
Supplementary Material for: “How to account for behavioral

states in step selection analysis: a model comparison”

J. Pohle1∗, J. Signer2, J. A. Eccard3, M. Dammhahn4 and U. E. Schlägel1
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S1 Illustration of state-dependent step-selection densities
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Figure S1: Illustration of the state-dependent step selection density fi in a 2-state setting as used
in Scenario 2 of the simulation study (Section 2.4 main manuscript). Panel a) shows a part of the
simulated landscape feature map. The two black dots exemplify the past and current location of the
animal. Panel b) shows the movement kernel which consists of a gamma distribution for step length
and a von Mises distribution with mean zero for turning angle. In this example, the movement kernel
is the same for both states. Panel b) and c) depict the step-selection density for state 1 (f1) and
state 2 (f2), respectively. In state 1, the selection coefficient is set to β1 = −2 which corresponds to
avoidance of the landscape feature, while in state 2, the animal is attracted to the feature (β2 = 2).
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S2 Movement covariates and sampling procedures

S2.1 Sampling procedures for the control steps

There are different possibilities to sample the control, i.e. available steps for the iSSA or HMM-iSSA.

For iSSAs, usually a procedure related to importance sampling is used which can be described as

follows (Avgar et al., 2016):

1) Proposal distribution:

1a) Fit the distribution dl chosen to model step length (e.g. gamma distribution) to the observed

step lengths l0,t (t = 2, . . . , T ) to obtain the proposal distribution dl,prop with corresponding

parameter vector θl,prop (e.g. containing the shape kprop and rate rprop of the fitted gamma

distribution).

1b) If a von Mises distribution with fixed mean is assumed for turning angle, fit the correspond-

ing von Mises distribution dα to the observed turning angles α0,t (t = 3, . . . , T ) to obtain

the proposal distribution dα,prop with concentration parameter κprop.

2) Random steps and locations:

2a) For each step starting at t = 2, . . . , T − 1 , draw M random step length lm,t+1 from the

proposal distribution dl,prop.

2b) For each step starting at t = 2, . . . , T − 1 , further draw M random turning angles αm,t+1

either from the proposal distribution dα,prop if a von Mises distribution is assumed or from

a uniform distribution with boundaries −π and π.

2c) Use the M randomly drawn step lengths and turning angles together with the starting

point x0,t to compute the M control locations xm,t+1 and their corresponding movement

covariates Cm,t+1 (m = 1, . . . ,M).

3) Extract the habitat covariates Zm,t+1 for each xm,t+1 from Z (m = 1, . . . ,M , t = 2, . . . , T − 1).

Another possibility to sample the control steps is the use of a uniform distribution for both the step

length and turning angle of each control step. For the turning angles, values between −π and π are

a natural choice. For step length, however, an upper limit must be chosen. One possibility is to add

a constant value, e.g. 10, to the maximum observed step length. Another possibility is to use the

99.9%-quantile of the proposal distribution dl,prop described in step 1a) of the importance sampling

procedure described above. Note that the upper step length value must be chosen large enough to

cover the main support of the estimated state-dependent step length distributions, otherwise it might

lead to an estimation bias (Nicosia et al., 2017).

It is possible to combine both sampling approaches. For the simulation study described in Section 2.4

(main manuscript), we drew the random step lengths from a gamma proposal distribution, while the

random turning angles were sampled from a uniform distribution (although we assumed a von Mises

distribution for turning angles).

Furthermore, it is possible to lay a grid or a mesh either over the complete animals’ domain or over a

buffer area around the current animal location (Schlägel and Lewis, 2014; Arce Guillen et al., 2023).

For a grid, the mid-points of each grid cell provide the end-point locations for each control step. A

fine resolution of the grid improves the estimation accuracy, but might come with high computational
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costs. Thus, it is important to find a good balance between estimation accuracy and computational

costs. This is also true for the number M of randomly drawn control steps. A possible strategy would

be to start with a moderate number M (or grid resolution) and increase this number (resolution) until

the results stabilize, i.e. the estimated parameters hardly change anymore (Warton and Shepherd,

2010).

S2.2 Movement parameters and corresponding movement covariates

Depending on the assumptions made about the step length and turning angle distributions, different

movement covariates must be included in analysis (Avgar et al., 2016; Nicosia et al., 2017). The

meaning of the corresponding HMM-iSSA movement coefficients is related to the parameters of these

distributions, e.g. the shape and rate parameters of the gamma distribution, but can slightly differ

depending on the sampling procedure used to draw the control locations for the case-control data set.

