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1. Introduction

Reactome is a curated database of pathways and reactions in human biology. Reactions can be con-
sidered as pathway 'steps'. Reactome defines a 'reaction' as any event in biology that changes the 
state of a biological molecule. Binding, activation, translocation, degradation and classical bio-
chemical events involving a catalyst are all reactions. Information in the database is authored by 
expert biologists, entered and maintained by Reactome’s team of curators and editorial staff. Re-
actome content frequently cross-references other resources e.g. NCBI, Ensembl, UniProt, KEGG 
(Gene and Compound), ChEBI, PubMed and GO. Orthologous reactions inferred from annotation 
for Homo sapiens are available for 14 non-human species including mouse, rat, chicken, puffer 
fish, worm, fly and yeast. Pathways are represented by simple diagrams following an SBGN-like 
format.

Reactome's annotated data describe reactions possible if all annotated proteins and small mo-
lecules were present and active simultaneously in a cell. By overlaying an experimental dataset on 
these annotations, a user can perform a pathway over-representation analysis. By overlaying 
quantitative expression data or time series, a user can visualize the extent of change in affected 
pathways and its progression. A binomial test is used to calculate the probability shown for each 
result, and the p-values are corrected for the multiple testing (Benjamini–Hochberg procedure) 
that arises from evaluating the submitted list of identifiers against every pathway.

To learn more about our Pathway Analysis, please have a look at our relevant publications:

Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, … D’Eustachio P (2016). 
The reactome pathway knowledgebase. Nucleic Acids Research, 44(D1), D481–D487. 

https://doi.org/10.1093/nar/gkv1351. 

Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, … Hermjakob H (2017). 
Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics, 18. 
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2. Properties

This is an overrepresentation analysis: A statistical (hypergeometric distribution) test that de-
termines whether certain Reactome pathways are over-represented (enriched) in the submit-
ted data. It answers the question ‘Does my list contain more proteins for pathway X than 
would be expected by chance?’ This test produces a probability score, which is corrected for 

false discovery rate using the Benjamani-Hochberg method. 

•

71 out of 88 identifiers in the sample were found in Reactome, where 1275 pathways were hit 
by at least one of them.

•

All non-human identifiers have been converted to their human equivalent. •

IntAct interactors were included to increase the analysis background. This greatly increases 
the size of Reactome pathways, which maximises the chances of matching your submitted 
identifiers to the expanded pathway, but will include interactors that have not undergone 
manual curation by Reactome and may include interactors that have no biological signific-
ance, or unexplained relevance.

•

This report is filtered to show only results for species 'Homo sapiens' and resource 'all re-
sources'.

•

The unique ID for this analysis (token) is MjAyNDAzMTQwMzAyMjJfMTU2NTY%3D. This ID 
is valid for at least 7 days in Reactome's server. Use it to access Reactome services with your 
data.

•

https://reactome.org Page 4

https://reactome.org/user/guide/analysis
https://reactome.org/documentation/inferred-events
https://reactome.org


3. Genome-wide overview
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This figure shows a genome-wide overview of the results of your pathway analysis. Reactome path-
ways are arranged in a hierarchy. The center of each of the circular "bursts" is the root of one top-

level pathway, for example "DNA Repair". Each step away from the center represents the next level 
lower in the pathway hierarchy. The color code denotes over-representation of that pathway in 
your input dataset. Light grey signifies pathways which are not significantly over-represented.
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4. Most significant pathways

The following table shows the 25 most relevant pathways sorted by p-value.

Entities Reactions
Pathway name

found ratio p-value FDR* found ratio

TGFBR1 KD Mutants in Cancer 2 / 6 2.62e-04 9.68e-04 0.495 1 / 1 6.79e-05

Loss of Function of TGFBR1 in 
Cancer

2 / 7 3.06e-04 0.001 0.495 2 / 2 1.36e-04

SMAD2/3 Phosphorylation Motif 
Mutants in Cancer

2 / 7 3.06e-04 0.001 0.495 1 / 1 6.79e-05

RHO GTPases Activate Rhotekin and 
Rhophilins

3 / 29 0.001 0.001 0.495 5 / 6 4.08e-04

TGF-beta receptor signaling in EMT 
(epithelial to mesenchymal 
transition)

3 / 32 0.001 0.002 0.523 6 / 6 4.08e-04

Interleukin-4 and Interleukin-13 
signaling

9 / 363 0.016 0.006 0.678 6 / 47 0.003

Late endosomal microautophagy 4 / 99 0.004 0.007 0.678 3 / 3 2.04e-04

Translesion synthesis by POLI 2 / 22 9.60e-04 0.012 0.678 3 / 3 2.04e-04

Translesion synthesis by POLK 2 / 23 0.001 0.013 0.678 3 / 3 2.04e-04

Gap-filling DNA repair synthesis and 
ligation in TC-NER

3 / 66 0.003 0.014 0.678 2 / 2 1.36e-04

TGFBR2 MSI Frameshift Mutants in 
Cancer

1 / 2 8.73e-05 0.015 0.678 1 / 1 6.79e-05

Sema4D induced cell migration and 
growth-cone collapse

2 / 25 0.001 0.015 0.678 4 / 7 4.75e-04

Gap-filling DNA repair synthesis and 
ligation in GG-NER

2 / 27 0.001 0.018 0.678 2 / 2 1.36e-04

Sema4D in semaphorin signaling 2 / 31 0.001 0.023 0.678 5 / 13 8.83e-04

Membrane binding and targetting of 
GAG proteins

2 / 32 0.001 0.024 0.678 3 / 4 2.72e-04

Synthesis And Processing Of GAG, 
GAGPOL Polyproteins

2 / 33 0.001 0.026 0.678 3 / 5 3.40e-04

RHOC GTPase cycle 3 / 85 0.004 0.026 0.678 6 / 6 4.08e-04

Dual incision in TC-NER 3 / 86 0.004 0.027 0.678 7 / 7 4.75e-04

Loss of Function of TGFBR2 in 
Cancer

1 / 4 1.75e-04 0.029 0.678 2 / 2 1.36e-04

TGFBR1 LBD Mutants in Cancer 1 / 4 1.75e-04 0.029 0.678 1 / 1 6.79e-05

TGFBR2 Kinase Domain Mutants in 
Cancer

1 / 4 1.75e-04 0.029 0.678 1 / 1 6.79e-05

Molecules associated with elastic 
fibres

2 / 39 0.002 0.035 0.678 4 / 10 6.79e-04
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Entities Reactions
Pathway name

