#read data data <- read.csv("Data_time.csv") data$Time <- as.numeric(data$Time) data$Cat <- as.character(data$Cat) data$Cat2 <- as.character(data$Cat2) #detections of python and other snakes table (data$Cat) #detections of large snakes table (data$Cat2) # By treatment and control table (data$treat) head (data) #libraries we may use library(tidyverse) library(ggpubr) library (glmmTMB) library(data.table) library("plotrix") library(DHARMa) library(sjPlot) library(sjmisc) library(sjlabelled) #subset - note that names have a space after them other <- data[which(data$Cat=="Other "),] pyt <- data[which(data$Cat=="Python "),] pyt_T <- pyt %>% filter(treat == "trt") #summerize pythons at treatment pens median (pyt_T$Time/60) # test time at pens for other snakes, first plot hist (other$Time) #non normal use wilcox to text if treatment and control vary for time other snakes spent at pens res <- wilcox.test(Time ~ treat, data = other, exact = FALSE) res ### subset for large snakes large <- data[which(data$Cat2=="Large"),] ## summary stats of other snakes at treatment and other pens Large_T <- large %>% filter(treat == "trt") Large_C <- large %>% filter(treat == "ctrl") median (Large_T$Time/60) median (Large_C$Time/60) ## summary stats of Large snakes at treatment and other pens other_T <- other %>% filter(treat == "trt") other_C <- other %>% filter(treat == "ctrl") median (other_T$Time/60) median (other_C$Time/60) # test time at pens for large snakes, first plot hist (large$Time) #non normal use wilcox to text if treatment and control vary for time other snakes spent at pens res2 <- wilcox.test(Time ~ treat, data = large, exact = FALSE) res2 # Compare other snakes between treatments. Load data snakes3 <-read.csv("snakes3.csv",header = TRUE) #Count data use a poisson model for other snakes and large snakes Others_glmm <-glmmTMB(S ~ Treatment + (1|Pair), family=poisson, data=snakes3) summary(Others_glmm) Large_glmm <-glmmTMB(L ~ Treatment + (1|Pair), family=poisson, data=snakes3) summary(Large_glmm) #Incidence Rate Ratios tab_model(Others_glmm) tab_model(Large_glmm) #plot residuals to check model fit others_glmm_simres<-simulateResiduals(Others_glmm) plot(others_glmm_simres) Large_glmm_simres<-simulateResiduals(Large_glmm) plot(Large_glmm_simres) #chi square pythons to test treatment and control of pythons chisq.test(x = table(pyt$treat)) # Histogram dat = read_csv("timestamp.csv") dat$hours = as.numeric(dat$Time)/(60*60) library (ggtext) library (ggplot2) ggplot(dat) + geom_histogram(aes(x = hours), bins = 24, boundary = 0, color = "white") + scale_x_continuous(name = "Time (hours)", breaks = c(seq(0, 24, 4)), labels = paste0(c(seq(0, 24, 4)), ":00")) + ylab("Pictures") + theme_bw() + theme(panel.grid = element_blank(), axis.text = element_text(size = 18), axis.title = element_text(size = 24)) + geom_vline(xintercept = 7, linetype = 2) + geom_vline(xintercept = 15, linetype = 2) + labs(x='Time of day (hours)', y = 'Number of photos')+ geom_curve(aes(x = 7, y = 230, xend = 9, yend = 250), curvature = -0.2, colour = "grey25") + geom_curve(aes(x = 13, y = 250, xend = 15, yend = 230), curvature = -0.2, colour = "grey25") + annotate("richtext", x = 11, y = 250, hjust = 0.5, lineheight = 0.85,size = 4, colour = "grey25", label = "Timespan of
visual sampling", label.padding = grid::unit(rep(0, 4), "pt"), fill = NA, label.color = NA)+ geom_vline(xintercept = 18, linetype = 3) + geom_vline(xintercept = 20.25, linetype = 3) + geom_curve(aes(x = 18, y = 230, xend = 18.5, yend = 250), curvature = -0.2, colour = "grey25") + geom_curve(aes(x = 19.75, y = 250, xend = 20.25, yend = 230), curvature = -0.2, colour = "grey25") + annotate("richtext", x = 19.125, y = 250, hjust = 0.5, lineheight = 0.85, size = 4, colour = "grey25", label = "Timespan of
canine
sampling", label.padding = grid::unit(rep(0, 4), "pt"), fill = NA, label.color = NA) ggsave("Histogram.png")