孙德福, 青海省沙珠玉治沙站, 共和, 青海 813005, 中国. EM wubo@caf.ac.cn Z7 wubo@caf.ac.cn Z8 4 Z9 7 UT CSCD:3262859 DA 2023-03-23 ER PT J AU 周华坤 赵新全 汪诗平 赵亮 徐世晓 Z2 Zhou Huakun Zhao Xinquan Wang Shiping Zhao Liang Xu Shixiao TI Vegetation Responses to A Long-term Grazing Intensity Experiment in Alpine Shrub Grassland on Qinghai-Tibet Plateau Z1 青藏高原高寒灌丛植被对长期放牧强度试验的响应特征 Z3 西北植物学报 SO Acta Botanica Boreali-Occidentalia Sinica VL 28 IS 10 BP 2080 EP 2093 AR 1000-4025(2008)28:10<2080:VRTALT>2.0.TX;2-# PY 2008 DT Article AB The grassland of the Qinghai-Tibet Plateau is one of the world's most remarkable grazing lands. Livestock grazing appears to exert significant effects on the vegetation and ecosystem processes on the plateau,although the effects of livestock grazing on grasslands are in need of further study. In this study, a long-term grazing experiment with different stocking rates in alpine Potentilla fruticosa shrubland was carried out at Haibei Alpine Meadow Ecosystem Research Station, Chinese Academy of Sciences. The effects of grazing intensity on plant species diversity,community structure,above ground standing biomass and grassland quality were analyzed after grazing for 4,11 and 18 years which represented short-term grazing,medium term grazing and long term grazing,respectively. Our results suggest that the height and cover of plant community were decreased with the increase of stocking rate in different grazing period. The change in biodiversity and evenness indices as stocking rate increased was a typical unimodal curve after grazing for 11 years. The dominated shrub and gramnoids were replaced by the typical forbs with the increase of the stocking rate in the long term heavy grazing period. Long-term heavy grazing simplifies the alpine shrub community and decreases the standing above-ground biomass, especially palatable herbage plants. The heights and cover of plant communities were decreased as the stocking rate increased. Changes in the vegetation of different grazing treatments was also correlated with the variation in local moisturetemperature conditions except key factors such as grazing intensities and grazing time. From grazing release,light grazing to heavy grazing, the dominant shrub and graminoid species were replaced by typical forbs after grazing for 18 years. All species of Potentilla fruticosa shrubland in this study can be sorted into 4 groups which were fostering, sensitive, tolerant and indifferent to long term grazing disturbance. Our results did not support the intermediate disturbance hypothesis very well except three cases,i, e. , richness, biodiversity and evenness indices. It is concluded that long-term heavy grazing plays an important role in alpine grassland degradation on Qinghai-Tibet Plateau. From responses of species diversity and standing biomass of different functional types to grazing,moderate grazing appears to be suitable for biodiversity conservation and the utilization of alpine shrub grassland. The standard grazing rule of "take half leave half" is recommended as a conservative management tool to prevent grassland degradation, to improve grass utilization,and to sustain higher biodiversity on Qinghai-Tibet Plateau. Z4 在青藏高原中国科学院海北高寒草甸生态系统定位研究站对金露梅高寒灌丛草场植被开展了长期不同放牧强度试验,分别在短期(4年)、中期(11年)和长期( 18年)放牧阶段研究不同放牧干扰强度对草地植物物种多样性、群落结构、地上生物量和草场质量的影响。研究表明,在不同放牧阶段,随着放牧强度增加植物群 落的高度和盖度都降低。在中期放牧干扰阶段,物种多样性指数和均匀度指数随着放牧强度增加呈现典型的单峰曲线模式;在长期放牧干扰阶段,随着放牧强度增加 ,占优势地位的灌木和禾草被典型杂类草替代,其中的重度放牧干扰简化了高寒灌丛植被群落结构,减少了地上现存生物量,特别是可食优良牧草生物量。植被对放 牧的响应除了与放牧强度和放牧时间阶段密切相关外,还与该地区水热条件的变化有一定的相关性。针对长期放牧干扰的反应特性可将金露梅灌丛草场中植物划分为 增加型、敏感型、忍耐型和无反应型4种类型。除了丰富度指数、多样性指数和均匀度指数外,其它一些特征参数并不支持著名的中度干扰假说。本研究发现,长期 重度放牧促进了青藏高原高寒草地退化,适度放牧有利于高寒灌丛草场的生物多样性保护和牧草利用;"取半留半"的放牧原则在青藏高原草场放牧管理实践中值得 推荐,它将有利于防止草场退化,提高牧草利用率和维持较高的生物多样性。 C1 Zhou Huakun, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xi'ning, 810001. Zhao Xinquan, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xi'ning, 810001. Wang Shiping, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xi'ning, 810001. Zhao Liang, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xi'ning, 810001. Xu Shixiao, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xi'ning, 810001. Z6 周华坤, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 赵新全, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 汪诗平, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 赵亮, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 徐世晓, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. EM qhzhhk1974@yahoo.com.cn Z7 qhzhhk1974@yahoo.com.cn Z8 9 Z9 12 UT CSCD:3420898 DA 2023-03-23 ER PT J AU SHANG ZhanHuan LONG RuiJun MA YuShou DING LuMing Z2 尚占环 龙瑞军 马玉寿 丁路明 TI SPATIAL HETEROGENEITY AND SIMILARITY OF ADULT PLANTS AND SEEDLINGS IN 'BLACK SOIL LAND' SECONDARY WEED COMMUNITY, QINGHAI-TIBETAN PLATEAU Z1 青藏高原黑土滩次生毒杂草群落成体植株与幼苗空间异质性及相似性分析 Z3 植物生态学报 SO Acta Phytoecologica Sinica VL 32 IS 5 BP 1157 EP 1165 AR 1005-264X(2008)32:5<1157:QZGYHT>2.0.TX;2-B PY 2008 DT Article AB Aims 'Black soil land' grassland on the Tibetan Plateau results from degradation of Kobresia alpine meadow and has many weeds and poisonous plants. This disturbed grassland forms in small bottomland patches. There are no studies of community spatial patterns, relationships and scale patterns of adult plants and seedlings are important to explaining the formation of this secondary weed community. Methods We selected a typical 'black soil land' community of about 30 m * 50 m in the headwaters of the Yellow River and used 100 sample plots (50 cm * 50 cm) to investigate number and density of adults and seedlings (determined by pulling) by species. Spatial heterogeneity of the community and the similarity between adult plants and seedlings were analyzed by semi-variance, fractal dimension, spatial correlation spatial autocorrelation, etc. Important findings Species number of adult plants is highly spatially heterogeneous and plant density homogeneous at large scales. Species number of seedlings is highly spatially heterogeneous at small scales, and its density is highly spatially heterogeneous at large scales. Seedlings have high density in areas of micro-topography and gaps of adult plants, where seedlings grow and establish in empty ecological niches. The 'black soil land' community regenerates and recruits in vegetation gaps. The generation of 'black soil land' community depends on high density of seedlings of weeds and poisonous plants, and its generation capability is strong. According to our results, the 'black soil land' secondary commu-nity becomes more stable without interference. We suggest that human management be used to decrease the stability of the 'black soil land' weed community and restore alpine meadow. Z4 在样线调查基础上,用半方差函数、分形维数、空间自相关等方法对青藏高原黑土滩次生毒杂草群落地上成体植株、幼苗空间的异质性,二者物种构成的相似性及其 尺度特征进行分析。结果表明,黑土滩次生毒杂草群落在较大尺度上地上成体植株物种数的空间依赖性强,异质性高,而个体密度则较均匀;幼苗物种数在小尺度上 空间异质性高,幼苗密度在大尺度上空间异质性较高,幼苗密度独立于其物种分布,高密度的幼苗分布在微地形下和群落间隙中,黑土滩毒杂草植物幼苗充分利用空 余生态位进行群落补充;黑土滩群落在不同尺度上地上成体植株与幼苗物种构成相似性变化的规律性不大;黑土滩群落幼苗靠其高密度特征完成群落更新,植物群落 幼苗更新力强,导致黑土滩毒杂草群落趋于稳定。因此,建议加强干扰以减弱黑土滩次生毒杂草群落稳定趋势,这对恢复黑土滩具有重要指导意义。 C1 SHANG ZhanHuan, International Centre for Tibetan Plateau Ecosystem Management, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. LONG RuiJun, International Centre for Tibetan Plateau Ecosystem Management, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. MA YuShou, Institute of Grassland Science, Qinghai Academy of Animal and Veterinary Science, Xining, Qinghai 810016, China. DING LuMing, Key Laboratory of Arid and Grassland Agroecology of Education Ministry, Lanzhou University, Lanzhou, Gansu 730000, China. Z6 尚占环, 兰州大学青藏高原生态系统管理国际中心草地农业科技学院, 兰州, 甘肃 730020, 中国. 龙瑞军, 兰州大学青藏高原生态系统管理国际中心草地农业科技学院, 兰州, 甘肃 730020, 中国. 马玉寿, 青海省畜牧兽医科学院草原研究所, 西宁, 青海 800016, 中国. 丁路明, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. EM shangzhh@lzu.edu.cn; longrj@lzu.edu.cn Z7 shangzhh@lzu.edu.cn; longrj@lzu.edu.cn Z8 17 Z9 17 UT CSCD:3393390 DA 2023-03-23 ER PT J AU 张法伟 李红琴 李英年 赵亮 Z2 Zhang Fawei Li Hongqin Li Yingnian Zhao Liang TI Surface energy partitioning in alpine swamp meadow in the Qinghai Tibetan Plateau Z1 青藏高原高寒湿地地表能量分配的动态变化 Z3 草业科学 SO Pratacultural Science VL 25 IS 4 BP 14 EP 22 AR 1001-0629(2008)25:4<14:SEPIAS>2.0.TX;2-U PY 2008 DT Article AB Based on surface energy flux data measured by eddy covariance methods from China Flux in alpine swamp meadow of the Qinghai Tibetan Plateau in 2005, the daily and seasonal dynamic of surface energy fluxes and their partitioning, as well as abiotic factors effects were analyzed. The results suggested that LE (Latent heat flux) was the largest consumer of the incoming energy. Rn (Net radiation flux) and LE showed clear seasonal variations in sharp hump and up to their maximums in August and July, respectively. H (Sensible heat flux) increased to its peak in August whereafter declined slowly. Precipitation could reduce the components of surface energy. As to Rn and LE, their correlations with abiotic factors were evident while it was not significant in H. Average EBR (Energy balance ratio) was 50.7 %, which was much larger in growing season than non-growing season. Z4 依据中国通量网2005年在青藏高原高寒湿地观测的地表能量数据,分析了青藏高原高寒湿地地表能量分配的日变化和季节动态,及非生物因素对其的影响。结果 表明,潜热通量是地表有效能量的主要消耗部分,净辐射通量和潜热通量呈现出明显的单峰式变化,分别在8月和7月达到其最大值,显热通量在8月达到最大,而 后缓慢降低。降雨能显著降低能量通量的各分量。相关性分析的结果表明,净辐射通量和潜热通量与非生物要素的存在较为明显的相关性,显热通量的相关性则较差 。能量平衡比率平均为50.7%,其在生长季节明显高于非生长季节。 C1 Zhang Fawei, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Yingnian, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, Qinghai 810008, China. Zhao Liang, Northwest Institute of Plateau Biology, The Chinese Academy of Sciences, Xining, Qinghai 810008, China. Li Hongqin, Department of Graduates, Qinghai University, Xining, Qinghai 810016, China. Z6 张法伟, 西北高原生物研究所, 西宁, 青海 810008, 中国. 李英年, 西北高原生物研究所, 西宁, 青海 810008, 中国. 赵亮, 西北高原生物研究所, 西宁, 青海 810008, 中国. 李红琴, 青海大学研究生部, 西宁, 青海 810016, 中国. EM ynli@nwipb.ac.cn Z7 ynli@nwipb.ac.cn Z8 3 Z9 4 UT CSCD:3278350 DA 2023-03-23 ER PT J AU ZHANG Jing Z2 张静 李希来 季刚 TI Analysis on Plant Communities Features of Different Degradation Grassland in Sanjiangyuan Region Z1 三江源地区不同退化草地群落特征分析 Z3 安徽农业科学 SO Journal of Anhui Agricultural Sciences VL 36 IS 18 BP 7738 AR 0517-6611(2008)36:18<7738:SJYDQB>2.0.TX;2-I PY 2008 DT Article AB [Objective] The research aimed to provide practical references for the ecological protection and struetion of Sanjiangyuan region. [Method] Plant corranunities features of different degradation grassland, two grassland type of alpine meadow and alpine meadow in Sanjiangyuan region were measured. The situation and problem of eco-environment protection was analysed. [ Result] The results showed that the biomass and species richness in every site didn' t change obviously as the increasing of grassland degradation. The rate of fine herbage tended to decrease and that of poison weeds tended to increase. The quality index of grassland decreased obviously and the utilization value of that tended to be useless. [ Conclusion] The tion of Sanjiangyuan region had important ecological significance. protection of Sanjiangyuan region had important ecological significance. Z4 [目的]为三江源地区的生态保护和建设提供实践参考。[方法]测定三江源地区高寒草甸、高寒草原2种草地类型,不同退化草地的群落特征,分析生态环境保护 所面临的形势与问题。[结果]随着草地退化程度的加大,群落地上植物量和物种丰富度在各级草地内变化不明显,但优良牧草比例明显呈下降趋势,毒杂草比例明 显上升,草地质量指数明显下降,甚至成为负值,草地的利用价值趋于0。[结论]保护三江源地区生态环境具有重要的生态意义。 C1 ZHANG Jing, Faculty of Agriculture and Animal Sciences, Qinghai University, Xining, Qinghai 810003, China. Z6 张静, 青海大学农牧学院, 西宁, 青海 810003, 中国. 李希来, 青海大学农牧学院, 西宁, 青海 810003, 中国. 季刚, 青海大学农牧学院, 西宁, 青海 810003, 中国. Z8 4 Z9 4 UT CSCD:3356373 DA 2023-03-23 ER PT J AU XU Songhe SHANG Zhanhuan MA Yushou LONG Ruijun Z2 徐松鹤 尚占环 马玉寿 龙瑞军 TI Analysis of Interspecific Association in Degraded Meadow Communities in the Headwater Area of Yellow River on Tibetan Plateau Z1 黄河源区退化高寒草地植物种间联结性分析 Z3 西北植物学报 SO Acta Botanica Boreali-Occidentalia Sinica VL 28 IS 6 BP 1222 EP 1227 AR 1000-4025(2008)28:6<1222:HHYQTH>2.0.TX;2-J PY 2008 DT Article AB Variance tests and 2 * 2 contingency table analyses were used in quantitative analysis of the interspecific association among the plant species of the three different degraded meadows(light, medium, heavily)in the headwater area of Yellow River on Tibetan Plateau. The results showed that the degradation of alpine meadow affected the interspecific association of plant communities. And with the increased level of the degraded meadow, the overall interspecific association among main plant species of the community transformed from significantly negative association to none. The heavily degraded meadow black-soil-land' was dominated by poisonous weed,its interspecific association of community was random, and the composition of species was instable. Therefore,the black-soil-land is a kind of unstably secondary vegetation. Z4 应用方差检验和2*2列联表方法,对青藏高原黄河源区轻度退化、中度退化和重度退化的高寒草地植物群落物种的种间联结性进行了定量分析.结果表明:黄河源 区高寒草地退化明显影响到其植物群落物种间的联结性和关联程度;随着草地退化程度的加剧,群落中主要优势物种的总体种间联结性由显著负相关过渡到无关联, 具有相同生活型和水分生态类型的物种则由互生转为竞争的关系;以毒杂草为优势的重度退化高寒草地黑土滩植物群落的物种间关系随机性较大,物种构成不稳定, 它属于一种不稳定的次生植被. C1 XU Songhe, College of Pratacultural Science,Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Educa tion, Sino-U. S. Centers for Grazingland Ecosystem Sustainability, Lanzhou, Gansu 730070, China. SHANG Zhanhuan, International Centre for Tibetan Plat eau Ecosystem Management,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. LONG Ruijun, International Centre for Tibetan Plat eau Ecosystem Management,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. MA Yushou, Grassland Science Institute, Qinghai Academy of Animal and Veterinary Sciences, Xining, Qinghai 810016, China. Z6 徐松鹤, 甘肃农业大学草业学院中一美草地畜牧业可持续发展研究中心, 草业生态系统教育部重点实验室, 兰州, 甘肃 730070, 中国. 尚占环, 青藏高原生态系统管理国际中心兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 龙瑞军, 青藏高原生态系统管理国际中心兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 马玉寿, 青海省畜牧兽医科学院草原研究所, 西宁, 青海 810016, 中国. EM xusonghe@yahoo.cn; shangzhh@lzu.edu.cn Z7 xusonghe@yahoo.cn; shangzhh@lzu.edu.cn Z8 16 Z9 17 UT CSCD:3354626 DA 2023-03-23 ER PT J AU FAN BaoLi ZHAO ZhiGang MENG JinLiu DU GuoZhen Z2 樊宝丽 赵志刚 孟金柳 杜国祯 TI Position-dependent sex allocation within inflorescence of Aconitum gymnandrum Maxim Z1 露蕊乌头(Aconitum gymnandrum Maxim)花序内位置依赖的性分配 Z3 生态学报 SO Acta Ecologica Sinica VL 28 IS 6 BP 2909 EP 2915 AR 1000-0933(2008)28:6<2909:LJWTAG>2.0.TX;2-W PY 2008 DT Short Paper AB The question of which resource allocation patterns will be selected to ensure male and female reproductive success has attracted many researchers, especially in reference to plants of alpine environments. This study investigated the pattern of reproductive allocation within inflorescences of Aconitum gymnandrum Maxim, a common species of the Qinghai-Tibet Plateau, and experimentally explored the potential mechanism underlying this pattern.Data on floral allocation and seed production in bottom, middle, and top flowers in racemes of A. gymnandrum were gathered in a variety of sub-alpine and alpine meadows, and their maternal plants were collected. A flower-removal experiment also was performed, to determine whether allocation was affected by within-raceme competition. These data were analyzed with repeated-measures analysis of variance and two-way analysis of variance.Results showed that there was a marked decline in carpel number, female mass, seed number, and seed mass per fruit with flowering sequence within a raceme, while anther number, male/female mass ratio and pollen/ovule ratio increased. Floral sex allocation was male-biased in top flowers, while seed set was constant among positions. Variation in the amount of pollen received cannot explain the observed results, and the flower-removal experiment did not improve the seed set of the remaining flowers, indicating that an unavoidable architectural effect has led to the position-dependent pattern of sex allocation with raceme. Z4 植物会采取什么样的繁殖对策来保障它的雌性和雄性繁殖成功,特别是那些生活在高寒地区的植物,已经引起了很多学者的关注.