
Package ‘treemendous’
August 10, 2023

Title An R package for standardizing taxonomic names of tree species

Version 1.1.1

Description
Treemendous is an open-source software package for the R programming environment that
provides a toolset for standardizing tree species names according to four publicly
available backbones: World Flora Online (WFO), the Botanical Gardens Convention
International (BGCI), the World Consensus on Vascular Plants (WCVP) and the Global
Biodiversity Information Facility (GBIF). The
package simultaneously leverages information and relationships across all these
backbones to increase matching rates and minimize data loss, while ensuring the
resulting species are accepted and consistent with a single reference backbone. The package
provides a flexible workflow depending on the use case, in which users can
chain together different functionalities ranging from simple matching to a single
backbone, to graph-based iterative matching using synonym-accepted relations across
all backbones in the database. In addition, the package allows users to `translate'
one tree species list into another, streamlining the assimilation of new data into
preexisting datasets or models.

License CC BY 4.0

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports assertthat,
dplyr,
fuzzyjoin,
igraph,
magrittr,
Matrix,
memoise,
progress,
purrr,
readr,
stats,
stringr,
tibble,
tidyr

Depends R (>= 3.6)

LazyData true

1

2 direct_match

LazyDataCompression xz

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

R topics documented:
direct_match . 2
direct_match_species_within_genus . 3
enforce_matching . 3
fia . 5
fuzzy_match_genus . 5
fuzzy_match_species_within_genus . 6
genus_match . 7
highlight_flags . 7
iucn . 9
matching . 10
resolve_synonyms . 11
sequential_matching . 12
suffix_match_species_within_genus . 12
summarize_output . 13
translate_trees . 14
Treemendous.Trees . 14

Index 17

direct_match Direct Match Species & Genus Binomial

Description

Tries to directly match Genus + Species Binomial to Treemendous.Trees.

Usage

direct_match(df, backbone = NULL, target_df = NULL)

Arguments

df tibble containing the species binomial split into the columns Orig.Genus and
Orig.Species.

backbone specifies which backbone is used: needs to be a subset of c('BGCI', 'WCVP',
'WFO', 'GBIF') or NULL if the whole database should be used.

target_df is used if the user wants to provide a custom target dataset. The parameter
is intended only for compatibility with the function translate_trees and not for
direct usage.

Value

Returns a tibble with the additional logical column direct_match, indicating whether the bino-
mial was successfully matched (TRUE) or not (FALSE)

direct_match_species_within_genus 3

Examples

iucn %>% direct_match()

direct_match_species_within_genus

Direct Match Species within Genus

Description

Tries to directly match the specific epithet within an already matched genus in Treemendous.Trees

Usage

direct_match_species_within_genus(df, backbone = NULL, target_df = NULL)

Arguments

df tibble containing the species binomial split into the columns Orig.Genus and
Orig.Species.

backbone specifies which backbone is used: needs to be a subset of c('BGCI', 'WCVP',
'WFO', 'GBIF') or NULL if the whole database should be used.

target_df is used if the user wants to provide a custom target dataset. The parameter is
intended only for compatibility with the function translate_trees and should not
be directly used.

Value

Returns a tibble with the additional logical column direct_match_species_within_genus, in-
dicating whether the specific epithet was successfully matched within the matched genus (TRUE)
or not (FALSE).

Examples

iucn %>% dplyr::mutate(Matched.Genus = Orig.Genus) %>% direct_match_species_within_genus()

enforce_matching Enforce Matching for Unmatched Species According to a Specified
Backbone

Description

enforce_matching() can be called after matching(). The function tries to match all unmatched
species, by making use of the synonym-accepted relations present in the backbones WFO, WCVP
and GBIF. A graph connecting all synonyms with accepted species is created and used to look for
matches at increasing distance in this graph according to the desired backbone.

Usage

enforce_matching(df, backbone, target_df = NULL, max_iter = 3)

4 enforce_matching

Arguments

df tibble which is the output of matching() or sequential_matching() and
therefor contains the columns Matched.Genus and Matched.Species. May
contain additional columns, which will be ignored.

backbone specifies which backbone is used: needs to be one of c('BGCI', 'WCVP', 'WFO',
'GBIF').

target_df is used if the user wants to provide a custom target dataset. The parameter is
intended only for compatibility with the function translate_trees and should not
be directly used.

max_iter maximum distance (depth) in the graph for two species to be successfully en-
force matched.