An overview for common step length distributions and the von Mises turning angle distribution is

provided in Table S1. An overview of how to derive the natural distributional parameters, e.g. the

shape and rate of the gamma distribution, from the corresponding HMM-iSSA movement coefficients

is given in Table S2.

coefficient interpretation

“importance” uniform grid
distribution covariate coefficient sampling sampling approach

Exp(λi) −l θi,−l λi − λprop λi λ
(∗)
i

Gamma(ki, ri) log(l) θi,log(l) ki − kprop ki − 1 ki − 2

−l θi,−l ri − rprop ri ri

LN(µi, σi) log(l) θi,log(l)
µi

σ2
i

−
µprop

σ2
prop

µi

σ2
i

− 1
µi

σ2
i

− 2

− log(l)2 θi,− log(l)2
1

2σ2
i

−
1

2σ2
prop

1

2σ2
i

1

2σ2
i

vM(0, κi)
(∗∗) cos(α) θi,cos(α) κi − κprop κi κi

Table S1: Example distributions for step length and turning angle. The table displays the associated
movement covariates required for the Markov-switching conditional logistic regression, and the mean-
ing of the corresponding movement coefficients for the three sampling procedures to sample the control
locations as described in Section S2.1. The table provides information for the exponential distribution
(Exp) with rate λi, Gamma distribution with shape ki and rate ri, log-normal (LN) distribution with
mean µi and variance σ2

i , and von Mises (vM) distribution with mean zero and concentration κi. (*)
For the exponential distribution, − log(l) must be included as an offset in the grid approach. (**)
Here, a negative estimate for κi can be interpreted as the concentration parameter of the von Mises
distribution with mean π, i.e. vM(π, κi)
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“importance” uniform grid
distribution parameter sampling sampling approach

Exp(λi) rate λi θi,−l + λprop θi,−l θi,−l

Gamma(ki, ri) shape ki θi,log(l) + kprop θi,log(l) + 1 θi,log(l) + 2

rate ri θi,−l + rprop θi,−l θi,−l

LN(µi, σi) mean µi

θi,log(l) +
µprop

σ2
prop

2
(
θi,− log(l)2 +

1
2σ2

prop

) θi,log(l) + 1

2θi,− log(l)2

θi,log(l) + 2

2θi,− log(l)2

variance σ2
i

1

2

(
θi,− log(l)2 +

1
2σ2

prop

)−1 1

2θi,− log(l)2

1

2θi,− log(l)2

vM(0, κi)
(∗∗) concentration κi θi,cos(α) + κprop θi,cos(α) θi,cos(α)

Table S2: Overview of deriving the natural step length and turning angle parameters from the HMM-
iSSA movement coefficients for the three control step sampling procedures described in Section S2.1.
(**) Here, a negative estimate for κi can be interpreted as the concentration parameter of the von
Mises distribution with mean π, i.e. vM(π, κi)
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S3 Initial values for the maximum likelihood estimation

The HMM-iSSA requires starting values, i.e. first guesses, for each model parameter to initialize the

parameter estimation. For each state i = 1, . . . , N the model comprises:

1. the state transition probabilities γij = Pr(St = j | St−1 = i) with j = 1, . . . , N :

• probabilities for the underlying state sequence to switch from state i to state j = 1, . . . , N

• values lie between zero and one, i.e. 0 ≤ γij ≤ 1

• values must sum to one, i.e.
∑N

j=1 γij = 1

• usually, a certain persistence in the states is assumed, such that the probability to remain

in the current state is rather high, e.g. values between 0.8 and 0.95

2. the initial state probability δi = Pr(St0 = i):

• probability for the state sequence to start in state i

• values lie between zero and one, i.e. 0 ≤ δi ≤ 1

• if stationarity is assumed for the Markov chain, the initial probabilities are not estimated

but computed from the model’s transition probability matrix

3. the state-dependent movement parameter vector θi:

• contains the parameters of the movement kernel

• depends on the distributions assumed for step length and turning angle (see Table S1)

• for gamma distributed step length and von-Mises distributed turning angles, it comprises

the shape ki and rate ri of the gamma distribution and the concentration parameter κi of

the von Mises distribution; all values must be greater than zero

4. the state-dependent selection coefficient vector βi

• contains the parameters for the selection function

• comprises the selection coefficients for each habitat covariate

The log-likelihood (LL) function of the hidden Markov step selection model is usually multi-modal.

