Supplementary File

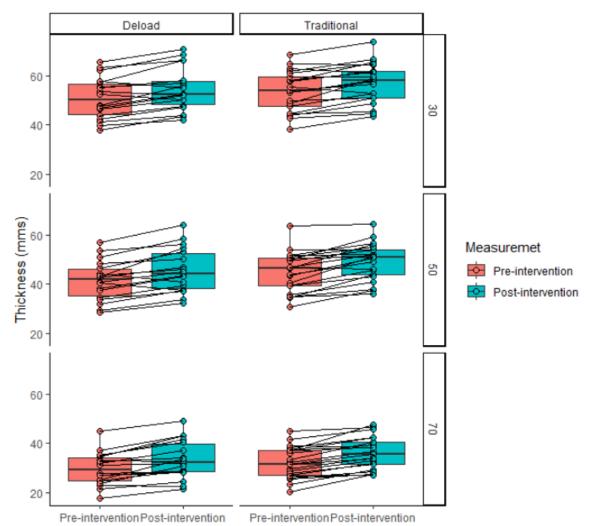
The following supplementary file provides additional analyses and presents the WAMBS (When to worry, and how to Avoid the Misuse of Bayesian Statistics) checklist as a diagnostic tool that was used to assess prior distributions, the estimation process, and the influence of priors for analysis of body composition and performance outcomes ^[1]. The following provides details of the WAMBS checklist and how it was used.

THE WAMBS-CHECKLIST <u>When to worry, and how to Avoid the Misuse of Bayesian Statistics</u> DEPAOLI & VAN DE SCHOOT (2016)			
TO BE CHECKED BEFORE ESTIMATING			
Point 1: Do you understand the priors?	Analyses were conducted using ANCOVAs with the pre- intervention value centered. The intercept therefore represents the post-intervention value. Informative priors from S&C research were used to identify the post value based on typical change from pre-intervention ^[2] . Values were obtained on the original scale by multiplying by the pooled pre-intervention standard deviation. For the group effect, informative priors were centered on zero, with the standard deviation based on variation observed in comparative research in S&C ^[3] . Actual prior distributions are provided for each model.		
TO BE CHECKED AFTER ESTIMATION			
 Point 2: Does the trace-plot exhibit convergence? Point 3: Does convergence remain after doubling the number of iterations? Point 4: Does the histogram have enough information? Point 5: Do chains exhibit autocorrelation? 	Trace-plots were examined and all Rhat values were reported. Trace-plots were examined and bias for group parameter presented as a percentage 100*(original – doubling)/original reported. Plot of histogram for all parameters presented. Plot of autocorrelation for all parameters presented.		
Point 6: Do posterior distributions make sense? UNDERSTANDING INFLUENCE OF PRIORS	In all cases yes		
Point 7: Do different variance priors influence the results?	Sigma was modeled using weakly-informative Half-t distributions with 3df. As a check, informative gamma priors with shape k based on outcome and scale θ set to 1. Bias in group parameter was presented.		
Point 8: Is there a notable effect of the prior when compared with non-informative priors?Point 9: Are the results stable from a sensitivity analysis?	As a check, models were conducted with all default weakly- informative priors and bias in group parameter presented. Checked in each case, use of informative priors tended to reduce point estimate and tails of group parameter.		
AFTER INTERPRETATION OF RESULTS			
Point 10 : Is the Bayesian way of interpreting and reporting model results used? (a) Also report on: missing data, model fit and comparison, non-response, generalizability, ability to replicate, etc.	Reporting of results combining in-text and supplementary file was done in a comprehensive and systematic manner, focussing on the group difference parameter and the magnitude relative to thresholds specific to S&C. Posterior probabilities were also used to summarize likely differences between groups.		

References

1. Depaoli S, van de Schoot R. Improving transparency and replication in bayesian statistics: The WAMBS-checklist. Psychol Methods. 2017 June 01;22(2):240-61.

2. Swinton PA, Burgess K, Hall A, Greig L, Psyllas J, Aspe R, et al. Interpreting magnitude of change in strength and conditioning: Effect size selection, threshold values and bayesian updating. J Sports Sci. 2022 September 01;40(18):2047-54.


3. Swinton PA, Murphy A. Comparative effect size distributions in strength and conditioning and implications for future research: A meta-analysis. SportRxiv. 2022:DOI: 10.51224/SRXIV.202.