Details

This function is useful when you want to increase the proportion of matched species against a
single target backbone. The package igraph is used to create an undirected graph g connecting all
synonyms with accepted species according the databases WFO, WCVP and GBIF. Vertices represent
species names, and edges represent synonym-accepted relations between two species according to
at least one backbone. Additionally, two species names that can be matched via fuzzy-matching
(maximum string-dist of two) are also connected with an edge. To find these, each species name is
matched against the whole database (excluding its own name).

From the output of matching(), all unmatched species are matched to all three backbones via
matching(c('WFO', 'WCVP', 'GBIF')). The functions checks vertices that are at most max_iter
(default = 3) edges apart in the graph g. For multiple matches, the algorithm always selects the
first match, i.e. the target vertex with lower ID_matched in Treemendous.Trees to ensure repro-
ducibility. By default, the function allows a maximum depth of three steps to search for an match
in the target backbone, with the output field enforced_matching_dist denoting the depth of the
match for each species (1, 2, or 3). Filtering by this column allows the user to be more restrictive
(depth $=1$), at the cost of incorrectly missing some matches, or be increasingly permissive with
the matches (depth $=2$ or 3), at the cost of potentially lumping species together. Depending on
the application, these different scenarios may be more or less preferable, and can be selected on a
case-by-case basis.

Value

A tibble with matched species in Matched.Genus and Matched.Species. Along with the process
information of matching(), the function returns the logical column enforced_matched, stating
whether the species was successfully matched by enforce_matching(), and the distance in the
neighborhood graph g.

Examples

output <- iucn %>% matching('BGCI') %>% enforce_matching('BGCI')
output %>% summarize_output()

fia 5

fia Cleaned Master Tree Species list from FIA

Description

A cleaned dataset containing trees the Forest Inventory and Analysis (FIA) program of the U.S.
Forest Service. This dataset is used in the example usage section of the manuscript for the Treemen-
dous package. The data was downloaded in November 2022 from the official webpage of the Forest
Inventory and Analysis National Program and is available under the following link.

Usage

fia

Format

A data frame with 2171 rows and 2 variables:

Genus Genus name of species binomial

Species Specific epithet of the species binomial

fuzzy_match_genus Fuzzy Match Genus Name

Description

Tries to fuzzy match the genus name to Treemendous.Trees. Uses fuzzyjoin::stringdist() to
perform fuzzy matching.

Usage

fuzzy_match_genus(df, backbone = NULL, target_df = NULL)

Arguments

df tibble containing the species binomial split into the columns Orig.Genus and
Orig.Species.

backbone specifies which backbone is used: needs to be a subset of c('BGCI', 'WCVP',
'WFO', 'GBIF') or NULL if the whole database should be used.

target_df is used if the user wants to provide a custom target dataset. The parameter is
intended only for compatibility with the function translate_trees and should not
be directly used.

Value

Returns a tibble with the additional logical column fuzzy_match_genus, indicating whether the
genus was successfully matched (TRUE) or not (FALSE). Further, the additional column fuzzy_genus_dist
returns the distance for every match.

https://www.fia.fs.usda.gov/library/field-guides-methods-proc/index.php

6 fuzzy_match_species_within_genus

Examples

iucn %>%
dplyr::mutate(Orig.Genus = stringr::str_replace(Orig.Genus, '.{1}$', '')) %>%
fuzzy_match_genus()

fuzzy_match_species_within_genus

Fuzzy Match Species within Genus

Description

Tries to fuzzy match the species name to Treemendous.Trees within a genus. Uses fuzzyjoin::stringdist()
to perform fuzzy matching.