Thus, it is possible that the optimization procedure ends up in a local maximum instead of the global

maximum of the log-likelihood (MLL) required for the maximum likelihood estimates (MLEs). As the

starting values build the starting point for the search of the function’s maximum, they can have a large

impact on the output of the optimization algorithm. Therefore, its is necessary to run the HMM-iSSA

with different sets of (random) starting values to increase the chance of finding the MLEs. Among

the set of HMM-iSSAs fitted with different starting values, the one with the largest corresponding

MLL value provides the final results. However, to ensure numerical stability and convergence, it is

necessary to check if different sets of initial values have lead to the same MLL value and MLEs. This

can be done, for example, by plotting the MLL values found across the different initial values and by

comparing the estimates of HMM-iSSAs with similar MLL values.

It can be inefficient to choose the starting values completely at random which can result in implausible

values and in turn lead to poor model results (e.g. singular models). Therefore, it is usually useful to

restrict the initial parameter values to plausible ranges and to ensure that the initial parameter values
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differ between the N states. An inspection of the observed step length and turning angle observations,

e.g. plotting the histograms and the raw data, might be helpful to find such plausible ranges.

In the following, we describe a possible procedure for selecting the starting values, which can serve as

a starting point and can be adapted depending on the data and model at hand:

1. Choose large random values for the probabilities to remain in a given state (γii), e.g. draws from

a uniform distribution between 0.80 and 0.95 (runif (N, 0.8, 0.95) in R).

For the remaining transition probabilities, γij =
1− γii

N − 1
can be used for i ̸= j . Otherwise, when

drawing random starting values for the off-diagonals of the transition probability matrix, make

sure that transition probabilities from state i to any other state sum to 1.

2. If no stationarity is assumed for the underlying latent Markov chain, the starting values for the

initial state distribution can be fixed to δi =
1

N
or randomly drawn from a uniform distribution

with values between 0 and 1. For the latter, the values must then be normalized with
δi∑N
i=1 δi

.

3. For the movement kernel, initial parameters for the step length distribution and possibly for the

turning angle distribution are required.

• Step length distribution: the quantiles of the step length observations can be used to

draw random mean step length values µi (quantile-function in R). To avoid a large overlap

between the mean values across the states, N + 1 step length quantiles q1, . . . , qN+1 can

be considered for N states, for example with q1 being the 0.1-quantile and qN+1 being

the 0.9-quantile. The mean step length value µi for state i is then drawn from a uniform-

distribution with values between qi and qi+1. The corresponding standard deviation σi

can be drawn from a uniform distribution, for example, with values between a quarter and

twice the mean value, i.e.
1

4
µi and 2µi. Based on these state-dependent mean values and

standard deviations, the corresponding step length distribution parameters can be derived.

For a gamma distribution, this is the shape with ki =
µ2
i

σ2
i

and rate with ri =
µi

σ2
i

.

• Turning angles: The concentration parameter of the von Mises distribution can be randomly

drawn from a uniform distribution with values between 0.2 and 2.

4. For the selection coefficients, draw random values from a set of plausible values, e.g. {−2.0,−1.0,

−0.5, 0.0, 0.5, 1.0, 2.0} (using the sample-function in R).

5. repeat the procedure several, e.g. 50 times.

As a starting point, our R-package HMMiSSA provides a function named generate starting values to

draw random starting values for the HMM-iSSA.
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S4 Supplementary material for the simulation study

S4.1 Simulated landscape feature
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Figure S2: Simulated landscape feature map used to derive the habitat covariates in the simulation
study described in Section 2.4 (main manuscript).
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S4.2 Bias

select. coeff. shape rate conc.

scenario method no. cont. β1 β2 k1 k2 r1 r2 κ1 κ2

1

iSSA
20 0.98 -1.02 -0.35 -1.65 -1.06 -0.10 0.18 -0.52
100 1.00 -1.00 -0.35 -1.65 -1.07 -0.10 0.19 -0.51
500 1.01 -0.99 -0.35 -1.65 -1.07 -0.11 0.19 -0.51

TS-iSSA
20 0.19 -0.16 0.04 0.01 0.02 0.01 0.02 -0.07
100 0.18 -0.14 0.04 0.02 0.02 0.01 0.03 -0.06
500 0.18 -0.13 0.04 0.02 0.02 0.01 0.02 -0.06

HMM-iSSA
20 0.01 -0.01 0.01 -0.07 0.03 -0.01 0.00 -0.02
100 0.02 -0.01 0.02 0.00 0.02 0.00 0.00 0.00
500 0.02 -0.01 0.02 0.03 0.02 0.00 0.00 0.00