Body composition

Muscle thickness

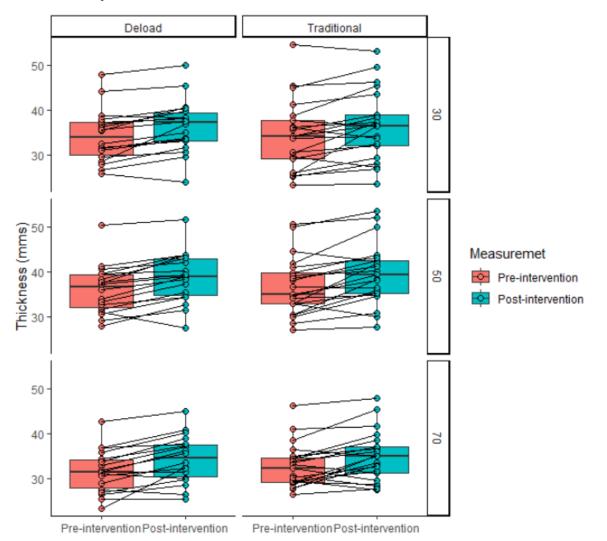
1) <u>Rectus femoris</u>

Measurements were obtained at 30%, 50% and 70% between the lateral condyle of the femur and greater trochanter.

WAMBS: Univariate rectus femoris thickness (30/50/70)

Understanding priors

Outcome	Rectus femoris 30%	Rectus femoris 50%	Rectus femoris 70%
Intercept	Normal(56.0,3.6 ²)	Normal(46.7,3.6 ²)	Normal(33.8,3.6 ²)
Centered Pre	Normal(0.85,2.0 ²)	Normal(0.85,2.0 ²)	Normal(0.85,2.9 ²)
Value			
Group	Normal(0,3.6 ²)	Normal(0,3.6 ²)	Normal(0,3.6 ²)
Prior predictive	- F		
check	∩ − Far		
	$\square \square \square$		
		6 % 10 10	


Estimation

Outcome	Rectus femoris 30%	Rectus femoris 50%	Rectus femoris 70%
Rhat values	All equal 1.0	All equal 1.0	All equal 1.0
Bias doubling iterations (Group)	1.7%	-1.6%	5.5%
Posterior predictive check	- free - free - free		
Histogram and correlation	$b_{1} \text{Intercept}$ $b_{22} = 54 = 56 = 54$ $b_{22} = 56 = 56$ $b_{23} = 56 = 56 = 56$ $b_{23} = 56 = 56 = 56$ $b_{23} = 56 =$	$\begin{array}{c} \mathbf{b}_{11} \text{Intercept} \\ \mathbf{c}_{12} \\ \mathbf{c}_{13} \\ \mathbf{c}_{14} \\ \mathbf{c}_{14} \\ \mathbf{c}_{15} \\ \mathbf{c}_{15} \\ \mathbf{c}_{14} \\ \mathbf{c}_{15} $	$\begin{array}{c} \mathbf{b}_{-\text{Intercept}} \\ \begin{array}{c} 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 33 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 32 \\ 34 \\ 34$
Autocorrelation	b_laxecept b_lg390Prc b_G300/2 squa b_laxecept b_lg390Prc b_G300/2 squa b_laxecept b_lg390Prc b_G300/2 squa b_laxecept b_lg390Prc b_G300/2 squa comparison of the square squa	b Iseregai b (1 Steller) 5 GRUPP signs	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Outcome	Rectus femoris 30%	Rectus femoris 50%	Rectus femoris 70%
Bias different	Gamma(3,1)	Gamma(3,1)	Gamma(3,1)
specification	8.1%	-3.5%	-1.7%
variance (Group)			
Bias after non-	-4.1%	-11.1%	-24.7%
informative priors			
(Group)			

2) <u>Vastus lateralis</u>

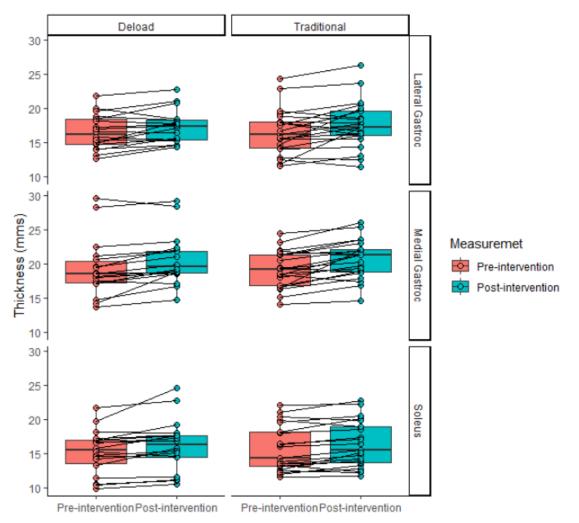
Measurements were obtained at 30%, 50% and 70% between the lateral condyle of the femur and greater trochanter.