found ratio p-value FDR* found ratio

Recognition of DNA damage by 
PCNA-containing replication 
complex

2 / 40 0.002 0.036 0.678 5 / 6 4.08e-04

Defective Inhibition of DNA 
Recombination at Telomere Due to 
DAXX Mutations

1 / 5 2.18e-04 0.037 0.678 1 / 1 6.79e-05

Loss of Function of SMAD2/3 in 
Cancer

2 / 41 0.002 0.038 0.678 1 / 2 1.36e-04

* False Discovery Rate
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5. Pathways details

For every pathway of the most significant pathways, we present its diagram, as well as a short sum-
mary, its bibliography and the list of inputs found in it.

TGFBR1 KD Mutants in Cancer (R-HSA-3656532)1. 

Diseases: cancer.

Mutations in the kinase domain (KD) of TGF-beta receptor 1 (TGFBR1) have been found in Fer-
guson-Smith tumor i.e. multiple self-healing squamous epithelioma - MSSE (Goudie et al. 2011), 
breast cancer (Chen et al. 1998), ovarian cancer (Chen et al. 2001) and head-and-neck cancer (Chen 
et al. 2001). KD mutations reported in MSSE are nonsense and frameshift mutations that cause pre-
mature termination of TGFBR1 translation, resulting in truncated receptors that lack substantial 
portions of the kinase domain, or cause nonsense-mediated decay of mutant transcripts. A splice 
site KD mutation c.806-2A>C is predicted to result in the skipping of exon 5 and the absence of KD 
amino acid residues 269-324 from the mutant receptor. The splice site mutant is expressed at the 
cell surface but unresponsive to TGF-beta stimulation (Goudie et al. 2004).

TGFBR1 KD mutations reported in breast, ovarian and head-and-neck cancer are missense muta-
tions, and it appears that these mutant proteins are partially functional but that their catalytic activ-
ity or protein stability is decreased (Chen et al. 1998, Chen et al. 2001a and b). These mutants are 
not shown.

References

https://reactome.org Page 8

https://reactome.org/content/detail/R-HSA-3656532
https://reactome.org


McNiff J, Leffell D, Chen T, Rimm DL, Wells RG, Yan W & Reiss M (2001). Novel inactivating muta-
tions of transforming growth factor-beta type I receptor gene in head-and-neck cancer meta-

stases. Int. J. Cancer, 93, 653-61. 

Gerdes AM, Reversade B, Lee H, Ferguson-Smith MA, Whittaker S, Christie L, ... Verma C (2011). 
Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of muta-

tions in TGFBR1. Nat. Genet., 43, 365-9. 

Garrigue-Antar L, Chen T, Reiss M & Carter D (1998). Transforming growth factor beta type I re-

ceptor kinase mutant associated with metastatic breast cancer. Cancer Res., 58, 4805-10. 

Colligan B, Chen T, Graff JR, Hurst B, Dehner B, Pemberton J, ... Triplett J (2001). Transforming 
growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer 

Res., 61, 4679-82. 

Edit history

Date Action Author

2013-06-05 Created Orlic-Milacic M

2013-08-08 Edited Orlic-Milacic M

2013-08-08 Reviewed Meyer S, Akhurst RJ

2013-08-08 Authored Meyer S, Akhurst RJ, Orlic-Milacic M

2023-11-28 Modified Wright A

2 submitted entities found in this pathway, mapping to 2 Reactome entities

Input UniProt Id Input UniProt Id

TGFB1 P01137 ZFYVE9 O95405-1
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Loss of Function of TGFBR1 in Cancer (R-HSA-3656534)2. 

Diseases: cancer.

TGF-beta receptor 1 (TGFBR1) loss-of-function is a less frequent mechanism for inactivation of 
TGF-beta signaling in cancer compared to SMAD4 and TGFBR2 inactivation. Genomic deletion of 
TGFBR1 locus has been reported in pancreatic cancer (Goggins et al. 1998), biliary duct cancer 
(Goggins et al. 1998) and lymphoma (Schiemann et al. 1999), while loss-of-function mutations have 
been reported in breast (Chen et al. 1998) and ovarian cancer (Chen et al. 2001), metastatic head-
and-neck cancer (Chen et al. 2001), and in Ferguson-Smith tumors (multiple self-healing squamous 
epithelioma - MSSE) (Goudie et al. 2011). Loss-of-function mutations mainly affect the ligand-bind-
ing extracellular domain of TGFBR1 and the kinase domain of TGFBR1 (Goudie et al. 2011). In the 
mouse model of colorectal cancer, Tgfbr1 haploinsufficiency cooperates with Apc haploinsuffi-
ciency in the development of intestinal tumors (Zeng et al. 2009).

References

McNiff J, Leffell D, Chen T, Rimm DL, Wells RG, Yan W & Reiss M (2001). Novel inactivating muta-
tions of transforming growth factor-beta type I receptor gene in head-and-neck cancer meta-

stases. Int. J. Cancer, 93, 653-61. 

Gerdes AM, Reversade B, Lee H, Ferguson-Smith MA, Whittaker S, Christie L, ... Verma C (2011). 
Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of muta-

tions in TGFBR1. Nat. Genet., 43, 365-9. 