通过野外盆栽试验对青藏高原东部 高寒草甸上的常见物种露蕊乌头(Aconitum gymnandrum Maxim)花序内的性分配模式进行了研究,发现同其它顶向式(从花序基部到顶部)开花的植物一样,随着花从基部到顶部的次序,露蕊乌头的心皮数、雌蕊重 、种子数和种子重/果实减少;而花药数,花粉数/胚珠数以及雄蕊重/雌蕊重增大,顶部花表现出偏雄的性分配.结籽率在不同的位置间没有显著差异,不受花粉 数量的限制;去花实验没有增加剩余部位花的种子数,只是增加了种子大小,这是花序内不可避免的位置效应导致了花序内位置依赖的性分配模式. C1 FAN BaoLi, Department of Pastoral Agriculture Science and Technology;Lanzhou University, Lanzhou, Gansu 730020, China. ZHAO ZhiGang, Key Laboratory of Arid and Grassland Ecology of Ministry of education;Lanzhou University, Lanzhou, Gansu 730000, China. MENG JinLiu, Key Laboratory of Arid and Grassland Ecology of Ministry of education;Lanzhou University, Lanzhou, Gansu 730000, China. DU GuoZhen, Key Laboratory of Arid and Grassland Ecology of Ministry of education;Lanzhou University, Lanzhou, Gansu 730000, China. Z6 樊宝丽, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 赵志刚, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 孟金柳, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. 杜国祯, 兰州大学, 干旱与草地生态教育部重点实验室, 兰州, 甘肃 730000, 中国. EM baoli207@163.com; guozdu@lzu.edu.cn Z7 baoli207@163.com; guozdu@lzu.edu.cn Z8 9 Z9 9 UT CSCD:3324265 DA 2023-03-23 ER PT J AU WANG Changting LONG Ruijun WANG Qilan JING Zengchun SHI Jiangjun DU Yangong CAO Guangmin Z2 王长庭 龙瑞军 王启兰 景增春 施建军 杜岩功 曹广民 TI Changes in Soil Organic Carbon and Microbial Biomass Carbon at Different Degradation Successional Stages of Alpine Meadows in the Headwater Region of Three Rivers in China Z1 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化 Z3 应用与环境生物学报 SO Chinese Journal of Applied and Environmental Biology VL 14 IS 2 BP 225 EP 230 AR 1006-687X(2008)14:2<225:SJYQGH>2.0.TX;2-2 PY 2008 DT Article AB Alpine meadow ecosystem is one of the important grassland resources for grazing on the Tibetan Plateau. The methods of field survey and experiment analysis were applied to detect the changes in soil organic carbon (SOC) and soil microbial biomass carbon (MBC) of alpine meadows at different degradation successional stages in the headwater region of three rivers. The results showed that the contents of SOC and MBC were higher in 0~10 cm soil layer at different degradation successional stages, the contents of SOC and MBC in 0~40 cm soil significantly decreased with aggravating degradation of the meadows the and the percent vegetation cover and biomass percent of palatable herbage were correspondingly shown to decrease across meadows in the region. Soil quality and soil nutrition were decreasing with the increasing of soil degradation, SOC and MBC contents decreased rapidly with increasing grazing density. There was significant correlation between the two indices on soil organic matter, soil moisture and soil available N, indicating that both SOC and MBC could be used as the important indicators to measure the changes of soil quality. Z4 以野外样地调查和室内分析法研究了三江源区高寒小嵩草草甸不同退化演替阶段群落中土壤有机碳和微生物量碳的变化.结果表明,放牧活动明显地影响了土壤有机 碳和微生物量碳的含量.不同退化演替阶段期间,高寒小嵩草草甸土壤有机碳、微生物量碳含量在0~10 cm土层明显较高,且随着退化程度的加剧,分布在0~40 cm土层的土壤有机碳、微生物量碳含量明显降低;不同退化演替阶段,高寒小嵩草草甸由于家畜过度的啃食与践踏,不仅使得植物群落发生了逆向演替,而且土壤 的肥力水平显著地下降,土壤向退化方向发展;高寒草甸的退化将使土壤有机质大量流失,氮素损失严重.随着退化演替过程的进行,高寒草甸土壤质量和土壤营养 的持续供给能力逐渐退化,土壤有机碳和土壤微生物量碳含量也随放牧强度增加而迅速降低;相关分析表明,土壤有机碳和土壤微生物量碳与土壤含水量、土壤有机 质、土壤速效氮呈显著正相关关系(P<0.05),说明土壤微生物量碳可作为衡量土壤有机碳变化的敏感指标,而土壤有机碳和微生物量碳含量可作为衡量土壤 肥力和土壤质量变化的重要指标. C1 WANG Changting, Northwest Plateau Institute of Biology; Chinese Academy of Sciences, Xining, Qinghai 810008, China. WANG Qilan, Northwest Plateau Institute of Biology; Chinese Academy of Sciences, Xining, Qinghai 810008, China. JING Zengchun, Northwest Plateau Institute of Biology; Chinese Academy of Sciences, Xining, Qinghai 810008, China. SHI Jiangjun, Northwest Plateau Institute of Biology; Chinese Academy of Sciences, Xining, Qinghai 810008, China. DU Yangong, Northwest Plateau Institute of Biology; Chinese Academy of Sciences, Xining, Qinghai 810008, China. CAO Guangmin, Northwest Plateau Institute of Biology; Chinese Academy of Sciences, Xining, Qinghai 810008, China. LONG Ruijun, College of Pastoral Agriculture Science and Technology; Lanzhou University, Lanzhou, Gansu 730070, China. Z6 王长庭, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 王启兰, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 景增春, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 杜岩功, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 曹广民, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 龙瑞军, 兰州大学草地农业科技学院, 兰州, 甘肃 730070, 中国. 施建军, 青海省畜牧兽医科学院草原研究所, 西宁, 青海 810016, 中国. EM wct@nwipb.ac.cn or wcht6@hotmail.com Z7 wct@nwipb.ac.cn or wcht6@hotmail.com Z8 9 Z9 15 UT CSCD:3247022 DA 2023-03-23 ER PT J AU Cai Xiaobu Zhou Jin Qian Cheng Z2 蔡晓布 周进 钱成 TI VARIATION OF SOIL MICROBIAL ACTIVITIES IN ALPINE STEPPES DIFFERENT IN DEGRADATION INTENSITY IN THE NORTH TIBET PLATEAU Z1 不同退化程度高寒草原土壤微生物活性变化特征研究 Z3 土壤学报 SO Acta Pedologica Sinica VL 45 IS 6 BP 1110 EP 1118 AR 0564-3929(2008)45:6<1110:BTTHCD>2.0.TX;2-1 PY 2008 DT Article AB Dynamics of soil microorganisms in stipa purpurea alpine steppes different in degradation intensity in North Tibet Plateau were studied. Four plots were selected, coincident in parent rock and soil texture, but different in degradation intensity, i.e. non-degraded (ND), slightly degraded (SD), moderately degraded (MD) and severely de- graded (VD). Soil samples were taken using the grid method from the four plots in both warm and cold seasons. Results indicate that under alpine arid conditions, both degradation intensity and seasonal variation have significant influences on soil microbial activities in alpine steppe. A similar trend of variation of soil bacteria population, microbial biomass (carbon (C) and nitrogen (N) ) and soil enzyme ( cellulase, urease and alkaline phosphatase) activities as a whole was found in both warm and cold seasons, and so was high correlation between the two. In the warm season, the steppes were in the order of SD 〉 ND 〉 MD 〉 VD in soil microbial activity. The numbers of fungi and actinomycetes were positively correlated with soil microbial biomass, but negatively with soil enzyme activity to a varying extent in warm season, while an opposite trend was found in cold season. The soil microbial activities in cold season declined significantly, compared with those in warm season. The ratio of soil bacteria in warm season to that in cold season in the four grades of steppes was 206.0, 251.7, 18.4 and 87.4, respectively, of fungi, 14.7, 1 132, 0.6 and 0. 9 and of actinomycetes, 0. 1, 10. 5, 10.0 and 14. 9. With respect to ratio of Bc (microbial biomass C) and Bn (microbial biomass N) in warm-season to those in coldseason, SD was the highest and followed by ND, MD, and then VD. and sharp variation of BN was observed between sea- sons. The ratios of BC/BNin cold season and in warm season were more or less the same in variation, but the BC/BN. ratio was much higher in cold season than in warm season. However, the values of BC/TC and BS/TNwere higher in cold season than in warm season for all of the four grasslands, except VD, which showed a reverse trend. Soil urease was much higher than other soil enzymes in activity in warm season. The ratio of soil urea activity in warm season to that in cold season ranged from 31.5 to 781.5. The activity of soil cellulolytic enzyme, especially alkaline phosphatase, were higher in cold season than in warm season, and the ratio of the activity in warm season to that in cold season ranged from 0.46 to 1.01 for soil cellulolytic enzyme and 0.40 to 1.37 for alkaline phosphatase. Z4 以紫花针茅草原为研究对象,选择成土母质、土壤质地一致的区域4个,分别在冷季、暖季于每个区域的正常草地和轻度、中度、严重退化草地内按网格法采集土壤 样品,分析测定了土壤微生物(细菌、真菌、放线菌)数量、土壤微生物量(C、N)、土壤酶(纤维素酶、脲酶、碱性磷酸酶)活性。结果表明,高寒、干旱条件 下,草地退化程度、季节变化对高寒草原土壤生物活性均具有显著影响。暖季、冷季土壤细菌数量、微生物量(C、N)、酶活性(纤维素分解酶、脲酶、碱性磷酸 酶)间均存在着相似甚至高度相关的变化趋势,暖季土壤生物活性基本呈轻度退化草地〉正常草地〉中度退化草地〉严重退化草地;暖季真菌、放线菌数量与微生物 量、酶活性间分呈不同程度的正相关和负相关,冷季则呈相反趋势。不同季节间,冷季土壤生物活性较暖季总体呈显著下降趋势。其中,正常草地和轻度、中度、严 重退化草地土壤细菌暖季/冷季比分别为206.0、251.7、18.4和87.4,真菌、放线菌分别为14.7、1132、0.6、0.9和0.1、1 0.5、10.0、14.9。微生物量(c、N)暖季/冷季比均呈轻度退化草地〉正常草地〉中度退化草地〉严重退化草地,但微生物量氮的季节差异较大;暖 季、冷季BC/BN比值亦基本呈同一趋势,冷季各类草地BC/BN值均明显高于暖季;各类草地BC/TC、BS/TS除严重退化草地外均呈暖季〉冷季的趋 势。暖季土壤脲酶活性远高于其他酶类,且暖季/冷季比(31.5~781.5)差异极大;冷季土壤纤维素分解酶,特别是碱性磷酸酶活性普遍高于暖季,暖季 /冷季比分别在0.46~1.01和0.401.37之间。 C1 Cai Xiaobu, Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Xizang 860000, China. Zhou Jin, Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Qian Cheng, Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet 860000, China. Z6 蔡晓布, 西藏农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 周进, 西藏农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. 钱成, 西藏农牧学院资源与环境学院, 林芝, 西藏 860000, 中国. EM caitw21@sohu.com Z7 caitw21@sohu.com Z8 14 Z9 14 UT CSCD:3449808 DA 2023-03-23 ER PT J AU ZHENG Hongmei HU Tianming Z2 郑红梅 呼天明 TI Study on Seed Germination Characteristics and Molecular Phylogeny of Kobresia Willd. in Tibetan Plateau Z1 西藏几种嵩草种子萌发特性与分子系统发育研究 Z3 草地学报 SO Acta Agrestia Sinica VL 16 IS 5 BP 542 EP 544 AR 1007-0435(2008)16:5<542:XZJZSC>2.0.TX;2-P PY 2008 DT Article AB The genus Kobresia Willd. is the dominant perennial sedge on the Tibetan Plateau and has high nutri- tional quality preferred by livestock and important ecological functions such as water resource conserva tion, river system and regional climate regulation, and regional biodiversity maintenance. Kobresia spp. can be found in the alpine mountains of the northern hemisphere and include about 70 species, with 59 reported throughout China which are mainly distributed in east of the Tibet Plateau. However, Kobresia pastures are confronted with environmental degradation and decreased carrying capacity due to natural and anthropogenic impacts, and seldom research studied the Kobresia species of the Tibetan Plateau on their phylogenetic relationship and adaptation in details, in part because of the difficulty in accessing this cold, harsh, and remote region. Vegetative growth is the dominant means of reproduction for the Kobresia spp.and the substantial vegetative growth can reduce the genetic diversity and render populations with disadvantages to buffer the changing and extreme conditions. It is necessary to protect the genetic diversity of Kobresia and understand how they thrive in a harsh environment. In the present study, the genetic diversity, genetic structure, and seed characteristics of Kobresia species were studied in order to provide theory and technical references for understanding the mechanisms of adaptation and evolutionary history among the Kobresia accessions collected from the Tibetan Plateau.[第一段] Z4 嵩草属(Kobresia Willd.)植物是多年生草本植物,草质柔软、营养丰富,家畜喜食。大多数嵩草植物是青藏高原高寒草甸的主要建群种,其良好生长对维持青藏高原的生态平 衡起着重要作用。嵩草属植物主要分布在北半球,共有70种,其中59种分布在中国(主要分布在青藏高原东部)。由于环境及人为影响,我国嵩草草地面临草地 退化、载畜能力下降等严峻问题,而且嵩草属植物大多是无性繁殖,对环境变化及不良环境适应性较弱。目前,对嵩草属植物的分子系统发育关系及其适应性研究尚 未见报道。本文探索其种内遗传多样性、遗传结构、系统发育关系及种子特性,旨在为进一步研究高寒草甸生态系统的结构、功能及演化提供依据。主要结果如下: [第一段] C1 ZHENG Hongmei, Department of Grassland Science, Northwest A&F University, Yangling, Shaanxi 712100, China. HU Tianming, Department of Grassland Science, Northwest A&F University, Yangling, Shaanxi 712100, China. Z6 郑红梅, 西北农林科技大学动物科技学院草业科学系, 杨凌, 陕西 712100, 中国. 呼天明, 西北农林科技大学动物科技学院草业科学系, 杨凌, 陕西 712100, 中国. EM hutianming@126.com Z7 hutianming@126.com Z8 0 Z9 1 UT CSCD:3402602 DA 2023-03-23 ER PT J AU LU Ling LI Xin HUANG Chunlin Frank Veroustraete Z2 卢玲 李新 黄春林 Frank Veroustraete TI Analysis of the Spatio-Temporal Characteristics of Water Use Efficiency of Vegetation in West China Z1 中国西部植被水分利用效率的时空特征分析 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 29 IS 5 BP 777 EP 784 AR 1000-0240(2007)29:5<777:ZGXBZB>2.0.TX;2-T PY 2007 DT Article AB Water use efficiency(WUE) is the ratio between the net amount of carbon absorbed by the plant(NPP) and the amount of water lost through evapotranspiration(ET).West China includes large arid and semi-arid regions and has suffered water shortage and ecosystem degradation in recent decades.Therefore,investigating the spatio-temporal characteristics of WUE for different vegetation ecosystems and identifying their distribution with low WUE and high WUE are important for the conservation and management of water and land resources in West China(73°~112° E,26°~50° N).In this paper,the Monteith type carbon model-C-FZX driven by temperature,radiation and fAPAR retrieved from remote sensing was used to estimate NPP in West China in 2002.Meanwhile,the Common Land Model(CoLM) was also applied to estimate actual ET in the same year.The input data mainly included the NCAR 6-hour and 0.9(metrological datasets,1 km IGBP land cover data,1 km USGS soil data,the global 0.25(monthly MODIS LAI data and the 1 km VGT-S10 NDVI data.Then the WUE values were estimated by the ratio of NPP to ET in each 1 km pixel.Some field measurements of WUE for different plants in West China were used for validation.The study represented the preliminary overview of WUE in West China.The total annual NPP and actual ET in West China in 2002 were estimated about 0.96 PgC and 2 098 km3,respectively.The mean annual WUE per square meter was about 0.32 gC·mm~(-1) m~(-2).Meanwhile,the annual and seasonal spatial patterns of WUE in the region were pronounced.The high WUE level mainly distributed in the northwest part of Xinjiang Region with the highest WUE reaching to 4 gC·mm~(-1)·m~(-2),followed by the south corners of Tibet Region and Shaanxi province with WUE ranged from 1 gC·mm~(-1)·m~(-2) to 2 gC·mm~(-1)·m~(-2).The low WUE level was showed in the sandy deserts and the most part of the Tibetan Plateau with WUE ranged from 0.4 gC·mm~(-1)·m~(-2) to zero.On the other hand,some arid inland river basins in West China including the Tarim River Basin,the Heihe River Basin and the Shule River Basin showed in relatively high WUE patterns,especially in the summer,indicating that some particular ecosystems living in the arid basins might have predominant function in water use efficiency.In addition,it is also investigated that the WUE properties of different ecosystems and their seasonal profiles in West China.In general,the annual WUE of the main ecosystems in West China was ranked in the order as: mountain forest>desert shrub and woodland>irrigated farmland>alpine meadow>cold desert and Gobi. Z4 利用净初级生产力模型C-FIX,陆面过程模型CoLM以及高时空分辨率的遥感数据集,定量估算了2002年西部地区1 km分辨率的水分利用效率(WUE)时空格局分布.模型估算2002年西部地区净初级生产力总量约为0.96 PgC,蒸散发总量约为2 098 km3,整个西部地区平均单位面积上年均WUE约为0.32 gC·mm~(-1).西部地区WUE时空分布格局具有显著的异质性:WUE最高值区主要分布在新疆西北部的天山和阿尔泰山区域,年均WUE最高可达4 gC·mm~(-1)·m~(-2);其次为西藏东南隅以及陕西和甘肃南部山区,年均WUE约在1~2 gC·mm~(-1)·m~(-2)之间.WUE最低值广泛分布在青藏高原地区和西北沙漠地区,年均WUE基本在0.4 gC·mm~(-1)·m~(-2)以下.研究发现,西北干旱区内陆河流域荒漠植被呈现出相对高的WUE水平,反映出适度水分亏缺地区的天然植被生态系统 可能具有较水分充足地区植被生态系统更高的水分利用效率功能.通过定量分析比较不同植被生态系统WUE特征及其季节变化廓线,得到西部地区主要植被生态系 统的年均WUE大小为山区森林>荒漠乔灌丛>灌溉农田>高寒草地>寒漠和戈壁. C1 Frank Veroustraete, Flemish Institute for Technological Research(VITO)/Centre for Remote Sensing and Atmospheric Processes(TAP), Belgium. LU Ling, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Gansu 730000, China. LI Xin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Gansu 730000, China. HUANG Chunlin, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Gansu 730000, China. Frank Veroustraete, Flemish Institute for Technological Research (VITO)/Centre for Remote Sensing and Atmospheric Processes (TAP), Belgium. Z6 卢玲, 中国科学院寒,区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 李新, 中国科学院寒,区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 黄春林, 中国科学院寒,区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. EM luling@lzb.ac.cn Z7 luling@lzb.ac.cn Z8 28 Z9 38 UT CSCD:2945939 DA 2023-03-23 ER PT J AU SHANG Zhanhuan DING Lingling LONG Ruijun MA Yushou Z2 尚占环 丁玲玲 龙瑞军 马玉寿 TI Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau Z1 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系 Z3 草业学报 SO Acta Prataculturae Sinica VL 16 IS 1 BP 34 EP 40 AR 1004-5759(2007)16:1<34:JHYQTH>2.0.TX;2-# PY 2007 DT Article AB The relationship between soil microorganism numbers and vegetation, soil factors of degraded alpine meadows (in the headwater areas of the Yangtze and Yellow Rivers in China) were studied. Soil microorganism numbers changed following variation of plant diversity, species composition, vegetation coverage, grassland production of degraded meadow. Several bacterial physiological groups were considerably affected by soil factors. Non-beneficial soil microorganism increased in degraded grassland, especially in 'black soil land', limiting the soil's ability to supply and transform nutrients. In degenerating alpine meadow, beneficial soil microorganisms were unable to maintain and improve the fertility and this can lead to difficulty in rebuilding degraded 'black soil land' meadow. In conclusion, to recover degraded alpine cold meadow, it is not only necessary to rebuild or renovate the above ground vegetation, but also to rebuild the underground soil microorganism community and ecological system. Z4 对青藏高原江河源区退化高寒草地土壤微生物与地上植被、土壤环境的相关性进行分析。