WAMBS: Vastus lateralis thickness (30/50/70)

Understanding priors

Outcome	Vastus lateralis 30%	Vastus lateralis 50%	Vastus lateralis 70%
Intercept	Normal(37.3.0,3.1 ²)	Normal(38.9,2.6 ²)	Normal(34.3,2.1 ²)
Centered Pre Value	Normal(0.85,2.0 ²)	Normal(0.85,2.0 ²)	Normal(0.85,2.9 ²)
Group	Normal(0,2.8 ²)	Normal(0,2.4 ²)	Normal(0,1.9 ²)
Prior predictive check	- <i>i</i> - <i>i</i> ₂₀		

Estimation


Outcome	Vastus lateralis 30%	Vastus lateralis 50%	Vastus lateralis 70%
Rhat values	All equal 1.0	All equal 1.0	All equal 1.0
Bias doubling iterations (Group)	-11.6%	-1.6%	-1.0%
Posterior predictive check	$-\frac{y}{2xy}$	- y - y - y	
Histogram and correlation	$\begin{array}{c} \textbf{b}_{1} \text{Intercept}\\ \textbf{i}_{343356373539} \\ \textbf{i}_{433556373539} \\ \textbf{i}_{433556373539} \\ \textbf{i}_{43356373539} \\ \textbf{i}_{4335637539} \\ \textbf{i}_{4335637539} \\ \textbf{i}_{4335637539} \\ \textbf{i}_{4335637539} \\ \textbf{i}_{43356375757} \\ \textbf{i}_{433563757577} \\ \textbf{i}_{4335675777} \\ \textbf{i}_{4335677777} \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{b}_{1} \mathbf{Intercept} \\ \mathbf{j}_{2} \\ \mathbf{j}_{2} \\ \mathbf{j}_{3} \\ \mathbf{j}_{3$
	$\begin{array}{c} 343555573339 \\ 5\\ 4\\ 2\\ 343556373339 \\ 3\\ 3\\ 343556373339 \\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3$	$\begin{array}{c} 2 \\ 3735394041 \\ 4 \\ 3 \\ 2 \\ 3738394041 \\ 4 \\ 3 \\ 2 \\ 3738394041 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$\begin{array}{c} 1 \\ \hline 3334355657 \\ \hline \\ 3 \\ 2 \\ \hline \\ 3334355637 \\ \hline \\ 3 \\ 2 \\ \hline \\ 3334355637 \\ \hline \\ 6 \\ 6 \\ 0 \\ 9 \\ 12 \\ \hline \\ 6 \\ 6 \\ 0 \\ 9 \\ 12 \\ \hline \\ 1 \\ 2 \\ \hline \\ 4 \\ 2 \\ \hline \\ 2 \\ 4 \\ 2 \\ \hline \\ 2 \\ \hline \\ 4 \\ 2 \\ \hline 2 \\ \hline \\ 2 \\ \hline 2 \\ $
Autocorrelation	b_furecopi 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5	b.hercept b.H.SHPec b.GR010P signa	b_intercept b_RP30PreC b_GR0LP2 signa
		10 10 10 10 10 10 10 10 10 10	

Outcome	Vastus lateralis 30%	Vastus lateralis 50%	Vastus lateralis 70%
Bias different	Gamma(3,1)	Gamma(3,1)	Gamma(3,1)
specification	-4.7%	2.3%	-1.7%
variance (Group)			

Bias after non-	-9.8%	-16.8%	-3.7%
informative priors			
(Group)			

3) <u>Calf thickness</u>

Outcomes included thickness of the lateral gastrocnemius, medial gastrocnemius, and soleus. Measurements were taken on the posterior surface of both legs at 25% of the lower leg length (the distance from the articular cleft between the femur and tibia condyles to the lateral malleolus).

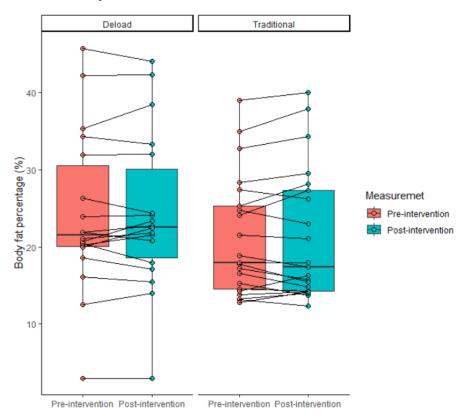
WAMBS: lateral gastrocnemius, medial gastrocnemius, soleus

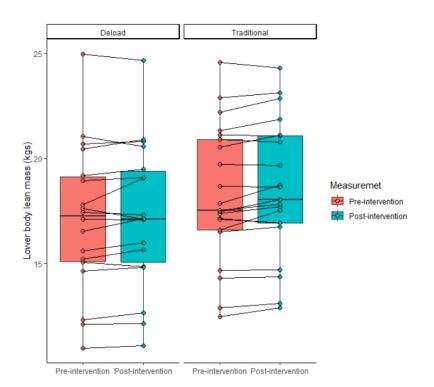
Understanding priors

Outcome	Lateral gastrocnemius	Medial gastrocnemius	Soleus
Intercept	Normal(20.7,1.5 ²)	Normal(17.8,1.3 ²)	Normal(16.9,1.4 ²)
Centered Pre Value	Normal(0.85,2.0 ²)	Normal(0.85,2.0 ²)	Normal(0.85,2.9 ²)
Group	Normal(0,1.3 ²)	Normal(0,1.1 ²)	Normal(0,1.3 ²)
Prior predictive check			

