
Thoughts on constructing the Full Supertree

October 23, 2015

In the otcetera pipeline, the synthesis tree is first constructed using a pruned taxonomy. This taxonomy has
been pruned to remove any leaves that do not occur in one of the ranked input phylogenies. Therefore, a later step
in the pipeline involves adding the pruned taxa back in to the synthesis tree. The resulting tree is the full supertree.
This document is an attempt to collect, and perhaps organize, thoughts on how the full supertree can or should be
constructed, as well as related questions and concepts.

This document takes the approach that we should be able to use the sub-problem solver to construct the full
supertree by feeding it a sequence of 2 trees:

otc-solve-subproblem grafted-solution.tre cleaned_ott.tre

Various other quick-and-dirty methods may be sufficient to achieve the result. However, the attempt to make the
subproblem solver fast enough to solve this particular problem raises various issues with the subproblem solver. It
also suggests various optimizations that may be useful more generally.

1 Potential speed increases
In the current implementation of the BUILD algorithm, we have a number of places we take excessive computation
time:

• We attempt to construct rooted splits (a.k.a. desIds) for each node. For a bifurcating tree, this operation
should take time and memory quadratic in the number of leaves.

• We attempt to construct connected component by considering each split in a tree separately. However,
considering splits for nodes that are not direct children of the root is redundant.

• Much of the time is spent in determining which splits are imposed at a given level in the tree, and therefore
need not be passed to subproblems.

– When different splits have the same leaf set, we should be able to get a speedup.

– When some splits have the full leaf set, we should be able to get a speedup.

• We recompute connected components from scratch each time BUILD is recursively called on a subproblem.
This could be avoided by incrementally removing edges from the graph and discovering new connected com-
ponents that appear, as in Henzinger et al. However, it is unclear if an algorithm similar to Henzinger et al
could be used to find the edges to remove at each step.

• When we have two trees T1 and T2, and either L(T1) ⊆ L(T2) or L(T2) ⊆ L(T1), then it should be possible to
determine all conflicting splits in a single pass over the trees, similar to otc-detectcontested.

2 The problem
When the subproblem to be solved consists of two ranked trees, T1 and T2, and the second tree is the taxonomy,
then we have L(T1) ⊆ L(T2). For each (rooted) split in T2, we can determine whether that split is consistent with
T1. We claim that each split in T2 is either consistent with T1, or incompatible with at least one split of T1. We can
therefore form a new tree T ′

2 by starting with T2 and removing each split that is inconsistent with T1. The splits
of T1 and T ′

2 are then jointly consistent. Furthermore, by combining the trees T1 and T ′
2, we obtain a new tree in

which the splits of T1 that are not implied by T ′
2 may not fully specify where certain taxa of T ′

2 are placed. We

1

resolve this ambiguity by placing such taxa rootward, but their range of attachment extends over specific branches
in the tree obtained by combining T1 and T ′

2. All of these branches derive from T1 but not from T ′
2.

First, note that each split of T2 implies a split on the reduced leaf set L(T1). This split then is either consistent
with T1, or conflicts with at least one split in T1. We obtain T ′

2 by removing each split of T2 that, when reducted
to leaf set L(T1), conflicts with some branch of T1. By definition, the remaining branches of T2 are individually
compatible with each branch of T1.

Second, let us look at the subtree of T2 obtained by restricting the leaf set to L(T1). We proceed by adapting a
proof that pairwise compatible (unrooted) splits can always be combined to form a tree. The adaptation is necessary
because the splits of T1 and T2 have different leaf sets. We can handle rootedness in the unrooted context by simply
treating the root as a special leaf. Now, let us consider a split σ of T1 that is not implied by any branch of T2. Then
σ induces a flow from node to node on T2|L(T1) (i.e. T2 restricted to L(T1)) by assigning a direction to each branch
of T2|L(T1). That is, for each branch of T2|L(T1), σ is either on the left side or the right side of that branch. An
important fact (not shown here, but not very hard) is that each node of T2|L(T1) has either all branches pointing
towards the node under the flow, or at most one branch pointing away. Therefore, starting from any node, we may
follow the flow from node to node along the unique branch directed away from a node. Since this is a flow on a tree,
we may not have cycles. Therefore, there must be a fixed point, which occurs when no branches point away from a
node. A second important fact (also not shown here) is that when we find a node where all branches point towards
to the node, then we may impose the split σ by adding a branch dividing some of the branches at that node from
other branches. This completes the proof that if σ is consistent with T2|L(T1) then we may add σ to that tree.

However, in order to add σ to T2, we must adapt the proof. Specifically, the node of T2|L(T1) where we insert
σ is also a node of T2. However, whereas σ partitions each branch of T2|L(T1) to one side or the other side of the
newly inserted branch, there may be branches at the node of T2 that contain no taxa from T1. These branches are
thus not partitioned to one side or the other side of the new branch. We solve this ambiguity by attaching them to
the rootward side of the new branch. However, in reality the branch imposed by σ be part of a connected collection
of branches over which these clades of T2 may wander. Note that not all taxa in L(T2)−L(T1) may wander across
the branch imposed by sigma.

Sigh. Clearly we need some pictures here.

3 Questions
• Is there a single, unique solution to this problem?

• When running BUILD, is it possible to construct a reason for the lack of inclusion of each split? Specifically,
can we say which split (or set of splits) conflicts with that split?

– We can construct the graph such that each internal node of a tree is a vertex that connects to the
vertex of its children. Instead of cutting branches, we can remove vertices (and their connected edges).
(Unlike Stephen’s graph, internal nodes from different trees should not be merged, I think. At most, we
could record that an internal node vertex has multiplicity 2, but each internal node is also going to be
associated with a particular leaf set, and it unlikely that the leafs sets would be identical.)

– If we cut the vertex corresponding to a conflicting split, this should be allow the BUILD algorithm to
proceed, a la Semple and Steel’s mincut supertree method.

2