结果表明,退化高寒草地植物多样性、物种组成、地上植被盖度、草地生产 力的变化引起土壤微生物数量发生变化,土壤微生物特别是细菌生理类群受土壤环境因子影响较大。江河源区退化高寒草地土壤中非有益性微生物功能群处于增加趋 势,限制了土壤养分供给和转化能力,不利于草地土壤肥力维持和提高.给受损高寒草地,特别是黑土滩退化草地的生态恢复带来困难。因此,在修复受损高寒草地 生态系统时,不仅要恢复地上部分的植被,而且要恢复地下部分的土壤微生物群落.重建土壤微生物生态系统。 C1 SHANG Zhanhuan, Key Laboratory of Grassland Agro-Ecosystem Ministry of Agriculture, College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. LONG Ruijun, Key Laboratory of Grassland Agro-Ecosystem Ministry of Agriculture, College of Pastoral Agriculture Science and Technology,Lanzhou University, Lanzhou, Gansu 730020, China. DING Lingling, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China. MA Yushou, Institute of Grassland Science, Qinghai Academy of Animal and Veterinary Science, Xining, Qinghai 810016, China. Z6 尚占环, 兰州大学草地农业科技学院, 农业部草地农业生态系统学重点开放实验室, 兰州, 甘肃 730020, 中国. 龙瑞军, 兰州大学草地农业科技学院, 农业部草地农业生态系统学重点开放实验室, 兰州, 甘肃 730020, 中国. 丁玲玲, 中国科学院沈阳应用生态研究所, 沈阳, 辽宁 110016, 中国. 马玉寿, 青海省畜牧兽医科学院草原研究所, 西宁, 青海 810016, 中国. EM shangzhh@lzu.edu.cn; longruijun@sina.com Z7 shangzhh@lzu.edu.cn; longruijun@sina.com Z8 50 Z9 57 UT CSCD:2749780 DA 2023-03-23 ER PT J AU SHANG Zhanhuan LONG Ruijun MA Yushou Z2 尚占环 龙瑞军 马玉寿 TI Review on environmental problems in the headwater areas of Yangtze and Yellow Rivers in Qinghai-Tibetan Plateau Z1 青藏高原江河源区生态环境安全问题分析与探讨 Z3 草业科学 SO Pratacultural Science VL 24 IS 3 BP 1 EP 7 AR 1001-0629(2007)24:3<1:QZGYJH>2.0.TX;2-W PY 2007 DT Article AB Problems in natural resources, ecology and environment in headwater areas of Yangtze and Yellow Rivers in Qinghai-Tibetan Plateau were analyzed from climate, geology and eco-system functions. These problems were quite complicated and eco-construction should start with eco-system protection, continue to maintain the pattern of conservation region in the headwater area. It is must be ,emphasized that the government invest to ecological supplement, restoration, and some research, which is the fundamental for the ecological construction. Education, technical training and extension could guarantee the effect of eco-environment improvement. Establishing family pasture system on degraded grassland and converting its ecological function to feed supply base are the best way to rehabilitate severely degraded grassland and economy. The serious situation of eco-environment in headwater area needs government, people and technology work together to deal with. Z4 从江河源区气候、地理及生态系统功能的特殊性入手,对江河源区一系列自然资源、生态环境问题进行分析和评述。指出江河源区生态环境问题非常复杂,生态环境 建设应该从保护生态系统入手,维持已经建立的江河源自然保护区模式,国家持续性投资于生态补偿、恢复以及相应的科学研究是江河源区生态环境长久改善的基础 。重视文化教育,科技培训及推广,能给江河源区生态环境建设带来持久性的效果。在退化草地生态系统上建立家庭牧场模式的草地农业体系,改变退化草地生态功 能,使之成为高效的饲草供应基地,是实现极度退化草地生态恢复和经济作用的最佳措施。江河源区生态环境威胁日趋严重,因此问题的解决需要我国政府、人民以 及科技力量的共同努力。 C1 SHANG Zhanhuan, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. LONG Ruijun, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. MA Yushou, Institute of Grassland Science, Qinghai Academy of Animal and Veterinary Science, Xining, Qinghai 810003, China. Z6 尚占环, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 龙瑞军, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 马玉寿, 青海省畜牧兽医科学院草原研究所, 西宁, 青海 810003, 中国. EM shangzhh@lzu.edu.cn; longruijun@sina.com Z7 shangzhh@lzu.edu.cn; longruijun@sina.com Z8 23 Z9 28 UT CSCD:2888220 DA 2023-03-23 ER PT J AU ZHANG Yili DING Mingjun ZHANG Wei LIU Linshan WANG Zhaofeng YAN Jianzhong BAI Wanqi ZHENG Du Z2 张镱锂 丁明军 张玮 刘林山 王兆锋 阎建忠 摆万奇 郑度 TI Spatial characteristic of vegetation change in the source regions of the Yangtze River, Yellow River and Lancang River in China Z1 三江源地区植被指数下降趋势的空间特征及其地理背景 Z3 地理研究 SO Geographical Research VL 26 IS 3 BP 500 EP 507 AR 1000-0585(2007)26:3<500:SJYDQZ>2.0.TX;2-9 PY 2007 DT Article AB The source regions of the Yangtze River, Yellow River and Lancang River are located in the middle east of the Tibetan Plateau with a total area of about 198496 km~2. In recent years, the risk of vegetation degradation in the regions has been keeping increasing, which led to many negative effects. This study assessed the trend and temporal-spatial distribution of vegetation index change, which is related with vegetation degradation, in the source regions of the three rivers using multi-temporal NOAA AVHRR NDVI data (8 km spatial resolution) from 1981 to 2001 provided by NASA, DEM data (1 km resolution), roads, residents, rivers data (1: 250000) and collected field data. Data types converting and reclassifying and zonal statistic analysis are completed in Arcgis 9.0 software. Results show that. ①The decrease, improved and the invariant vegetation index occupied 18.92%, 13.99% and 67.09% of the whole study area respectively. ②The decrease rates of brush, needle-leaf forest, alpine meadow, alpine sparse vegetation and alpine steppes are 22. 15% , 20. 75%, 18.83%, 18.73% and 18.6% respectively; on the different frozen soil types, the decrease rates differ insignificantly. The vegetation index decrease rates on permafrost and seasonal-frozen ground are 19.78% and 19. 41 % respectively; the decrease rates are relative to the population density and livelihoods. ③The decrease rates are different in space, which in the source regions of the Yangtze River, Yellow River and Lantcang River are 13. 56% , 32.51% and 18.1% respectively. ④The nearer to the roads and water sources is, the higher the decrease rates are; but to the distance buffers of the residents, the decrease rates rise with distance expending, and reach the top when arriving at the 24 km. ⑤The trend of decrease rates is according to the settlements density in different elevation zones with the correlation coefficient of 0.78. ⑥The vegetation decrease is highly related with the activities of human beings in the source regions of the Yangtze River, Yellow River and Lancang River. Z4 利用8km分辨率的Pathfinder NOAA/AVHRRNDVI数据,结合1km分辨率的DEM,1:250000道路、居民点、水系数据以及野外调查数据,分析了植被指数变化总体态势、 植被指数变化与海拔及与距道路、水源和居民点距离之间的关系,探讨了三江源区1981~2001年间植被指数变化趋势和空间分异特征。结果表明:①三江源 地区植被指数变化以下降趋势为主,下降区域占源区总面积的18.92%,增加区域占13.99%;②不同植被和冻土类型下的植被指数下降特征:灌丛区和森 林区下降率最高,下降率与各类型区的居民点密度、生计方式有关;植被指数下降程度与冻土类型关系不明显;③植被指数下降的区域差异明显:下降率各区域分别 为长江源区13.56%、黄河源区32.51%和澜沧江源区18.1%;④植被指数下降率随着距道路、河流的距离增加而逐渐减小;下降率在距居民点18~ 24km的缓冲带上达到最高后随着距离增大而下降;植被指数下降率随着海拔高程的升高呈低-高-低-高态势,下降率与居民点的分布高度相关。 C1 ZHANG Yili, Institute of Geographic Sciences and Natural Resources Research, CAS, Beiiing 100101. DING Mingjun, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. ZHANG Wei, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. LIU Linshan, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. WANG Zhaofeng, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. YAN Jianzhong, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. BAI Wanqi, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. ZHENG Du, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China. Z6 张镱锂, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 丁明军, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 张玮, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 刘林山, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 王兆锋, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 阎建忠, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 摆万奇, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 郑度, 中国科学院地理科学与资源研究所, 北京 100101, 中国. EM zhangyl@igsnrr.ac.cn Z7 zhangyl@igsnrr.ac.cn Z8 36 Z9 45 UT CSCD:2859752 DA 2023-03-23 ER PT J AU LI Yuanshou WANG Genxu WANG Junde WANG Yibo WU Qingbai Z2 李元寿 王根绪 王军德 王一博 吴青柏 TI ~(137)Cs Trace Technique to Study Soil Erosion at Alpine Meadow of Tibetan Plateau Z1 ~(137)Cs示踪法研究青藏高原草甸土的土壤侵蚀 Z3 山地学报 SO Journal of Mountain Science VL 25 IS 1 BP 114 EP 121 AR 1008-2786(2007)25:1<114:1CSZFY>2.0.TX;2-F PY 2007 DT Article AB ~(137)Cs tracing technique to studied the soil erosion of two basins at alpine meadow of Tibetan Plateau. The results showed: ~(137)Cs in soil profile is exponential distributing at alpine meadow. Depth of about 20 cm in general distribution of ~(137)Cs. Slope top because wind erosion, water erosion and frozen-thaw erosion is stronger than the bottom of slope. Intensity of erosion is consistent with other slope spaces erosion intensity law of others slope position all accorded with upper < middle < down. Alpine meadow cover and soil erosion is a degree of significant negative correlation. With an average of soil erosion module is a linear increase in vegetation cover degrees lower trend, that correlation coefficients is R~2 = 0.997. Alpine meadow higher degree of degradation is soil erosion more powerful. The maximal soil erosion module is 2960.22 t/(km~2·a). Degradation serious meadow areas average erosion module is 2.23 times the degradation of the weaker areas. Z4 运用~(137)Cs示踪法对青藏高原高寒草甸典型的两个小流域的土壤侵蚀进行了研究,结果表明:高寒草甸植被区的土壤~(137)Cs在土壤剖面中呈指 数型分布,分布深度一般在20 cm左右;坡顶部由于风蚀、冻融侵蚀和水蚀较强,致使侵蚀强于下部,除坡顶部外其他坡位侵蚀强度都符合坡上部<坡中部<坡下部的规律;高寒草甸植被覆盖度 与土壤侵蚀强度呈显著的负相关关系(p<0.01),土壤平均侵蚀模数随植被覆盖度的增加呈线性降低的趋势,相关系数R~2达到0.997以上.高寒草甸 退化程度越高,土壤侵蚀越强.退化较强的草甸区的平均侵蚀模数是退化较弱区的2.23倍,最大侵蚀模数可达2 960.22 t/(km~2·a). C1 LI Yuanshou, Laboratory of Watershed Hydrology and Ecology & State Key Laboratory of Frozen Soil Engineering, CAREER CAS, Lanzhou, Gansu 730000, China. WU Qingbai, Laboratory of Watershed Hydrology and Ecology & State Key Laboratory of Frozen Soil Engineering, CAREER CAS, Lanzhou, Gansu 730000, China. WANG Genxu, Institute of Mountain Hazard and Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu, Sichuan 610041, China. WANG Junde, College of Resources & Environment, Lanzhou University, Lanzhou, Gansu 730000, China. WANG Yibo, College of Resources & Environment, Lanzhou University, Lanzhou, Gansu 730000, China. Z6 李元寿, 中国科学院寒区旱区环境与工程研究所寒旱区流域水文及应用生态实验室, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 吴青柏, 中国科学院寒区旱区环境与工程研究所寒旱区流域水文及应用生态实验室, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 王根绪, 中国科学院水利部成都山地灾害与环境研究所, 成都, 四川 610041, 中国. 王军德, 兰州大学资源与环境学院, 兰州, 甘肃 730000, 中国. 王一博, 兰州大学资源与环境学院, 兰州, 甘肃 730000, 中国. EM yshli@lzb.ac.cn Z7 yshli@lzb.ac.cn Z8 23 Z9 32 UT CSCD:2794297 DA 2023-03-23 ER PT J AU LIN Chaofeng CHEN Zhanquan XUE Quanhong LAI Hangxian CHEN Laisheng ZHANG Dengshan Z2 林超峰 陈占全 薛泉宏 来航线 陈来生 张登山 TI Effect of Vegetation Degradation on Soil Nutrients and Microflora in the Sanjiangyuan Region of Qinghai, China Z1 青海三江源区植被退化对土壤养分和微生物区系的影响 Z3 应用与环境生物学报 SO Chinese Journal of Applied and Environmental Biology VL 13 IS 6 BP 788 EP 793 AR 1006-687X(2007)13:6<788:QHSJYQ>2.0.TX;2-3 PY 2007 DT Article AB This study aimed to investigate soil microflora and nutrient cycling under different vegetation types in the Sanjiangyuan region, Qinghai. Soil organic matters and nutrient contents were determined by conventional chemical methods, while microbial populations were studied using spread-plate techniques and classified by their morphological features. The data indicated that deterioration of the vegetation resulted in a loss of soil nutrients and an overall decline in soil fertility in the Sanjiangyuan region. The soil organic matters averaged 14.85 g kg~(-1) in degraded alpine meadow soil, which was 54%~ 91% lower than that of non-degraded soil. Soil nitrogen, phosphorus and available potassium levels were also much lower in degraded than those in non-degraded soil, but there was no consistent pattern change in total soil potassium or pH. Soil microflora in the alpine marshland soil was negatively affected by the change in vegetation and decline in fertility. Specifically, the bacterial population in the degraded alpine meadow soil was 8.8*10~6 cfu g~(-1) compared to fungal population of 9.5*10~3 cfu g~(-1) and actinomycete population of 8.1*10~5 cfu g~(-1). These populations were 47%~ 66% lower than microbial populations in the non-degraded alpine meadow soil, 23%~ 63% lower than those in the alpine grassland soil and 48%~ 90% lower than those in the marshy meadow soil. The microbial community structure simplified along with the vegetative degradation. The number of fungal species dropped from seven under non-degraded vegetation to three in degraded areas. Nearly 97% of the actinomycetes isolated from degraded meadow soil were streptomycetes, while the others declined significantly. In conclusion, there was a close relationship between soil nutrient content and soil microflora in the Sanjiangyuan alpine ecosystem. The analysis of soil nutrient factors and microbial populations showed that total soil phosphorus was the key nutrient to affect the populations of the three main types of soil microorganisms. Z4 采用化学分析法、微生物平皿分离计数和形态鉴定技术研究了青海三江源地区天然与退化植被下的土壤养分和微生物生态特征。结果表明,随着三江源地区天然草地 植被退化,土壤有机质含量急剧下降,退化高山草甸土的有机质平均含量为14.85gkg~(-1),较天然高山草甸土的平均含量降低54.3%,较高山草 原土和沼泽化草甸土分别降低74.5%和90.7%,其他养分含量也有不同程度的降低,土壤养分状况明显恶化.不同类型植被下土壤微生物区系特征变化显著 ,退化高山草甸土的细菌、真菌、放线菌(GA)平均数量分别为8.8*10~6、9.5*10~3、8.1*10~5 cfu g~(-1),较天然高山草甸土降低65.8%、46.6%、57.3%,较高山草原土降低37.1%、23.3%、62.6%,较沼泽化草甸土降低90 .3%、48.1%、69.6%;退化草地土壤微生物组成较天然草地更为简单,退化高山草甸土的真菌种类数明显降低,土壤放线菌组成趋于简单化,其小单孢 菌和其他菌属所占比例明显低于天然草地.三江源高寒湿地生态系统中土壤养分与微生物数量之间存在密切关系,土壤全磷对微生物数量影响最大. C1 LIN Chaofeng, Department of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China. XUE Quanhong, Department of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China. LAI Hangxian, Department of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China. CHEN Zhanquan, Qinghai Academy of Agriculture and Forestry, Xining, Qinghai 810016, China. CHEN Laisheng, Qinghai Academy of Agriculture and Forestry, Xining, Qinghai 810016, China. ZHANG Dengshan, Qinghai Academy of Agriculture and Forestry, Xining, Qinghai 810016, China. Z6 林超峰, 西北农林科技大学资源环境学院, 杨凌, 陕西 712100, 中国. 薛泉宏, 西北农林科技大学资源环境学院, 杨凌, 陕西 712100, 中国. 来航线, 西北农林科技大学资源环境学院, 杨凌, 陕西 712100, 中国. 陈占全, 青海农林科学院, 西宁, 青海 810016, 中国. 陈来生, 青海农林科学院, 西宁, 青海 810016, 中国. 张登山, 青海农林科学院, 西宁, 青海 810016, 中国. EM xuequanhong@nwsuaf.edu.cn Z7 xuequanhong@nwsuaf.edu.cn Z8 20 Z9 24 UT CSCD:3042060 DA 2023-03-23 ER PT J AU LIANG Sihai WAN Li LI Zhiming CAO Wenbing Z2 梁四海 万力 李志明 曹文炳 TI The Effect of Permafrost on Alpine Vegetation in the Source Regions of the Yellow River Z1 黄河源区冻土对植被的影响 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 29 IS 1 BP 45 EP 52 AR 1000-0240(2007)29:1<45:HHYQDT>2.0.TX;2-J PY 2007 DT Article AB In the recent 20 years, the vegetation degradation and the decrease of height, output and coverage of grazing in the source regions of the Yellow River, located at the edge of permafrost in the Tibetan plateau, is one of the most serious problems scientists have to face. The purpose of this study is to discover the relation between alpine meadow and permafrost environment through quantitative analysis.From five-year field work, including making 11 profiles cutting across 49 investigation holes, many investigation data are got, such as vegetation coverage, earth temperatures and percentages of moisture content. The research findings indicate that the depth of seasonal thawing affects the moisture content percentage of shallow soil, where major plant root exists, then affects the vegetation coverage. There are two perfect correlations between the depth of seasonal thawing and the moisture content of shallow soil and between the depth of seasonal thawing and the vegetation coverage. When the depth of seasonal thawing is less than 2. 