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S1 MODEL TRAINING AND HYPERPARAMETER TUNING14

Before training, hwave and cwave data of each case are downscaled to a 50*50 spatial grid with an15

annual temporal resolution. tas and pr data are downscaled to a 52*52 spatial grid on a monthly temporal16

resolution. Results of 1-to-1 Pearson Correlation performed for each pair of two variables in the input set17

are collected in Fig. S1.18

In this study, grid search is used to optimize hyperparameters of the sAE, the stAE, and the RF19

regression. It is implemented by designating a set of candidate values S j, listed in Table S1, for the j-th20

hyperparameter. With these sets, the search grid GM for model M is defined as the Cartesian product of21

the respective sets of all n parameters tuned, i.e.,22

GM = S1,M ×S2,M ×·· ·×Sn−1,M ×Sn,M

S1.1 Convolutional Autoencoder23

The ConvAE training/validation set is divided at a 9:1 ratio, and minimum validation loss is computed at24

each GsAE and GstAE, for the respective climate variable. The hyperparameter combination with which the25

minimum of validation loss is minimized is selected as the final hyperparameters for stAE:pr, sAE:hwave26

and sAE:cwave. Due to a different behavior of stAE:tas, the combination at which stAE:tas starts stable27

and gradually becomes volatile is selected for this model. Training losses over epochs at the optimum28

learning rate of each ConvAE are plotted on Fig. S3.29

sAE and stAE architectures are implemented with PyTorch and trained separately for each meteo-30

rological variable of interest. Each ConvAE is trained with 32-sample batches. Various learning rates31

are experimented with an excessively large number of epochs that guarantees overfitting with the current32

sample to observe the behavior of the training and validation sets. The optimal result of this experiment is33

recorded in Fig. S3. Since the resolution of the grid data is not immensely high, 1000 epochs are trained34

for each ConvAE. For stAE:pr, sAE:hwave and sAE:cwave, the loss is relatively stable across epochs,35

and the n epochs at which the certain ConvAE’s testing Loss is minimized is in the discrete search36

space {x : x ≤ 1000,10|x,x ∈N}. As of stAE:tas, whilst the training losses of both the training and testing37

datasets decline over time, the loss becomes highly volatile after approximately 400 epochs trained. Final38

training loop hyperparameters used for each ConvAE are listed in Table S2a.39
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S1.2 Random Forest40

For each combination of hyperparameter values in GRF, model performance is evaluated using k-fold41

cross-validation. In this study, Mean Absolute Percentage Error (MAPE) will be used as the performance42

metric. This k-fold cross-validation would seek to minimize mean MAPE of the ”folds”, i.e., finding a43

certain A∗ ∈ GRF such that:44

A∗ = argmin
A

( mean(MAPE(En,m)) )

where A∗ is a combination of hyperparameter values, En,m the set of predicted values with forest size45

n at the m-th fold, and MAPE on the set of predicted values En,m, values across the k folds. Therefore,46

the objective would be to find the value of n that minimizes mean(MAPE(En,m)), the mean MAPE of all47

training-validation set combinations tried in the process.48

S2 INFORMATION ON CMIP6 GCM USED49

A full list of the 25 GCMs selected and their information is included in Table S5. Taylor (2001) proposed50

a diagram that statistically summarizes how well geospatial data match each other’s patterns in terms51

of their correlation (such as Pearson correlation) and the ratio of their variances (therefore standard52

deviations). In this study, to evaluate the performance of downscaled GCMs, standard deviation of each53

variable and the data’s Pearson correlation with the original datasets are plotted onto a polar grid in Fig.54

S5. Overall, the 25-model ensemble excels at reconstructing historical mean, minimum and maximum55

temperatures while demonstrating a degree of deviation from the precipitation dataset used, with the56

ensemble uniformly having a correlation over 0.8 with the observation datasets. However, the models are57

systemically biased. The standard deviation of monthly mean of historical tas and daily historical tasmax58

falls uniformly below the observation standard deviation of the respective variable. The daily historical59

tasmin ensemble has an average (excluding 1 outlier) of approximately 8.6, which is, then, approximately60

0.2degC more than the observation standard deviation.61

It should be noted that HW frequencies projected in this study show diminishing step-wise increases62

over time, which can result from underestimation due to the bias of CMIP6 GCMs on climate extremes63

(Fan et al., 2020). Moreover, Table S6 shows that several commonly used model components are relatively64

biased within the ensemble. The AOGCM used for ScenarioMIP of models ACCESS-CM2, HadGEM3-65

GC31-LL, HADGEM3-GC31-MM, KACE-1-0-G, and UKESM1-0-LL are all supported by the Atmos66

component MetUM-HadGEM3-GA7.1, and all fell in the lower 50% of HW frequency projections.67