Garrigue-Antar L, Chen T, Reiss M & Carter D (1998). Transforming growth factor beta type I re-

ceptor kinase mutant associated with metastatic breast cancer. Cancer Res., 58, 4805-10. 

Phukan S, Zeng Q, Pasche B, Yang GY, Liao J, Xu Y, ... Sadim M (2009). Tgfbr1 haploinsufficiency is 

a potent modifier of colorectal cancer development. Cancer Res., 69, 678-86. 

Colligan B, Chen T, Graff JR, Hurst B, Dehner B, Pemberton J, ... Triplett J (2001). Transforming 
growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer 

Res., 61, 4679-82. 
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Edit history

Date Action Author

2013-06-05 Created Orlic-Milacic M

2013-08-08 Edited Orlic-Milacic M

2013-08-08 Reviewed Meyer S, Akhurst RJ

2013-08-08 Authored Meyer S, Akhurst RJ, Orlic-Milacic M

2023-10-12 Modified Weiser JD

2 submitted entities found in this pathway, mapping to 2 Reactome entities

Input UniProt Id Input UniProt Id

TGFB1 P01137 ZFYVE9 O95405-1
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SMAD2/3 Phosphorylation Motif Mutants in Cancer (R-HSA-3304356)3. 

Diseases: cancer.

The conserved phosphorylation motif Ser-Ser-X-Ser at the C-terminus of SMAD2 and SMAD3 is sub-
ject to disruptive mutations in cancer. The last two serine residues in this conserved motif, namely 
Ser465 and Ser467 in SMAD2 and Ser423 and Ser425 in SMAD3, are phosphorylated by the activated 
TGF beta receptor complex (Macias Silva et al. 1996, Nakao et al. 1997). Once phosphorylated, 
SMAD2 and SMAD3 form transcriptionally active heterotrimers with SMAD4 (Chacko et al. 2001, 
Chacko et al. 2004). Phosphorylation motif mutants of SMAD2 and SMAD3 cannot be activated by 
the TGF-beta receptor complex either because serine residues are substituted with amino acid 
residues that cannot be phosphorylated or because the phosphorylation motif is deleted from the 
protein sequence or truncated (Fleming et al. 2013).

References

Shi G, De Caestecker M, Lin K, Chacko BM, Hayward LJ, Tiwari A, ... Lam S (2004). Structural basis 

of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell, 15, 813-23. 

Wrana JL, Attisano L, Abdollah S, Hoodless PA, Pirone R & Macias-Silva M (1996). MADR2 is a sub-
strate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and 

signaling. Cell, 87, 1215-24. 

Correia JJ, Lam SS, de Caestecker MP, Qin B, Chacko BM & Lin K (2001). The L3 loop and C-terminal 

phosphorylation jointly define Smad protein trimerization. Nat. Struct. Biol., 8, 248-53. 

Souchelnytskyi S, Engstrom U, ten Dijke P, Heldin CH, Wernstedt C & Tamaki K (1997). Phos-
phorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 

and is required for transforming growth factor-beta signaling. J Biol Chem, 272, 28107-15. 
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Mouradov D, Jorissen RN, Jones IT, Tsui C, Palmieri M, Sieber OM, ... Zhao Q (2013). SMAD2, 

SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res., 73, 725-35. 

Edit history

Date Action Author

2013-04-23 Created Orlic-Milacic M

2013-05-03 Edited Jassal B

2013-08-08 Edited Orlic-Milacic M

2013-08-08 Reviewed Meyer S, Akhurst RJ

2013-08-08 Authored Meyer S, Akhurst RJ, Orlic-Milacic M

2023-11-28 Modified Wright A

2 submitted entities found in this pathway, mapping to 2 Reactome entities

Input UniProt Id Input UniProt Id

TGFB1 P01137 ZFYVE9 O95405-1
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RHO GTPases Activate Rhotekin and Rhophilins (R-HSA-5666185)4. 

Rhotekin (RTKN) is a protein with an N-terminally located RHO GTPase binding domain, that 
shares a limited sequence homology with PKNs and rhophilins. RTKN binds to GTP-bound RHOA, 
RHOB and RHOC and can inhibit their GTPase activity (Reid et al. 1996, Fu et al. 2000), which can 
be corroborated by protein kinase D-mediated phosphorylation of RTKN (Pusapati et al. 2012). 
RTKN is implicated in the establishment of cell polarity (Sudo et al. 2006), septin organization (Ito 
et al. 2005, Sudo et al. 2007) and stimulation of SRF-mediated transcription (Reynaud et al. 2000). 
RTKN can have an anti-apoptotic effect that depends on the activation of NFKB (NF-kappaB) (Liu et 
al. 2004). RTKN2 (rhotekin-2) is another rhotekin exclusively expressed in lymphocytes (Collier et 
al. 2004). The function and the mechanism of action of RTKN2 are unknown.

Rhophillins include two family members - rhophilin-1 (RHNP1) and rhophilin-2 (RHPN2) with 
~75% sequence identity. A RHO GTPase binding domain is located at the N-terminus of rhophilins, 
followed by a BRO1 domain (characteristic of proteins involved in protein kinase C signaling) and a 
C-terminal PDZ domain. RHOA:GTP binds both RHPN1 and RHPN2 and these interactions may be 
involved in organization of the actin cytoskeleton and/or cell motility (Watanabe et al. 1996, Fujita 
et al. 2000, Peck et al. 2002). RHOB:GTP recruits RHPN2 to endosomes which may be involved in 
the function of thyroid cells (Mircescu et al. 2002).

References

Bouker KB, Burbelo PD, Peck JW, Oberst M & Bowden E (2002). The RhoA-binding protein, rhophil-

in-2, regulates actin cytoskeleton organization. J. Biol. Chem., 277, 43924-32. 

