getwd() data1 = read.csv("logCPM.csv", check.names=F) library(WGCNA) datExpr0 = as.data.frame(t(data1[,-1])) names(datExpr0) = data1[,1] rownames(datExpr0) = names(data1[,-1]) datExpr0 gsg = goodSamplesGenes(datExpr0, verbose = 3) gsg$allOK if (!gsg$allOK) { # Optionally, print the gene and sample names that were removed: if (sum(!gsg$goodGenes)>0) printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", "))) if (sum(!gsg$goodSamples)>0) printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", "))) # Remove the offending genes and samples from the data: datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes] } meanFPKM=0.5 n=nrow(datExpr0) datExpr0[n+1,]=apply(datExpr0[c(1:nrow(datExpr0)),],2,mean) datExpr0=datExpr0[1:n,datExpr0[n+1,] > meanFPKM] # for meanFpkm in row n+1 and it must be above what you set--select meanFpkm>opt$meanFpkm(by rp) filtered_fpkm=t(datExpr0) filtered_fpkm=data.frame(rownames(filtered_fpkm),filtered_fpkm) names(filtered_fpkm)[1]="sample" head(filtered_fpkm) write.table(filtered_fpkm, file="logCPM_filter.xls",row.names=F, col.names=T,quote=FALSE,sep="\t") sampleTree = hclust(dist(datExpr0), method = "average") pdf(file = "1_sampleClustering.pdf", width = 12, height = 4) par(cex = 0.6) par(mar = c(0,4,2,0)) plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5, cex.axis = 1.5, cex.main = 2) abline(h = 100, col = "red") dev.off() clust = cutreeStatic(sampleTree, cutHeight = 100, minSize = 1) table(clust) keepSamples = (clust<=2) datExpr0 = datExpr0[keepSamples, ] traitData = read.table("character.txt",row.names=1,header=T,comment.char = "",check.names=F) dim(traitData) names(traitData) allTraits = traitData dim(allTraits) names(allTraits) fpkmSamples = rownames(datExpr0) traitSamples =rownames(allTraits) traitRows = match(fpkmSamples, traitSamples) datTraits = allTraits[traitRows,] rownames(datTraits) collectGarbage() sampleTree2 = hclust(dist(datExpr0), method = "average") traitColors = numbers2colors(datTraits, signed = FALSE) pdf(file="2_Sample dendrogram and trait heatmap.pdf",width=12,height=6) plotDendroAndColors(sampleTree2, traitColors, groupLabels = names(datTraits), main = "Sample dendrogram and trait heatmap") dev.off() save(datExpr0, file = "logCPM_forAnalysis.RData") save(datTraits, file="trait_forAnalysis.RData") enableWGCNAThreads() powers = c(c(1:10), seq(from = 12, to=30, by=2)) sft=pickSoftThreshold(datExpr0,dataIsExpr = TRUE, powerVector = powers, corFnc = cor, corOptions = list(use = 'p'), networkType = 'unsigned') sft = pickSoftThreshold(datExpr0, powerVector = powers, verbose = 5) pdf(file="3_Scale independence.pdf",width=9,height=5) par(mfrow = c(1,2)) cex1 = 0.8 plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n", main = paste("Scale independence")); text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], labels=powers,cex=cex1,col="red"); abline(h=0.8,col="red") plot(sft$fitIndices[,1], sft$fitIndices[,5], xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n", main = paste("Mean connectivity")) text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1, col ="red") abline(h=200,col="red") dev.off() softPower =sft$powerEstimate adjacency = adjacency(datExpr0, power = 30) TOM = TOMsimilarity(adjacency); dissTOM = 1-TOM save(TOM, file = "TOM_forAnalysis.RData") geneTree = hclust(as.dist(dissTOM), method = "average"); pdf(file="4_Gene clustering on TOM-based dissimilarity.pdf",width=12,height=9) plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based dissimilarity", labels = FALSE, hang = 0.04) dev.off() minModuleSize = 100 dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM, deepSplit = 2, pamRespectsDendro = FALSE, minClusterSize = minModuleSize); table(dynamicMods) dynamicColors = labels2colors(dynamicMods) table(dynamicColors) pdf(file="5_Dynamic Tree Cut.pdf",width=8,height=6) plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut", dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05, main = "Gene dendrogram and module colors") dev.off() MEList = moduleEigengenes(datExpr0, colors = dynamicColors) MEs = MEList$eigengenes MEDiss = 1-cor(MEs); METree = hclust(as.dist(MEDiss), method = "average") pdf(file="6_Clustering of module eigengenes.pdf",width=7,height=6) plot(METree, main = "Clustering of module eigengenes", xlab = "", sub = "") MEDissThres = 0.28 abline(h=MEDissThres, col = "red") dev.off() merge = mergeCloseModules(datExpr0, dynamicColors, cutHeight = MEDissThres, verbose = 3) mergedColors = merge$colors mergedMEs = merge$newMEs pdf(file="7_merged dynamic.pdf", width = 9, height = 6) plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors), c("Dynamic Tree Cut", "Merged dynamic"), dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05) dev.off() moduleColors = mergedColors colorOrder = c("grey", standardColors(50)) moduleLabels = match(moduleColors, colorOrder)-1 MEs = mergedMEs save(MEs, TOM, dissTOM, moduleLabels, moduleColors, geneTree, sft, file = "networkConstruction-stepByStep.RData") nGenes = ncol(datExpr0) nSamples = nrow(datExpr0) moduleTraitCor = cor(MEs, datTraits, use = "p") moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples) pdf(file="8_Module-trait relationships.pdf",width=4.5,height=10) textMatrix = paste(signif(moduleTraitCor, 2), "\n(", signif(moduleTraitPvalue, 1), ")", sep = "") dim(textMatrix) = dim(moduleTraitCor) par(mar = c(6, 8.5, 3, 3)) labeledHeatmap(Matrix = moduleTraitCor, xLabels = names(datTraits), yLabels = names(MEs), ySymbols = names(MEs), colorLabels = FALSE, colors = blueWhiteRed(50), textMatrix = textMatrix, setStdMargins = FALSE, cex.text = 0.5, zlim = c(-1,1), main = paste("Module-trait relationships")) dev.off() modNames = substring(names(MEs), 3) geneModuleMembership = as.data.frame(cor(datExpr0, MEs, use = "p")) MMPvalue = as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples)) names(geneModuleMembership) = paste("MM", modNames, sep="") names(MMPvalue) = paste("p.MM", modNames, sep="") traitNames=names(datTraits) geneTraitSignificance = as.data.frame(cor(datExpr0, datTraits, use = "p")) GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples)) names(geneTraitSignificance) = paste("GS.", traitNames, sep="") names(GSPvalue) = paste("p.GS.", traitNames, sep="") module="royalblue" column = match(module, modNames) moduleGenes = moduleColors==module trait="AKI" traitColumn=match(trait,traitNames) par(mfrow = c(1,1)) verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]), abs(geneTraitSignificance[moduleGenes, traitColumn]), xlab = paste("Module Membership in", module, "module"), ylab = paste("Gene significance for ",trait), main = paste("Module membership vs. gene significance\n"), cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module) workingDir = "D:/Rdata/20230324WGCNA" for (trait in traitNames){ traitColumn=match(trait,traitNames) for (module in modNames){ column = match(module, modNames) moduleGenes = moduleColors==module if (nrow(geneModuleMembership[moduleGenes,]) > 1){ pdf(file=paste("9_", trait, "_", module,"_Module membership vs gene significance.pdf",sep=""),width=7,height=7) par(mfrow = c(1,1)) verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]), abs(geneTraitSignificance[moduleGenes, traitColumn]), xlab = paste("Module Membership in", module, "module"), ylab = paste("Gene significance for ",trait), main = paste("Module membership vs. gene significance\n"), cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module) dev.off() } } } workingDir = "D:/Rdata/20230324WGCNA/WGCNA" names(datExpr0) probes = names(datExpr0) geneInfo0 = data.frame(probes= probes, moduleColor = moduleColors) for (Tra in 1:ncol(geneTraitSignificance)) { oldNames = names(geneInfo0) geneInfo0 = data.frame(geneInfo0, geneTraitSignificance[,Tra], GSPvalue[, Tra]) names(geneInfo0) = c(oldNames,names(geneTraitSignificance)[Tra], names(GSPvalue)[Tra]) } for (mod in 1:ncol(geneModuleMembership)) { oldNames = names(geneInfo0) geneInfo0 = data.frame(geneInfo0, geneModuleMembership[,mod], MMPvalue[, mod]) names(geneInfo0) = c(oldNames,names(geneModuleMembership)[mod], names(MMPvalue)[mod]) } geneOrder =order(geneInfo0$moduleColor) geneInfo = geneInfo0[geneOrder, ] write.table(geneInfo, file = "10_GS_and_MM.xls",sep="\t",row.names=F) nGenes = ncol(datExpr0) nSamples = nrow(datExpr0) plotTOM = dissTOM^7 diag(plotTOM) = NA sizeGrWindow(9,9) pdf(file="12_Network heatmap plot_all gene.pdf",width=9, height=9) TOMplot(plotTOM, geneTree, moduleColors, main = "Network heatmap plot, all genes") dev.off() nSelect = 400 set.seed(10) select = sample(nGenes, size = nSelect) selectTOM = dissTOM[select, select] selectTree = hclust(as.dist(selectTOM), method = "average") selectColors = moduleColors[select] plotDiss = selectTOM^7 diag(plotDiss) = NA pdf(file="13_Network heatmap plot_selected genes.pdf",width=9, height=9) TOMplot(plotDiss, selectTree, selectColors, main = "Network heatmap plot, selected genes") dev.off() pdf(file="14_Eigengene dendrogram and Eigengene adjacency heatmap.pdf", width=5, height=7.5) par(cex = 0.9) plotEigengeneNetworks(MEs, "", marDendro = c(0,4,1,2), marHeatmap = c(3,4,1,2), cex.lab = 0.8, xLabelsAngle= 90) dev.off() pdf(file="15_Eigengene dendrogram_2.pdf",width=6, height=6) par(cex = 1.0) plotEigengeneNetworks(MEs, "Eigengene dendrogram", marDendro = c(0,4,2,0), plotHeatmaps = FALSE) dev.off() pdf(file="15_Eigengene adjacency heatmap_2.pdf",width=6, height=6) par(cex = 1.0) plotEigengeneNetworks(MEs, "Eigengene adjacency heatmap", marHeatmap = c(3,4,2,2), plotDendrograms = FALSE, xLabelsAngle = 90) dev.off() for (mod in 1:nrow(table(moduleColors))) { modules = names(table(moduleColors))[mod] probes = names(datExpr0) inModule = (moduleColors == modules) modProbes = probes[inModule] modGenes = modProbes modTOM = TOM[inModule, inModule] dimnames(modTOM) = list(modProbes, modProbes) cyt = exportNetworkToCytoscape(modTOM, edgeFile = paste("CytoscapeInput-edges-", modules , ".txt", sep=""), nodeFile = paste("CytoscapeInput-nodes-", modules, ".txt", sep=""), weighted = TRUE, threshold = 0.02, nodeNames = modProbes, altNodeNames = modGenes, nodeAttr = moduleColors[inModule]) }