Usage

fuzzy_match_species_within_genus(df, backbone = NULL, target_df = NULL)

Arguments

df tibble containing the species binomial split into the columns Orig.Genus and
Orig.Species.

backbone specifies which backbone is used: needs to be a subset of c('BGCI', 'WCVP',
'WFO', 'GBIF') or NULL if the whole database should be used.

target_df is used if the user wants to provide a custom target dataset. The parameter is
intended only for compatibility with the function translate_trees and should not
be directly used.

Value

Returns a tibble with the additional logical column fuzzy_match_species_within_genus, in-
dicating whether the specific epithet was successfully fuzzy matched within the matched genus
(TRUE) or not (FALSE).

Examples

iucn %>%
dplyr::mutate(Orig.Genus = stringr::str_replace(Orig.Genus, '.{1}$', '')) %>%
dplyr::mutate(Matched.Genus = Orig.Genus) %>%
fuzzy_match_species_within_genus()

genus_match 7

genus_match Match Genus name

Description

#’ Tries to match the genus name to Treemendous.Trees.

Usage

genus_match(df, backbone = NULL, target_df = NULL)

Arguments

df tibble containing the species binomial split into the columns Orig.Genus and
Orig.Species.

backbone specifies which backbone is used: needs to be a subset of c('BGCI', 'WCVP',
'WFO', 'GBIF') or NULL if the whole database should be used.

target_df is used if the user wants to provide a custom target dataset. The parameter is
intended only for compatibility with the function translate_trees and should not
be directly used.

Value

Returns a tibble with the additional logical column genus_match, indicating whether the genus
was successfully matched (TRUE) or not (FALSE)

Examples

iucn %>% genus_match()

highlight_flags Highlight potential ambiguities introduced upon resolving synonyms
to their accepted names

Description

The user can call highlight_flags() from the output of resolve_synonyms() to investigate
potential ambiguities when resolving synonyms to their accepted latin binomial names. These am-
biguities can be of varying importance for different use-cases and should be carefully assessed for
each use-case.

Usage

highlight_flags(df, backbone = NULL)

8 highlight_flags

Arguments

df tibble which is the output of resolve_synonyms() and therefor contains the
columns Accepted.Genus, Accepted.Species, Matched.Genus and Matched.Species.
May contain additional columns, which will be discarded.

backbone specifies for which backbone(s) the flags should be appended. Needs to be one
of (or a combination of) c('WCVP', 'WFO', 'GBIF') or NULL if all should be
used.

Details

The following flags have been introduced in order to clarify and alleviate potential ambiguities that
were introduced upon compilation of Treemendous.Trees. The flags always correspond to the
latin binomial in the columns c(Matched.Genus, Matched.Species). The user is encouraged to
check for their individual use-cases if she/he wants to exclude resolved names based on these flags.
Below they are described in more detail.

The first column appended has the suffix _authorship_ambiguity and can be either TRUE or
FALSE.

• TRUE: For a given latin binomial, there are multiple entries at taxonomic rank "Species" in the
underlying backbone, which would be resolved to different latin binomials due to different
authorships.

– For instance, in the WCVP backbone, two entries are present for the latin binomial Acer
flabellatum at rank "Species" (Acer flabellatum Greene, Acer flabellatum Rehder). The
first is considered a synonym of Acer macrophyllum Pursh, while the latter is considered
a synonym of Acer campbellii subsp. flabellatum (Rehder) A.E.Murray.

• FALSE: no ambiguity

The second column appended has the suffix _infraspecific_ambiguity and can be either TRUE
or FALSE.

• TRUE: For a given latin binomial, there are multiple entries at different taxonomic ranks
(Species, Subspecies, Variety or Form) in the underlying backbone, which would be resolved
to different latin binomials.

– For instance, in the WCVP backbone, four entries are present for the latin binomial Nothofa-
gus obliqua, one at rank "Species" (Nothofagus obliqua), two at rank "Subspecies" (
Nothofagus obliqua subsp. andina and Nothofagus obliqua subsp. valdiviana) and one
at rank "Variety" (Nothofagus obliqua var. macrocarpa). While the former three would
all be resolved to the latin binomial Nothofagus obliqua, the latter is considered to be
a synonym of the accepted name Nothofagus macrocarpa. Resolve_synonyms() will
however always resolve it to Nothofagus obliqua, because this was the only accepted
name out of all the four entries. This flag should not be a problem if you are working
with latin binomials from the beginning. However, if your initial species names con-
sists of trinomials (infraspecific species names), then this flag can help you to identify
ambiguous name resolving.