0 meters, the depth of seasonal thawing, which determines the moisture content in shallow soil,affects the alpine meadow's growth. As a result, only some plants with long-root and able to bear drought can exist with lower coverage, less than 35 percent. The depth, less than 2. 0 meters from the surface, is named ecological depth of seasonal thawing, where the capillary water does not climb up to the shallow soil layer to eliminate dryness, and the growth of majority of alpine meadow becomes impossible.Ground temperature has increase by more than 1. 2℃ for twenty years at the depth of 3. 2 meters, as measured at Madoi Meteorological Station. As a result, permafrost table drops down, depth of seasonal thawing increases and ice-short permafrost appears, even permafrost disappears, making soil much dryer with smaller water supply. Sequentially, moderate hygrophilous plants are replaced by xerophious plants, or even rodent damage. In conclusion, the condition of alpine meadow is changing, the former stable relation between the vegetation and the depth of seasonal thawing is breaking, and a series of ecological degradation can be seen in the source regions of the Yellow River. Z4 黄河源区由于近年来气候变化的影响, 打破了高寒植被与冻土环境之间稳定的适应性关系, 由此引发了一系列生态环境退化的现象. 在黄河源区多年野外工作的基础上, 定量分析了冻土与植被之间的关系. 研究表明:多年冻土埋深通过影响浅层土壤含水量影响植被生长的, 多年冻土的埋深与浅层土壤含水率和植被的覆盖率具有良好的相关性规律. 冻土埋深<2 m时, 冻土埋深决定浅层土壤含水率, 成为影响植被的生长主要因素;埋深>2 m时, 冻结层上水水位低、补给量少, 冻结层上水水量小, 毛细上升高度不能达到植被根系分布的浅层土壤中, 植被生长环境干旱化, 多数植被生长受限制, 这时只有少量根系发达的耐旱植被存活, 覆盖率小, 一般不超过35%. 因此, 2 m的多年冻土埋深为"生态冻土埋深". 近20 a来, 黄河源区地温长期处于增温状态, 多年冻土出现表层融化, 形成深埋的或少冰的冻土等现象;部分地带完全融化消失, 连续多年冻土变成不连续冻土或岛状冻土. 多年冻土退化后, 土壤含水量减少, 导致植被物种更替、 "黑土滩"等退化现象. C1 LIANG Sihai, School of Water Resources and Environment; China University of Geosciences, Beijing 100083, China. WAN Li, School of Water Resources and Environment; China University of Geosciences, Beijing 100083, China. LI Zhiming, School of Water Resources and Environment; China University of Geosciences, Beijing 100083, China. CAO Wenbing, School of Water Resources and Environment; China University of Geosciences, Beijing 100083, China. Z6 梁四海, (北京)中国地质大学,水资源与环境学院, 北京 100083, 中国. 万力, (北京)中国地质大学,水资源与环境学院, 北京 100083, 中国. 李志明, (北京)中国地质大学,水资源与环境学院, 北京 100083, 中国. 曹文炳, (北京)中国地质大学,水资源与环境学院, 北京 100083, 中国. EM liangsh@cugb.edu.cn Z7 liangsh@cugb.edu.cn Z8 33 Z9 45 UT CSCD:2811169 DA 2023-03-23 ER PT J AU WANG Yibo WANG Genxu ZHANG Chunmin LONG Xunjian Z2 王一博 王根绪 张春敏 龙训建 TI Response of Soil Physicochemical Properties to the Changes of the Vegetation Ecosystem on the Tibetan Plateau Z1 高寒植被生态系统变化对土壤物理化学性状的影响 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 29 IS 6 BP 921 EP 927 AR 1000-0240(2007)29:6<921:GHZBST>2.0.TX;2-E PY 2007 DT Article AB The investigation of soil physicochemical properties in the source regions of the Yellow River indicates that the degeneration of vegetation ecosystem on the Tibetan Plateau results in great soil environment change. By the study of chemistry characteristics of soil organic matters (OM), organic nitrogen (TN), and physical identities, including mechanism form, bulk density and conduc- tivity coefficient in typical sampling area, it is found that soil chemistry and physical properties are in regression obviously in the vegetation degenerating process. The SOM in surface layer of the meadow soil decreased from 179. 58 g·kg~(-1) to 49.48 g·kg~(-1), the hydrolysable nitrogen has lost 30%. 53% of the soil SOM in the deteriorated grassland has been lost, and the hydrolysable nitrogen has lost 28. 4%. The soil SOM in swamp land has lose 15. 11 g·kg~(-1). The soil layer is thinning, but the particle size has been coarsening. During the degradation, the soil moisture distribu-tion and content in the topsoil are changing, such as bulk density increasing and desertification. The investigation also shows that the correlation between the plant coverage and conductivity coefficient of soil is quite obvious, and the soil characteristics, physical and chemical, are changing evidently, with a degeneration of alpine ecosystem. Z4 在黄河源区选择典型样地,对土壤有机质(SOM)、全氮(N)等化学性状及土壤机械组成、容重和土壤导水率等物理特性进行分析.结果表明,植被退化导致土 壤物理化学性状显著退化.灌丛草甸草地土壤表层有机质(SOM)从179.58g·kg~(-1)降到49.48g·kg~(-1),表层碱解N流失率为 30%,退化嵩草草甸表层有机质s0M减少53%,碱解N损失率为28.4%.沼泽地有机质SOM减少了15.11g·kg~(-1).退化后的土壤土层 厚度变薄,土壤颗粒变粗,土壤水分分布和含量出现变化,土壤出现沙化,土壤容重增大,土壤导水率与植被盖度有很好的相关性.研究表明,高寒植被生态系统的 变化引起了土壤理化特性的强烈变化,高寒土壤环境出现退化. C1 WANG Yibo, Collegeof Earth and Environment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. WANG Genxu, Collegeof Earth and Environment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. ZHANG Chunmin, Collegeof Earth and Environment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. LONG Xunjian, Collegeof Earth and Environment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Z6 王一博, 兰州大学, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 王根绪, 兰州大学, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 张春敏, 兰州大学, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. 龙训建, 兰州大学, 西部环境教育部重点实验室, 兰州, 甘肃 730000, 中国. EM yibo_wang@163.com; gxwang@lzb.ac.cn Z7 yibo_wang@163.com; gxwang@lzb.ac.cn Z8 18 Z9 23 UT CSCD:3038476 DA 2023-03-23 ER PT J AU TIAN Yuqiang OUYANG Hua SONG Minghua NIU Haishan HU Qiwu Z2 田玉强 欧阳华 宋明华 牛海山 胡启武 TI Distribution characteristics and influencing factors of soil organic carbon in alpine ecosystems on Tibetan Plateau transect Z1 青藏高原样带高寒生态系统土壤有机碳分布及其影响因子 Z3 浙江大学学报. 农业与生命科学版 SO Journal of Zhejiang University VL 33 IS 4 BP 443 EP 449 AR 1008-9209(2007)33:4<443:QZGYYD>2.0.TX;2-7 PY 2007 DT Article AB The undisturbed regions along the Qinghai-Tibet road crossing the natural zones of montane desert, alpine meadow-steppe, and rnontEine shrub-coniferous forest were chosen as study area. Soil samples were collected at 23 places and the relations between the influencing factors and distribution of soil organic carbon (SOC) content were studied. The results indicated that the orders of SOC content for the whole soil profile in different vegetation, in the horizontal direction, were showed as below: forest> shrub>meadow> steppe> desert; all the SOC contents of upper 10 cm soil layers in vegetations of forest, shrub and meadow, as well as that of upper 20 cm soil layers in steppe, in the vertical direction, were higher than that of corresponding lower soil layers. However, the SOC content in desert was uniform. The grey correlative analysis between the climatic factors and SOC content in upper part soil showed that the precipitation was the dominant climatic factor affecting the distribution of SOC on the Tibetan Plateau transect. The influence of precipitation on the horizontal distribution of SOC decreases asthe increase of precipitation in the horizontal direction. The vertical distribution of SOC along soil profile was greatly affected by precipitation or soil clay content in upper part of soil, as well as was clearly influenced by soil silt content or sand content in lower part of soil. The influences of both soil bulk density and soil pH on the vertical distribution of SOC along soil profile declined gradually. The plant biomasK was the most important biotic factor affecting the distribution of SOC. Z4 沿青藏公路,以跨越山地荒漠、高寒草甸-草原和山地灌丛-针叶林等地带的样带为研究区域,在23个样点采集土样分析土壤有机碳(SOC)分布及其影响因子 .结果表明,在样带水平方向,不同植被下整个剖面的SOC含量从高到低依次是森林>灌丛>草甸>草原>荒漠;在垂直方向上,森林、灌丛和草甸植被0~10 cm土层SOC含量、草原植被20 cm以上土层SOC含量皆显著高于其下各层,荒漠植被各土层SOC含量分布均一.灰色关联度分析表明;降水是影响样带内SOC分布的主导气候因子,随样带 内水热条件的改善,降水对SOC分布的影响逐渐降低;降水和土壤粘粒对表层SOC分布的影响较大,土壤粉粒和砂粒对底层SOC分布影响明显.土壤容重和p H对SOC沿剖面分布的影响逐渐降低;植被生物量是影响不同植被下SOC分布的重要生物因子. C1 TIAN Yuqiang, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. OUYANG Hua, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. SONG Minghua, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. HU Qiwu, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. NIU Haishan, Graduate School, Chinese Academy of Sciences, Beijing 100039, China. Z6 田玉强, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 欧阳华, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 宋明华, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 胡启武, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 牛海山, 中国科学院,研究生院, 北京 100039, 中国. EM tyq276811@163.com; ohua@igsnrr.ac.cn Z7 tyq276811@163.com; ohua@igsnrr.ac.cn Z8 1 Z9 3 UT CSCD:2912436 DA 2023-03-23 ER PT J AU 王俊峰 王根绪 王一博 李元寿 TI 青藏高原沼泽与高寒草甸草地退化对生长期CO_2排放的影响 Z3 科学通报 SO Chinese Science Bulletin VL 52 IS 13 BP 1554 EP 1560 AR 0023-074X(2007)52:13<1554:QZGYZZ>2.0.TX;2-U PY 2007 DT Article Z4 采用静态箱-便携式红外色谱法对青藏高原风火山地区沼泽草甸和高寒草甸两类生态系统CO2排放通量进行了研究.结果表明,生长期内两类生态系统之间及同一 生态系统内部不同的退化程度之间CO2排放通量均存在较大差异.沼泽草甸CO2排放通量随着退化程度的加剧而逐渐降低,而高寒草甸除5月份之外,CO2排 放通量随着退化程度的加剧而逐渐提高;未退化沼泽草甸较高寒草甸CO2的排放通量同比高出65.1%-80.3%:中度退化沼泽草甸较高寒草甸CO2的排 放通量同比高出22.1%。67.5%:然而,严重退化的高寒草甸比沼泽草甸CO2的排放通量反而高出14.3%~29.5%.5cm处土壤水分、5cm 处土壤温度和地上生物量与CO2排放通量显著相关,是控制CO2排放主要环境因子. Z6 王俊峰, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 王根绪, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 王一博, 兰州大学资源环境学院, 兰州, 甘肃 730000, 中国. 李元寿, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. Z7 wangjf2008@yahoo.com.cn Z8 14 Z9 14 UT CSCD:2960000 DA 2023-03-23 ER PT J AU GUO ZhengGang NIU FuJun ZHAN Hu WU QingBo Z2 郭正刚 牛富俊 湛虎 吴青柏 TI Changes of grassland ecosystem due to degradation of permafrost frozen soil in the Qinghai-Tibet Plateau Z1 青藏高原北部多年冻土退化过程中生态系统的变化特征 Z3 生态学报 SO Acta Ecologica Sinica VL 27 IS 8 BP 3294 EP 3301 AR 1000-0933(2007)27:8<3294:QZGYBB>2.0.TX;2-B PY 2007 DT Article AB Effect of permafrost degradation on grassland ecosystem has aroused interests in the scientists due to influence the processes of ecology in the permafrost regions of Qinghai-Tibetan Plateau. To gain insight into the contribution of permafrost degradation to the stability of grassland ecosystem, there is an urgent need to study the properties of grassland ecosystem in the succession stages due to degradation of frozen soil. A survey of plant vegetation was undertaken during 2003 and 2004 along the Qinghai-Tibetan Highway from Kunlunshan (94°04′ 46 E, 35 38′ 51 N) to the southern Tanggulashan Pass (33°07.120′E,91°52.670′N), to study the properties of grassland ecosystem in the successional stages from marsh meadow, alpine meadow and steppe meadow to desert steppe due to permafrost degradation. Fifty-five spots were selected in the successional community series. Each plots were arranged with three replicates. In each subplot, all plant species present were counted, and coverage, height (50 plants) and frequency were recorded. Biomass was measured by harvesting and drying. The species diversity of the plant communities was calculated using the Shannon-Wiener (diversity) index (H), the Pielou (evenness ) index (J), and richness index (species number) (S). Three soil samplings at 0-20 cm layer were collected to analysis the soil organic matter content. Soil water and temperate were measured. Accompanying by permafrost degradation, plant species in communities transferred from wet plants in marsh meadow to drought plants in desert steppe, and height and coverage of plant communities decreased, and the richness species index (S) was not significantly different among the successional communities series, whereas evenness index (J) and diversity index (H) were significantly different (P<0.05) , indicating that they first decreased and then increased, peaking in the steppe meadow. In the successional series resulted from permafrost degradation, biomass and carrying capacity generally decreased, however, they were not significantly different between alpine meadow and steppe meadow. Economic value of plants decreased, and weeds in plant communities increased in the sucessional series. Accompanying by the process of frozen soil degradation, soil temperate at 0-20 cm layers increased, however, soil moisture and soil organic matter reduced. These implied that permafrost degradation was disadvantageous to stability of grassland ecosystem in the permafrost regions of Qinghai-Tibet Plateau. Z4 多年冻土的发育是青藏高原冻土区生态系统稳定的基础,而多年冻土退化效应是目前青藏高原研究的热点.研究了青藏高原北部多年冻土退化过程中生态系统的变化 特征.结果表明:在多年冻土退化的过程中,土壤温度逐渐升高,土壤含水量下降,有机质含量降低,植被类型表现为从沼泽化草甸演替为典型草甸,草原化草甸, 最终成为沙化草地,群落植物组成从湿生或中湿生逐渐向中生、中旱生乃至旱生转变,草层高度变矮,植被盖度下降,alpha和beta多样性均表现为先增加 后减小,在草原化草甸阶段达到最大;草地植物生物量和载畜能力总体表现为降低趋势,但在典型草甸和草原化草甸之间差异不显著.植被经济类群的变化趋势表现 为优良的莎草科和禾本科牧草比例下降,而毒杂草比例显著增加,牧草品质下降,饲用价值降低. C1 GUO ZhengGang, Key Laboratory of Grassland Agro-Ecosystem Ministry of Agriculture, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. ZHAN Hu, Key Laboratory of Grassland Agro-Ecosystem Ministry of Agriculture, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. NIU FuJun, State Key Laboratory of Frozen Soil of Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730020, China. WU QingBo, State Key Laboratory of Frozen Soil of Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730020, China. Z6 郭正刚, 兰州大学草地农业科技学院, 农业部草地农业生态系统学重点开放实验室, 兰州, 甘肃 730020, 中国. 湛虎, 兰州大学草地农业科技学院, 农业部草地农业生态系统学重点开放实验室, 兰州, 甘肃 730020, 中国. 牛富俊, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 吴青柏, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. EM zhenggangguo200@yahoo.com.cn Z7 zhenggangguo200@yahoo.com.cn Z8 44 Z9 66 UT CSCD:2910664 DA 2023-03-23 ER PT J AU ZHOU Dujun MA Haizhou SHAN Fashou HUANG Huabing WU Feiquan CAO Guangchao CHEN Zhong GAO Donglin Z2 周笃珺 马海州 山发寿 黄华兵 吴非权 曹广超 陈忠 高东林 TI Pasture Resources and Ecological Protection in Qinghai Lake Drainage Basin and Surrounding Areas Z1 青海湖流域及周边地区的草地资源与生态保护 Z3 资源科学 SO Resources science VL 28 IS 3 BP 94 EP 101 AR 1007-7588(2006)28:3<94:QHHLYJ>2.0.TX;2-L PY 2006 DT Article AB In Qinghai Lake drainage area, there are great stretches of lake, alpine mountains and pasture, which are important ecological barriers to stop the expansion of western desert, and playing a remarkable role to hold regional environment stabilization and sustainable development. Qinghai Lake drainage basin and its surrounding areas include Qinghai Lake drainage area, Gonghe basin and eastern Qaidam basin, with a total area of 5.09*10^4 km^2. Gonghe basin and eastern Qaidam basin are also the important desertification source land connecting with Qinghai Lake drainage area; it is significant for us to consider the ecological situation in Gonghe basin and eastern Qaidam basin in drawing up the overall environment management plans. The stockbreeding has a relatively large economic proportion and more than 75 % of the land is pasture in Qinghai Lake drainage basin and circumjacent area. Because of the complex natural conditions, the types of pasture resources are various and unique. On the basis of data analysis pasture resources were divided into 5 types: 1 ) Mountainous sparse wood pasture, which is located at 3 700m - 4 400m above sea level, distributing in Dulan county and Qinghai Nanshan region to the west of Qinghai Lake, with 3.67*10^4 ha and 0.72% of total land proportion in Qinghai Lake drainage basin and circumjacent area; 2) Mountainous shrubbery pasture, which is shaped in the frigid environment of Qinghai-Tibet plateau, and mainly lies on the steep northern slopes and bottomlands at 3 800m-4200m above sea level, with 21.34*10^4 ha and 4.19% of total land area; 3) Temperate prairie pasture, which is mainly distributed in the valley and upland of Gonghe, Chaqia and eastern Qaidam basin, and the terrace around Qinghai Lake, with 159.58*10^4 ha and 31.35% of total land area; 4) Frigid Alpine meadow pasture, which is an important type, and distributed in basin, hill and mountains above 3 200m, with representative Carex and Kobresia plants, 135.60*10^4 ha and 26.64% of total land area; 5) Deserted pasture, which consists of frigid Alpine hungriness and typical hungriness, respectively lying in north-western Tianjun county and eastern Qaidam basin, with 65.23*10^4 ha and 12.81% of total land area. Under the pressures of climatic change and irrational human activities, the problems including the lake level decline, land desertification and pasture degradation are getting more and more serious in this area, the ecological characters of frigid Alpine and hungriness environment become more remarkable, and the biodiversity is lossing rapidly. This paper discusses the protection measures of pasture resources, including increasing vegetation cover, slowing the desertification, optimizing stockbreeding structure, annihilating rat and insect pest harm, and controlling tourism scale in this area. Z4 青海湖流域内的巨大水体、高山和草地是阻挡西部荒漠东侵的重要生态屏障,对维系区域生态稳定和可持续发展发挥着重大作用.