2

iSSA
20 1.99 -2.01 -0.76 -0.76 -0.06 -0.06 -0.30 -0.30
100 1.99 -2.01 -0.76 -0.76 -0.06 -0.06 -0.30 -0.30
500 1.99 -2.01 -0.76 -0.76 -0.06 -0.06 -0.30 -0.30

TS-iSSA
20 1.96 -1.97 -0.76 -0.76 -0.06 -0.06 -0.30 -0.30
100 1.96 -1.97 -0.76 -0.75 -0.06 -0.06 -0.30 -0.30
500 1.96 -1.97 -0.76 -0.75 -0.06 -0.06 -0.30 -0.30

HMM-iSSA
20 -0.02 0.01 -0.01 -0.03 0.00 0.00 0.00 0.00
100 -0.01 0.00 -0.01 -0.03 0.00 0.00 0.00 0.00
500 0.00 -0.01 -0.01 -0.03 0.00 0.00 -0.02 -0.02

3

iSSA
20 -0.01 -0.01 -0.50 -1.80 -1.10 -0.14 0.32 -0.38
100 -0.01 -0.01 -0.49 -1.79 -1.10 -0.14 0.32 -0.38
500 -0.01 -0.01 -0.49 -1.79 -1.10 -0.14 0.32 -0.38

TS-iSSA
20 0.00 0.00 0.03 0.12 0.04 0.01 0.00 0.01
100 0.00 0.00 0.03 0.12 0.04 0.01 0.00 0.01
500 0.00 0.00 0.03 0.12 0.04 0.01 0.00 0.01

HMM-iSSA
20 0.00 0.00 0.01 -0.02 0.01 0.00 0.00 0.00
100 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00
500 0.00 0.00 0.02 0.02 0.01 0.00 0.00 0.00

Table S3: Estimation bias for the model parameters for each simulation scenario and applied method.
The bias is calculated as the mean difference between the parameter estimate and the true parameter
value across the 100 simulation runs.
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S4.3 Root mean squared error

select. coeff. shape rate conc.

scenario model no. cont. β1 β2 k1 k2 r1 r2 κ1 κ2

1

iSSA
20 0.98 1.03 0.36 1.65 1.06 0.10 0.19 0.52
100 1.01 1.01 0.36 1.65 1.07 0.11 0.20 0.52
500 1.01 1.00 0.36 1.66 1.07 0.11 0.20 0.52

TS-iSSA
20 0.23 0.18 0.08 0.23 0.13 0.04 0.08 0.13
100 0.23 0.16 0.08 0.21 0.13 0.04 0.07 0.11
500 0.22 0.15 0.08 0.21 0.13 0.03 0.07 0.11

HMM-iSSA
20 0.12 0.10 0.07 0.20 0.12 0.04 0.07 0.11
100 0.12 0.08 0.07 0.17 0.11 0.03 0.07 0.09
500 0.12 0.07 0.07 0.17 0.10 0.03 0.07 0.09

2

iSSA
20 1.99 2.01 0.77 0.77 0.07 0.07 0.31 0.31
100 1.99 2.02 0.76 0.76 0.07 0.07 0.31 0.31
500 1.99 2.02 0.76 0.76 0.07 0.07 0.31 0.31

TS-iSSA
20 1.99 2.01 0.77 0.77 0.07 0.07 0.31 0.31
100 1.99 2.02 0.76 0.76 0.07 0.07 0.31 0.31
500 1.99 2.02 0.76 0.76 0.07 0.07 0.31 0.31

HMM-iSSA
20 0.09 0.09 0.18 0.17 0.02 0.02 0.10 0.10
100 0.08 0.08 0.17 0.17 0.02 0.02 0.09 0.09
500 0.08 0.08 0.16 0.17 0.02 0.02 0.16 0.17

3

iSSA
20 0.07 0.07 0.50 1.80 1.10 0.14 0.33 0.38
100 0.07 0.07 0.50 1.80 1.10 0.14 0.33 0.38
500 0.07 0.07 0.50 1.80 1.10 0.14 0.33 0.38

TS-iSSA
20 0.12 0.06 0.08 0.26 0.11 0.03 0.07 0.09
100 0.12 0.06 0.08 0.26 0.11 0.03 0.06 0.09
500 0.12 0.06 0.08 0.26 0.11 0.03 0.06 0.09