• FALSE: no ambiguity

The third column appended has the suffix _infraspecific_link and can be either TRUE or FALSE.

• TRUE: indicates the the resolved species was obtained by linking a trinomial to a corresponding
Latin binomial. If an entry in a given backbone is pointing (meaning is a synonym of) to
another entry which has been removed (in favor of another entry with the same latin binomial),
then the linkage of the synonym-accepted relation was updated. If you are only interested in

iucn 9

resolving to the correct latin binomials, you can generally neglect this flag. However, be aware
that the associated information of the resolved species (e.g. Authorship information) might
not be correct in your case.

– For instance, WCVP considers the species Betula kwangsiensis as a synonym of the ac-
cepted subspecies Betula kweichowensis subsp. kweichowensis. This subspecies however
shares its latin binomial with the accepted species Betula kweichowensis. Therefore the
species Betula kwangsiensis had to be relinked to the species Betula kweichowensis in
order to resolve the latin binomials correctly.

– Another example would be: According to WFO, the species Abies shastensis is a synonym
of the accepted variety Abies magnifica var. shastensis. However, because there is also
an accepted entry at rank species Abies magnifica (which is selected during the compi-
lation of Treemendous.Trees), the species Abies shastensis has to be relinked to Abies
magnifica.

• FALSE: no new linkaged was required

Value

The function outputs a tibble that includes the original species names, the matched species names,
the accepted species names, and the corresponding flags for the matched species. It filters and
returns only those entries where at least one flag was raised.

Examples

iucn_resolved <- iucn %>% matching('WCVP') %>% resolve_synonyms('WCVP')
iucn_resolved %>% highlight_flags('WCVP')

iucn Selected Trees from the IUCN red list of Threatened Species

Description

A dataset containing threatened tree species from the genus Acer and the families Betulaceae,
Nothofagaceae and Theaceae. The data was downloaded in June 2022 from the official webpage
of the International Union for Conservation of Nature (IUCN) and is available under the following
link.

Usage

iucn

Format

A data frame with 384 rows and 2 variables:

Orig.Genus Genus name of species binomial

Orig.Species Specific epithet of the species binomial

https://www.iucnredlist.org/resources/spatial-data-download

10 matching

matching Matches species names to Treemendous.Trees

Description

This function takes species names and matches these against the internal database Treemendous.Trees.
The function is a wrapper around the following functions:

• direct_match()

• genus_match()

• fuzzy_match_genus()

• direct_match_species_within_genus()

• suffix_match_species_within_genus()

• fuzzy_match_species_within_genus()

Usage

matching(df, backbone = NULL, target_df = NULL)

Arguments

df tibble containing the species binomial split into the columns Genus and Species.
May contain additional columns, which will be ignored.

backbone specifies which backbone is used: needs to be a subset of c('BGCI', 'WCVP',
'WFO', 'GBIF') or NULL if the whole database should be used.

target_df is used if the user wants to provide a custom target dataset. The parameter is
intended only for compatibility with the function translate_trees and should not
be directly used.

Details

First, direct_match() is called, which matches a name, when the exact same name (genus and
specific epithet) is present in the database. If there was no direct match, genus_match() checks,
whether the genus exists in the database. If the genus was not present, fuzzy_match_genus() is
called, which tries to inexactly match genus names using the package fuzzyjoin based on an optimal
string alignment distance of one, as implemented in stringdist. In addition to insertions, deletions
and substitutions, the metric also considers transpositions (e.g. Quercus → Quecrus) as operations
of distance one. If more than one genus matched, the alphabetically first match is picked, but the
user is informed and encouraged to curate the ambiguous entries by hand. The maximal genus
edit distance is set to one by design, because typos in genus names can be considered much rarer
compared to the specific epithet and because genus names are usually quite short.

