Evaluation of a Cadaveric Wrist Motion Simulator using Marker-Based X-Ray Reconstruction of Moving Morphology: Supplementary Material

Table S1: Pre- and post- surgery wrist angles (°) in the starting positions of all planar motions. The X-Axis corresponds to pronation (+) and supination (-), the Y-Axis to flexion (+) and extension (-), the Z-Axis to ulnar (+) and radial (-) deviation. Angles are reported as the mean \pm standard deviation. Statistically significant differences between anatomical and Motec wrists are indicated by a p-value < 0.05). N = 6.

		Initial Wrist Positions (°)									
		Florion	Eutoncion	Radial	Ulnar	Radial	Ulnar				
		r lexion	Extension	Deviation	Deviation	Extension	Flexion				
	Anatomical	3.5 ± 3.8	3.0 ± 3.7	3.0 ± 5.3	3.3 ± 5.2	2.8 ± 4.0	3.6 ± 3.8				
X-Axis	Motec	3.1 ± 6.0	2.5 ± 5.7	2.8 ± 6.2	2.2 ± 6.5	2.0 ± 5.7	2.3 ± 7.2				
	P-Value	0.873	0.812	0.951	0.623	0.734	0.627				
	Anatomical	-10.9 ± 6.7	-9.8 ± 4.7	-11.9 ± 5.0	-11.3 ± 6.7	-11.4 ± 5.2	-11.1 ± 6.1				
Y-Axis	Motec	-8.7 ± 9.1	-11.1 ± 7.3	-9.6 ± 7.7	-8.9 ± 8.4	-10.8 ± 7.4	-8.9 ± 8.6				
	P-Value	0.245	0.323	0.143	0.083	0.583	0.201				
Z-Axis	Anatomical	-0.7 ± 6.9	-0.4 ± 6.9	1.0 ± 7.5	0.4 ± 7.2	1.2 ± 7.3	-0.2 ± 7.2				
	Motec	1.0 ± 7.9	1.6 ± 8.0	1.4 ± 8.0	1.7 ± 8.2	1.9 ± 7.4	1.7 ± 8.0				
	P-Value	0.268	0.146	0.742	0.235	0.587	0.142				

Table S2: Mean inter-specimen RMSEs (\pm standard deviation) of wrist angle (°) profiles in the X, Y and Z axes of the radial coordinate system. Highlighted cells indicate the axis with the maximum error during each motion (n = 6)

	Mean Intra-Specimen RMSE (°)										
		Anatomical			Motec						
	X-Axis	Y-Axis	Z Axis		X-Axis	Y-Axis	Z Axis				
Flexion	3.97 ± 3.01	4.46 ± 2.11	4.67 ± 2.24		6.13 ± 3.12	5.45 ± 4.10	5.06 ± 3.62				
Extension	2.95 ± 1.77	5.57 ± 2.47	4.67 ± 4.42		4.56 ± 3.25	10.7 ± 5.00	7.12 ± 6.05				
RD	3.95 ± 2.61	5.12 ± 2.48	6.22 ± 3.44		6.00 ± 4.14	6.32 ± 5.72	7.28 ± 7.21				
UD	3.98 ± 2.95	5.00 ± 4.64	5.17 ± 2.95		5.43 ± 2.11	8.60 ± 4.64	5.60 ± 4.32				
RE	4.22 ± 2.57	7.85 ± 3.91	5.45 ± 4.65		8.16 ± 5.59	12.9 ± 6.42	7.11 ± 5.00				
UF	3.18 ± 2.36	5.61 ± 2.52	6.05 ± 2.39		6.29 ± 3.49	5.79 ± 3.57	5.54 ± 3.51				
Circumduction	4.65 ± 2.25	7.07 ± 2.19	5.64 ± 2.54		7.87 ± 3.50	11.5 ± 5.05	7.32 ± 4.24				

Table	S3:	Mean	inter-speci	men R	RMSEs	$(\pm \text{standa})$	ard	deviation)	of the	force (N)	profiles of
ECU,	ECF	RB, EC	RL, FCR a	nd FC	U. High	lighted c	ells	indicate th	ne tendo	n with	the	maximum
error	durii	ng each	n motion (n	= 6)								

			\mathbf{N}	fean In	tra-Spe	cir	cimen RMSE (N)							
	Anatomical						Motec							
	ECU	ECRB	ECRL	FCR	FCU		ECU	ECRB	ECRL	FCR	FCU			
Flowion	$0.36 \pm$	$0.57\pm$	$0.23\pm$	$2.84\pm$	$3.49\pm$		$0.42\pm$	$1.57\pm$	$0.52\pm$	$1.76\pm$	$2.54\pm$			
Flexion	0.21	0.27	0.12	0.75	1.45		0.24	0.78	0.39	1.25	0.77			
Extension	$4.85\pm$	$4.52\pm$	$3.39\pm$	0.31±	$0.33\pm$		$5.39\pm$	4.16±	$6.25\pm$	$0.51\pm$	$0.57\pm$			
Extension	2.31	2.79	1.52	0.16	0.17		4.19	2.26	3.78	0.27	0.21			
חח	1.16±	$3.09\pm$	$5.94\pm$	4.10±	$0.48 \pm$		$1.36\pm$	$3.61\pm$	$8.45\pm$	$5.22\pm$	$0.60\pm$			
	0.36	2.40	2.58	1.84	0.22		0.44	1.55	4.26	4.17	0.38			
	$3.97\pm$	$0.37\pm$	$0.44\pm$	0.21±	$1.82\pm$		$7.21\pm$	$0.47\pm$	$0.54\pm$	$0.23\pm$	1.44±			
	2.93	0.27	0.18	0.09	1.14		3.59	0.21	0.24	0.07	1.24			
DF	$3.05\pm$	$5.74 \pm$	$6.23\pm$	$9.29\pm$	0.37±		$3.95\pm$	4.40±	$9.14\pm$	$5.30\pm$	$0.83\pm$			
	1.79	1.70	4.22	3.61	0.14		2.36	1.73	7.54	3.23	0.43			
TIE	$1.50\pm$	$2.09\pm$	$0.24\pm$	$0.57\pm$	$3.05\pm$		$1.00\pm$	$1.07\pm$	$0.47\pm$	$0.68\pm$	$3.13\pm$			
OF	0.50	1.02	0.13	0.41	1.23		0.43	0.63	0.34	0.58	0.99			
Circumduction	$5.49\pm$	3.30±	$5.02\pm$	$3.48\pm$	$3.98\pm$		$5.90\pm$	$4.61\pm$	$8.41\pm$	$1.84\pm$	$3.79\pm$			
	2.09	1.60	3.43	2.28	1.48		1.89	2.51	3.33	1.29	1.55			