HMM-iSSA
20 0.13 0.07 0.07 0.22 0.10 0.02 0.07 0.10
100 0.12 0.06 0.07 0.21 0.10 0.02 0.07 0.09
500 0.12 0.06 0.07 0.21 0.10 0.02 0.07 0.09

Table S4: Root mean squared error of the estimated parameters calculated across the 100 simulation
runs for each fitted model and simulation scenario, respectively. The root mean squared error is
calculated as the square root of the average squared difference between the parameter estimate and
the true parameter value across the 100 simulation runs.
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S5 Additional simulation runs

S5.1 Uniform sampling of the control locations

We re-ran the simulation study described in Section 2.4 (main manuscript) with uniformly sampled

random steps for the HMM-iSSA. The results are comparable to the results described in the main

manuscript (Figure S3). However, with uniform sampling, the results seem to be more sensitive to the

number M of control steps used for each observed step. For example, with M = 20 control locations,

the rate parameters in Scenario 1 and 2 are slightly biased. Thus, M = 20 control locations might be

insufficient here.
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Figure S3: Uniform sampling of the control locations: Boxplots of the HMM-iSSA parameter esti-
mates across the 100 simulation runs for each simulation scenario and number of control locations M ,
respectively. The control locations for the case-control locations were derived from uniformly sampled
step lengths and turning angles. Here, for the upper step length limit, 10 was added to the maximum
observed step length. The rows refer to the estimated selection coefficient (beta), the shape and
rate of the gamma distribution for step length and the concentration parameter (kappa) of the von
Mises distribution for turning angle, respectively. The columns refer to the three different simulation
scenarios. The colors indicate the different states (state 1: blue, state 2: orange), the three adjacent
boxplots refer the use of M = 20, M = 100 and M = 500 control locations per used location for the
parameter estimation.
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S5.2 Scenario without state-switching

To check the robustness of the HMM-iSSA for data without underlying behavioral states, we ran a

fourth simulation scenario with data generated from a standard iSSA. For the movement-kernel, we

used gamma distributed step length with shape k = 2.5 and rate r = 0.29 and von-Mises distributed

turning angles with mean zero and concentration κ = 1. The selection coefficient was set to β = 2. A

corresponding 2-state HMM-iSSA would need to share the same movement and selection coefficients

across both states (see Section 2.1, main manuscript). However, as state 1 and 2 do not differ, a

switch from one state to the other can occur arbitrarily. Therefore, the transition probability matrix

is not identified in this scenario and could take any form. This could lead to numerical problems and

instabilities in the HMM-iSSA parameter estimation.

To initialize the parameter estimation, we used the true parameter values and 50 sets of randomly

drawn parameter values as starting values. With the true values being the starting values, the esti-

mated parameters did not diverge and the HMM-iSSA performed well (Figure S4). This was, however,

not the case when testing 50 sets of random starting values (Figure S5). While the estimates corre-

sponding to state 1 of the 2-state HMM-iSSA seem fine, the estimates of state 2 completely diverged.

This was especially the case for the shape and rate parameter of the gamma distribution.

This highlights the importance to carefully inspect the estimated HMM-iSSA before interpreting the

results. For this simulation scenario, there are several indications that the applied 2-state HMM-iSSAs

are not appropriate for the simulated data sets, for example:

1. Maximum likelihood values found across the 50 sets of random starting values:

coef. β conc. κ shape k rate r

1 2 1 2 1 2 1 2

0.5

1.0

1.5

2.0

2.5

state

es
tim

at
es state

1

2

Figure S4: Boxplots of the HMM-iSSA parameter estimates across the 100 simulation runs for the
iSSA-scenario for each number of control locations M , respectively. Here, the true values were used as
starting values for the Markov-switching conditional logistic regression. The figure columns refer to
the estimated selection coefficient (beta), the shape and rate of the gamma distribution for step length
and the concentration parameter (kappa) of the von Mises distribution for turning angle, respectively.
The colors indicate the different states (state 1: blue, state 2: orange), the three adjacent boxplots
refer the use of M = 20, M = 100 and M = 500 control locations per used location for the parameter
estimation.
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coef. β conc. κ shape k rate r

1 2 1 2 1 2 1 2

0

25

50

75

100

125

state

es
tim

at
es state

1

2

Figure S5: Boxplots of the HMM-iSSA parameter estimates across the 100 simulation runs for the
iSSA-scenario for each number of control locations M , respectively. Here, 50 random starting val-
ues were used as starting values for the Markov-switching conditional logistic regression. The figure
columns refer to the estimated selection coefficient (beta), the shape and rate of the gamma distribu-
tion for step length and the concentration parameter (kappa) of the von Mises distribution for turning
angle, respectively. The colors indicate the different states (state 1: blue, state 2: orange), the three
adjacent boxplots refer the use of M = 20, M = 100 and M = 500 control locations per used location
for the parameter estimation.