青海湖流域及周边地区总面积5. 09*10^4km^2,畜牧业经济占有较大比重,草地占土地总面积的75%以上.通过资料整理、实地考察和GIS手段,主要依据1984年厦门会议分类 系统,青海湖流域及周边地区的草地资源类型可分为74个小类,纳入山地疏林草地、山地灌丛草地、温性草原草地、高寒草甸草地和荒漠草地5个大类.近年来, 受气候变化和不合理人类活动的影响,青海湖流域及周边地区水位下降、土地沙化和草地退化问题变得十分突出,高寒型、荒漠化生态特点愈加突出,生物多样性锐 减,已引起人们愈来愈多的关注;本文系统探讨了青海湖流域及周边地区的草地资源特征和生态现状,提出了增加草被覆盖、治理草地荒漠化、优化畜牧业生产、强 化鼠虫害防治和控制旅游经济规模等保护草地资源的相应对策. C1 ZHOU Dujun, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. MA Haizhou, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. SHAN Fashou, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. HUANG Huabing, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. WU Feiquan, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. CAO Guangchao, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. CHEN Zhong, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. GAO Donglin, Qinghai Institute of Salt Lake, CAS, Xining, Qinghai 810008, China. Z6 周笃珺, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. 马海州, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. 山发寿, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. 黄华兵, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. 吴非权, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. 曹广超, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. 陈忠, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. 高东林, 中国科学院青海盐湖研究所, 西宁, 青海 810008, 中国. EM cho州2000@yahoo.com.cn Z7 cho州2000@yahoo.com.cn Z8 7 Z9 8 UT CSCD:2451228 DA 2023-03-23 ER PT J AU YAO Tuo WANG Gang ZHANG DeGang LONG RuiJun Z2 姚拓 王刚 张德罡 龙瑞军 TI Temporal changes of grassland vegetation, soil and soil microbial population in the Tianzhu alpine region Z1 天祝高寒草地植被、土壤及土壤微生物时间动态的比较 Z3 生态学报 SO Acta Ecologica Sinica VL 26 IS 6 BP 1926 EP 1932 AR 1000-0933(2006)26:6<1926:TCGHCD>2.0.TX;2-1 PY 2006 DT Article AB Sustained overgrazing and rodent's destruction are responsible for the degradation of more than 50% of grassland in north-western China. In fact these persistent adverse effects caused a reduction in the number of high quality forage species and grassland productivity, accompanied with an increase in the incidence of weed and poisonous plants. The degradation of the grassland ecosystem causes serious social and economical problems in the region. To prevent and control grassland degradation,intensive muhidisciplinary research projects have been performed in this area. However information on the microbial population changes in the grassland is scarce. Soil microbial activity plays an important and vital role in grassland ecosystem because it affect soil physical properties like the stability of aggregates, soil aeration and water holding capacity, and it is responsible of the mineralization and recycling of several important nutrients like carbon, nitrogen and phosphorus. Soil organic matter is also significantly affected by microbial activity. Thus, grassland soil microbial importance and diversity can be used as an index of grassland health and soil fertility. The present work was performed in the alpine region of Tianzhu, eastern part of the Qinghai-Tibetan Plateau, which is characterized by high altitude, important daily temperature variations with sparse air, strong radiation and low temperature. We studied the temporal changes in vegetation and soil properties, the different physiological groups of soil microorganisms and the effect of the degree of grassland deterioration on soil microbes, by comparing measurements made in 1982 with those made in 2003. In general, the vegetation condition as well as soil physical and chemical characteristics were obviously in better condition in 1982 as compared to 2003. In 2003, the parameters showing important decreases as compared to 1982, included: the dominant plant species of the vegetation coverage, forage yield, soil water content, soil organic matter, N and P content. On the contrary an increase in soil pH was observed. The total microbial population in 1982 was higher than in 2003. Soil bacterial population decreased from log 8.97 cfu g^-1 of dry soil in 1982 to log 6.79 in 2003. Similarly from 1982 to 2003,the observed population decreases in cfu g^-1 of dry soil were as follows: actinomycetes from log 6.91 to log 6.17 ; fungi from log 3.89 to log 3.28; nitrifiers from log 4.29 to log 3.54; aerobic nitrogen fixing bacteria from log 5.54 to log 3.90 and cellulose degraders from log 5.65 to log 3.68. The number of physiological groups was also from 1.5 to 4.5 times higher in the moderately deteriorated grassland (fenced) than in the severely deteriorated grassland (unfenced and rodents hill). The results clearly illustrate the important decline of the soil microbial population associated with the deterioration of the grassland. Z4 对天祝高寒草地21a前(1982年)、后(2003年)植被状况、土壤理化性质、土壤三大类微生物(细菌、放线菌和真菌)和各生理群微生物(硝化细菌、 好气性固氮菌和好气性纤维素分解菌)及不同退化程度(围栏内、围栏外和鼠丘地)草地土壤微生物数量变化特点进行了对比研究。结果表明:(1)与1982年 相比,目前该区天然草地植被总盖度、主要优良牧草种类、产草量等显著下降,草地植被退化明显;(2)草地土壤pH升高,土壤含水量、有机质、氮、磷含量均 下降,草地土壤理化性质劣于1982年;(3)目前该区天然草地土壤三大类微生物数量及各生理群微生物数量变化十分明显,1982年土壤细菌、放线菌和真 菌及微生物总数分别是2003年的153.6、5.5、4.1倍和151.2倍;土壤硝化细菌、好气性固氮菌和好气性纤维素分解菌数量分别是2003年的 5.7、43.3倍和94.4倍;(4)轻度退化草地(围栏内)土壤各类微生物数量明显高于严重退化草地(围栏外、鼠丘地),其数量前者一般为后者的1. 54.5倍。 C1 YAO Tuo, Pratacaltural College, Gansu Agricultural University, Lanzhou, Gansu 730070, China. ZHANG DeGang, Pratacaltural College, Gansu Agricultural University, Lanzhou, Gansu 730070, China. LONG RuiJun, Pratacaltural College, Gansu Agricultural University, Lanzhou, Gansu 730070, China. WANG Gang, State Key Laboratory of Arid Agroecology ,Lanzhou University, Lanzhou, Gansu 730000, China. Z6 姚拓, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 张德罡, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 龙瑞军, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 王刚, 兰州大学, 干旱农业生态国家重点实验室, 兰州, 甘肃 730000, 中国. EM yaotuo@gsau.edu.cn Z7 yaotuo@gsau.edu.cn Z8 20 Z9 21 UT CSCD:2543113 DA 2023-03-23 ER PT J AU Wang Wenying Wang Qiji Wang Gang Z2 王文颖 王启基 王刚 TI Effects of land degradation and rehabilitation on soil carbon and nitrogen content on alpine Kobersia meadow Z1 高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响 Z3 生态环境 SO Ecology and Environment VL 15 IS 2 BP 362 EP 366 AR 1672-2175(2006)15:2<362:GHCDTD>2.0.TX;2-Z PY 2006 DT Article AB Grassland degradation are widespread and severe in Qinghai-Tibetan Plateau. In order to explore management approach for sustainable development of soil quality, we study the effect of land degradation on soil C and N content, examine the relative influence of various rehabilitation practices (three seeding treatment and a non-seeded natural recovery treatment) on soil C and N content in early secondary succession. The research was conducted on alpine meadows in Dari county of Qinghai Province. The resuits showed: In the YF treatment, soil C and N content were 7.47 g·m^-2 and 0.647 g·m^-2 in the 0-20 cm depths, respectively. The total C and N content in soil of the SDL treatment were 3.67 and 0.448 g·m^-2, respectively. So, loss of soil organic C and total N in per unit area (m^-2) amounted to 3.8 and 0.199 kg on alpine meadow soil at 0-20 cm layers during land degradation, respectively. Namely, land degradation leads to loss of 50.87% C and 30.75% N in originally native ecosystem on alpine meadow. The soil C content in the HB, DBB, DBF and NR treatment was 70.5 per cent, 69.0 per cent, 49.0 per cent and 80.0 per cent, respectively, of that in the YF while the soil N content in the that was 86.9 per cent, 88.7 per cent, 71.1 per cent and 91.7 per cent, respectively, of that in the YF. But Compared with the severely degraded land, all rehabilitation measures except DBF treatment may in part recover C and N content of ecosystem. So, restoring the severely degraded lands by HB or NR treatments to perennial vegetation is an alternative approach to sequestering C in former degraded system. Z4 针对我国青藏高原草地大面积退化及由此引发的一系列生态环境问题,从土壤生态功能恢复和区域可持续发展的角度出发,将原生高寒嵩草草甸封育系统作为对照, 研究了土地退化对土壤碳氮含最的影响,检验了不同人工重建措施(3个人工种植处理:混播、松耙单播、翻耕单播和1个自然恢复处理)对土壤碳含量的相对影响 程度。研究结果如下:原生植被封育处理每平方米土壤平均碳、氮含量分别为7.47kg和0.647kg,而重度退化地碳、氮含量分别为3.67和0.44 8kg·m^-2.可以推算,由于土地退化而造成的土壤(0-20cm层)碳氮丢失量分别为3.80kg·m^-2和0.199kg·m^-2,即高寒草 甸土地退化导致0~20cm土壤层中50.87%的有机碳和30.75%的氮流失,可以看出高寒草甸土壤退化后流失的碳比氮多;混播处理、松耙单播处理、 翻耕单播处理和自然恢复处理土壤单位面积有机碳含量分别是原牛植被土壤有机碳的70.5%,69.0%,49.0%和80%,单位面积氮含量分别是原生植 被土壤全氮的86.9%,88.7%,71.1%和91.7%。但是,与重度退化地相比,除翻耕单播处理外,其它恢复重建措施均能部分恢复系统的碳氮含量 ,因此,将重度退化地进行自然恢复或松耙混播重建多年生植被可以作为系统固定碳(碳汇)的一个途径。 C1 Wang Wenying, Key Laboratory of Education Department of Environment and Resources on Tibetan Plateau, Qinghai Normal University, Xining, Qinghai 810001, China. Wang Qiji, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China. Wang Gang, College of Life Science, Lannzhou University, Lanzhou, Gansu 730000, China. Z6 王文颖, 青海师范大学, 青藏高原环境与资源教育部重点实验室, 西宁, 青海 810008, 中国. 王启基, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 王刚, 兰州大学生命科学学院, 兰州, 甘肃 730000, 中国. EM wangqj0906@yahoo.com.cn Z7 wangqj0906@yahoo.com.cn Z8 26 Z9 27 UT CSCD:2461267 DA 2023-03-23 ER PT J AU Zhao Liang Xu Shixiao Li Yingnian Tang Yanhong Zhao Xinquan Gu Song Du Mingyuan Yu Guirui Z2 赵亮 徐世晓 李英年 唐艳鸿 赵新全 古松 杜明远 于贵瑞 TI Relations between Carbon Dioxide Fluxes and Environmental Factors of Kobresia humilis Meadows and Potentilla fruticosa Meadows Z1 青藏高原矮嵩草草甸和金露梅灌丛草甸CO2通量变化与环境因子的关系 Z3 西北植物学报 SO Acta Botanica Boreali-Occidentalla Sinica VL 26 IS 1 BP 133 EP 142 AR 1000-4025(2006)26:1<133:QZGYAS>2.0.TX;2-# PY 2006 DT Article AB Carbon dioxide fluxes of Kobresia humilis and Potentilla fruticosa meadows,two typical ecosystems in Qinghai-Tibet Plateau,were measured by eddy covariance technology and the data collected in August 2003 were employed to analyze the relations between carbon dioxide fluxes and environmental factors and keep stable,and during the period the net carbon absorptions of Kobresia hurnilis and Potentilla fruticosa meadows reach 56.2 g C·m^-2 and 32.6 g C· m^-2 with their highest daily carbon dioxide absorptions standing at 12.7 mumol·m^-2·s^-1 and 9.3 mumol·m^-2·s^-1,and their highest carbon discharges arriving at 5.1 mumol·m^-2·s^-1and 5.7 mumol·m^-2·s^-1,respectively. At the same photosynthetic photo flux densities (PPFD),the carbon dioxide-up-taking rate of Kobresia hurnilis meadow is higher than that of Potentilla fruticosa meadow;where the photosynthetic photo flux densities (PPFD) are higher than 1200 mumol·m^-2·s^-1,the carbon dioxide up-taking rates of the two ecosystems declined with increased air temperature, but the carbon dioxide rate of Kobresia hurnilis meadow decreased more quickly (-0. 086) than that of Potentilla fruticosa meadow (-0. 016). The soil moistures exert influence on the soil respirations and the influences vary with the vegetation types. The daily carbon dioxide absorptions of the ecosystems increase with increased diurnal temperature differences and carbon dioxide exchanges. There exists a negative bon dioxide fluxes. higher diurnal temperature differences results in higher correlation between the vegetation albedos and the carbon dioxide fluxes. Z4 利用涡度相关技术观测了青藏高原两个典型的生态系统即矮嵩草(Kobresia humilis)草甸和金露梅(Potentilla fruticosa)灌丛草甸的CO2通量,并就2003年8月份的数据,分析了生态系统通量变化与环境因子的关系。8月份是这两个生态系统的叶面积指数 达到最高也是相对稳定的时期,在此期间矮嵩草草甸和金露梅灌丛草甸净碳吸收量分别达56.2和32.6g C·m^-2,日CO2吸收量最大值分别为12.7mumol·m^-2·s^-1和9.3mumol·m^-2·s^-1,排放量最大值分别为5.1m umol·m^-2·s^-1和5.7mumol·m^-2·s^-1。在相同光合有效光量子通量密度(PPFD)条件下,矮嵩草草甸CO2吸收速度大于 金露梅灌丛草甸;在PPFD高于1200mumol·m^-2·s^-1。的条件下,随气温增加,两生态系统的CO2吸收速度都下降,但矮嵩草草甸的下降 速度(-0.086)比金露梅灌丛草甸(-0.016)快。土壤水分影响土壤呼吸,并且影响差异因植被类型不同而不同。生态系统日CO2吸收量随昼夜温差 增加而增大;较大的昼夜温差导致较高的净CO2交换量;植物反射率与CO2通量之间存在负相关关系。 C1 Zhao Liang, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Xu Shixiao, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Li Yingnian, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhao Xinquan, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Gu Song, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Yu Guirui, Northwest Plateau Institute of Biology,Chinese Academy of Sciences, Xining, Qinghai 810001, China. Tang Yanhong, National Institute for Environmental Studies, Tsukuba, Japan. Du Mingyuan, National Institute for Environmental Studies, Tsukuba, Japan. Z6 赵亮, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 徐世晓, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李英年, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 赵新全, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 古松, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 唐艳鸿, 日本国立环境研究所, 日本. 杜明远, 日本农林环境技术研究所, 日本. 于贵瑞, 中国科学院地理科学与资源研究所, 北京 100101, 中国. EM lzhao@nwipb.ac.cn Z7 lzhao@nwipb.ac.cn Z8 26 Z9 27 UT CSCD:2329382 DA 2023-03-23 ER PT J AU Yan Wei Zhang Xianzhou Shi Peili Yang Zhenlin He Yongtao Xu Lingling Z2 闫巍 张宪洲 石培礼 杨振林 何永涛 徐玲玲 TI Carbon Dioxide Exchange and Water Use Efficiency of Alpine Meadow Ecosystems on the Tibetan Plateau Z1 青藏高原高寒草甸生态系统CO_2通量及其水分利用效率特征 Z3 自然资源学报 SO Journal of Natural Resources VL 21 IS 5 BP 756 EP 767 AR 1000-3037(2006)21:5<756:QZGYGH>2.0.TX;2-B PY 2006 DT Article AB In order to study the diurnal and seasonal variations of CO_2 fluxes and water use efficiency (WUE),the open-path eddy covariance systems were employed to continuously measure carbon and energy fluxes of the Alpine meadow during the three growing seasons (from May to October) of 2003-2005,respectively.The results showed that: (1)The maximum global solar radiations were 1 563W/m~2 and 1 640W/m~2 in 2004 and 2005 (mean value of 30 minutes), respectively,greater than the solar constant; while the maximum net radiations were 896W/m~2 and 925W/m~2,and the maximum latent heat fluxes densities were 592 W/m~2 and 597W/m~2, respectively.As for the six selected days from May to October in 2004,the ratios of latent heat flux to net radiation were 0.355%,0.916%,0.738%,0.818%,0.609% and 0.456%,respectively. (2)The latent heat had an obvious diurnal variation. During the daytime of growing season,the latent heat fluxes density increased with radiation,and declined after reaching its maximum at 15:00p.m; CO_2 flux reached its maximum at about 10:30a.rn.and WUE presented a falling trend from morning to afternoon.The maximum CO_2 fluxes and WUE (mean value of 30 minutes) were similar to 2004 and 2005,with values being 0.3mg CO_2·m~(-2)·s~(-1) and 8g CO_2/kg H_2O, respectively. (3)The CO_2 fluxes and WUE (mean value of the daytime) varied obviously at the seasonal and yearly scales.The carbon fluxes (mean value of the daytime) represented as a carbon sink from early June in 2004,but from late June in 2005; WUE (mean value of the daytime) became positive also from early June in 2004,but from late June in 2005;in addition,the overall values of carbon fluxes and WUE (mean value of the daytime) of 2004 were greater than 2005 .The maximum carbon fluxes were 0.15mg CO_2·m~(-2)·s~(-1) and 0.13mg CO_2·m~(-2)·s~(-1) in 2004 and 2005, respectively. And the maximum values of WUE (mean value of the daytime) were 3.2g CO_2/kg H_2O and 2.7g CO_2/kg H_2O respectively. (4)The total net CO_2 absorption of the growing season (from May to October) in 2004 and 2005 were 0.257kg CO_2·m~(-2) and 0.153kg CO_2·m~(-2), respectively. The water use efficiency throughout the growing season in 2004 and 2005 were 0.496g CO_2/kg H_2O and 0.365g CO_2/kg H_2O,respectively,being positively correlated with seasonal precipitation. Z4 以涡度相关技术为基础,研究了青藏高原当雄县高寒草甸生态系统2003-2005年共3个生长季的潜热通量(LE)、CO_2通量(Fc)和水分利用效率 (WUE)的变化特征.结果表明:①该地区2004和2005年的太阳总辐射最高值可分别达到1 563和1 640W/m~2,瞬时净辐射最高值分别为896和925 W/m2,瞬时潜热通量最高值分别为592和597W/m~2.净辐射能量的转化形式季节变化特征明显,6-8月份,净辐射能量多用于潜热蒸发,5月和1 0月净辐射则多用于显热交换.就2004年5-10月份所选6个代表性晴天来说,LE占Rn的比例分别为0.355%、0.916%、0.738%、0. 818%、0.609%、0.456%.