Morishita R, Ito H, Nagata K, Sudo K, Iwamoto I & Asano T (2007). SEPT9 sequence alternations 
causing hereditary neuralgic amyotrophy are associated with altered interactions with 

SEPT4/SEPT11 and resistance to Rho/Rhotekin-signaling. Hum. Mutat., 28, 1005-13. 

Fabre S, Reynaud C & Jalinot P (2000). The PDZ protein TIP-1 interacts with the Rho effector 
rhotekin and is involved in Rho signaling to the serum response element. J. Biol. Chem., 275, 

33962-8. 
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Madaule P, Fujisawa K, Narumiya S, Furuyashiki T, Watanabe G, Reid T, ... Morii N (1996). 
Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, 

and rhophilin in the rho-binding domain. J. Biol. Chem., 271, 13556-60. 

Madaule P, Kakizuka A, Mukai H, Fujisawa K, Narumiya S, Watanabe G, ... Ono Y (1996). Protein 
kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science, 271, 

645-8. 

Edit history

Date Action Author

2014-10-24 Authored Orlic-Milacic M

2014-12-26 Authored Rivero Crespo F

2015-01-22 Created Orlic-Milacic M

2015-02-02 Edited Orlic-Milacic M

2023-11-16 Modified Wright A

2 submitted entities found in this pathway, mapping to 3 Reactome entities

Input UniProt Id Input UniProt Id

LIN7B Q9HAP6 RHOC P08134, P61586
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TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) (R-

HSA-2173791)

5. 

In normal cells and in the early stages of cancer development, signaling by TGF-beta plays a tumor 
suppressive role, as SMAD2/3:SMAD4-mediated transcription inhibits cell division by downregulat-
ing MYC oncogene transcription and stimulating transcription of CDKN2B tumor suppressor gene. 
In advanced cancers however, TGF-beta signaling promotes metastasis by stimulating epithelial to 
mesenchymal transition (EMT).

TGFBR1 is recruited to tight junctions by binding PARD6A, a component of tight junctions. After 
TGF-beta stimulation, activated TGFBR2 binds TGFBR1 at tight junctions, and phosphorylates both 
TGFBR1 and PARD6A. Phosphorylated PARD6A recruits SMURF1 to tight junctions. SMURF1 is able 
to ubiquitinate RHOA, a component of tight junctions needed for tight junction maintenance, lead-
ing to disassembly of tight junctions, an important step in EMT (Wang et al. 2003, Ozdamar et al. 
2005).

References

Barrios-Rodiles M, Zhang Y, Wrana JL, Wang HR, Bose R & Ozdamar B (2005). Regulation of the po-
larity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science, 307, 1603-9. 

Zhang Y, Thomsen GH, Wrana JL, Wang HR, Ogunjimi AA, Ozdamar B & Alexandrova E (2003). 
Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science, 

302, 1775-9. 

Edit history
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Date Action Author

2012-04-05 Authored Orlic-Milacic M

2012-04-10 Edited Jassal B

2012-05-14 Reviewed Huang T

2012-11-14 Reviewed Chen YG

2023-11-28 Modified Wright A

3 submitted entities found in this pathway, mapping to 3 Reactome entities

Input UniProt Id Input UniProt Id Input UniProt Id

RHOC P61586 TGFB1 P01137 UBC P0CG48
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Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807)6. 

Interleukin-4 (IL4) is a principal regulatory cytokine during the immune response, crucially im-
portant in allergy and asthma (Nelms et al. 1999). When resting T cells are antigen-activated and ex-
pand in response to Interleukin-2 (IL2), they can differentiate as Type 1 (Th1) or Type 2 (Th2) T 
helper cells. The outcome is influenced by IL4. Th2 cells secrete IL4, which both stimulates Th2 in 
an autocrine fashion and acts as a potent B cell growth factor to promote humoral immunity 
(Nelms et al. 1999).

Interleukin-13 (IL13) is an immunoregulatory cytokine secreted predominantly by activated Th2 
cells. It is a key mediator in the pathogenesis of allergic inflammation. IL13 shares many functional 
properties with IL4, stemming from the fact that they share a common receptor subunit. IL13 re-
ceptors are expressed on human B cells, basophils, eosinophils, mast cells, endothelial cells, fibro-
blasts, monocytes, macrophages, respiratory epithelial cells, and smooth muscle cells, but unlike 
IL4, not T cells. Thus IL13 does not appear to be important in the initial differentiation of CD4 T 
cells into Th2 cells, rather it is important in the effector phase of allergic inflammation (Hershey et 
al. 2003). 
 
IL4 and IL13 induce “alternative activation” of macrophages, inducing an anti-inflammatory phen-
otype by signaling through IL4R alpha in a STAT6 dependent manner. This signaling plays an im-
portant role in the Th2 response, mediating anti-parasitic effects and aiding wound healing (Gor-
don & Martinez 2010, Loke et al. 2002) 
 
