
C PAGE (DE)ALLOCATION VIA PAGE POOL API
Page Pool provides an API to device drivers to (de)allocate pages in an efficient, and preferably lockless
way (see Figure 20 for details in Linux kernel v5.15); the driver then splits each page into single or
multiple buffers based on a given MTU size, see Section 3.2. A page pool is composed of two main data
structures: (i) a fixed-size lockless array/Last In, First Out (LIFO) (aka cache) and (ii) a variable-sized
ring implemented via a ptr ring data structure that is essentially a limited-size First in, First Out (FIFO)
with spinlocks and that facilitates synchronization by using separate locks for consumers & producers. By
default, the cache can contain up to 128 pages, and the size of the ring is determined based on the number
of RX descriptors and MTU size. The purpose of the page pool is to (i) efficiently allocate pages from the
cache without locking and (ii) use the ring to recycle returned pages. To avoid synchronization problems,
each page pool should be connected to only one RX queue, thus it is protected by NAPI scheduling. The
Page Pool API is mainly used to allocate memory at the granularity of a page; however, recent Linux
kernels support page fragments that make it possible to allocate an arbitrary-sized memory chunk from an
order-n page, i.e., 2n contiguous 4-KiB pages.

1.1. Tries returning the page to the 
cache

1.2. If full or softirq, tries returning it 
to the ring

1.3. Otherwise, release/free the page

1.1. Gets a page from the cache
1.2. If empty, refills the cache 

from the ring
1.3. If empty, allocates memory

page_pool_recycle_direct

RXQ (i)

RX Queue (i)

Page Pool (i)

Ring 

Cache

page_pool_alloc_pages
page_pool_dev_alloc_pages 1

21.1

1.2

1.3

2.1

2.2

2.3

alloc_pages_node
alloc_pages_bulk_array

put_page

ptr_ring: A 
Limited-size FIFO 
with spinlocks

A Lockless Array

Figure 20. Page Pool overview.

Details of the steps in Figure 20:
1 Allocating a page. When a driver asks for a page: (1.1) the page pool initially checks the lockless

cache; (1.2) if empty, it tries to refill the cache from the pages recycled in the ring; (1.3) if not possible
due to software interrupts (softirq) or unavailability, it allocates page(s) and refills the cache. Recent
Linux kernels perform bulk allocation (e.g., 64 pages at a time) to amortize the allocation cost.
2 Returning a page. When a driver returns a page: (2.1) the page pool attempts to recycle the page

into the cache; (2.2) if not possible, it tries returning it to the ring; (2.3) if unsuccessful, it releases/frees
the page. Since the Page Pool API is optimized for eXpress Data Path (XDP) and AF XDP socket (XSK),
i.e., an eBPF data path where each page is only used by one buffer, Steps 2.1 & 2.2 can only be performed
if (i) a page has only a single reference (i.e., page ref count(page) == 1) and (ii) a page is not
allocated from the emergency pfmemalloc reserves. The former causes a page pool to continually allocate
new pages for drivers operating in a non-XDP mode that splits each page into multiple fragments and
uses page references for bookkeeping/recycling. Unfortunately, continuous page allocation disables the
driver from re-using a fixed set of pages, causing low page locality. We refer to this as the leaky page pool
problem.