②该地区的LE从早上8:30左右开始增加,在下午15:00左右达到最大值,而后逐渐下降;CO2通量从早上8 :00左右通过零值开始上升,在10:30左右达到峰值后下降;水分利用效率的日变化特征是日出后迅速增加或直接达到全天的最高值,其后在一天内呈现下降 趋势;2004年和2005年生长季的CO_2吸收峰值都刚接近-0.3mg CO_2·m~(-2)·s~(-1)(Fc负值时表示碳吸收),水分利用效率瞬时最大值接近8g CO_2/kg H_2O.③2004年当雄高寒生态系统白天CO2通量平均值从6月份初就开始表现为净碳吸收,而2005年在6月下旬才表现为碳吸收(Fc为负值),但 两者均在10月初就表现为碳排放(Fc为正值);2004的水分利用效率日平均值从6月初通过零点开始上升,在7月中下旬左右达到最大值.相比之下,20 05年的水分利用效率日平均值在6月底通过零点开始上升.另外,2004年的水分利用效率在总体水平上要高于2003年和2005年.就水分利用效率的日 平均值而言,2003年和2005年的最大值分别为2.0g CO_2/kg H_2O和2.7g CO_2/kg H_2O,而2004年可以达到3.2g CO2/kg H2O.④当雄高寒草甸生态系统在2004年和2005年生长季(5月1日到10月31日)净CO2吸收量分别为0.257kg CO_2·m~(-2)和0.153 kg CO_2·m~(-2);2004年和2005年整个生长季的水分利用效率分别为0.496g CO_2/kg H2O和0.365g CO_2/kg H2O,与降雨量呈现正相关关系. C1 Yan Wei, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Zhang Xianzhou, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Shi Peili, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Yang Zhenlin, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. He Yongtao, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Xu Lingling, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China. Z6 闫巍, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 张宪洲, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 石培礼, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 杨振林, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 何永涛, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. 徐玲玲, 中国科学院,地理科学与资源研究所, 北京 100101, 中国. EM yanweicas@gmail.com Z7 yanweicas@gmail.com Z8 20 Z9 29 UT CSCD:2429247 DA 2023-03-23 ER PT J AU MA RuiJun JIANG ZhiGang Z2 马瑞俊 蒋志刚 TI Impacts of environmental degradation on wild vertebrates in the Qinghai Lake drainage, China Z1 青海湖流域环境退化对野生陆生脊椎动物的影响 Z3 生态学报 SO Acta Ecologica Sinica VL 26 IS 9 BP 3066 EP 3073 AR 1000-0933(2006)26:9<3066:QHHLYH>2.0.TX;2-Z PY 2006 DT Article AB The planet is experiencing a global climate changing, global warming affects distribution, penology and breeding of wildlife. Metrological records indicate that the Qinghai Lake drainage area is also experiencing such a climate change. Land-cover in the region is also changed. From 2003 to 2005, we investigated wild vertebrate fauna in the Qinghai Lake region under the environment change. With reference to literature, using remote sensing images, GIS methods and field surveys, we found that climate and environment changes in the Qinghai Lake region are profound. Annual average temperature in the Qinghai Lake region increased, especially those in autumn and winter.Compare with that of the 1980s, the average temperature in this region increased 1.26℃, whereas precipitation in the Qinghai Lake region decreased and aridity increased slowly at the end of the 20th century. Water table level in the Qinghai Lake descended 3.7m and the area of Qinghai Lake decreased 313.3 km2 since 1959. Since 1976, the desert area around the lake has increased from 356.4 km2 to 735.9 km2, while the swamp area has decreased from 25.08km2 to 4.73 km2. From 1949, human population has increased about ten times in Qinghai Lake region. A transportation system of road, provincial high, national highway and railway has been established. A large area of grassland was fenced. In a word, living environment for wild vertebrates in Qinghai Lake deteriorated under the influence of global change. Suitable habitats for frogs, toads and waterfowls decreased and the swamps disappeared. Deserts on the lakeshore expanded as the water table level in the lake decreased; the habitat area of hamphead lizard increased. We recorded 46 birds and 10 mammals in wetlands, 3 birds and 19 mammals in deserts, 63 birds and 36 mammals in alpine meadow habitat, 16 birds and 6 mammals in the human settlements. Different habitats are inhabited by different rodents. Alpine meadow ecosystem has the most abundant rodent species whereas the desert ecosystem has the least. Some birds and mammals such as the Tibetan antelope, Tibetan wild ass and wild yak have disappeared from the Qinghai Lake region while the density of Przewalskis gazelle, Tibetan gazelle, musk deer and red deer decreased remarkably. Z4 随着全球气候变暖,野生动物的分布区、物候期,繁殖等都不同程度受到了气候变暖的影响。近年来,青海湖流域的气候也发生了变化。于2003~2005年对 青海湖流域的生态环境与陆生野生脊椎动物及其生境进行了调查,结合查阅文献,运用地理信息系统方法,研究了青海湖流域的气候变化和陆生野生脊椎动物种类和 分布的变化。发现青海湖流域的气候与自然环境都发生了变化,青海湖流域气温增幅较为显著,其中以秋、冬两季增温显著,20世纪末青海湖流域的平均气温较2 0世纪80年代上升了1.26℃。青海湖流域降雨量呈下降趋势,干燥度呈缓慢的上升趋势。1959年以来,青海湖的水位下降了3.7m,面积减少了313 .3 km2。1976年以来,湖东地区沙漠化土地面积从356.4 km2增加到735.9 km2。同时,沼泽面积从25.08km2减少到 4.73 km2。1949年以来,青海湖流域人口增长了近10倍,建立了由便道、省道、国道和铁路组成的路网,并建立了大面积的围栏草地。由于近代环境退化和人类 活动的影响,青海湖流域的野生脊椎动物种类和分布的发生了很大变化。由于湿地面积减小,中国林蛙,花背蟾蜍和水禽的适宜生境变小。湖水退缩后,部分裸露的 湖底演变为沙地,随着沙地面积的扩大,沙蜥的适宜生境面积扩大。在研究期间,湿地生境中观察到46种鸟类10种兽类,沙漠生境观察到3种鸟类和19种兽类 ,在高山草甸生境观察到63种鸟类和36种兽类。在居民地观察到鸟类、兽类分别为16种和6种。不同栖息地中啮齿动物种类差异显著,湖周沙漠啮齿动物种类 最少,高山草甸啮齿动物种类最多。一些鸟类从青海湖地区消失了,大型兽类如藏羚(Pantholops hodgsoni)、藏野驴(Equus kiang)和野牦牛(Poephagus mutus)等从青海湖流域消失了,而普氏原羚(Procapra przewalskii)、藏原羚、原麝的数量显著减少。 C1 MA RuiJun, Key Laboratory of Animal Ecology and Conservation, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China. JIANG ZhiGang, Key Laboratory of Animal Ecology and Conservation, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China. Z6 马瑞俊, 中国科学院动物研究所, 北京 100080, 中国. 蒋志刚, 中国科学院动物研究所, 北京 100080, 中国. Z8 9 Z9 16 UT CSCD:2442993 DA 2023-03-23 ER PT J AU Zhou Huakun Zhao Xinquan Zhou Li Liu Wei Li Yingnian Tang Yanhong Z2 周华坤 赵新全 周立 刘伟 李英年 唐艳鸿 TI A study on correlations between vegetation degradation and soil degradation in the 'Alpine Meadow' of the Qinghai-Tibetan Plateau Z1 青藏高原高寒草甸的植被退化与土壤退化特征研究 Z3 草业学报 SO Acta Prataculturae Sinica VL 14 IS 3 BP 31 EP 40 AR 1004-5759(2005)14:3<31:QZGYGH>2.0.TX;2-O PY 2005 DT Article AB This paper discusses a study into the characteristics of the soil and the plant communities of the'alpine meadow', located on the Qinghai-Tibetan Plateau. Meadows across the region were categorized as having from low to extreme degradation levels. With increasing degradation of the alpine meadow, the grassland quality in-dex, percent plant cover, biomass percent of palatable herbage and the similarity index were all correspondingly shown to decrease across meadows in the alpine meadow region. The species diversity and evenness indexes had the largest values at the meadows characterized as being moderately degraded. The above-ground biomass was the greatest at lightly degraded meadows and lowest at extremely degraded meadows. Increasing degradation levels lead to an increase in the overall biomass of forbs whilst the biomass of sedges and graminoids significant-ly decreased. The total below-ground biomass was shown to decrease with increased degradation levels. The below-ground biomass change in sedges and graminoids corresponded with the change in total below-ground bi-omass, however the below-ground biomass of forbs was increased at moderate degradation levels, then de-creased at extreme degradation levels. The below-ground biomass at different soil layers decreased, with root-systems displaying increased shallowness with increasing degradation levels. The relationship between above and below-ground biomass was shown to have a strong positive correlation. With increasing soil degradation, soil organic matter, available phosphorus, calcium and manganese, soil hardness and soil water all were shown to decrease whilst soil bulk density was .shown to increase. Where soil organic matter losses were severe, avail-able soil nitrogen was shown to be affected substantially, often present at deficient levels. Available copper content was not adequate for herbage growth in severely degraded meadows, however available zinc and manga-nese still appeared to satisfy plant growth requirements. The degradation of alpine soil was shown to be linked to the degradation of alpine vegetation. Z4 对青藏高原典型高寒草甸在不同退化程度下植物群落、生物量和土壤特征的研究结果表明,随着高寒草甸退化程度加大,植被盖度、草地质量指数和优良牧草地上生 物量比例逐渐下降,草地间的相似性指数减小,而植物群落多样性指数和均匀度指数在中度退化阶段最高,随着退化程度加大,呈单峰式曲线变化规律.地上总生物 量在轻度退化阶段最高,在极度退化阶段最低,随着退化加剧,杂草生物量显著增加,而莎草和禾草生物量显著减少.地下总生物量(0~40 cm)、莎草和禾草地下生物量随着草地退化程度的加重而递减,杂类草地下生物量的变化则是逐渐上升,至极度退化阶段有所降低.随着退化程度加剧,分布在各 层的植物根系量越来越少,地下根系具有浅层化特点.各类群地上、地下生物量之间均为正相关,达到显著水平.随着草地退化程度的加大,土壤有机质、速效磷、 速效钾和交换性锰的含量以及土壤坚实度、湿度都减小,土壤容重增加.土壤速效氮含量在极度退化阶段不能满足植物生长的需要.随高寒草甸退化程度加大,有机 质含量在表层土壤中流失严重.在各个退化阶段,有效锌和交换性锰的含量均能满足植物生长的需求,而有效铜含量偏低,对牧草生长不利.随着植被的退化演替, 土壤退化越来越严重,土壤越来越贫瘠化. C1 Zhou Huakun, Nowthwest Plateau Institute of Biology, the Chinese Academy of Sciences, Xi'ning, 810001. Zhao Xinquan, Nowthwest Plateau Institute of Biology, the Chinese Academy of Sciences, Xi'ning, 810001. Zhou Li, Nowthwest Plateau Institute of Biology, the Chinese Academy of Sciences, Xi'ning, 810001. Liu Wei, Nowthwest Plateau Institute of Biology, the Chinese Academy of Sciences, Xi'ning, 810001. Li Yingnian, Nowthwest Plateau Institute of Biology, the Chinese Academy of Sciences, Xi'ning, 810001. Tang Yanhong, National Institute for Environmental Studie, Tsukuba, Japan. Z6 周华坤, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 赵新全, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 周立, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 刘伟, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 李英年, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 唐艳鸿, 国立环境研究所, 筑波, 日本. EM qhzhhk@yahoo.com.cn Z7 qhzhhk@yahoo.com.cn Z8 178 Z9 210 UT CSCD:1990753 DA 2023-03-23 ER PT J AU Shang Tiehuan Long Ruijun Z2 尚占环 龙瑞军 TI Formation reason and recovering problem of 'the black soil type' degraded alpine grassland in Qinghai-Tibetan Plateau Z1 青藏高原"黑土型"退化草地成因与恢复 Z3 生态学杂志 SO Chinese Journal of Ecology VL 24 IS 6 BP 652 EP 656 AR 1000-4890(2005)24:6<652:QZGYHT>2.0.TX;2-U PY 2005 DT Article AB The causes and ecological rebuilding of the black soil type' degraded alpine grassland was summarized. Causes which contribute to the grassland degradation mainly include climate warming, glacier decreasing, over graz-ing, rats damaging, etc. The ecological restoration of the degraded alpine grassland relies on not only grassland development, but also reasonable management and planning. Methods such as strengthening investment for pasture regions' education, practicing long-term contracts for grassland, maintaining grassland law, should be applied to ensure the alpine grassland animal husbandry to develop healthily. The characteristic-inertia that Qinghai-Tibetan Plateau ecosystem processed might be the critical cause which resulted in the weakness of self-renew capability, frailty of ecosystem construction and difficulty in ecological restoration. Father study is needed to supply scientific foundation for the ecological restoration of Qinghai-Tibetan Plateau. Z4 对青藏高原"黑土型"退化草地的成因和生态建设进行评述,认为"黑土型"退化草地是草原退化生态学行为在江河源区高寒草地的特有体现形式,由气候变暖、冰 川退缩、过度放牧、鼠害等综合因子共同导致.生态恢复不仅要从草地建设入手,还要对草地资源进行合理管理与规划.加强牧区文化教育投资、实行草地长期承包 、加强<草原法>建设等措施是我国高寒草地畜牧业健康发展的重要保证.青藏高原生态系统特有的"惰性"特征可能是导致其草地生态系统自我更新能力差、系统 结构脆弱、生态恢复困难的重要原因,应深入开展该方面研究,为青藏高原生态环境建设提供依据. C1 Shang Tiehuan, Department of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Long Ruijun, Department of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China. Z6 尚占环, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. 龙瑞军, 甘肃农业大学草业学院, 兰州, 甘肃 730070, 中国. EM shangzhanhuan@163.com Z7 shangzhanhuan@163.com Z8 1 Z9 5 UT CSCD:2086172 DA 2023-03-23 ER PT J AU Wang Yibo Wang Genxu Shen Yongping Wang Panli Z2 王一博 王根绪 沈永平 王彦莉 TI Degradation of the Eco-Environmental System in Alpine Meadow on the Tibetan Plateau Z1 青藏高原高寒区草地生态环境系统退化研究 Z3 冰川冻土 SO Journal of Glaciology and Geocryology VL 27 IS 5 BP 633 EP 640 AR 1000-0240(2005)27:5<633:QZGYGH>2.0.TX;2-T PY 2005 DT Article AB The grassland environment in the cold regions of the Tibetan Plateau is an important parts of the tableland environment, because of the influence of the natural environment changes and the disturbances from the human activities; the meadow environment of the tableland is in great degradation now. In a representative area in the degraded meadow, the changes of the soil moisture in the grassland, the edaphic structures and the status of the vegetations are studied. It is revealed that after the grassland degradation, the courses of the soil moisture have changed a lot, and the more vegetation degenerates, the more soil moisture changes, and the process of the water entering into soil also becomes quick. Then, the succession of communities become more distinct, the preponderant plant degenerates greatly, and the plants become small. The soil erosion becomes heavy than ever and in the arid regions, desertification becomes more serious. The natural disasters, including the pests from rats and insects, will be fre-quent. Z4 青藏高原高寒地区的草地生态环境是高原生态环境的重要组成部分.近几十年来,在人类活动的强烈干扰和自然环境变化的影响下,高寒草地生态环境严重退化.在 退化草地选取典型样地,调查研究了草地退化后土壤水文过程、土壤结构、植被状况等的变化.结果表明:高原高寒地区草场退化以后,土壤水文过程都发生改变, 植被退化越严重土壤含水量变化越强烈、土壤入渗过程越快.退化草地的植被群落演替变化明显,优势种群退化严重,植物个体出现了小型化现象.水土流失日趋严 重,土壤贫瘠化、沙化、荒漠化增强,鼠虫害等自然灾害频繁. C1 Wang Yibo, College of Earth and Envirtmment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Wang Genxu, College of Earth and Envirtmment Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Shen Yongping, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Wang Panli, Pingchuan Water Management Bureau, Baiyin, Gansu 730913, China. Z6 王一博, 兰州大学,资源环境学院, 兰州, 甘肃 730000, 中国. 王根绪, 兰州大学,资源环境学院, 兰州, 甘肃 730000, 中国. 沈永平, 中国科学院寒区旱区环境与工程研究所, 兰州, 甘肃 730000, 中国. 王彦莉, 白银市平川区水务局, 白银, 甘肃 730913, 中国. EM yibo_w@sina.com Z7 yibo_w@sina.com Z8 43 Z9 54 UT CSCD:2029527 DA 2023-03-23 ER PT J AU 覃光莲 杜国祯 Z2 Qin Guanglian Du Guozhen TI Similarity,Species Diversity,and Interannual Variability in Total Aboveground Biomass in Alpine Meadow Plant Community Z1 高寒草甸植物群落中相似性、物种多样性与地上生物量的年际变异性 Z3 西北植物学报 SO Acta Botanica Boreali-Occidentalia Sinica VL 25 IS 5 BP 979 EP 984 AR 1000-4025(2005)25:5<979:SSDAIV>2.0.TX;2-E PY 2005 DT Article AB The similarity hypothesis may explain how biodiversity loss influences variability in biomass of plant communities but remains untested.We collected data over a three-year period (1999~2001),at the end of July during the peak of plant growing season,from 74 permanent plots in a natural alpine meadow located in the eastern Qinghai Tibetan Plateau.The objective was to test how similarity in species composition can explain the effects of species diversity on interannual variability in total aboveground biomass.Variability in total aboveground biomass per plot,decreased as species richness increased,and it also showed an overall decline as evenness increased although it appeared to stay at about the same level over the intermediate range of evenness.Similarity in species composition explained most of the variability in total aboveground biomass,and increased similarity in species composition reduced interannual variation in total aboveground biomass.Species richness and evenness were unrelated to similarity in species composition.These results indicate that the causal relationship between similarity and variability in total aboveground biomass may be robust,although biodiversity loss may not necessarily lead to decreased similarity in species composition in species-rich communities such as the alpine meadows of the Eastern Tibetan Plateau.Therefore,understanding how similarity influences the effects of biodiversity on variability in ecosystem functioning would require directly manipulated experiments for similarity in species composition. Z4 相似性假说通过物种构成的相似性来解释物种丧失是如何影响生物量的变异性的,但还没有得到检验.本研究通过设置在青藏高原东部地区的高寒草甸植物群落中的 74个永久样方,采集3年(1999~2001)植物生长高峰期的群落数据,试图检验物种构成的相似性是如何解释物种多样性对地上生物量年际变异性的影响 .结果表明:随着物种丰富度增加,生物量变异性降低;而随着均匀度的增加,生物量的变异性尽管在均匀度中等程度时似乎保持在同一水平,但总体上呈下降趋势 ;物种构成上的相似性解释了地上生物量变异性的大部分,而且随着物种构成上的相似性的增加,生物量的变异性降低;物种丰富度和均匀度均与物种构成上的相似 性没有显著相关关系.这些结果表明:尽管生物多样性的丧失可能不必导致物种丰富群落中物种构成上的相似性,但相似性与地上生物量的变异性的因果联系可能是 稳健的,由于本研究是在自然群落中进行的,对物种构成的相似性没有进行直接控制,因此,要深入理解相似性是如何影响生物多样性对生态系统功能变异性的效应 的机制,可能还需要直接对物种构成的相似性进行控制的实验研究. C1 Qin Guanglian, College of Science, Huazhong Agricultural University, Wuhan, HuBei 430070, China. Du Guozhen, School of Life Science, Lanzhou University, Lanzhou, GanSu 730000, China. Z6 覃光莲, 华中农业大学,理学院, 武汉, 湖北 430070, 中国. 