There are two types of IL4 receptor complex (Andrews et al. 2006). Type I IL4R (IL4R1) is predomin-
antly expressed on the surface of hematopoietic cells and consists of IL4R and IL2RG, the common 
gamma chain. Type II IL4R (IL4R2) is predominantly expressed on the surface of nonhematopoietic 
cells, it consists of IL4R and IL13RA1 and is also the type II receptor for IL13. (Obiri et al. 1995, 
Aman et al. 1996, Hilton et al. 1996, Miloux et al. 1997, Zhang et al. 1997). The second receptor for 
IL13 consists of IL4R and Interleukin-13 receptor alpha 2 (IL13RA2), sometimes called Interleukin-
13 binding protein (IL13BP). It has a high affinity receptor for IL13 (Kd = 250 pmol/L) but is not suf-
ficient to render cells responsive to IL13, even in the presence of IL4R (Donaldson et al. 1998). It is 
reported to exist in soluble form (Zhang et al. 1997) and when overexpressed reduces JAK-STAT sig-
naling (Kawakami et al. 2001). It's function may be to prevent IL13 signalling via the functional 
IL4R:IL13RA1 receptor. IL13RA2 is overexpressed and enhances cell invasion in some human can-
cers (Joshi & Puri 2012).
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The first step in the formation of IL4R1 (IL4:IL4R:IL2RB) is the binding of IL4 with IL4R (Hoffman 
et al. 1995, Shen et al. 1996, Hage et al. 1999). This is also the first step in formation of IL4R2 
(IL4:IL4R:IL13RA1). After the initial binding of IL4 and IL4R, IL2RB binds (LaPorte et al. 2008), to 
form IL4R1. Alternatively, IL13RA1 binds, forming IL4R2. In contrast, the type II IL13 complex 
(IL13R2) forms with IL13 first binding to IL13RA1 followed by recruitment of  IL4R (Wang et al. 
2009).

Crystal structures of the IL4:IL4R:IL2RG, IL4:IL4R:IL13RA1 and IL13:IL4R:IL13RA1 complexes have 
been determined (LaPorte et al. 2008). Consistent with these structures, in monocytes IL4R is tyr-
osine phosphorylated in response to both IL4 and IL13 (Roy et al. 2002, Gordon & Martinez 2010) 
while IL13RA1 phosphorylation is induced only by IL13 (Roy et al. 2002, LaPorte et al. 2008) and 
IL2RG phosphorylation is induced only by IL4 (Roy et al. 2002).

Both IL4 receptor complexes signal through Jak/STAT cascades. IL4R is constitutively-associated 
with JAK2 (Roy et al. 2002) and associates with JAK1 following binding of IL4 (Yin et al. 1994) or IL13 
(Roy et al. 2002). IL2RG constitutively associates with JAK3 (Boussiotis et al. 1994, Russell  et al. 
1994). IL13RA1 constitutively associates with TYK2 (Umeshita-Suyama et al. 2000, Roy et al. 2002, 
LaPorte et al. 2008, Bhattacharjee et al. 2013).

IL4 binding to IL4R1 leads to phosphorylation of JAK1 (but not JAK2) and STAT6 activation (Takeda 
et al. 1994, Ratthe et al. 2007, Bhattacharjee et al. 2013).

IL13 binding increases activating tyrosine-99 phosphorylation of IL13RA1 but not that of IL2RG. IL4 
binding to IL2RG leads to its tyrosine phosphorylation (Roy et al. 2002). IL13 binding to IL4R2 leads 
to TYK2 and JAK2 (but not JAK1) phosphorylation (Roy & Cathcart 1998, Roy et al. 2002).

Phosphorylated TYK2 binds and phosphorylates STAT6 and possibly STAT1 (Bhattacharjee et al. 
2013).

A second mechanism of signal transduction activated by IL4 and IL13 leads to the insulin receptor 
substrate (IRS) family (Kelly-Welch et al. 2003). IL4R1 associates with insulin receptor substrate 2 
and activates the PI3K/Akt and Ras/MEK/Erk pathways involved in cell proliferation, survival and 
translational control. IL4R2 does not associate with insulin receptor substrate 2 and consequently 
the PI3K/Akt and Ras/MEK/Erk pathways are not activated (Busch-Dienstfertig & González-
Rodríguez 2013).
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Late endosomal microautophagy (R-HSA-9615710)7. 

Cellular compartments: phagocytic vesicle, cytosol.

Microautophagy (MI) is a non-selective autophagic pathway that involves internalisation of cytosol-
ic cargo through invaginations of the lysosomal membrane. MI can be induced by nitrogen starva-
tion and complements other related self-eating processes such as Macroautophagy (MA) and Chap-
erone Mediated Autophagy (CMA). MI can degrade cell organelles and bulk cytosolic proteins dir-
ectly via the lysosome and late endosome. MI can also target substrates with KFERQ motifs with the 
help of HSPA8 (Li W W et al. 2012).
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Translesion synthesis by POLI (R-HSA-5656121)8. 

Cellular compartments: nucleoplasm.

DNA polymerase iota (POLI) is a Y family DNA polymerase with an active site that favours Hoog-
steen base pairing instead of Watson-Crick base pairing. POLI-mediated Hoogsteen base pairing 
and rotation of template purines from anti to syn conformation serves as a mechanism to displace 
adducts on template G or template A that interfere with DNA replication, or to allow base pairing of 
damaged purines with a disrupted Watson-Crick edge but an intact Hoogsteen edge (Nair et al. 
2004, Nair et al. 2006).

POLI is recruited to DNA damage sites through its interaction with PCNA and REV1. POLI contains 
a PIP box and two UBMs (ubiquitin binding motifs) that are responsible for POLI binding to mon-
oubiquitinated PCNA (MonoUb:K164-PCNA) (Bienko et al. 2005, Haracska et al. 2005, Bomar et al. 
2010). The interaction between POLI and the C-terminus of REV1 is evolutionarily conserved 
(Kosarek et al. 2003, Guo et al. 2003, Ohashi et al. 2004).

After it incorporates a dNMP opposite to damaged template base, POLI is unable to efficiently 
elongate the DNA strand further. The elongation step is performed by the polymerase zeta complex 
(POLZ), composed of REV3L and MAD2L2 subunits (Johnson et al. 2000). The involvement of REV1 
and POLZ in POLI-mediated translesion DNA synthesis (TLS) suggests that POLI forms a quaternary 
complex with REV1 and POLZ, as shown for POLK and proposed for other Y family DNA poly-
merases (Xie et al. 2012).
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Translesion synthesis by POLK (R-HSA-5655862)9. 

Cellular compartments: nucleoplasm.