Table S4: Mean inter-specimen RMSEs (\pm standard deviation) of the actuator displacement (mm) profiles of ECU, ECRB, ECRL, FCR and FCU tendons. Highlighted cells indicate the tendon with the maximum error during each motion (n = 6)

	Mean Intra-Specimen RMSE (mm)											
	ECU	ECRB	ECRL	FCR	FCU							
Flexion	0.56 ± 0.18	0.56 ± 0.18	0.57 ± 0.17	1.59 ± 0.31	1.07 ± 0.57							
Extension	0.61 ± 0.40	0.69 ± 0.08	0.64 ± 0.37	0.62 ± 0.05	0.62 ± 0.05							
RD	0.55 ± 0.27	0.62 ± 0.56	0.97 ± 0.62	0.83 ± 0.55	0.55 ± 0.27							
UD	0.28 ± 0.26	0.11 ± 0.10	0.11 ± 0.10	0.11 ± 0.10	1.92 ± 0.79							
RE	0.51 ± 0.46	1.00 ± 0.99	1.23 ± 1.14	4.20 ± 2.04	0.49 ± 0.49							
UF	1.64 ± 0.61	1.21 ± 1.15	0.48 ± 0.44	1.80 ± 1.52	0.79 ± 0.64							
Circumduction	1.35 ± 1.08	1.05 ± 0.84	1.60 ± 1.41	2.81 ± 1.00	2.69 ± 0.54							

The following graphs show the wrist angles, tendon forces and actuator displacements during the an average trial from every motion and specimen before (A, C & E) and after (B, D & F) a total wrist replacement. This excludes the radial extension trial of specimen 1, which is included as a representative trial in the main text. For every figure A&B

correspond to angles (°) of the third metacarpal with respect to the radius, represented by rotations about the X (pronation/supination), Y (flexion/extension) and Z (radioulnar deviation) axes of the radial coordinate system. **C&D** correspond to forces (N) applied to

the ECU, ECRB, ECRL, FCU and FCR tendons over the duration of the motion trial.

E&**F** correspond to displacements (mm) of the five linear actuators connected to the tendons over the duration of the motion trial. The mean (s.d.) angle/force/displacement is plotted at every time point. Standard deviations are represented as a shaded region around the means (n = 5).

Figure S1: Average flexion trial of specimen 1.

Figure S2: Average extension trial of specimen 1.

Figure S3: Average radial deviation trial of specimen 1.

Figure S4: Average ulnar deviation trial of specimen 1.

Figure S5: Average ulnar flexion trial of specimen 1.

Figure S6: Average circumduction trial of specimen 1.

Figure S7: Average extension trial of specimen 2.

Figure S8: Average flexion trial of specimen 2.

Figure S9: Average radial deviation trial of specimen 2.

Figure S10: Average ulnar deviation trial of specimen 2.

Figure S11: Average radial extension trial of specimen 2.

Figure S12: Average ulnar flexion trial of specimen 2.

Figure S13: Average circumduction trial of specimen 2.

Figure S14: Average extension trial of specimen 3.

Figure S15: Average flexion trial of specimen 3.

Figure S16: Average radial deviation trial of specimen 3.

Figure S17: Average ulnar deviation trial of specimen 3.

Figure S18: Average radial extension trial of specimen 3.

Figure S19: Average ulnar flexion trial of specimen 3.

Figure S20: Average circumduction trial of specimen 3.

Figure S21: Average extension trial of specimen 4.

Figure S22: Average flexion trial of specimen 4.

Figure S23: Average radial deviation trial of specimen 4.

Figure S24: Average ulnar deviation trial of specimen 4.

Figure S25: Average radial extension trial of specimen 4.

Figure S26: Average ulnar flexion trial of specimen 4.

Figure S27: Average circumduction trial of specimen 4.

Figure S28: Average extension trial of specimen 5.

Figure S29: Average flexion trial of specimen 5.

Figure S30: Average radial deviation trial of specimen 5.

Figure S31: Average ulnar deviation trial of specimen 5.

Figure S32: Average radial extension trial of specimen 5.

Figure S33: Average ulnar flexion trial of specimen 5.

Figure S34: Average circumduction trial of specimen 5.

Figure S35: Average extension trial of specimen 6.

Figure S36: Average flexion trial of specimen 6.

Figure S37: Average radial deviation trial of specimen 6.

Figure S38: Average ulnar deviation trial of specimen 6.

Figure S39: Average radial extension trial of specimen 6.

Figure S40: Average ulnar flexion trial of specimen 6.

Figure S41: Average circumduction trial of specimen 6.