Estimation

Outcome	Lateral gastrocnemius	Medial gastrocnemius	Soleus
Rhat values	All equal 1.0	All equal 1.0	All equal 1.0
Bias doubling iterations (Group)	-4.2%	3.4%	2.0%
Posterior predictive check		- y - y - y - y	
Histogram and correlation	$\begin{array}{c} \mathbf{b}_{-} \mathbf{Intercept} \\ 16 & 17 & 18 & 19 \\ 16 & 17 & 18 & 19 \\ 16 & 17 & 18 & 19 \\ 17 & 16 & 17 & 18 & 19 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 16 & 17 & 10 & 12 \\ 10 & 15 & 20 & 25 \\ 10 & 15 & 20 & 25 \\ 10 & 15 & 20 & 25 \\ 10 & 15 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\ 10 & 10 & 10 \\$	$\begin{array}{c} \mathbf{b}_{-1} \text{Intercept} \\ \hline \mathbf{b}_{-1} 0 = 0 \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \\ \hline \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-1} \mathbf{b}_{-$	$\begin{array}{c} 10 & 10 & 10 & 10 & 10 & 10 & 10 \\ \hline b_{1} \text{Intercept} & 175 & 1$
Autocorrelation	b herespit b LGPeC b GR0.72 signs $-$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b_berrey: b_SOLPrC b_CR0(P2 signs 11 13 14 15 16 16 16 16 16 16 16 16 16 16


Outcome	Lateral gastrocnemius	Medial gastrocnemius	Soleus
Bias different	Gamma(1,1)	Gamma(1,1)	Gamma(1,1)
specification	-4.3%	4.5%	2.2%
variance (Group)			


Bias after non-	-22.5%	-7.2%	-3.8%
informative priors			
(Group)			

Body fat and lean mass

4) Lower body lean mass and body fat percentage

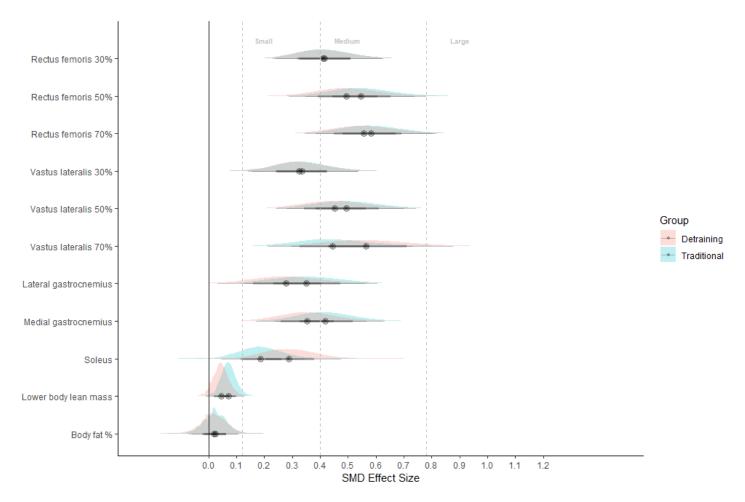
Lower body lean mass and body fat percentage were obtained by multifrequency bioelectrical impedance analysis.

WAMBS: Body fat percentage and lower body lean mass

Understanding priors

Outcome	Body fat %	Lower body lean mass
Intercept	Normal(26.6,4.0 ²)	Normal(42.7,3.3 ²)
Centered Pre	Normal(0.85,2.0 ²)	Normal(0.85,2.0 ²)
Value		
Group	Normal(0,3.5 ²)	Normal(0,2.9 ²)
Prior predictive check		=%,