杜国祯, 兰州大学,生命科学学院, 兰州, 甘肃 730000, 中国. Z8 7 Z9 7 UT CSCD:2031769 DA 2023-03-23 ER PT J AU Zhao Yonghua He Xingyuan Hu Yuanman Chang Yu TI Landscape pattern change in the upper valley of Min River SO Journal of Forestry Research VL 16 IS 1 BP 31 EP 34 AR 1007-662X(2005)16:1<31:LPCITU>2.0.TX;2-Q PY 2005 DT Article AB The upper valley of Min River (102° 59′ -104° 14′ E, 31° 26′ - 33° 16′ N), which is consisted of the counties Wenchuan, Maoxian, Lixian, Heishui, and Songpan, refers to the part up to Dujiangyan City, and locates on the transition zone from the Tibetan Plateau to the Sichuan Basin. It is one of the most important forest areas in China, especially in Sichuan Province. Over past two decades, the landscape changed remarkably in the region. The 3S techniques (Remote Sensing (RS), Geographic Information System (GIS) and Global Position System (GPS)) were used to classify the images and analyze the landscape change. The remotely sensed data of Landsat TM 1986 and Landsat ETM+ 2000 were used to analyze the landscape change of the region. The landscape were classified into 10 types of cropland, forest, shrub land, economic forest, grassland, build up land, river, lake, swamp, and unused land. The results showed that: 1) the woodland and grassland were dominating landscape types in the upper valley of Min River, which is more than 91% of the study area; 2) the alteration of the landscape was mainly happened among forest, shrub land, grassland, economic forest, cropland, and build up land, where forest decreased from 51.17% to 47.56%; 3) the landscape fragmentation in the upper valley of Min River was aggravated from 1986 to 2000. C1 Zhao Yonghua, Institute of Applied Ecology, the Chinese Academy of Sciences, Shenyang, LiaoNing 110016, China. He Xingyuan, Institute of Applied Ecology, the Chinese Academy of Sciences, Shenyang, LiaoNing 110016, China. Hu Yuanman, Institute of Applied Ecology, the Chinese Academy of Sciences, Shenyang, LiaoNing 110016, China. Chang Yu, Institute of Applied Ecology, the Chinese Academy of Sciences, Shenyang, LiaoNing 110016, China. EM navyzhyh@hotmail.com Z8 9 Z9 13 UT CSCD:1910309 DA 2023-03-23 ER PT J AU Zhou Huakun Zhao Xinquan Tang Yanhong Zhou Li Liu Wei Yu Long Z2 周华坤 赵新全 唐艳鸿 周立 刘伟 于龙 TI Effect of Long-term Grazing on Alpine Shrub Vegetation in Qinghai-Tibet Plateau Z1 长期放牧对青藏高原高寒灌丛植被的影响 Z3 中国草地 SO Grassland of China VL 26 IS 6 BP 1 EP 11 AR 1000-6311(2004)26:6<1:CQFMDQ>2.0.TX;2-I PY 2004 DT Article AB A long - term grazing experiment with different grazing intensities in alpine Potentilla fruticosa shrubland was carried out at Haibei Alpine Meadow Ecosystem Research Station, the Chinese Academy of Sciences. Effects on plant species diversity, community structure, standing above - ground biomass and rangeland quality were analyzed after 18 years grazing. The results suggested that the change of the biodiversity index as stocking rate increased was a typical unimodal curve. Long - term heavy grazing simplified the alpine shrub community and decreased the standing above - ground biomass, especially palatable herbage plants. The heights, total coverage and dead material coverage of plant communities increased as the stocking rate decreased, however, the live shoot coverage of the moderately grazed plot was greater than those of other plots. From light grazing to heavy grazing, the dominant shrub and graminoid species were replaced by typical forbs and the index of rangeland quality decreased. It is concluded that long - term heavy grazing plays an important role on alpine rangeland degradation in Qinghai - Tibet Plateau. The standard grazing rule of "take half leave half" is recommended as a conservative management tool to prevent rangeland degradation, to improve grass utilization, and to sustain higher biodiversity in Qinghai - Tibet Plateau. Z4 通过在青藏高原对放牧第18年的植物种多样性、群落结构、地上现存生物量和草场质量的研究结果表明:随放牧率增加,植物种多样性指数的变化是一个典型的单 峰曲线模式.长期重度放牧使高寒灌丛群落结构简化,地上现存生物量特别是优良牧草的现存量减少.植物群落的高度、总盖度和枯草盖度随着放牧强度的降低而增 加,绿色植物的盖度在中度放牧样地最高.从轻牧到重牧,灌木和禾草的优势地位被典型杂类草替代.长期重度放牧在青藏高原草场退化过程中起重要作用,在青藏 高原实施"取半留半"的放牧原则,对于防止草场退化,提高牧草利用率,维持较高的生物多样性都有益处. C1 Zhou Huakun, Northwest Plateau Institute of Biology, The Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhao Xinquan, Northwest Plateau Institute of Biology, The Chinese Academy of Sciences, Xining, Qinghai 810001, China. Zhou Li, Northwest Plateau Institute of Biology, The Chinese Academy of Sciences, Xining, Qinghai 810001, China. Liu Wei, Northwest Plateau Institute of Biology, The Chinese Academy of Sciences, Xining, Qinghai 810001, China. Yu Long, Northwest Plateau Institute of Biology, The Chinese Academy of Sciences, Xining, Qinghai 810001, China. Tang Yanhong, National Institute of Environmental Science, Tsukuba, Japan. Z6 周华坤, 中科院西北高原生物研究所, 西宁, 青海 810001, 中国. 赵新全, 中科院西北高原生物研究所, 西宁, 青海 810001, 中国. 周立, 中科院西北高原生物研究所, 西宁, 青海 810001, 中国. 刘伟, 中科院西北高原生物研究所, 西宁, 青海 810001, 中国. 于龙, 中科院西北高原生物研究所, 西宁, 青海 810001, 中国. 唐艳鸿, 国立环境研究所, 筑波, 日本. Z8 15 Z9 20 UT CSCD:1675173 DA 2023-03-23 ER PT J AU 李自珍 惠苍 Z2 Li Zizhen Hui Cang TI Biodiversity composition and maintenance of metacommunity in Maqu alpine meadow and wetland Z1 玛曲高寒草甸湿地植物构成及其集合种群群落的多样性维持机理 Z3 西北植物学报 SO Acta Botanica Boreali-Occidentalla Sinica VL 24 IS 3 BP 397 EP 403 AR 1000-4025(2004)24:3<397:BCAMOM>2.0.TX;2-1 PY 2004 DT Article AB Alpine meadow and wetland, closely correlated with the amount of water stock in the riverhead of China,is the most important ecosystem of the Qinghai-Tibetan Plateau. This ecosystem is the primary sup port for the industrial and agricultural and the living using water in the middle east of China,which makes the conservation of alpine meadow and wetland in the Qinghai-Tibetan Plateau have importantly practical significance. This paper presents the composition structure of plant biodiversity in Maqu,a county of Gan-nan Tibetan Autonomy Prefecture and located at the northeastern edge of the Qinghai-Tibetan Plateau, which is the riverhead of the Yellow River. With the analytic hierarchy process,the reasons of deterioration and the measurers of restoration are given. By the competition theory of metapopulation,we have also presented the underlying mechanism of the maintenance of biodiversity in this region. Results show there are two contradictions between biodiversity conservation and improvement of meadow quality,and between lo cal economic and social development and meadow quality maintenance. The first contraction suggests that high species richness needs moderate artificial and natural disturbance , which can create some patches in the habitat. These patches will be the temporal reproducing locations for pioneer species that primarily con sist of low-quality ruderal,and will cost some patches for high-quality fodder. Secondly, the increasing of artificial disturbance, as a directly result of economic and social development, will be disadvantage to the maintenance of high-quality meadow and might exclude some dominated species,which will restrict the de velopment of local animal husbandry. Z4 高寒草甸及湿地是青藏高原上最为重要的生态系统,它的状况直接关系到我国江河源头的蓄水量.也关系到我国中部和东部广大地区的工农业及人民生活用水,因此 对青藏高原高寒草甸与湿地的保护具有重要的现实意义。本研究对青藏高原东北缘黄河源头地区甘南藏族自治州的玛曲县高寒草甸及湿地进行调查,揭示了该地区的 植被生物多样性情况与组成结构,利用解析层次方法分析了高寒草甸及湿地的退化原因及恢复手段,同时还从集合种群竞争原理出发对该地区植被生物多样性的维持 机理进行了讨论。结果显示出两个现存的主要矛盾:在生物多样性保护与高寒草甸质量提高方面存在矛盾;在地区发展与高寒草甸质量提高方面也存在矛盾。前者表 明为了提高物种多样性,必须存在一定干扰,包括人为干扰与自然生态系统干扰,这些干扰会在高寒草甸中形成一定数量的空斑块,这些空斑块为先锋种的繁殖提供 了暂时的场所从而使多样性得到提高与维持。但由于先锋种普遍为杂草类而非优良牧草,因此这种多样性维持只能以牺牲草甸质量为代价。第二个矛盾说明为了提高 当地经济与社会发展.必然会增加人为干扰,而这些干扰会首先对优良牧草造成不利,从而使杂草比例增加并进一步抑制牧场质量从而限制地区以畜牧业为主的经济 发展。 C1 Li Zizhen, Department of Mathematics, Lanzhou University, Lanzhou, Gansu 730000, China. Hui Cang, 兰州大学, 干旱农业生态国家重点实验室, Lanzhou, Gansu 730000, China. Z6 李自珍, 兰州大学数学系, 兰州, 甘肃 730000, 中国. 惠苍, 兰州大学, 干旱农业生态国家重点实验室, 兰州, 甘肃 730000, 中国. EM zizhenlee@lzu.edu.cn; canghui@edu.cn Z7 zizhenlee@lzu.edu.cn; canghui@edu.cn Z8 2 Z9 4 UT CSCD:1634511 DA 2023-03-23 ER PT J AU Wang Mou Li Yong Bai Xiongzhou Huang Runqiu Z2 王谋 李勇 白宪洲 黄润秋 TI The Impact of Global Warming on Vegetation Resources in the Hinterland of the Qinghai-Tibet Plateau Z1 全球变暖对青藏高原腹地草地资源的影响 Z3 自然资源学报 SO Journal of Natural Resources VL 19 IS 3 BP 331 EP 336 AR 1000-3037(2004)19:3<331:QQBNDQ>2.0.TX;2-X PY 2004 DT Article AB Global warming caused a dryer and warmer climate in the hinterland of the Qinghai-Tibet Plateau.Does it cause any responses from the plants ecology,and how?Based on field works and statistical data collected in 2002 and 2003,we basically concluded warming trend of the climate is the major reason for the succession devolution of alpine plants in the central part of the plateau.In the study area,it is specially causing a devolution from alpine Kobresia meadow to Alpine Stipa steppe at a rate of 14.2km/10a.Accordingly,the total biomass of the area is declining.With contrast to some relative researches,we basically concluded a dryer and warmer climate should take the responsibility for vegetation devolution accompanied with biomass decline in the area.Changes of the surface vegetation will be the negative factors influencing the capability of the environment self-adjustment and the development of the local economy. Z4 全球变化导致青藏高原腹地气候的暖干化趋势,也引起该区高寒草甸植被向高寒草原植被的退化.研究区内为高寒草甸-高寒草原过渡区,高寒草甸植被的退化速率 为14.2km/10a,而相应地在退化区内生物总量亦呈下降趋势.气候暖干化是引起高原腹地植被退化的原因.而植被退化与区域生物总量的下降将成为影响 该区环境自调能力和牧业经济发展的消极因素. C1 Wang Mou, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China. Li Yong, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China. Bai Xiongzhou, College of Earth Sciences, Chengdu University of Technology, Chengdu, Sichuan 610059, China. Huang Runqiu, College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China. Z6 王谋, 成都理工大学,地球科学学院, 成都, 四川 610059, 中国. 李勇, 成都理工大学,地球科学学院, 成都, 四川 610059, 中国. 白宪洲, 成都理工大学,地球科学学院, 成都, 四川 610059, 中国. 黄润秋, 成都理工大学,环境与土木工程学院, 成都, 四川 610059, 中国. EM cdlgwm@21cn.com Z7 cdlgwm@21cn.com Z8 41 Z9 49 UT CSCD:1606055 DA 2023-03-23 ER PT J AU Jie Xiongli Sun Bo Zhou Huizhen Li Zhongpei Z2 解宪丽 孙波 周慧珍 李忠佩 TI SOIL CARBON STOCKS AND THEIR INFLUENCING FACTORS UNDER NATIVE VEGETATIONS IN CHINA Z1 不同植被下中国土壤有机碳的储量与影响因子 Z3 土壤学报 SO Acta Pedologica Sinica VL 41 IS 5 BP 687 EP 699 AR 0564-3929(2004)41:5<687:BTZBXZ>2.0.TX;2-B PY 2004 DT Article AB Soil organic C plays a key role in carbon cycle and carbon storage in the natural ecosystem. The soil carbon stocks under native vegetations in China were estimated ?by making use of 2 440 profiles from the second national soil survey and the vegetation map (1:4 000 000) of China, and map the distribution of soil carbon density under native vegetations. With the aid of a simplified vegetation classification system, the digitalized vegetation map units were sorted into 6 categories and 26 types of vegetation. The median carbon stocks of the soils in China are 8 .23 kg m~(-2) in 0 ~ 100 cm soil layer, and 2.67 kg m'2 in 0 ~ 20 cm topsoil. The difference in the soil carbon density among vegetation categories is prominent. The soil carbon density in 0 ~ 100 cm under forests, scrubs, deserts, steppes, meadows and croplands is 11 .59, 7.25, 3.14, 5.29, 14.90 and 8.07 kg m , re-spectively . On the basis of vegetation types, the total soil carbon stocks were calculated at 69 .3 8 Gt in 0 ~ 100 cm and 23.81 Gt in 0 ~ 20 cm. In 0 ~ 100 cm, the soil carbon stock under forests (17.39 Gt) was the highest, accounting for 25 % of the total in China despite the fact that the forest soil amounted to only 15.81% of the total territory of the country. Under croplands, it was 14.69 Gtor21.2%, a little higher than the percentage (19.18% ) of the soil in area. Though the soil under the vegetation of meadows and swamps was low (8.64% ) in percentage in area, its carbon storage amounted to 12.22 Gt or 17 .63% . The soil carbon stocks under steppes were 14.69 Gt or 10.76 % of the total, lower than the percentage (14.86 % ) of the soil in area, and it was 3 .93 Gt or only 5 .66 % under deserts, much lower than the percentage (13.17%) of the soil in area. The storage of soil carbon varies significantly from district to district in China. The highest soil carbon stocks locate in the south and east of the Qinghai-Tibet Plateau, the Altai Mountain and the Tianshan Mountains dominated with alpine evergreen, de-ciduous shrubs, alpine meadows, and swamps. The boreal taiga and meadows in the north of Southwest China and subtropical broadleaf forests in South China are moderate in soil carbon stock. The Tarim Basin, the Caidam Basin, the.Junggar Basin and other desertification districts in Northwest China and the north of the Qinghai-Tibet Plateau where deserts and dry steppes domi-nate are lower in soil carbon stock. Climate shows an important influence on the distribution of soil carbon storage, which would rise with increasing precipitation and decreasing temperature. The regression analytical results of SOC against environmental variables demonstrate that generally SOC increases with increas-ing precipitation but decreases with increasing temperature, and elevation plays a positive effect on SOC. Furthermore, carbon ac-cumulation in different areas depends differently on different environmental variables, whose impact on SOC is becoming stronger when the research gets more specific. However, human activities reduce the influence of environmental variables on SOC. Z4 基于第二次土壤普查和新疆土壤调查等2 440个典型土壤剖面数据和1:400万中国植被图,对中国不同植被类型下的100cm和20 cm厚度土壤有机碳密度和储量进行估算,绘制了土壤有机碳储量的地理分布图,并且对土壤有机碳储量与生境条件之间的关系进行统计分析.结果表明:不同植被 类型下的土壤有机碳密度存在显著差异,草甸和森林最高,灌木和农田次之,再其次是草原,最低的是荒漠;基于植被分类计算的我国100cm和20 cm厚度土壤有机碳总储量分别为69.38 Gt和23.81 Gt.100cm深度土壤碳储量在森林、农田、灌丛、草甸、草原、荒漠植被下分别为17.39 Gt、14.69 Gt、13.62 Gt、12.22 Gt、7.46 Gt、3.93Gt;土壤有机碳储量的空间分布差异明显,具有明显地域性,青藏高原东南地区、阿尔泰山和天山山地等高寒草甸、灌丛草甸区是土壤有机碳储量 最高的地区,其次是东北地区北部的针叶林、草甸区和我国南方的亚热带阔叶林区,土壤有机碳储量最低的地区是西北地区和藏北高原的荒漠、草原干旱区;在不同 生态系统中环境变量对土壤有机碳储量的影响是不同的,在温带草原年平均温度是土壤有机碳储量主要控制因素,而对于针叶林海拔是导致土壤有机碳储量变异的主 导因子;随着研究尺度的细化,环境变量对土壤有机碳储量的影响增加,但是人类的耕种活动降低了这种影响. C1 Jie Xiongli, Geography College, Nanjing Normal University, Nanjing, Jiangsu 210097, China. Sun Bo, Institute of Soil Science , Chinese Academy of Sciences, Nanjing, Jiangsu 210097, China. Zhou Huizhen, Institute of Soil Science , Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China. Li Zhongpei, Institute of Soil Science , Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China. Z6 解宪丽, 南京师范大学地理科学学院, 南京, 江苏 210097, 中国. 孙波, 中国科学院南京土壤研究所, 南京, 江苏 210097, 中国. 周慧珍, 中国科学院南京土壤研究所, 南京, 江苏 210008, 中国. 李忠佩, 中国科学院南京土壤研究所, 南京, 江苏 210008, 中国. EM zhou@issas.ac.cn Z7 zhou@issas.ac.cn Z8 162 Z9 188 UT CSCD:1650879 DA 2023-03-23 ER PT J AU Guo Zhenggang Wang Genxu Shen Yuying Cheng Guodong Z2 郭正刚 王根绪 沈禹颖 程国栋 TI Plant species diversity of grassland plant communities in permafrost regions of the northern Qinghai-Tibet Plateau Z1 青藏高原北部多年冻土区草地植物多样性 Z3 生态学报 SO Acta Ecologica Sinica VL 24 IS 1 BP 149 EP 155 AR 1000-0933(2004)24:1<149:QZGYBB>2.0.TX;2-E PY 2004 DT Article AB The Qinghai-Tibetan Plateau is a key genetic resource region for plant flora and river resources in China, and has the largest and most species-rich alpine grassland ecosystem. Grassland plays a very important role in animal production, biodiversity and water conservation. Changes to grassland communities resulting from degradation of frozen soil and highway construction affect the processes of ecology. To gain insight into the contribution of biodiversity to the stability of this grassland ecosystem, there is an urgent need to study the effect of degradation of frozen soil and highway construction on the plant biodiversity of the grassland communities. A survey of biodiversity was undertaken during 2001 and 2002 along the Qinghai-Tibetan Highway from Xidatan (94° 10. 016'E, 35°43. 063'N) to the southern Tanggulashan Pass (33°07. 120'E, 91*52. 