
APPENDIX1

Homology of Simplicial Complexes2

Listed here are the basic concepts in algebraic topology which are necessary in understanding of per-3

sistent homology. Definitions and theorems are taken mainly from Bubenik (2015), Carlsson (2009),4

Edelsbrunner and Harer (2008), Ghrist (2008), Pun et al. (2018) Otter et al. (2017) and Zomorodian and5

Carlsson (2005).6

Simplices.7

One way of associating an algebraic and combinatorial structure to a topological space is by use of8

simplicial complexes.9

Definition 1 A k-simplex, ∆k, is the convex hull of k + 1 points which do not lie in a hyperplane of10

dimension k or less. It can also be denoted as [v0,v1,v2, ...,vk] , where vi’s are the vertices of ∆k which11

has the natural ordering and k is its dimension.12

Definition 2 A face of a k-simplex [v0,v1,v2, ...,vk] is a simplex [vi1 ,vi2 , ...,vik ] where i j ∈ {0,1,2, ...,k}13

for each j and 0≤ i1 < i2 < i3 < ... < ik ≤ k. If a simplex σ ′ is a face of a simplex σ , then it is denoted14

as σ ′ ⊆ σ . If the dimension of σ ′ is less than the dimension of σ , then σ ′ ⊂ σ .15

A 0-simplex can be represented as a point, a 1-simplex as an edge from one vertex to another vertex, a16

2-simplex as a triangular region defined by 3 non-collinear points , a 3-simplex as a tetrahedron together17

with its interior defined by 4 non-coplanar points, and so on.18

Simplicial Complexes.19

The k-simplices are regarded as building blocks of simplicial complexes. Simplices can be glued together20

to form simplicial complexes. A simplicial complex is formally defined as follows.21

Definition 3 Let K0 be a set of vertices. A simplicial complex, K, is a collection of simplices whose22

vertices are element of K0, such that if v ∈ K0 then [v] ∈ K and if τ and σ are simplices such that σ ∈ K23

and τ ⊂ σ then τ ∈ K. Moreover, the dimension of K is the maximum of the dimensions of its elements.24

Definition 4 Let Ki denote the set of i-simplices in a simplicial complex K. The n-skeleton of K is the25

union of the sets Ki for all i ∈ {0,1,2, ...,n}. If σ1 is a simplex of dimension n1 and σ2 is a simplex of26

dimension n2, such that σ1 ⊂ σ2, then σ1 is said to be a face of σ2 of codimension n2−n1.27

Example 1 Simplicial Complex A

A = {[a], [b], [c], [d], [e], [a,b], [b,c], [a,c], [d,a], [c,d], [a,b,c]}

Example 2 Simplicial Complex B

B = {[ f ], [g], [h], [ f ,g], [g,h], [ f ,h], [ f ,g,h]}

Simplicial complex A is of dimension 2 since it contains a 2-simplex and it is the element of A with28

the largest dimension. Similarly, B is of dimension 2.29

A simplicial complex can be referred to as an abstract simplicial complex because of its abstract30

nature. But, one can interpret a finite simplicial complex geometrically as a subset of Rn for some natural31

number n. Such subset is called a geometric realization and it is unique up to a canonical piecewise-linear32

homomorphism (Otter et al., 2017). That is, for a simplicial complex K, there exists a geometric simplicial33

complex G whose vertices are in one-to-one correspondence with the vertices of K and a subset of vertices34

in K define a simplex in G if and only if they correspond to the vertices of some simplex of K.35

Figure 1 shows the respective geometric realization of simplicial complexes A and B in R2.36

Note that a simplicial complex ∆ can also be viewed as a topological space expressed as a quotient of37

disjoint union of simplices by an equivalence relation that identifies certain faces of certain simplices.38



Figure 1. Geometric Realization of A and B

Homology of Simplicial Complexes.39

A formal sum of k-simplices is called a k-chain and the free abelian group having a collection of40

k-simplices as its basis is called a chain group.41

Let X be a simplicial complex and ∆k(X) be the free abelian group generated by the k-simplices of X .
Elements of ∆k(X) are called k-simplicial chains. For any k ∈ {1,2,3, ...}, define the boundary map as
the linear map

∂k : ∆k(X)→ ∆k−1(X),

σ 7→ ∑
τ⊂σ ,τ∈∆n−1

τ.