Estimation

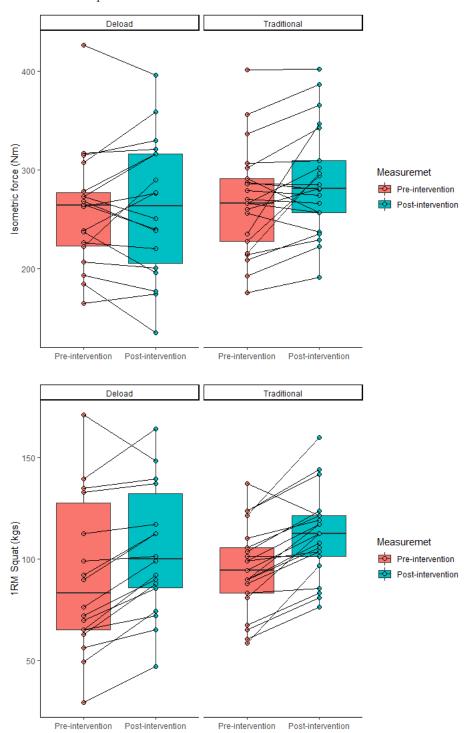

Outcome	Body fat %	Lower body lean mass
Rhat values	All equal 1.0	All equal 1.0
Bias doubling iterations (Group)	-4.2%	-15.7%
Posterior predictive check		
Histogram and correlation	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{array}{c} \mathbf{b}_{-\text{Intercept}} & 40.5 \\ 40.0 \\ 39.0 & 39.5 & 40.0 & 40.5 \\ 39.0 & 39.5 & 40.0 & 40.5 \\ 39.0 & 39.5 & 40.0 & 40.5 \\ 39.0 & 0.900.951.001.05 \\ 0.90 & 39.0 & 0.900.951.001.05 \\ 0.90 & 0.900.951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 951.001.05 \\ 0.90 & 0.900 & 0.900 & 951.001.05 \\ 0.90 & 0.900 $
Autocorrelation	b finescopi b finescopi b finescopi b finescopi b finescopi b finescopi b finescopi b finescopi b finescopi c c c c c c c c c c c c c c c c c c c	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Outcome	Body fat %	Lower body lean mass
Bias different	Gamma(1,1)	Gamma(1,1)
specification	-6.3%	4.5%
variance (Group)		

Bias after non-	-19.9%	-7.2%
informative priors		
(Group)		

Body composition within group effect size summary

Bayesian standardized mean difference effect sizes were estimated accounting for uncertainty in mean change for each group and pre-intervention standard deviation.


Small (0.12), medium (0.40) and large (0.78) thresholds derived for strength and conditioning interventions are presented with gray lines.

Performance

Strength

1) Isometric and dynamic strength

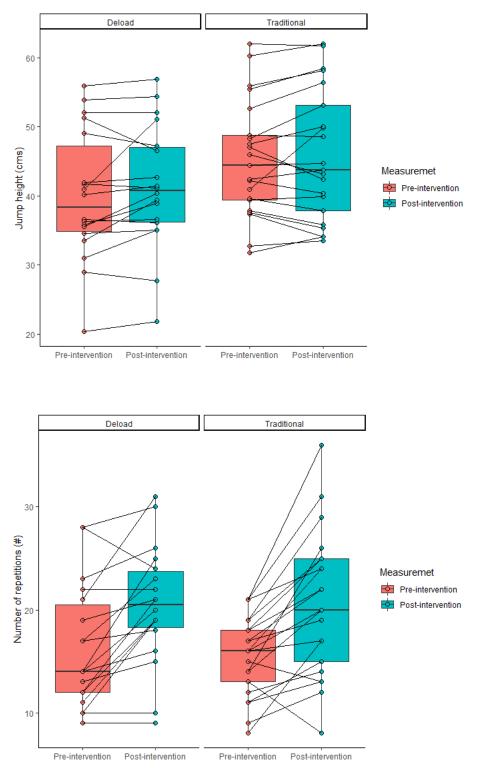
Isometric strength assessment was carried out using dynamometry testing with the participant seated and performing unilateral isometric actions of the knee extensors of the dominant limb. Dynamic lower body strength was assessed by 1RM testing in the back squat exercise performed on a Smith machine.

WAMBS: Isometric and dynamic strength

Understanding priors

Outcome	Isometric strength	Dynamic strength		
Intercept	Normal(289.0,25.1 ²)	Normal(237.0,29.3 ²)		
Centered Pre	Normal(0.85,2.0 ²)	Normal(0.85,2.0 ²)		
Value				
Group	Normal(0,22.8 ²)	Normal(0,26.6 ²)		
Prior predictive check	- y - y _{er}	Α		
	0 210 the 600			

Estimation


Outcome	Isometric strength	Dynamic strength		
Rhat values	All equal 1.0	All equal 1.0		
Bias doubling	-1.8%	-1.4%		
iterations (Group)				
Posterior predictive check	- y - y - y - y - y - y - y - y - y - y	- y - y - y - y - y - y - y - y - y - y		
Histogram and correlation	b_Intercept 250 270 290 250 270 270 290 250 270 270 270 250 270 270 270 250 270 270 270 270 200 200 200 200 200 200 200 200 200 20	b_Intercept 240 2102203204025060 2100 2100203204025060 2100 200 200 200 0.60:0.80.910 200 200 200 200 200 200 200 200 200 2		
	$\begin{array}{c} 125\\ 1.05\\ 0.75\\ 240\\ 260\\ 280\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 20$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 &$		
	60 0 0 0 0 0 0 0 0 0 0 0 0 0	20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -		
	50 40 30 240 260 280 50 0.50.751.001.25 50 240 260 280 0.500.751.001.25 50 -20 0 20 40 60 20 30 40 50 60	$\begin{array}{c} 40 \\ 30 \\ 21 \\ 21 \\ 22 \\ 21 \\ 22 \\ 22 \\ 24 \\ 24$		
Autocorrelation	b_intercept b_ISOPreC b_GROUP2 sigma	b_Intercept b_ONERMIP;cC b_GROUP2 signa 107 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		
		10 03 01 10 10 10		
	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$			

Outcome	Isometric strength	Dynamic strength
Bias different	Gamma(25,1)	Gamma(25,1)
specification	-2.7%	-2.0%
variance (Group)		
Bias after non-	-25.5%	-10.9%
informative priors		
(Group)		