In some simulation runs only a single set of initial values led to the maximum likelihood value

found, the remaining 49 sets of initial values led to smaller log-likelihood values. This usually

indicates numerical instability and problems in the estimated model.

2. Estimated transition probabilities and Viterbi decoding:

In some simulation runs the movement and selection coefficients of state 2 differed between

HMM-iSSAs with similar log-likelihood values, i.e. different sets of starting values resulted in

similar log-likelihood values, but different estimates for state 2. This corresponds to problems

in the estimated transition probability matrix, namely that the probability to stay in state 1,

γ11, is (almost) equal to one, while the probability to stay in state 2, γ22, is low (Figure S6).

Consequently, it is possible that state 2 is rarely or even never visited. This is also indicated

by the Viterbi-decoded state sequences, which assigned less than 1% of the data to state 2 in

49% (M = 20), 46% (M = 100) and 58% (M = 500) of the simulation runs, respectively.

Furthermore, in some simulation runs the probability to remain in the current state was low for

both states, e.g. γ11 < 0.2 for all states i = 1, . . . , N . This would correspond to a permanent

switching between the states which is usually implausible in the context of animal movement

data.

3. Estimated movement parameters:

The shape, rate and concentration parameters must be greater than zero. In some simulation

runs, however, they were estimated to be (almost) zero, which corresponds to their boundary

values and indicates serious model problems.
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Figure S6: Boxplots of the estimated HMM-iSSA transition probabilities γ11 and γ22, i.e. the prob-
abilities to remain in the same state, across the 100 simulation runs for the iSSA-scenario for each
number of control locations M , respectively. Here, 50 random starting values were used as starting
values for the Markov-switching conditional logistic regression. The colors indicate the different states
(state 1: blue, state 2: orange), the three adjacent boxplots refer the use of M = 20, M = 100 and
M = 500 control locations per used location for the parameter estimation.

4. Variance of the state-dependent gamma distribution for step length:

In some simulation runs, the variance of the state-dependent gamma distribution for state 2, as

derived from the estimated shape and rate parameters, was very low (below 0.1). This implies

that state 2 only covers very specific step length values.

Usually, several of such problems occur together. Furthermore, in this simulation scenario, the AIC

performed worse in selecting the correct model (Table S5). Thus, this simulation scenario highlights

the importance to test several sets of starting values to derive the maximum likelihood estimates and

to closely inspect the model results.

AIC BIC

no. cont. iSSA HMM-iSSA iSSA HMM-iSSA

20 53 47 100 0
100 50 50 100 0
500 53 47 100 0

Table S5: Percentage of simulation runs in which either the iSSA or the HMM-iSSA was selected by
either AIC or BIC for each number of control steps used for model fitting, respectively. The cells
belonging to the true underlying model are highlighted in bold face.
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S5.3 Habitat feature with less spatial variation

We re-ran the simulation study (Section 2.4, main manuscript) again using a landscape feature map

with less spatial variation, i.e. a more homogeneous landscape (Figure S7). The results are similar

to the results of our original simulation study, but the variance in the parameter estimates increased

(Figure S8). Moreover, the classification performance of the HMM improves especially in Scenario

1 as with less spatial variation in the habitat features, the influence of the movement kernel on the

movement track increases (Table S6). This also leads to a decline in the classification performance of

the HMM-iSSA in Scenario 2.
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Figure S7: Simulated landscape feature map used to derive the habitat covariates in the additional
simulation study with less spatial variation in the habitat feature. The landscape feature map is a
realization of a Gaussian random field with covariance 1 and range 50.
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Figure S8: Boxplots of the parameter estimates across the 100 simulation runs in the simulation
run with less spatial variation in the landscape feature. Results are shown for each applied method,
simulation scenario and number of control locations M , respectively. The rows refer to the estimated
selection coefficient (beta), the shape and rate of the gamma distribution for step length and the
concentration parameter (kappa) of the von Mises distribution for turning angle, respectively. The
columns refer to the three different simulation scenarios. For each method (iSSA, TS-iSSA and HMM-
iSSA) and state (state 1: blue, state 2: orange, no state differentiation: black), the three adjacent
boxplots refer the use of M = 20, M = 100 and M = 500 control locations per used location for the
parameter estimation. Note that in Scenario 2, the TS-iSSA is naturally not capable to distinguish
between two states as both share the same movement kernel. Thus, there are only results for a single
state.
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HMM-iSSA 20 HMM-iSSA 100 HMM-iSSA 500 HMM

scen. 1 2.83 (0.68) 2.73 (0.68) 2.70 (0.64) 2.98 (0.65)
scen. 2 8.98 (1.67) 8.56 (1.64) 8.55 (1.78) 49.48 (4.46)
scen. 3 2.48 (0.49) 2.42 (0.51) 2.37 (0.53) 2.39 (0.53)