The boundary map ∂k maps each k-simplex to its boundary, which is the sum of its faces of codimension42

1. The map ∂0 is called the zero map. It can be shown that ∂n ◦∂n+1 = 0, that is the boundary of a boundary43

is always empty. Moreover, the image of ∂n+1 is contained in the kernel of ∂k.44

The boundary operators and the chain groups form into a chain complex C∗:

· · · → ∆k+1
∂k+1−−→ ∆k

∂k−→ ∆k−1→ ··· .

Definition 5 For each n ∈ {0,1,2,3, ...}, the n-th homology of a simplicial complex X, is given as

Hn(X) := Ker(∂n)/Im(∂n+1).

Moreover, its dimension

βn(X) := dimHn(X) = dimKer(∂n)−dimIm(∂n+1)

is called the n-th Betti number of X, or the rank of the n-th homology group of (X). And, elements of45

Im(∂n+1) are called n-boundaries, and elements of Ker(∂n) are called n-cycles.46

The n-cycles which are not boundaries represent n-dimensional holes. Thus, the n-th Betti number
gives the number of n-holes. Particularly, the β0(X) gives the number of connected components, the
β1(X) gives the number of tunnels, the β2(X) gives the number of voids, and so on. Furthermore, if X is a
simplicial complex of dimension p, then Hn(X) = 0 for each n > p. Then there is the following sequence,

0
∂n+1−−→ ∆n(X)

∂n−→ ·· · ∂2−→ ∆1(X)
∂1−→ ∆0(X)

∂0−→ 0.

Example 3 Consider the simplicial complex A= {[a], [b], [c], [d], [e], [a,b], [b,c], [a,c], [d,a], [c,d], [a,b,c]}47

from Example 1 with the geometric realization given in Fig. 2.48

Figure 2. Geometric Realization of A and B

Then there is the following sequence,

0 · · ·0 ∂3−→ ∆2(A)
∂2−→ ∆1(A)

∂1−→ ∆0(A)
∂0−→ 0,
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where49

50

∆0(A) = Z5 = spanZ{[a], [b], [c], [d], [e]},51

∆1(A) = Z5 = spanZ{[a,b], [b,c], [a,c], [c,d], [d,a]},52

∆2(A) = Z= spanZ{[a,b,c]}, and53

∆k(A) = 0 for each k ≥ 3.54

55

Also, for k = 1,2,3, the boundary operator ∂k is defined for k-simplices, respectively as follows,56

∂0([x]) = 0 for each [x] ∈ ∆0(A),57

∂1([x,y]) = [y]− [x] for each [x,y] ∈ ∆1(A), and58

∂2([x,y,z]) = [x,y]+ [y,z]− [x,z] for each [x,y,z] ∈ ∆2(A).59

60

The homology groups are computed as follows,61

H0(A) =
ker∂0

im∂1
62

=
spanZ{[a], [b], [c], [d], [e]}

spanZ{([b]− [a])+([c]− [b]),([c]− [a])+([d]− [c]), [a]− [d]+ [c]− [a]}
63

=
spanZ{[a], [b], [c], [d], [e]}

spanZ{[a]− [c], [a]− [d], [d]− [c]}
=

Z5

Z3 = Z2,64

H1(A) =
ker∂1

im∂2
=

spanZ{[c,d], [d,a]}
spanZ{[a]+ [b]− [c]}

=
Z2

Z1 = Z,65

H2(A) =
ker∂2

im∂3
= 0, and66

Hk(A) = 0 for each k ≥ 3.67

68

The Betti numbers are β0 = 2, β1 = 1, β2 = 0, which means that there are 2 connected spaces, 1 hole69

and 0 voids in A.70

For the succeeding sections, simplicial homology will be defined over the field F2 with 2 elements,71

where 1 6=−1. So instead of defining the chain groups as free abelian groups, we define the chain groups72

as vector spaces over F2. However, when computing simplicial homology over F2, one needs to be73

careful when defining the boundary maps ∂k to ensure that ∂k ◦∂k+1 remains the zero map (Otter et al.,74