Power and endurance

2) Lower body muscle power and strength endurance

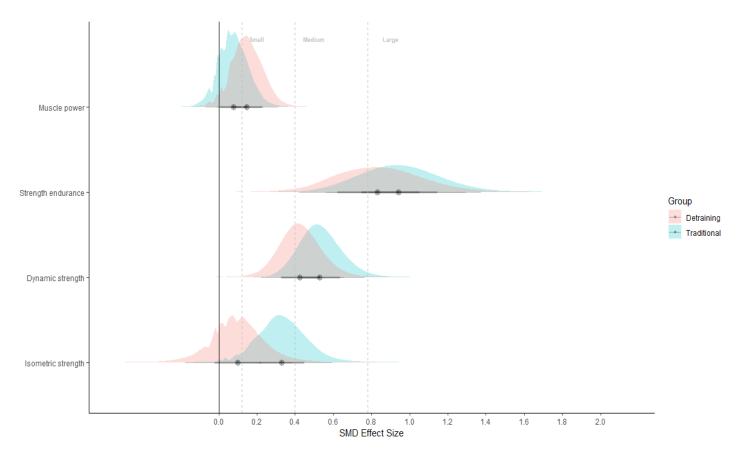
Lower body muscle power was assessed via the vertical jump test performed via a countermovement with hands on hips attempting to jump as high as possible. Lower-body muscular strength-endurance was assessed by performing the leg extension exercise using 60% of the participant's initial body mass for as many repetitions as possible maintaining a constant cadence of 1-0-1-0 as monitored by a metronome.

WAMBS: Muscle power and strength endurance

Understanding priors

Outcome	Muscle power	Strength endurance		
Intercept	Normal(18.4,1.6 ²)	Normal(18.0,2.2 ²)		
Centered Pre	Normal(0.85,2.0 ²)	Normal(0.85,2.0 ²)		
Value				
Group	Normal(0,1.4 ²)	Normal(0,2.0 ²)		
Prior predictive	Δ			
check		— y — y ₁₀		

Estimation

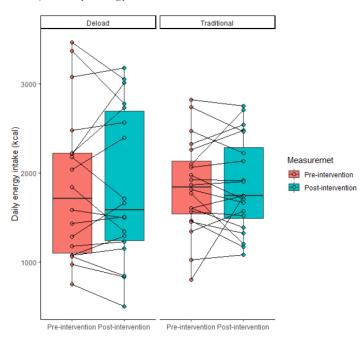

Outcome	Muscle power	Strength endurance
Rhat values	All equal 1.0	All equal 1.0
Bias doubling	1.8%	-0.1%
iterations (Group)		
Posterior predictive check		- r - reg
Histogram and correlation	$\begin{array}{c} \mathbf{b}_{-1} \mathbf{Intercept} \\ \mathbf{b}_{-2} In$	$\begin{array}{c} \mathbf{b}_{_\text{Intercept}} \\ \mathbf{c}_{175} \\ \mathbf{c}_{100} \\ \mathbf{c}_{25} \\ \mathbf{c}_{175} \\ \mathbf{c}_{100} \\ \mathbf{c}_{175} \\ \mathbf{c}_{175} \\ \mathbf{c}_{100} \\ \mathbf{c}_{175} \\ $
Autocorrelation	b Intercept b CNUPteC b GROUP2 sigma	b have 13 1 03 = 1 03 = 1 03 = 1 13 1 03 = 1 13

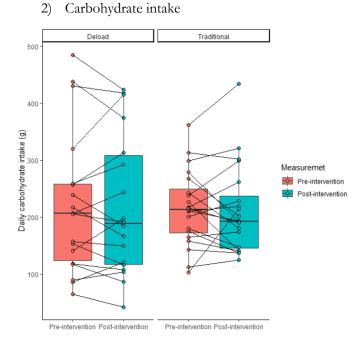
Outcome	Muscle power	Strength endurance
Bias different	Gamma(1,1)	Gamma(5,1)
specification	3.0%	-4.8%
variance (Group)		

Bias after non-	-3.0%	-3.5%
informative priors		
(Group)		

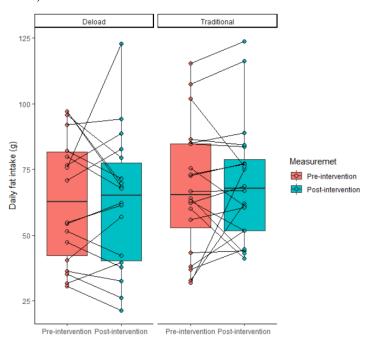
Performance within group effect size summary

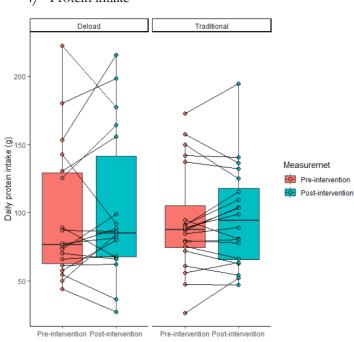
Bayesian standardized mean difference effect sizes were estimated accounting for uncertainty in mean change for each group and pre-intervention standard deviation.