DNA polymerase kappa (POLK) is a Y family DNA polymerase that is most efficient in translesion 
DNA synthesis (TLS) across oxidation derivatives of DNA bases, such as thymine glycol (Tg) and 8-
oxoguanine (OGUA), as well as bulky DNA adducts, such as benzo(a)pyrene diol epoxide guanine 
adduct (BPDE-G) (Zhang et al. 2000, Fischhaber et al.2002, Avkin et al. 2004, Vasquez-Del Carpio et 
al. 2009, Yoon et al. 2010, Lior-Hoffmann et al. 2012, Christov et al. 2012, Yoon et al. 2014). POLK 
carries out TLS by forming a quaternary complex with REV1 and POLZ (REV3L:MAD2L2) at DNA 
damage sites, where POLK simultaneously binds REV1 and monoubiquitinated PCNA (Ohashi et al. 
2009, Haracska, Unk et al. 2002, Bi et al. 2006). POLK and POLZ cooperate in the elongation of nuc-
leotides inserted opposite to lesioned bases by POLK. Similarly to POLZ, POLK has low processivity 
and is error-prone (Ohashi et al. 2000, Haracska, Prakash et al. 2002, Yoon et al. 2010).
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Gap-filling DNA repair synthesis and ligation in TC-NER (R-HSA-6782210)10. 

Cellular compartments: nucleoplasm.

In transcription-coupled nucleotide excision repair (TC-NER), similar to global genome nucleotide 
excision repair (GG-NER), DNA polymerases delta or epsilon, or the Y family DNA polymerase 
kappa, fill in the single stranded gap that remains after dual incision. DNA ligases LIG1 or LIG3, the 
latter in complex with XRCC1, subsequently seal the single stranded nick by ligating the 3' end of 
the newly synthesized patch with the 5' end of incised DNA (Moser et al. 2007, Staresincic et al. 
2009, Ogi et al. 2010).
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TGFBR2 MSI Frameshift Mutants in Cancer (R-HSA-3642279)11. 

Diseases: cancer.

The short adenine repeat in the coding sequence of TGF-beta receptor II (TGFBR2) gene is fre-
quently targeted by loss-of-function frameshift mutations in colon cancers with microsatellite in-
stability (MSI). The 1- or 2-bp deletions in the adenine stretch of TGFBR2 cDNA introduce a prema-
ture stop codon that leads to degradation of the majority of mutant transcripts through nonsense-
mediated decay or to production of a truncated TGFBR2 that cannot be presented on the cell sur-
face. Cells that harbor TGFBR2 MSI frameshift mutations are resistant to TGF-beta (TGFB1)-medi-
ated growth inhibition.
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Sema4D induced cell migration and growth-cone collapse (R-HSA-416572)12. 

Cellular compartments: plasma membrane.

Sema4D-mediated attraction of endothelial cells requires Rho, but not R-Ras, signaling. Sema4D-
mediated plexinB1 activation activates Rho and its downstream effector ROCK. ROCK then phos-
phorylates MLC to induce actomyosin stress fiber contraction and to direct the assembly of focal 
adhesion complexes and integrin-mediated adhesion.
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Gap-filling DNA repair synthesis and ligation in GG-NER (R-HSA-5696397)13. 

Cellular compartments: nucleoplasm.

Global genome nucleotide excision repair (GG-NER) is completed by DNA repair synthesis that fills 
the single stranded gap created after dual incision of the damaged DNA strand and excision of the 
~27-30 bases long oligonucleotide that contains the lesion. DNA synthesis is performed by DNA 
polymerases epsilon or delta, or the Y family DNA polymerase kappa (POLK), which are loaded to 
the repair site after 5' incision (Staresincic et al. 2009, Ogi et al. 2010). DNA ligases LIG1 or LIG3 (as 
part of the LIG3:XRCC1 complex) ligate the newly synthesized stretch of oligonucleotides to the in-
cised DNA strand (Moser et al. 2007).
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Sema4D in semaphorin signaling (R-HSA-400685)14. 

Semaphorin 4D (Sema 4D/CD100) is an axon guidance molecule with two disulfide-linked 150-kDa 
subunits.  SEMA4D is structurally defined by a conserved 500-amino acid extracellular domain with 
16 cysteines (sema domain) and also an Ig-like domain C-terminal to the sema domain. Sema4D is 
expressed on the cell surface as a homodimer; cysteine 679 within the sema domain is required for 
this dimerization.

The main receptors for Sema4D are plexin-B1 and CD72. The activation of plexins by semaphorins 
initiates a variety of signaling processes that involve several small GTPases of the Ras and Rho fam-
ilies. Sema4D-Plexin-B1 interaction appears to mediate different and sometimes opposite effects 
depending on the cellular context. Plexin-B1 activation inhibits integrin-mediated cell attachment 
and cell migration through the activation of the R-RasGAP activity inherent to plexin-B1 or through 
the inhibition of RhoA. However, activation of plexin-B1 by Sema4D stimulates the migration of en-
dothelial cells by mediating the activation of RhoA.
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Membrane binding and targetting of GAG proteins (R-HSA-174490)15. 

Diseases: Human immunodeficiency virus infectious disease.

One of the mysteries of Gag protein involvement in HIV virion assembly is how the proteins are tar-
geted to the proper membrane for budding. Infectious retroviruses do not bud from all of the avail-
able membrane surfaces within an infected cell, but primarily from the plasma membrane, which 
constitutes a small proportion of the total membrane surface in most cells. In polarized cells, the 
sites of budding are further restricted to the basolateral membrane.
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Synthesis And Processing Of GAG, GAGPOL Polyproteins (R-HSA-174495)16. 

Diseases: Human immunodeficiency virus infectious disease.