2017). Consequently, the definition is just almost the same, but the resulting homology groups and Betti75

numbers may vary for different fields. For the purpose of using persistent homology in data science or on76

Euclidean spaces, it suffices to consider homology with coefficients in the field F2. Indeed, we will see in77

the discussion of obtaining topological summaries in the form of barcodes that we will need to compute78

homology with coefficients in a field, particularly F2. Furthermore, most of the implementations for the79

computation of persistent homology in the examples work with F2.80

Computing Persistent Homology of a Point Cloud81

Presented here is the general guideline in computing persistent homology of a dataset which follows the82

pipeline of computing persistent homology as presented in Otter et al. (2017).83

Data can be viewed as a collection of points in a metric space. This finite metric space is also called a84

point cloud. Points in the dataset or point cloud are thickened gradually and this gradual evolution of the85

point clouds’ shape and its topological properties are now the point of interest for topologist and data86

scientists.87

Let X0 be a finite subset of a Euclidean space Rn. Then, X0 is an example of a point cloud. These88

points which can be viewed as vertices which will serve as building blocks of complexes.89

Let ε be a non-negative real number which serves as parameter to thicken X0 and Xε be the thickened90

point cloud. Homology of a given data pertains to topological invariant properties of Xε which can be91

computed algebraically. That is, for each nonnegative integer i, there is a corresponding vector space or a92

homology group Hi(Xε). The dimension of the first 3 homology groups gives the number of connected93

components, the number of tunnels or holes and the numbers of voids, respectively. This algebraic94

structures are said to be robust or homotopy invariant. That is, a primary space’s topological invariant95

features does not change when the space undergo bending, stretching or other deformations. Furthermore,96

computing homology of a finite simplicial complex can be easily done with the aid of linear algebra.97
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Computing the homology of an arbitrary topological space is not as straight forward as that of98

computing the homology of a finite simplicial complex. Firstly, one has to find a simplicial complex99

whose homology approximates the homology of the arbitrary space. There are various ways of doing this,100

and the most natural methods are with the use of Čech complexes and Vietoris-Rips complexes. There are101

alternative complexes like Delaunay complex, Alpha complex and Witness complex.102

Let the parameter ε be a non-negative real number and X be a set of points in the Euclidean space Ek
103

and U = {Ui}i∈I be a cover of X . The k-simplices of the Čech complex are the non-empty intersections104

of k+1 sets in U .105

Definition 6 Let U = {Ui}i∈I be the non-empty collection of sets. The nerve of U is the simpli-106

cial complex with the vertices given by I and the k-simplices given by {i0, i1, i2, ..., , ik} if and only if107 ⋂
j∈{0,1,...,k}

Ui j 6= /0.108

Theorem 1 (Nerve Theorem) The geometric realization of the nerve of U is homotopy equivalent to109

the union of sets in U .110

Definition 7 The Čech complex with parameter ε of X is given as

Čε(X) := {σ ∈ X |
⋂
x∈σ

B(x,ε) 6= /0}

where B(x,ε) is a closed ball of radius ε centered at x.111

If the cover of the sets in X is sufficiently ‘nice,’ then the Nerve Theorem guarantees that the nerve of112

the cover and the space X have the same homology (Edelsbrunner and Harer, 2010). However, finding113

the Čech complex is computationally expensive as it involves investigating a very large number of114

intersections. Furthermore, the Čech complex may have a higher dimension than the underlying space.115

This is the reason why choosing Vietoris-Rips (VR) complex,an approximation of the Čech complex, can116

be more attractive.117

Definition 8 Let (X ,d) be a metric space, S be a subspace of X with the induced metric. The Vietoris-Rips
complex with parameter ε , denoted by Rε(X), is the set of all σ ⊂ X, such that the largest Euclidean
distance between any of its points is at most 2ε . That is, given S⊂ X,

Rε(S) = {σ ⊆ S|d(x,y)≤ 2ε for all x,y ∈ σ}.