Small (0.12), medium (0.40) and large (0.78) thresholds derived for strength and conditioning interventions are presented with gray lines.


Nutritional intake

Dietary adherence was assessed by self-reported 5-day food records (including at least 1 weekend day) pre- and post-intervention using MyFitnessPal.com and comprised total energy consumption, as well as the amount of energy derived from proteins, fats, and carbohydrates. This section presents the individual data points and analyses to investigate potential changes across the intervention and between groups.


Individual data points

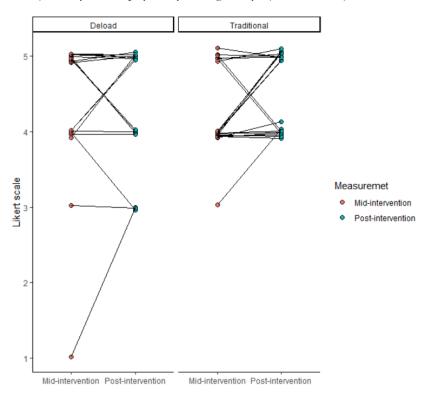

1) Daily energy intake

3) Fat intake

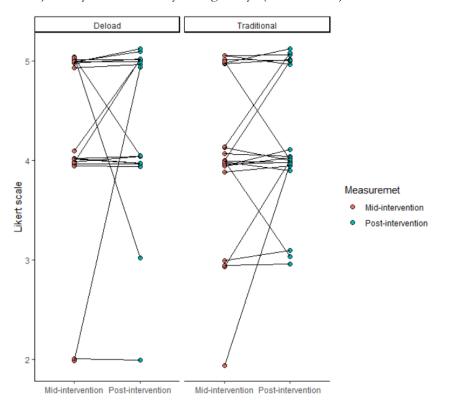
5) Assessment of potential differences

Variable	Multilevel: Time	Posterior probability	Multilevel: Group	Posterior probability	ANCOVA: Group	Posterior probability
	Difference [95%CrI]	increase post- intervention	Difference [95%CrI]	increase deload	Difference [95%CrI]	increase deload
Total energy intake	7.4		-26.1		-16.3	
(kcal)	[-105 to 120]	p = 0.555	[-475 to 470]	p = 0.458	[-248 to 206]	p = 0.442
Carbohydrate intake	-2.8	= 0.357	6.1	p = 0.579	2.5	p = 0.559
(gs)	[-19.8 to 13.1]	p = 0.357	[-57.4 to 72.6]	p = 0.379	[-30.6 to 35.8]	p = 0.339
Fat intake (gs)	0.41	h = 0.570	-5.7	b = 0.220	-4.3	= 0.216
	[-5.2 to 6.1]	p = 0.570	[-21.6 to 9.9]	p = 0.229	[-14.9 to 6.5]	<i>p</i> = 0.216
Protein intake (gs)	3.7	h = 0.951	4.3	b = 0.623	2.4	b = 0.621
	[-3.8 to 11.2]	p = 0.851	[-23.1 to 33.2]	p = 0.623	[-12.6 to 16.9]	p = 0.621

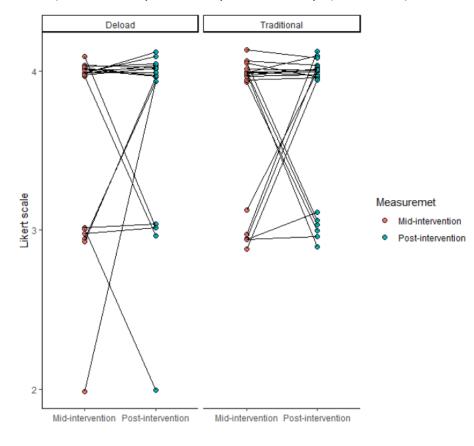
Time difference represents the estimated difference between pre- and post-intervention across both groups. Group difference represents the estimated difference between the deload and traditional group.