670'N). to study the change of species diversity between plant communities, and the effect of degradation of frozen soil and highway construction on plant biodiversity of grassland communities in the permafrost regions of the Qinghai-Tibetan Plateau. Thirty-two spots were selected according to the different grassland communities present (Kobresia pygmaea meadow, Kobresia hmnilis meadow, Carex moorcroftii meadow and Stipa purpurea steppe community) and the successional communities series (marsh meadow, steppe meadow, steppe meadow and steppe) in the process of frozen soil degradation. Two or three sampling zones of 1 m * 100 m were designed at each spot (75 in total). Each sampling zone contained ten 1m* 1 m plots which were arranged every other 10_m. In each plot, all plant species present were counted, and coverage and frequency were recorded. Environmental fnctOrs including latitude, longitude, and altitude were measured by GPS and recorded. Biomass was measured by harvesting and drying. The species diversity of the plant communities was calculated using the Shannon-Wiener (diversity) index (H), the Pielou (evenness) index (J), and richness index (species number) (S). This study showed that the richness species index (5) was not significantly different among the communities, and about ten 10 plant species were present in the survey plots for each plant community, whereas evenness index (J) and diversity index (H) were significantly different (P<0. 05) between the Kobresia pygmaea meadow community, the Kobresia humilis meadow community, the Carex moorcroftii meadow community, and the Stipa purpurea steppe community. Evenness index measurements decreased gradually: Kobresia pygmaea meadow > Stipa purpurea steppe > K. humilis meadow > Carerjc moorcroftii meadow. Diversity index decreased gradually from Kobresia pygmaea meadow community to Kobresia huntil-is meadow community to Carex moorcroftii meadow community to Stipa Purpurea steppe community. Compared natural communities with restored communities, this study detected that changes of richness index and evenness index were consistent with diversity index in the restoration process of Kobresia humilis meadow after the severe destruction caused by the construction of the Qinghai-Tibetan Highway in 1976. Diversity, richness, and evenness indices of communities in sampling zones 100m from the Highway were larger than those of the natural communities. Species diversity of the natural communities was greater than that of the communities 50 and 30 m from the Highway. The results of this study indicated that the restoration capacity of vegetation was weak in the permafrost regions of the Qinghni-Tibet Plateau after the .severe destruction caused by the highway construction. This study also indicated that the richness index of succession plant community series kept steady within the 1 m~3 plots but was significantly different within the 100 m~2 sampling zones in the degraded frozen soil. The changeable trend of the diversity index was in accord with the evenness index but not consistent with the richness index. Species diversity and evenness indices increased from marsh meadow to steppe meadow, and decreased from steppe meadow to steppe grassland in the degraded frozen soil with the size of 1 m~2 plots and 100 m2 sampling zone. Z4 研究了青藏高原北部多年冻土区草地群落植物多样性的特征.研究表明:草地群落间丰富度指数差异不显著,均匀度指数和多样性指数差异显著(P<0.05). 均匀度指数表现为高山嵩草(Kobresia pygmaea)草甸<紫花针茅(Stipa purpurea)草原<矮嵩草(K. humilis )草甸<青藏苔草(Carex moorcroftii)草甸,多样性指数表现为高山嵩草草甸<矮嵩草草甸<紫花针茅草原<青藏苔草草甸.修路时破坏的矮嵩草草甸在次生恢复过程中,离公 路100 m处群落的丰富度指数,均匀度指数和多样性指数大于原生群落,而原生群落的多样性又大于30 m和50 m处群落的多样性.地上草地群落植物多样性伴随地下冻土退化过程表现为,以1 m2样方统计时,各个演替群落间的丰富度指数差异不显著,而以100 m2样条统计时,高寒草甸和草原化草甸的丰富度指数显著大于沼泽草甸和稀疏草原(P<0.05),但均匀度和多样性指数在两种统计面积时均表现为先增加后 下降的变化趋势. C1 Guo Zhenggang, College of Pastoral Agricusltural Science and Technology Lanzhou University, Lanzhou, Gansu 730020, China. Shen Yuying, College of Pastoral Agricusltural Science and Technology Lanzhou University, Lanzhou, Gansu 730020, China. Wang Genxu, State Key Laboratory of Frozen Soil Engineering Cold and Arid Regions Environmental and Engineering Research, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Cheng Guodong, State Key Laboratory of Frozen Soil Engineering Cold and Arid Regions Environmental and Engineering Research, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Z6 郭正刚, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 沈禹颖, 兰州大学草地农业科技学院, 兰州, 甘肃 730020, 中国. 王根绪, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. 程国栋, 中国科学院寒区旱区环境与工程研究所, 冻土工程国家重点实验室, 兰州, 甘肃 730000, 中国. EM zhenggangguo200@hotmail.com Z7 zhenggangguo200@hotmail.com Z8 70 Z9 78 UT CSCD:1536855 DA 2023-03-23 ER PT J AU Liu Zuojun Du Guozhen Chen JiaKuan Z2 刘左军 杜国祯 陈家宽 TI Relationship between habitats and resource allocation of inflorescence structure in liguiaria uirgaurea Z1 黄帚橐吾花序结构的资源配置与环境的关系 Z3 植物生态学报 SO Acta Phytoecologica Sinica VL 27 IS 3 BP 344 EP 351 AR 1005-264X(2003)27:3<344:HZLYHX>2.0.TX;2-7 PY 2003 DT Article AB In this study, we investigated resources allocation in intra-inflorescence of Ligularia virgaurea in different habitats and population densities based on the characters of reproductive allocation that have been studied. The material we studied was collected from INirna (101°53' E, 35°58' N, altitude 3 500 in) in Maqu county, Gansu province, in the first turn of Yellow River, North-East region of Tibetan Plateau. This region belongs to the alpine meadow rangeland type. The plot contained habitats of different degrees of degradation. L. virgaurea is a perennial herb of Coinpositae. The flowering phase lasts from July to August, with blooming starting at the top of the raceme. The (rutescence is in September, about 10 days. It is the dominant weed in alpine meadow now because of the toxic milky material, selective predation and over-grazing by livestock. 'Die aim of our research is to reveal the reproductive strategies of L. virgaurea at the level of the inflorescence.During the latter period of seed maturation of L. virgaurea in September 2000, we sampled randomly from three habitats, floodland, hillside and lowland, and two populations of different density in each habitat. There were 10-16 quadrates per plot, 1-3 seed producing ramets per quadrate were sampled, and brought to the laboratory. The vegetative and reproductive structures were separated, heated 24 hours in 75 °C drying oven, and weighed using an electronic balance (g/10 000) . The ramet, raceme, eapitula of different positions on the raceme, and the number of eapitula per raceme were measured. The data were analyzed by ANOVA and linear regression. The measures are: the si/,e of ramet and raceme represented by their biomass; mean weights of eapitula (the ratio of biomass and numbers ol eapitula per raceme); the available eapitula of top, middle and bottom represents separately the top, the position of 1/2 III and the bottom; the resource allocation of eapitula at different position means the biomass percent of eapitula /raceme; available capitulurn means it could produce seeds, unavailable capitulurn means it did not.The results show: 1) different habitats or population densities differ in resource investment of raceme and eapitula of different positions within raceme, and it exhibits some trends as follows: floodland > hillside > lowland, uncovered land > covered land, and low population density > high population density; 2) although most of the correlation coefficients are small, there are negative correlations between the characteristics ofracemes (such as the size of raceme and eapitula, the number and mean weight of capitulurn) and population densities, and no correlations between the size of capitula of different positions within the raceme and population densities; 3) there is a position-based effect within inflorescences, such as the significant decrease in the resource investment between the early-formed or top eapitulum of the raceme and later-formed bottom or middle capitula of the raceme; 4) there are significant negative correlations between the si/e of the raceme and the allocation of capitula at different positions of the raceme. Z4 为了系统地了解黄帚橐吾(Liularia virgaurea)自然种群的繁殖对策,在其繁殖分配研究的基础上,通过统计不同部位头状花序的生物量投入,进一步分析了存在于总状花序内资源分配上的 结构效应及其对不同生境条件的反应。结果表明:1)总状花序、不同部位头状花序在资源投入上受其栖息生境各种生态因子的影响而在不同生境和平均种群密度间 存在着差异,并表现出一定的趋势;2)可代表个体水平的总状花序大小、头状花序大小、头状花序数量和头状花序平均重量等特征,都与种群密度呈现出程度不同 的负相关关系,而总状花序内不同部位的头状花序大小则与种群密度变化无关;3)总状花序内的资源分配存在着位置依赖性,这种显著差异表现为顶部头状花序比 基部和中部头状花序有较大的资源分配;4)总状花序顶部、中部和基部头状花序的资源分配与总状花序大小表现出极显著或显著的负相关关系。 C1 Liu Zuojun, State Key laboratory of Arid Agroecology, Lanzhou University, Lanzhou, Gansu 730000, China. Du Guozhen, State Key laboratory of Arid Agroecology, Lanzhou University, Lanzhou, Gansu 730000, China. Chen JiaKuan, Key Laboratory of MOE for Biodiversity Science & Ecological Engineering, Fudan University, Shanghai 200443, China. Z6 刘左军, 兰州大学, 干旱农业生态国家重点实验室, 兰州, 甘肃 730000, 中国. 杜国祯, 兰州大学, 干旱农业生态国家重点实验室, 兰州, 甘肃 730000, 中国. 陈家宽, 复旦大学, 生物多样性与生态工程教育部重点实验室, 上海 200433, 中国. EM guozdu@lzu.edu.cn Z7 guozdu@lzu.edu.cn Z8 19 Z9 20 UT CSCD:1342829 DA 2023-03-23 ER PT J AU Teng Zhonghua Han Fa Shi Shengbo Zhou Dangwei Z2 滕中华 韩发 师生波 周党卫 智丽 TI Seasonal Changes of Substances Related with Cold Resistance in Cares atrofusca in Qinghai-Tibetan Plateau Z1 青藏高原黑褐苔草的抗寒性物质季节变化动态研究 Z3 中国草地 SO Grassland of China VL 25 IS 4 BP 36 EP 40 AR 1000-6311(2003)25:4<36:QZGYHH>2.0.TX;2-J PY 2003 DT Article AB A few substances related with stress resistance were determined seasonally in the leaves of Carex atrofusca grown in Qinghai-Tibetan Plateau. The results show that concentrate of soluble sugar increases seasonally, while content of proline declines, activities of both superoxide dismutase(SOD)and peroxidase(POD) are highest in exuberance period and lowest in withering period. The variations were associated with alpine climate. Z4 测定了生长在青藏高原的黑褐苔草叶片中几种与抗逆性有关的生化物质含量的季节变化。结果发现:可溶性糖含量随生长的季节进程升高;脯氨酸含量在返青期最高 ,草盛期保持稳定,枯黄期下降;过氧化物酶(POD)和超氧物歧化酶(SOD)活性在草盛期最高,枯黄期最低;丙二醛(MDA)含量逐渐升高,表明黑褐苔 草的抗性差异与高寒地区的特殊气候因素有关。 C1 Teng Zhonghua, Department of Agronomy, Southwest Agricultural University, Chongqing 400716. Han Fa, Northwest Plateau Institute of Biology, CAS, Xining, Qinghai 810001, China. Shi Shengbo, Northwest Plateau Institute of Biology, CAS, Xining, Qinghai 810001, China. Zhou Dangwei, Northwest Plateau Institute of Biology, CAS, Xining, Qinghai 810001, China. Z6 滕中华, 西南农业大学农学与生命科学学院, 北碚, 重庆 400716, 中国. 韩发, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 师生波, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 周党卫, 中国科学院西北高原生物研究所, 西宁, 青海 810001, 中国. 智丽, 西南农业大学园林园艺学院, 北碚, 重庆 400716, 中国. Z8 6 Z9 6 UT CSCD:1341486 DA 2023-03-23 ER PT J AU 罗天祥 石培礼 罗辑 欧阳华 Z2 Luo Tianxiang Shi Peili Luo Ji Ouyang Hua TI Distribution patterns of aboveground biomass in tibetan alpine vegetation transects Z1 青藏高原植被样带地上部分生物量的分布格局 Z3 植物生态学报 SO Acta Phytoecologica Sinica VL 26 IS 6 BP 668 EP 676 AR 1005-264X(2002)26:6<668:DPOABI>2.0.TX;2-1 PY 2002 DT Article AB We measured aboveground live-biomass density (ABD) in 22 sites along the Tibetan Alpine Vegetation Transects (TAVT) for different vegetation types including forests, shrublands and grasslands. Pattern analysis indicated that ABD of natural vegetation in the mountain areas increased from lower to higher altitudinal zones until the maximum was reached at some optimum elevation level and then declined as the altitude continued to increase. We believe that the altitudinal patterns to some extent reflect the latitudinal differences of maximum biomass in global forests. Regressions of transformed data based on the Weber's law revealed that January, july and annual mean temperatures and annual precipitation, singly or in combination, accounted for 28%-53% of the variation in ABD along the TAVT where annual precipitation and its combination with annual mean temperature had the highest relationship to ABD (R~2 = 0.46-0.53, p < 0.001). The relationships between ABD and the climatic factors could be expressed as logistic equations with a maximum ABD of 1500 Mg DW·hm~(-2). However, the variations in annual precipitation and mean temperatures could not explain the highest ABD in the alpine fir forest in Sergyemal Mountains because ABD distribution patterns of natural vegetation can be limited by additional climatic factors such as solar radiation, wind, moisture and related water/energy balances. Z4 实测了青藏高原植被样带22个地区不同植被类型的地上部分生物量并进行了格局分析,对于未受人为干扰的以常绿阔叶林为基带的亚高山天然植被,随着海拔升高 ,地上生物量呈递增趋势,在一定海拔高度达最大,海拔继续升高上生物量则迅速下降,这一垂直分异规律在一定程度上反映了全球地带性森林植被最大生物量分布 的纬向分异性。基于Weber定律的回归分析表明,地上生物量与水势因子的相关关系可用Logistic函数拟合,1月平均气温,7月平均气温,年平均气 温,年降水量及其组合因子可解释高原植被样带地上生物量变化的28%-53%,其中年降水量及其同年平均气温的组合与地下生物量的相关性最高(R^2为0 .46-0.53,p<0.001),但是,年降水量和平均气温的变化不足以解释西藏色齐拉山暗针叶林具有最高的地上生物量。我们认为,自然植被地上部分 生物量的分布格局受到更为复杂的气候因子的制,例如太阳辐射,湿度,风、水分和能量平衡等。 C1 Luo Tianxiang, Institute of Geographical Sciences and Natural Resources Research, the Chinese Academy of Sciences, BeiJing 100101, China. Shi Peili, Institute of Geographical Sciences and Natural Resources Research, the Chinese Academy of Sciences, BeiJing 100101, China. Ouyang Hua, Institute of Geographical Sciences and Natural Resources Research, the Chinese Academy of Sciences, BeiJing 100101, China. Luo Ji, Chengdu Institute of Mountain Hazards and Environment, the Chinese Academy of Sciences and Ministry of Water Conservansy, Chengdu, Sichuan 610041, China. Z6 罗天祥, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 石培礼, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 欧阳华, 中国科学院地理科学与资源研究所, 北京 100101, 中国. 罗辑, 中国科学院成都山地灾害与环境研究所, 成都, 四川 610041, 中国. Z8 24 Z9 45 UT CSCD:1072779 DA 2023-03-23 ER PT J AU Zhao Zhong Wang Anlu Ma Haisheng Song Huiqin Z2 赵忠 王安禄 马海生 宋慧琴 TI Studies on dynamics monitor and sustainable development in eastern edge of Qinghai-Tibetan alpine grassland. II Analysis of plant community structural features and grass species diversity Z1 青藏高原东缘草地生态系统动态定位监测与可持续发展要素研究.II高寒草甸草地生态系统植物群落结构特征及物种多样性分析 Z3 草业科学 SO Pratacultural Science VL 19 IS 6 BP 9 EP 13 AR 1001-0629(2002)19:6<9:QZGYDY>2.0.TX;2-Q PY 2002 DT Article AB Through analysis and study of the data of the location observation on the structural feature and species diversity on the 8 types of grassland of the alpine meadow ecosystem in the eastern edge of the Qinghai-Tibetan Plateau, the result showed that the plant coverage was well and the species was rich on the alpine meadow type of grassland in the plateau. However, the diversity and the ratio of good quality grass were low on the most grassland. It indicated that the trends of degradation succession, which resulted mainly from overgrazing, pest, human interference and the global climate change etc. In the community structural feature, the succession stages of the community were original vegetation (VI, VII), slight degradation (I, III, IV, V) and heavy degradation (II, VIII) successively. The richness index of species in the community (S) were III>V>VI>VII>I>IV>II>VIII successively. The species diversity index were VI>V>VII>III>I>II>VIII>IV successively, indicating that the species diversity index of the original vegetation was obviously higher than that of degraded communities. Therefore, it is a pressing task at present to enhance the protection of highland environment so as to stop grassland degradation as soon as possible. Z4 通过对青藏高原东缘高寒草甸生态系统8个草地类型植物群落样地定位监测资料进行结构特征及物种多样性分析研究,结果表明,青藏高原东缘高寒草甸草地草群盖 度大、物种丰富,但大多数草地多样性随退化程度的加重而降低,优良牧草所占比例不高,总的反映出退化演替的趋势,超载、鼠虫危害、人为干扰以及全球气候变 化等因素是草地退化的主要原因。从群落结构特征来看,不同类型群落演替阶段依次为原生植被(VI、VII)、轻度退化(I、III、IV、V)、重度退化 (II、VII);群落物种丰富度指数(S)依次为III>V>VI>VII>I>IV>II>VIII;物种多样性指数依次为VI>V>VII>III >I>II>VIII>IV,表现出原生植被的物种多样性指数明显高于不同退化程度的群落类型。因此,加大力度保护高原生态环境,尽快遏制草地退化趋势应 为当务之急。 C1 Zhao Zhong, Gansu Animal Husbandry Science and Technology Centre, Lanzhou, Gansu 730030, China. Ma Haisheng, Gansu Animal Husbandry Science and Technology Centre, Lanzhou, Gansu 730030, China. Song Huiqin, Gansu Animal Husbandry Science and Technology Centre, Lanzhou, Gansu 730030, China. Wang Anlu, Luqu Animal Husbandry Bureau of Gansu Province, Luqu, 747200. Z6 赵忠, 甘肃省畜牧科技开发中心, 兰州, 甘肃 730030, 中国. 马海生, 甘肃省畜牧科技开发中心, 兰州, 甘肃 730030, 中国. 宋慧琴, 甘肃省畜牧科技开发中心, 兰州, 甘肃 730030, 中国. 王安禄, 甘肃省碌曲县畜牧局, 碌曲, 甘肃 747200, 中国. Z8 20 Z9 21 UT CSCD:987790 DA 2023-03-23 ER EF