Noteworthily, Among those who utilized MetUM-HadGEM3-GA7.1 as their Atmos component, ACCESS-68

CM2 (with ACCESS-OM2) and KACE-1-0-G (with MOM4p1) did not use the NEMO Oceanic model,69

and they represent, in 3 of the four scenarios, the most ”extreme” HW frequency projections attained70

by those within this ensemble. This reaffirms the precise impact of Oceanic components on terrestrial71

ecosystems and the long-term projected climate. Moreover, UKESM-0-LL, HadGEM3-GC31-LL, and72

HadGEM3-GC31-MM all used NEMO-HadGEM3-GO6.0 Oceanic components, but HadGEM3-GC31-73

MM projected significantly more heatwaves than the other two. This reflects the strong impact of the74

GCM modeling approach on projection results, as illustrated in previous studies (such as Jiang et al.75

(2020) and Fan et al. (2020)).76
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Table S1. Hyperparameters tested in grid search

sAE n epochs Learning Rate
{x : x ≤ 1000,10|x,x ∈ N} {1e-5, 5e-5, 1e-4, 1.5e-4, 2e-4,

5e-4}
stAE n epochs Learning Rate

{x : x ≤ 1000,10|x,x ∈ N} {1e-5, 2e-5, 4e-5, 8e-5, 1e-4,
1.5e-4, 2e-4}

RF n estimators max depth
{x : 200 ≤ x ≤ 750,25|x,x ∈ N} {None, 10, 20, 30, 40, 50}
min samples split min samples leaf ccp alpha
{2, 4, 6, 8, 10} {1, 2, 4} {0.0, 0.001, 0.01, 0.1, 0.2}

Table S2. Final Hyperparameters Used

(a) sAE and stAE

Variable Batch Size n epochs Learning Rate Code Size

tas 32 380 8e-5 8
pr 32 390 1e-4 8
hwave 32 210 1.5e-4 8
cwave 32 230 1.5e-4 8

(b) RF Regression

n estimators max depth min samples split min samples leaf ccp alpha

500 20 2 1 0.0

Table S3. Evaluation statistics of the proposed ConvAE-RF model with benchmark

Statistic ConvAE-RF Benchmark Multilinear FGLS

MAPE 5.984e-02 7.367e-02
EVar 0.9438 0.8721
D 11.77 29.60

Table S4. Projected MLYP Total Grain Production (t, 4-year mean across models)

2021-2024 2049-2052 2097-2100
Experiment Median Q1 Q3 IQR Median Q1 Q3 IQR Median Q1 Q3 IQR

SSP126 14589.491 14388.346 14828.931 440.585 14482.063 14332.708 14787.149 454.442 14481.397 14366.355 14723.664 357.309
SSP245 14606.227 14414.940 14835.195 420.255 14540.321 14358.505 14855.511 497.006 14499.167 14277.950 14782.385 504.434
SSP370 14584.645 14390.850 14850.843 459.993 14501.817 14347.967 14786.761 438.794 14489.700 14178.701 14843.262 664.560
SSP585 14641.818 14397.457 14832.825 435.368 14487.352 14312.725 14821.124 508.399 14371.273 14127.815 14539.829 412.015
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Table S5. Selected CMIP6 GCMs in the NEX-GDDP-CMIP6 Ensemble

Model Institution Atmos Component Ocean Component

ACCESS-CM2 CSIRO-ARCCSS MetUM-HadGEM3-GA7.1 ACCESS-OM2
ACCESS-ESM1-5 CSIRO HadGAM2 MOM4
BCC-CSM2-MR BCC BCC-AGCM3-MR MOM4
CanESM5 CCCma CanAM5 NEMOv3.4.1
CMCC-CM2-SR5 CMCC NEMO3.6 NEMOv3.6
CMCC-ESM2 CMCC NEMO3.6 NEMOv3.6
CNRM-CM6-1 CNRM-CERFACS Arpege 6.3 NEMOv3.6
CNRM-ESM2-1 CNRM-CERFACS Arpege 6.3 NEMOv3.6
EC-Earth3 EC-Earth-Consortium IFS cy36r4 NEMOv3.6
FGOALS-g3 CAS GAMIL3 LICOM3.0
GFDL-CM4 NOAA-GFDL GFDL-AM4.0.1 GFDL-OM4p25
GISS-E2-1-G NASA-GISS GISS-E2.1 GISS Ocean
HadGEM3-GC31-LL MOHC MetUM-HadGEM3-GA7.1 NEMO-HadGEM3-GO6.0
HadGEM3-GC31-MM MOHC MetUM-HadGEM3-GA7.1 NEMO-HadGEM3-GO6.0
INM-CM4-8 INM INM-AM4-8 INM-OM5
INM-CM5-0 INM INM-AM5-0 INM-OM5
IPSL-CM6A-LR IPSL LMDZ NEMO-OPA
KACE-1-0-G NIMS-KMA MetUM-HadGEM3-GA7.1 MOM4p1
KIOST-ESM KIOST GFDL-AM2.0 GFDL-MOM5.0
MIROC6 MIROC CCSR AGCM COCO4.9
MIROC-ES2L MIROC CCSR AGCM COCO4.9
MRI-ESM2-0 MRI MRI-AGCM3.5 MRI.COM4.4
NESM3 NUIST ECHAM v6.3 NEMOv3.4
NorESM2-LM NCC CAM4-Oslo MICOM
UKESM1-0-LL NIMS-KMA MetUM-HadGEM3-GA7.1 NEMO-HadGEM3-GO6.0