Table S6: Simulation runs with less spatial variation in the habitat feature: Mean missclassification
rate with standard deviation in parentheses across the 100 simulation runs for each scenario and
fitted state-switching model, respectively. The missclassification rate is calculated as the percentage
of states incorrectly classified using the Viterbi sequence. The lowest missclassification rate for each
scenario is highlighted in bold face.
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S6 Supplementary material for the bank vole case study

S6.1 Animal care approval and research permissions

The research was following the guidelines of the Amercian Society of Mammologist for the use of

wild mammals in research, including telemetry (Sikes and the Animal Care and Use Committee of

the American Society of Mammalogists, 2016). It complied with legislation in Germany for animal

experimentation (§8 of animal protection law (TschG), §33-43 Tierschutzversuchstierverordnung, §2 of

Tierschuztzustänidgkeitsverordnung) with the permission by the Landesamt für Umwelt, Gesundheit

und Verbraucherschutz Brandenburg (LUGV; reference number V3-2347-44-2011), legislation about

wildlife capture (exemptions for the Nature protection law 43 Abs. 8 Nr. 3 Bundesnaturschutzgesetz

(BNatSchG) and §72 Abs. 3 Brandenburgisches Naturschutzgesetz (BbgNatSchG)) with permission by

Landesumweltamt Brandenburg (reference number RW7.1 24.01.01.10), and legislation about keeping

animals (§11 Abs.1 Nr. 1 animal protection law (TierschG), permitted by the LUGV 386-1).
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S6.2 Selection coefficient estimates for different numbers of control steps
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Figure S9: Estimated HMM-iSSA selection coefficients for opposite (βopp.1, βopp.2) and same sex
(βsame) using different numbers of control steps M . With increasing M , all estimates stabilize. The
state-dependent shape and rate estimates are also stable (results not shown).
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S6.3 HMM-iSSA estimates for interactions with same-sex conspecifics
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Figure S10: Estimated iSSA and HMM-iSSA selection coefficients (solid points/triangles) of inter-
action behavior between individuals of same sexes within the eight replicates (1–8), including 95%
confidence intervals (solid lines). Each replicate consisted of two males (male 1 and male 2) and
one or two females (female 1 and female 2) such that each individual could respond to one same-sex
individual. Non-significant coefficients (p-values below 0.05) are grayed out. The horizontal dashed
line indicates zero (i.e. neutral behavior); positive and negative coefficients indicate attraction and
avoidance, respectively.
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S6.4 TS-iSSA results
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Figure S11: Estimated state-dependent gamma distributions for step length as implied by the fitted
2-state TS-iSSAs for each individual in replicates 1− 8, respectively. The distributions are weighted
by the relative state occupancy frequencies derived from the Viterbi sequence. The gray histograms
in the background show the distribution of the observed step length.
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Figure S12: Estimated TS-iSSA selection coefficients (solid points/triangles) of interaction behavior
between individuals of opposing sexes within the eight replicates (1–8), including 95% confidence
intervals (solid lines). Each replicate consisted of two males (male 1 and male 2) and one or two
females (female 1 and female 2) such that each individual could respond to up to two opposite-sex
individuals (dot: response to female/male 1, triangle: response to female/male 2 within a replicate).
Non-significant coefficients (p-values below 0.05) are grayed out. The horizontal dashed line indicates
zero (i.e. neutral behavior); positive coefficients indicate attraction, while negative coefficients would
indicate avoidance
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Figure S13: Estimated TS-iSSA selection coefficients (solid points/triangles) of interaction behavior
between individuals of same sexes within the eight replicates (1–8), including 95% confidence intervals
(solid lines). Each replicate consisted of two males (male 1 and male 2) and one or two females
(female 1 and female 2) such that each individual could respond to one same-sex individual. Non-
significant coefficients (p-values below 0.05) are grayed out. The horizontal dashed line indicates
zero (i.e. neutral behavior); positive coefficients indicate attraction, while negative coefficients would
indicate avoidance.
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S6.5 Viterbi-decoding