Evidence suggests that the RNA molecules used for the synthesis of Gag and Gag-Pro-Pol are not the 
same molecules that are packaged into virions. Gag proteins do not appear to aggregate around and 
capture the RNA contained in the polyribosome from which they emerged, but rather bind to and 
ultimately encapsidate free transcripts elsewhere. During the replication of retroviruses, large 
numbers of Gag molecules must be generated to serve as precursors to the structural proteins of 
the virions. Retroviruses have developed a mechanism that permits expression of the Gag protein 
at high levels relative to the protein sequences encoded in the pro and pol genes, while retaining 
coregulated expression. This linkage results from the use of the same initiation codon in the same 
mRNA to express the gag, pro, and pol genes. Translation of this RNA leads occasionally to synthes-
is of a fusion protein that is usually called the Gag-Pol precursor but is now more appropriately 
called the Gag-Pro-Pol precursor
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RHOC GTPase cycle (R-HSA-9013106)17. 

This pathway catalogues RHOC guanine nucleotide exchange factors (GEFs), GTPase activator pro-
teins (GAPs), GDP dissociation inhibitors (GDIs) and RHOC effectors. RHOC belongs to the RHOA 
subfamily of RHO GTPases and shares 85% sequence identity with RHOA and RHOB (Wheeler and 
Ridley 2004). Like RHOA and RHOB, RHOC regulates the cytoskeleton and is involved in cell adhe-
sion and migration (Guan et al. 2018). RHOC contributes to invasiveness and metastatic potential of 
cancer cells (Bravo-Cordero et al. 2014; Guan et al. 2018; Thomas et al. 2019).
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Dual incision in TC-NER (R-HSA-6782135)18. 

Cellular compartments: nucleoplasm.

In transcription-coupled nucleotide excision repair (TC-NER), similar to global genome nucleotide 
excision repair (GG-NER), the oligonucleotide that contains the lesion is excised from the open 
bubble structure via dual incision of the affected DNA strand. 5' incision by the ERCC1:ERCC4 (ER-
CC1:XPF) endonuclease precedes 3' incision by ERCC5 (XPG) endonuclease. In order for the TC-
NER pre-incision complex to assemble and the endonucleases to incise the damaged DNA strand, 
the RNA polymerase II (RNA Pol II) complex has to backtrack - reverse translocate from the dam-
age site. Although the mechanistic details of this process are largely unknown in mammals, it may 
involve ERCC6/ERCC8-mediated chromatin remodelling/ubiquitination events, the DNA helicase 
activity of the TFIIH complex and TCEA1 (TFIIS)-stimulated cleavage of the 3' protruding end of 
nascent mRNA by RNA Pol II (Donahue et al. 1994, Lee et al. 2002, Sarker et al. 2005, Vermeulen 
and Fousteri 2013, Hanawalt and Spivak 2008, Staresincic et al. 2009, Epshtein et al. 2014).
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Loss of Function of TGFBR2 in Cancer (R-HSA-3642278)19. 

Diseases: cancer.

Loss-of-function of transforming growth factor-beta receptor II (TGFBR2) is most prevalent in 
colorectal cancer. Over 60% of colorectal cancers with microsatellite instability (MSI) harbor inac-
tivating mutations in both alleles of TGFBR2, mostly 1 or 2 bp deletions in the 10 bp adenine repeat 
that codes for three lysine residues in the extracellular domain of TGFBR2. These small deletions 
result in a frameshift and a premature stop codon (Markowitz et al. 1995). TGFBR2 kinase domain 
(KD) mutations are found in ~20% of microsatellite stable (MSS) colorectal cancers and these are 
mostly missense mutations that results in substitution of conserved amino acids in the kinase do-
main (Grady et al. 1999), likely impairing the catalytic activity of TGFBR2 KD mutants. The silencing 
of TGFBR2 gene via promoter methylation has been reported in B-cell lymphoma (Chen et al. 2007). 
Knockout of murine Tgfbr2 in colonic epithelium promotes azoxymethane-induced colon cancer 
formation (Biswas et al. 2004) and increases the number of adenomas and adenocarcinomas in 
Apc+/- mice (Munoz et al. 2006).
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TGFBR1 LBD Mutants in Cancer (R-HSA-3656535)20. 

Diseases: cancer.

Mutations in the ligand-binding domain (LBD) of TGF-beta receptor 1 (TGFBR1) have been reported 
as germline mutations in Ferguson-Smith tumor (multiple self-healing squamous epithelioma - 
MSSE), an autosomal-dominant skin cancer condition (Ferguson-Smith et al. 1934, Ferguson-Smith 
et al. 1971), with tumors frequently showing loss of heterozygosity of the wild-type TGFBR1 allele 
(Goudie et al. 2011). Somatic mutations in the LBD of TGFBR1 have been reported in esophageal 
carcinoma (Dulak et al. 2013).
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TGFBR2 Kinase Domain Mutants in Cancer (R-HSA-3645790)21. 

Diseases: cancer.

Missense mutations in the kinase domain (KD) of TGF-beta receptor II (TGFBR2) are found in ~20% 
of microsatellite stable (MSS) colon cancers and make affected tumors resistant to TGF-beta 
(TGFB1)-mediated growth inhibition (Grady et al. 1999). While both alleles of TGFBR2 are affected 
by inactivating mutations in MSS colorectal cancer (Grady et al. 1999), a study of MSS esophageal 
carcinoma indicates that TGFBR2 KD mutations may function in a dominant-negative way (Tanaka 
et al. 2000). KD mutations in TGFBR2 are rarely reported in microsatellite instable (MSI) colorectal 
cancer (Parsons et al. 1995, Takenoshita et al. 1997).
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Molecules associated with elastic fibres (R-HSA-2129379)22. 