After the genus name has been matched, three functions are called within a certain genus. First,
direct_match_species_within_genus() checks if the specific epithet is present in the matched
genus. If not, suffix_match_species_within_genus() tries to capture gender-specific endings
or other common suffixes. More specifically, the following suffixes are substituted c("a", "i",
"is", "um", "us", "ae"). Next, the remaining unmatched species names are fuzzy matched with
a maximal optimal string alignment distance of two.

The function matching() returns a tibble with the new columns Matched.Genus and Matched.Species
containing the matched names, or NA if there was no match. Further, a logical column is added for

resolve_synonyms 11

every function called to allow the user to inspect which functions were for every name during the
process. When a process column shows NA, then this function was not called for the given name,
because it was already matched with a preceding function.

Value

Returns a tibble, with the matched names in Matched.Genus and Matched.Species. Process
information is added as individual columns for every function. The original input columns Genus
and Species are renamed to Orig.Species and Orig.Genus.

Examples

iucn %>% matching()

resolve_synonyms Resolve Synonyms for Matched Species Names

Description

This function is called after matching() and resolve synonyms based on the database Trees.Full.
Information on synonyms comes from the databases WCVP, WFO and GBIF. WFO is considered to be
the primary backbone, WFO the secondary, and GBIF the tertiary.

Usage

resolve_synonyms(df, backbones = NULL)

Arguments

df : tibble containing the two columns Matched.Genus and Matched.Species,
which need to be created by calling matching().

backbones specifies the order in which synonyms are resolved: needs to be a subset of
c(’BGCI’, ’WCVP’, ’WFO’, ’GBIF’) or NULL if the default ordering c(’BGCI’,
’WFO’, ’WCVP’, ’FIA’, ’PM’, ’GBIF’) should be used .

Value

tibble with two new columns: Accepted.Genus and Accepted.Species

Examples

backbones = c('BGCI', 'WFO')
iucn %>% matching(backbones) %>% resolve_synonyms(backbones)

12 suffix_match_species_within_genus

sequential_matching Sequentially Matches Species Names to Treemendous.Trees

Description

This function is a wrapper around matching(), which matches species names against the internal
database Treemendous.Trees according to a specified backbone. matching() is called for every
individual backbone provided via the argument sequential_backbones in the order of appearance.

Usage

sequential_matching(df, sequential_backbones)

Arguments

df tibble containing the species binomial split into the columns Genus and Species.
May contain additional columns, which will be ignored.

sequential_backbones

specifies the backbone which are sequentially used: needs to be a subset of
c('BGCI', 'WCVP', 'WFO', 'GBIF', 'FIA', 'PM').

Value

Returns a tibble, with the matched names in Matched.Genus and Matched.Species. Process
information is added as individual columns for every function. The original input columns Genus
and Species are renamed to Orig.Species and Orig.Genus.

Examples

iucn %>% sequential_matching(sequential_backbones = c('WFO', 'BGCI'))

suffix_match_species_within_genus

Suffix Match Species within Genus

Description

Tries to match the specific epithet by exchanging common suffixes within an already matched genus
in Treemendous.Trees. The following suffixes are captured: c("a", "i", "is", "um", "us",
"ae")

Usage

suffix_match_species_within_genus(df, backbone = NULL, target_df = NULL)

summarize_output 13

Arguments

df tibble containing the species binomial split into the columns Orig.Genus and
Orig.Species.

backbone specifies which backbone is used: needs to be a subset of c('BGCI', 'WCVP',
'WFO', 'GBIF') or NULL if the whole database should be used.

target_df is used if the user wants to provide a custom target dataset. The parameter is
intended only for compatibility with the function translate_trees and should not
be directly used.

Value

Returns a tibble with the additional logical column suffix_match_species_within_genus, in-
dicating whether the specific epithet was successfully matched within the matched genus (TRUE)
or not (FALSE).