Both the Vietoris-Rips complex and the Čech complex are abstract simplicial complexes which may118

be defined at various parameters ε , but only Čech complex preserves the homotopy information of the119

topological spaces formed by the ε-balls.120

Moreover, given S is a subset of a Euclidean space, the Vietoris-Rips complex approximates the Čech121

complex in such a way that Čε(S)⊆V Rε(S)⊆ Č√2ε
(S).122

The construction of a VR complex can be made easier with the use of clique complexes, also known123

as the flag complexes. In topology, recall that a graph is complete if any two vertices in the graph is124

connected by an edge and the set of vertices which form a complete graph is called a clique. A k-clique125

complex is formed from a clique of k+1 vertices. Since subsets of a clique is also a clique, then a clique126

complex is also a simplicial complex.127

Now, for easier construction a VR complex of S, form the ε-neighborhood of S which is composed128

of vertices in S and edges (i, j) ∈ S× S where i 6= j and d(i, j) ≤ 2ε . Afterwards, compute the clique129

complex of the ε-neighborhood graph. This construction is easier for the reason that one only needs to130

check for pairwise distances to construct a clique complex. Although this technique is computationally131

less expensive as that of computing the Čech complex, the VR complex may have the same worst-case132

complexity as that of the Čech complex. That is, in the worst case, a VR complex may have 2|S|− 1133

simplices and dimension |S|− 1. Moreover, one can opt to just compute the VR complex up to some134

dimension k� |S|−1. Otter et al. (2017) used k = 2 and k = 3 in their simulations.135

Example 4 Consider K = {(0,0),(1,0),(0,0.5),(1,1)}⊆R2 and the filtration parameters values ε1 = 0,136

ε2 = 0.2, ε3 = 0.4, ε4 = 0.6 and ε5 = 0.8.The first column of Fig. 3 shows the filtration of K using Čech137

complexes, with C1 ⊆ C2 ⊆ ... ⊆ C5. The second column of Fig. 3 show the filtration of K using138

Vietoris-Rips complexes, with V R1 ⊆V R2 ⊆ ...⊆V R5.139
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C1 V R1

C2 V R2

C3 V R3

C4 V R4

C5 V R5

Figure 3. Filtration of K using Čech and Vietoris-Rips Complexes

In this particular example, the Čech complexes and the Vietories-Rips complexes differ only at the140

4-th filtration index.141
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Given a finite metric space S, say a set of experimental dataset, it is assumed that the data is a sample142

from some underlying topological space. The goal in computing the persistent homology of this data143

is to recover the properties of such underlying topological space while maintaining the robustness of144

the data. Given a subset S of a Euclidean space, one can consider Sε , a simplicial complex at different145

values of ε . As the value of ε increases, simplices are added to the complexes and sequence of nested146

simplicial complexes is formed. This is the part where the homology of the simplicial complexes changes147

as the parameter ε changes. The goal now in is to determine which topological features persist across the148

changes in the ε values. Thus, the name persistent homology.149

Definition 9 Let K be a finite simplicial complex and K1 ⊆ K2 ⊆ ... ⊆ Kr = K be a finite sequence of150

nested subcomplexes of K. K is called a filtered simplicial complex and the sequence {K1,K2, ...} is called151

the filtration of K.152

Homology of each of the subcomplexes can be computed. For each p, the inclusion maps Ki →153

K j induce F2-linear maps ∂
j

i : Hp(Ki)→ Hp(K j) for all i, j ∈ {1,2, ...,r} with i ≤ j. It follows from154

functoriality that ∂
j

k ◦∂ k
i = ∂

j
i for all i≤ k ≤ j.155

Definition 10 Let Ks be a subcomplex in the filtration of the simplicial complex K, or Ks be the filtered156

complex at time s, and Zs
k = Ker∂ s

k and Bs
k = Im∂ s

k+1 be the k-th cycle group and boundary group of Ks,157

respectively. The k-th homology group of Ks is Hs
k = Zs

k/Bs
k = Ker(∂ s

k )/Im(∂ s
k+1).158

Definition 11 For p ∈ {0,1,2, ...}, the p-persistent k-th homology group of K given a subcomplex Ks is
Ks is

Hs,p
k (K,Ks) = Hs,p

k (K) = Zs
k/(B

s+p
k

⋂
Zs

k) =
Ker(∂ s

k )

Im(∂ s+p
k+1 )

⋃
Ker(∂ s

k )
.