Proteins found associated with microfibrils include vitronectin (Dahlback et al. 1990), latent trans-
forming growth factor beta-binding proteins (Kielty et al. 2002, Munger & Sheppard 2011), emilin 
(Bressan et al. 1993, Mongiat et al. 2000), members of the microfibrillar-associated proteins 
(MFAPs, Gibson et al.1996), and fibulins (Roark et al. 1995, Yanagisawa et al. 2002). The significance 
of these interactions is not well understood but may help mediate elastin-fibrillin interactions dur-
ing elastic fibre assembly.

Proteoglycans such as versican (Isogai et al. 2002), biglycan, and decorin (Reinboth et al. 2002) can 
interact with the microfibrils. They confer specific properties including hydration, impact absorp-
tion, molecular sieving, regulation of cellular activities, mediation of growth factor association, and 
release and transport within the extracellular matrix (Buczek-Thomas et al. 2002). In addition, glyc-
osaminoglycans have been shown to interact with tropoelastin through its lysine side chains (Wu et 
al. 1999) regulating tropoelastin assembly (Tu and Weiss, 2008).
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Recognition of DNA damage by PCNA-containing replication complex (R-

HSA-110314)

23. 

Cellular compartments: nucleoplasm.

Damaged double strand DNA (dsDNA) cannot be successfully used as a template by replicative DNA 
polymerase delta (POLD) and epsilon (POLE) complexes (Hoege et al. 2002). When the replication 
complex composed of PCNA, RPA, RFC and POLD or POLE stalls at a DNA damage site, PCNA be-
comes monoubiquitinated by RAD18 bound to UBE2B (RAD6). POLD or POLE dissociate from mon-
oubiquitinated PCNA, while Y family DNA polymerases - REV1, POLH (DNA polymerase eta), POLK 
(DNA polymerase kappa) and POLI (DNA polymerase iota) - bind monoubiquitinated PCNA through 
their ubiquitin binding and PCNA binding motifs, resulting in a polymerase switch and initiation of 
translesion synthesis (TLS) (Hoege et al. 2002, Friedberg et al. 2005).
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Defective Inhibition of DNA Recombination at Telomere Due to DAXX 

Mutations (R-HSA-9670613)

24. 

Cellular compartments: nucleoplasm.

Diseases: cancer.

A small portion of tumors that are positive for alternative lengthening of telomeres (ALT) markers 
and negative for mutations in the ATRX gene harbor loss-of-function mutations in the DAXX gene, 
which encodes the ATRX binding partner DAXX. For review, please refer to Gocha et al. 2013, and 
Pickett and Reddel 2015.
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Loss of Function of SMAD2/3 in Cancer (R-HSA-3304349)25. 
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Diseases: cancer.

Loss-of-function of SMAD2 and SMAD3 in cancer occurs less frequently than the loss of SMAD4 
function and was studied in most detail in colorectal cancer (Fleming et al. 2013).

Similarly to SMAD4, coding sequence mutations in SMAD2 and SMAD3 in cancer cluster in the MH2 
domain, involved in the formation of transcriptionally active heterotrimers with SMAD4. Another 
region of SMAD2 and SMAD3 that is frequently mutated in cancer is the phosphorylation motif Ser-
Ser-X-Ser at the very C-terminus (Fleming et al. 2013). The phosphorylation of this conserved motif 
by the activated TGF-beta receptor complex is an essential step in SMAD2 and SMAD3 activation 
and a prerequisite for the formation of heterotrimers with SMAD4 (Chacko et al. 2001, Chacko et al. 
2004).

Smad2 knockout mice die at embryonic day 8.5, with impaired visceral endoderm function and de-
ficiency in mesoderm formation. Smad2+/- heterozygotes appear normal and are fertile (Hama-
moto et al. 2002). While polyps of compound Smad2+/-;Apc+/- mice show no difference in the num-
ber, size or histopathology from the polyps of Apc+/- mice (Takaku et al. 2002, Hamamoto et al. 
2002), Smad2+/-;Apc+/- mice develop extremely large intestinal tumors and multiple invasive can-
cers not observed in Apc+/- mice. Therefore, loss of Smad2 does not contribute to initiation of in-
testinal tumorigenesis, but accelerates malignant progression (Hamamoto et al. 2002). Smad3 
knockout mice are viable and fertile but die between 4 and 6 months of age from colorectal adeno-
carcinoma (Zhu et al. 1998), indicating that the loss of Smad3 initiates intestinal tumorigenesis.
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6. Identifiers found

Below is a list of the input identifiers that have been found or mapped to an equivalent element in 
Reactome, classified by resource.
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RNF6 A0A0S2Z4G9 Q9Y5V3 RPA2 P15927 P23025

RSRC2 Q7L4I2-2 Q08379 S100A10 P60903 P46092

SCAMP2 O15127 P13569 SENP3 Q9H4L4 Q8IZL8

SFMBT1 Q9UHJ3 P62805 SORL1 Q92673 Q15669

SPHK2 Q9NRA0 Q96CV9 STK11 Q15831 P26927

TCP1 P17987 P52333 TGFB1 P07200, P01137 P37173

TGFB1I1 O43294 Q14289 TGM1 P22735 P13284

THBS3 P49746 P27797 TMEM165 Q9HC07 P13569

TMEM60 Q9H2L4 Q9UBD6 TRIM3 O75382 P49674

TSG101 Q99816 Q8WUM4 UBC P0CG48 Q9Y253

VIM P08670 O60437 ZFPM2 Q8WW38 P14136

ZFYVE9 O95405 P84022, Q15796 ZNF217 O75362 Q13547

ZNF791 Q3KP31 O76024
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7. Identifiers not found

These 17 identifiers were not found neither mapped to any entity in Reactome.

CLUL1 COX8C From ITFG1 MATN2 MEX3D MPHOSPH9 NEUROG1

NRARP PLAC1 PSRC1 SLC35F3 SMOC2 SRPX UXS1 ZDHHC1

ZNF367