Examples

substitute endings c('um$|i$|is$|us$|ae$') with 'a' of specific epithet
iucn_modified<- iucn %>%

dplyr::mutate(Orig.Species = stringr::str_replace(Orig.Species, 'um$|i$|is$|us$|ae$', 'a'))
iucn_modified %>%

dplyr::mutate(Matched.Genus = Orig.Genus) %>%
suffix_match_species_within_genus(backbone = c('BGCI', 'WFO'))

summarize_output Summarizes the output of the treemendous pipeline

Description

Summarizes the output of the treemendous pipeline

Usage

summarize_output(df)

Arguments

df : tibble being the output of matching()/sequential_matching()/enforce_matching()
and optionally resolve_synonyms().

Value

Returns a list containing summary information about the matched species names and if provided
also the resolved species names.

Examples

iucn %>% matching() %>% resolve_synonyms() %>% summarize_output()

14 Treemendous.Trees

translate_trees Translate species names according to a custom target database.

Description

The function is essentially a wrapper around the functions matching() and enforce_matching().
Species names from df are first directly matched to target by calling matching(df, backbone =
'CUSTOM', target_df = target). Subsequently, the function calls enforce_matching(df, backbone
= 'CUSTOM', target_df = target) to increase the number of translated species.

Usage

translate_trees(df, target, max_iter = 3)

Arguments

df tibble with species that the user wants to translate into the species names of
target. Species binomial split into the columns Genus and Species

target tibble with a new custom target database. Species binomial split into the
columns Genus and Species

max_iter parameter which is passed to enforce_matching() and controls the maximum
depth for matches.

Value

Returns a tibble with the species names of the input df in Orig.Genus, Orig.Species, and
the translated names in Matched.Genus and Matched.Species. Process information from call-
ing matching() and enforce_matching() is added to the output.

Examples

translate_trees(df = iucn, target = fia)

Treemendous.Trees Database used by Treemendous to standardize Species Names

Description

A dataset containing tree species assembled from four different publicly available datasets:

• BGCI (Botanical Gardens Conservation Internation): GlobalTreeSearch, Version 1.7 (April,
2023), Source

• WFO (World Flora Online): Taxonomic Backbone, Version v.2023.06 (June, 2023), Source

• WCVP (World Checklist of Vascular Plants): Version v9 (June, 2022), Source

• GBIF (Global Biodiversity Information Facility): Version (December, 2022), Source

Treemendous matches and resolves synonyms according to the dataset Treemendous.Trees, allow-
ing the user always to specify a subset of the backbones if desired.

https://tools.bgci.org/global_tree_search.php
http://www.worldfloraonline.org/downloadData
http://sftp.kew.org/pub/data-repositories/WCVP/Archive/
https://hosted-datasets.gbif.org/datasets/backbone/

Treemendous.Trees 15

Usage

Treemendous.Trees

Format

A data frame with 401482 species and 38 variables:

Genus Genus name of species binomial

Species Specific epithet of species binomial

BGCI Boolean indicator whether this species was present in the BGCI backbone

WFO Boolean indicator whether this species was present in the WFO backbone

WCVP Boolean indicator whether this species was present in the WCVP backbone

GBIF Boolean indicator whether this species was present in the GBIF backbone

BGCI_Authors Information about authors based on BGCI

WFO_ID Unique ID in WFO

WFO_accepted_ID Unique ID of accepted species in WFO

WFO_Status Status according to WFO: e.g. Synonym, Accepted

WFO_Authors Information about authors based on WFO

WFO_Rank Taxonomic rank the species: one of c('Species, Subspecies, Variety, Form)

WFO_Family Taxonomical family as specified by WFO

WFO_Infraspecific Infraspecific epithet of the corresponding entry in WFO

WFO_infraspecific_ambiguity Boolean indicating whether multiple entries with identical latin
binomials were present in the original WFO database, which would be resolved to different
latin binomials in resolve_synonyms(). Specifically, the flag indicates when two or more
entries at infraspecific levels would be resolved to different latin binomials. For more details,
see highlight_flags().

WFO_authorship_ambiguity Boolean indicating whether multiple entries with identical latin bi-
nomials were present in the original WFO database, which would be resolved to different latin
binomials in resolve_synonyms(). Specifically, the flag indicates when Two or more entries
at rank Species with different authorship would be resolved to different latin binomials. For
more details, see highlight_flags().