Table S6. 2-way split of sorted GCMs based on projected HW frequency.

Split SSP126 SSP245 SSP370 SSP585
INM-CM5-0 INM-CM5-0 INM-CM5-0 NESM3
INM-CM4-8 INM-CM4-8 INM-CM4-8 INM-CM4-8
NESM3 NESM3 KACE-1-0-G INM-CM5-0
KACE-1-0-G KACE-1-0-G UKESM1-0-LL KACE-1-0-G
IPSL-CM6A-LR UKESM1-0-LL ACCESS-ESM1-5 HadGEM3-GC31-LL
ACCESS-ESM1-5 ACCESS-ESM1-5 EC-Earth3 ACCESS-ESM1-5
UKESM1-0-LL HadGEM3-GC31-LL MIROC-ES2L EC-Earth3
KIOST-ESM IPSL-CM6A-LR IPSL-CM6A-LR ACCESS-CM2
HadGEM3-GC31-LL CMCC-CM2-SR5 GISS-E2-1-G IPSL-CM6A-LR
EC-Earth3 KIOST-ESM KIOST-ESM
MIROC-ES2L EC-Earth3

lower

ACCESS-CM2
ACCESS-CM2 MIROC-ES2L ACCESS-CM2 GISS-E2-1-G
GISS-E2-1-G GISS-E2-1-G CNRM-ESM2-1 CanESM5
CNRM-ESM2-1 NorESM2-LM CanESM5 GFDL-CM4
FGOALS-g3 GFDL-CM4 FGOALS-g3 MIROC-ES2L
CanESM5 CNRM-ESM2-1 NorESM2-LM NorESM2-LM
NorESM2-LM FGOALS-g3 MRI-ESM2-0 CNRM-ESM2-1
MRI-ESM2-0 CanESM5 BCC-CSM2-MR FGOALS-g3
HadGEM3-GC31-MM CMCC-ESM2 CNRM-CM6-1 BCC-CSM2-MR
BCC-CSM2-MR MRI-ESM2-0 MIROC6 CNRM-CM6-1
CMCC-ESM2 BCC-CSM2-MR CMCC-ESM2 MIROC6
CNRM-CM6-1 CNRM-CM6-1

higher

MIROC6 MIROC6
: Atmos Component: MetUM-HadGEM3-GA7.1.
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Figure S1. Pearson Correlation between Input Variables in the Dataset Used for Training & Testing of the RF
Regressor. Each value in the code of a meteorological variable is listed in a distinct column (order-aware) and applied
Pearson correlation accordingly.
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(a) sAE Model Architecture

(b) stAE Model Architecture

Figure S2. Two Proposed ConvAE Model Architectures
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Figure S3. ConvAE Training Loss (Mean Squared Error) at Various Epochs. Each panel of the grid is labeled
[architecture]:[varname] @ LR [learning rate], and present training loss (not standardized) on a logarithmic Scale.
Selected number of epochs training is indicated by the dotted line.

Figure S4. ConvAE-RF Expected and Observed Grain Output for Each MLYP Province, in tons. In the observation
scatter, the darker dots are members of the training dataset while the lighter are in the testing set. The line represents
the expected grain production predicted by the regression.
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Figure S5. Taylor Diagram of CMIP6 Historical Model Reconstructions of Meteorological Variables in MLYP
through 1980-2014.
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Figure S6. Extended map of CMIP6 GCM projected ETE frequencies in the MLYP provinces, including current
observations, SSP126 temporal range means, SSP245 temporal range means, SSP370 temporal range means, SSP585
temporal range means, and temporal Pearson correlations plotted for each point on the spatial grid.
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