HMM HMM-iSSA

Rep. Ind. State 1 State 2 State 1 State 2

1
male 1 37.60 62.40 38.20 61.80
male 2 25.40 74.60 24.50 75.50
female 1 36.60 63.40 37.90 62.10

2
male 1 24.41 75.59 43.00 56.10
male 2 46.77 53.23 48.10 51.90
female 1 32.41 67.59 31.90 68.10

3
male 1 33.72 66.28 33.98 66.02
male 2 26.64 73.36 26.64 73.36
female 1 42.86 57.14 42.86 57.14

4
male 1 11.22 88.78 96.43 3.57
male 2 25.68 74.32 21.94 78.06
female 1 28.23 71.77 33.67 66.33

5
male 1 28.54 71.46 38.16 61.84
male 2 40.74 59.26 39.71 60.29
female 1 47.57 52.43 49.22 50.58
female 2 50.98 49.02 47.57 52.43

6
male 1 26.04 73.96 66.71 33.29
male 2 29.11 70.89 33.29 66.71
female 1 40.67 59.33 22.42 77.58
female 2 15.18 84.82 32.87 67.13

7
male 1 14.76 85.24 15.29 84.71
male 2 49.38 50.62 48.51 51.49
female 1 39.89 60.11 37.43 62.57
female 2 20.04 79.96 22.67 77.33

8
male 1 36.31 63.69 44.61 55.39
male 2 30.08 69.92 46.06 53.94
female 1 54.98 45.02 57.26 42.47
female 2 24.27 75.73 24.69 75.31

Table S7: Percentage of observed steps that was decoded to belong to state 1 or state 2 according to
the HMM (i.e. TS-iSSA) or HMM-iSSA Viterbi sequence for each of the 28 bank vole individuals.

25



S6.6 Information criteria results

Rep. No. steps Ind. AIC ∆AIC BIC ∆BIC

1 1000
male 1 HMM-iSSA 64.10 HMM-iSSA 44.46
male 2 HMM-iSSA 120.51 HMM-iSSA 100.88
female 1 HMM-iSSA 43.90 HMM-iSSA 24.27

2 975
male 1 HMM-iSSA 79.87 HMM-iSSA 60.34
male 2 HMM-iSSA 28.94 HMM-iSSA 9.41
female 1 HMM-iSSA 49.66 HMM-iSSA 30.13

3 777
male 1 HMM-iSSA 27.73 HMM-iSSA 9.11
male 2 HMM-iSSA 23.31 HMM-iSSA 4.69
female 1 HMM∗ 6.43 HMM∗ 25.05

4 588
male 1 HMM-iSSA 23.62 iSSA 7.02
male 2 HMM-iSSA 47.20 HMM-iSSA 29.70
female 1 HMM-iSSA 9.88 HMM∗ 7.63

5
967

male 1 HMM-iSSA 83.41 HMM-iSSA 54.17
male 2 HMM-iSSA 47.21 HMM-iSSA 17.97
female 1 HMM-iSSA 239.92 HMM-iSSA 210.68
female 2 HMM-iSSA 28.75 HMM∗ 0.50

6
718

male 1 HMM-iSSA 74.52 HMM-iSSA 47.07
male 2 HMM-iSSA 13.93 HMM∗ 13.53
female 1 HMM-iSSA 31.99 HMM-iSSA 4.53
female 2 HMM-iSSA 72.20 HMM-iSSA 35.59

7
569

male 1 HMM-iSSA 27.22 HMM-iSSA 1.16
male 2 HMM-iSSA 7.41 HMM∗ 16.17
female 1 HMM∗ 0.54 HMM∗ 26.61
female 2 HMM-iSSA 0.37 HMM∗ 25.70

8
482

male 1 HMM-iSSA 46.04 HMM-iSSA 20.97
male 2 HMM-iSSA 75.30 HMM-iSSA 41.88
female 1 HMM∗ 7.41 HMM∗ 32.48
female 2 HMM-iSSA 13.66 iSSA 19.76

Table S8: Models selected by either AIC or BIC for each of the 28 bank vole individuals. The set of
candidate models included the iSSA model, HMM∗ (i.e. HMM-iSSA without selection covariates) and
HMM-iSSA model. ∆ AIC and ∆ BIC show the differences in AIC and BIC values between the best
and second best model in the ranking.
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