The p-th persistent k-th Betti number β
s,p
k of Ks is the rank of Hs,p

k (K). Note that the zero-persistent159

homology groups of Ks are the same as the actual homology groups of Ks.160

The results of computing the persistent homology of a filtered simplicial complex are normally given161

in terms of persistent pairs consisting of birth times and death times. And, these are normally visualized162

in various ways. The most common way of visualizing results of computing persistent homology is by163

use of persistence barcodes. These are representations of the recorded birth times and death times of the164

topological invariant properties or generators. Birth times and death times refer to the filtration values (ε165

values or filtration time) at which the generators appeared and vanished, respectively. The name persistent166

barcode was first used in Zomorodian and Carlsson (2005) and discussed in more details in Ghrist (2008).167

But, the standard algorithm for transforming persistent homology into barcodes is presented here as seen168

in Otter et al. (2017), as their presentation is clear, concise and beginner friendly.169

Given a filtered simplicial complex K, with filtration K0 ⊆ K1 ⊆ K2 ⊆ ...⊆ Kr. The persistent pair170

may be given by the pair (b,d), where b ∈ {0,1,2, ...,r} is the birth time, d ∈ ({0,1,2, ...,r}∪∞) is the171

death time, b≤ d and d−b is the length or lifespan of the homology. If d < ∞ then the generator vanishes172

at filtration time d and if d = ∞ then the homology persists on all the succeeding filtration steps.173

The persistent barcode for the filtered simplicial complex K can be created using the following steps.
First, K must be associated to boundary matrix whose entries represents faces of the simplexes. It is
assume that each of the simplexes of the nested sequence of complexes follow a total ordering such that a
face of a simplex precedes the simplex and a simplex in the i-th complex Ki precedes the simplices in K j
for j > i, which are not in Ki. Let n be the total number of simplices in the complex, and σ1,σ2, ...,σn be
the simplices. The square matrix B, of dimension n×n, is constructed by assigning a value 1 in B(i, j) if
the simplex σi is a face of simplex σ j of codimension 1 and a value 0 otherwise. That is, the boundary
matrix B is defined by

B(i, j) =

{
1, if σi ⊂ σ j and dim(σ j)−dim(σi) = 1
0, otherwise.

After constructing the boundary matrix B, it has to be reduced using the standard algorithm, sometimes174

called column algorithm, for the computation of PH. The standard algorithm used for computing PH was175

first introduced in Edelsbrunner et al. (2002). For each j ∈ {1,2, ...,n}, define low( j) to be the largest176
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value i such that B(i, j) is different from 0. If column j only contains 0 entries, then the value of low( j)177

is undefined. Boundary matrix B is reduced if the map low is injective on its domain of definition. In178

the worst case, the complexity of the standard algorithm is cubic in the number of simplices (Otter et al.,179

2017).180

Finally, the reduced boundary matrix can now be encoded into a barcode. This is done by pairing the181

simplices in the following manner:182

• If low( j) = i, then the simplex σ j is paired with σi, and the appearance of σi in the filtration causes183

the birth of a feature that dies with the entrance of σ j.184

• If low( j) is undefined, then the appearance of the simplex σ j in the filtration causes the birth of185

a feature. If there exists k such that low(k) = j, then σ j is paired with the simplex σk, whose186

appearance in the filtration causes the death of the feature. If no such k exists, then σ j is unpaired.187