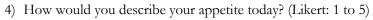

4) Protein intake

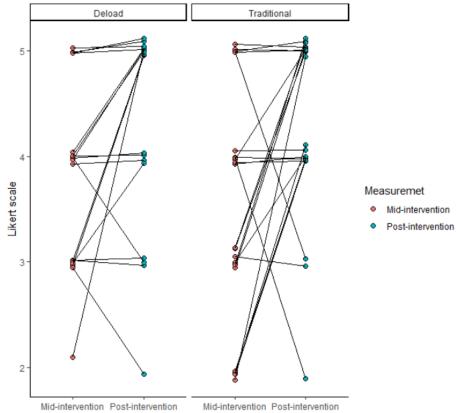
Readiness to train

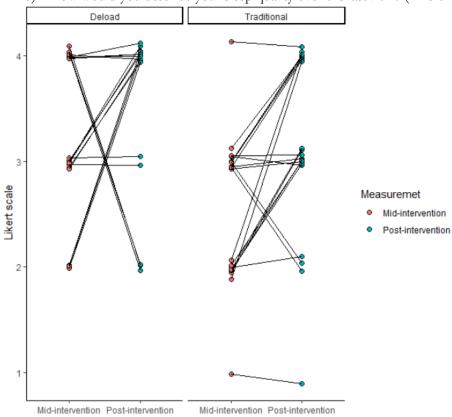

To assess participants' subjective feelings toward training across the study period a readiness-to-train questionnaire comprising 7 questions using Likert-type scales ranging from 1 to 4, 1 to 5 and 1 to 10 was given to participants 24-48 hours after the fourth and ninth weeks of the study. The upper and lower limit were anchored by the following sentence: "1 can be described as not at all/extremely low and 4, 5, 10 (depending on lower/upper end of the scale) can be described as extreme amount/extremely high."

Individual data points

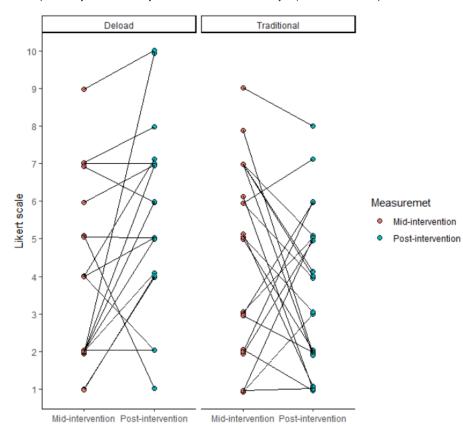

1) Do you feel physically strong today? (Likert: 1 to 5)

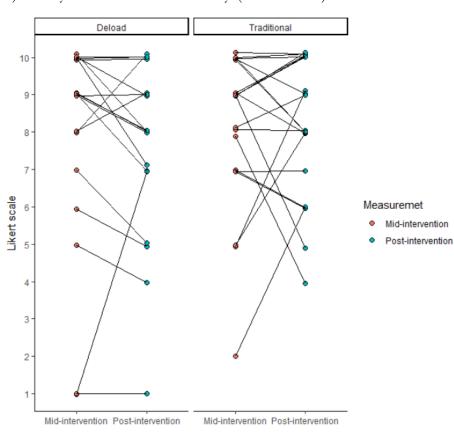



2) Do you feel mentally strong today? (Likert: 1 to 5)



3) How would you describe your health today? (Likert: 1 to 4)





5) How would you describe your sleep quality over the last 24H? (Likert: 1 to 4)

6) Do you have any muscle soreness today? (Likert: 1 to 10)

7) Rate your motivation to train today. (Likert: 1 to 10)

8) Assessment of potential differences

Variable	Mid-intervention: Group Difference [95%CrI]	Posterior probability increase deload	Post-intervention: Group Difference [95%CrI]	Posterior probability increase deload	ANCOVA: Group Difference [95%CrI]	Posterior probability increase deload
Feel physically	0.04	<i>p</i> = 0.567	-0.13	<i>p</i> = 0.261	-0.15	<i>p</i> = 0.209
strong	[-0.49 to 0.60]		[-0.58 to 0.33]		[-0.52 to 0.23]	
Feel mentally	0.18	<i>p</i> = 0.727	0.15	<i>p</i> = 0.616	0.07	<i>p</i> = 0.623
strong	[-0.39 to 0.77]		[-0.36 to 0.64]		[-0.38 to 0.52]	
Describe your	-0.11	<i>p</i> = 0.279	-0.05	<i>p</i> = 0.387	-0.03	<i>p</i> = 0.440
health	[-0.46 to 0.25]		[-0.40 to 0.29]		[-0.37 to 0.31]	
Describe your	0.21	<i>p</i> = 0.740	-0.01	p = 0.488	-0.04	<i>p</i> = 0.440
appetite	[-0.47 to 0.89]		[-0.60 to 0.58]		[-0.61 to 0.55]	
Sleep quality	0.70	<i>p</i> = 0.999	0.42	<i>p</i> = 0.938	0.36	<i>p</i> = 0.976
last 24H	[0.23 to 1.2]		[-0.13 to 0.97]		[-0.28 to 0.97]	
Muscle	-0.58	<i>p</i> = 0.244	1.9	<i>p</i> = 0.992	2.0	<i>p</i> = 0.995
soreness	[-2.2 to 1.0]		[0.37 to 3.4]		[0.53 to 3.5]	
Motivation to	-0.30	<i>p</i> = 0.459	-0.65	<i>p</i> = 0.169	-0.50	<i>p</i> = 0.193
train	[-1.9 to 1.3]		[-2.0 to 0.76]		[-1.6 to 0.66]	

Group difference represents the estimated difference between the deload and traditional group (deload:traditional).