WFO_infraspecific_link Boolean indicator whether WCVP_accepted_ID was relinked to another
entry in Treemendous.Trees with the same latin binomial. This was necessary because our
database design only allowed for one entry for every unique latin binomial.

WCVP_ID Unique ID in WCVP

WCVP_accepted_ID Unique ID of accepted species in WCVP

WCVP_Status Status according to WCVP: e.g. Synonym, Accepted

WCVP_Authors Information about authors based on WCVP

WCVP_Rank Taxonomic rank the species: one of c('Species, Subspecies, Variety, Form)

WCVP_Family Taxonomical family as specified by WCVP

WCVP_Infraspecific Infraspecific epithet of the corresponding entry in WCVP

WCVP_infraspecific_ambiguity See WCVP_infraspecific_ambiguity above.

WCVP_authorship_ambiguity See WCVP_authorship_ambiguity above.

WCVP_infraspecific_link See WCVP_infraspecific_link above.

16 Treemendous.Trees

GBIF_ID Unique ID in GBIF

GBIF_accepted_ID Unique ID of accepted species in GBIF

GBIF_Status Status according to GBIF: e.g. Synonym, Accepted

GBIF_Authors Information about authors based on GBIF

GBIF_Rank Taxonomic rank the species: one of c('Species, Subspecies, Variety, Form)

GBIF_Family Taxonomical family as specified by GBIF

GBIF_Infraspecific Infraspecific epithet of the corresponding entry in GBIF

GBIF_infraspecific_ambiguity See GBIF_infraspecific_ambiguity above.

GBIF_authorship_ambiguity See GBIF_authorship_ambiguity above.

GBIF_infraspecific_link See GBIF_infraspecific_link above.

ID_merged Unique ID assigned to each species in Treemendous.Trees. Note that these ID’s are
currently not ensured to be consistent between subsequent versions of the package.

Details

See the publication accompanying the Treemendous package for more details. TODO: insert link to
publication / pre-print.

The code for how the backbones were curated and merged is available in the package source code
under data-raw/Treemendous-Trees.R.

Although all information about the taxonomic family of species (WFO_Family, WCVP_Family, GBIF_Family),
as well as the scientific authorship (WFO_Authors, WCVP_Authors, GBIF_Authors, BGCI_Authors),
is not used by the functionality of the package so far, we decided to keep the information out of the
following reasons. First, it allows a user to further investigate matched names and allows for manual
a assessment of whether a match was reasonable or not. Second, the unused information is likely to
be used for future functionalities of the Treemendous package. For instance, we plan to let Treemen-
dous interact with the V.PhyloMaker2 package to get species phylogenies, a common analysis per-
formed in ecological research. V.PhyloMaker2 requires the user to input the taxonomic family,
which could be resolved using the information about taxonomic families in Treemendous.Trees.
Further, if a user has access to information about the scientific authorship, future versions might
consider this in cases of ambiguous matches, and could help resolving these.

Source

https://github.com/speckerf/treemendous

https://github.com/speckerf/treemendous

Index

∗ datasets
fia, 5
iucn, 9
Treemendous.Trees, 14

direct_match, 2
direct_match(), 10
direct_match_species_within_genus, 3
direct_match_species_within_genus(),

10

enforce_matching, 3
enforce_matching(), 14

fia, 5
fuzzy_match_genus, 5
fuzzy_match_genus(), 10
fuzzy_match_species_within_genus, 6
fuzzy_match_species_within_genus(), 10

genus_match, 7
genus_match(), 10

highlight_flags, 7
highlight_flags(), 15

iucn, 9

matching, 10
matching(), 4, 10, 14

resolve_synonyms, 11

sequential_matching, 12
suffix_match_species_within_genus, 12
suffix_match_species_within_genus(),

10
summarize_output, 13

translate_trees, 14
Treemendous.Trees, 14

17

	direct_match
	direct_match_species_within_genus
	enforce_matching
	fia
	fuzzy_match_genus
	fuzzy_match_species_within_genus
	genus_match
	highlight_flags
	iucn
	matching
	resolve_synonyms
	sequential_matching
	suffix_match_species_within_genus
	summarize_output
	translate_trees
	Treemendous.Trees
	Index