A pair (σi,σ j) gives the half-open interval [dg(σi),dg(σ j)) in the barcode, where for a simplex σ ∈K188

we define dg(σ) to be the smallest number l such that σ ∈ Kl . An unpaired simplex σk gives the infinite189

interval [dg(σi),∞).190

Definition 12 Let K be a set of points in the Euclidean space Rd . Fix m ∈ N be the number of simplicial191

complexes in the filtration of K. Suppose K0 ⊆ K1 ⊆ K2 ⊆ ·· · ⊆ Km is a filtration of K with respect to192

parameter values εi’s such that 0 = ε0 < ε1 < ε2 < · · ·< εm. Let n ∈ N be the number of simplices σ j’s193

in Km. For each k ∈ {0,1,2, ...,d}, there is a barcode Bk which is a collection of half-open intervals194

[σ j,1,σ j,2), which are pairs of birth time and death time of a generator in Hk(K). Then, for each k,195

k = 0,1,2, ...d the number of infinite intervals in Bk gives the k-th Betti number or the rank of Hk(Km).196

And, the persistent homology of K based on the filtration K0 ⊆ K1 ⊆ K2 ⊆ ·· · ⊆ Km is the homology of197

Km.198

Example 5 Consider a set of points K = {(0,0),(0,1),(.5,1.5),(1,1),(1,0)} and filtration values ε1 =199

0.2,ε2 = 0.4,ε3 = 0.6,ε4 = 0.8, and ε5 = 1.0.200

A filtration of K using the Čech complexes, /0 = K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ K4 ⊆ K5, is given in Fig. 4.201

Figure 4. A Filtration of K

After implementing the standard algorithm, its barcodes for degree 0 and degree 1 are shown in Fig. 5202

and Fig. 6, respectively.203

It can be concluded from the barcodes that the respective Betti numbers are β0 = 1 and β1 = 0. Based204

on the given filtration parameter values, the persistent homology of K can be described as a connected205

space with no hole.206

Persistence barcodes are then analyzed by studying properties of metric spaces whose elements are207

persistence diagrams. A persistence diagram is another form of visualizing results of PH computations. It208

gives similar information that a barcode provides. Also, distance functions were defined on a space of209

persistence diagrams.210
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Figure 5. Barcode for degree 0 Figure 6. Barcode for degree 1

Recall that the n-th Betti number of a topological space X is denoted by βn, which is equal to the rank
of the n-th homology group Hn. Moreover, if K is a simplicial complex and {Kr}r∈J for some indexing is
the the filtration of K, the p-th persistent k-th Betti number β

s,p
k of Ks is the rank of Hs,p

k (K). From the
persistent Betti numbers, there is a set of multiplicities µ

i, j
n > i such that

p = j− i, µ
i, j
n = β

i,p
n −β

i−1,p
n −β

i,p+1
n +β

i−1,p+1
n

The multiplicity µ
i, j
n is the number of features in the n-th homology group that appears at filtration i211

and vanishes at filtration time j.212

Definition 13 (Persistence Diagram) Let {Kr} be the filtration of a simplicial complex K. The n-th213

persistence diagram of K with the filtration {Kr}, denoted by PDn({Kr}) is a subset of R̄2, where214

R̄2 = (R∪{±∞})× (R∪{±∞}), with each point (i, j) has a multiplicity of µ
i, j
n and all points in the215

diagonal where i = j have infinite multiplicity.216

Discussion of the robustness and stability of persistence diagram requires the notion of distance. Given217

two persistence diagrams, say X and Y , the definition of distance between X and Y is given as follows.218

Definition 14 Let p ∈ [1,∞]. The p-th Wasserstein distance between X and Y is defined as

Wp[d](X ,Y ) := inf
φ :X→Y

[
∑
x∈X

d[x,φ(x)]p
]1/p

for p ∈ [1,∞) and as
W∞[d](X ,Y ) := inf

φ :X→Y
sup
x∈X

d[x,φ(x)]

for p = ∞, where d is a metric on R̄2 and φ ranges over all bijections from X to Y .219

Normally, d is taken to be Lq where q ∈ [1,∞] and the most commonly used distance function is the220

Bottleneck distance W∞[L∞].221
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