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1. Introduction

Reactome is a curated database of pathways and reactions in human biology. Reactions can be con-
sidered as pathway 'steps'. Reactome defines a 'reaction' as any event in biology that changes the 
state of a biological molecule. Binding, activation, translocation, degradation and classical bio-
chemical events involving a catalyst are all reactions. Information in the database is authored by 
expert biologists, entered and maintained by Reactome’s team of curators and editorial staff. Re-
actome content frequently cross-references other resources e.g. NCBI, Ensembl, UniProt, KEGG 
(Gene and Compound), ChEBI, PubMed and GO. Orthologous reactions inferred from annotation 
for Homo sapiens are available for 14 non-human species including mouse, rat, chicken, puffer 
fish, worm, fly and yeast. Pathways are represented by simple diagrams following an SBGN-like 
format.

Reactome's annotated data describe reactions possible if all annotated proteins and small mo-
lecules were present and active simultaneously in a cell. By overlaying an experimental dataset on 
these annotations, a user can perform a pathway over-representation analysis. By overlaying 
quantitative expression data or time series, a user can visualize the extent of change in affected 
pathways and its progression. A binomial test is used to calculate the probability shown for each 
result, and the p-values are corrected for the multiple testing (Benjamini–Hochberg procedure) 
that arises from evaluating the submitted list of identifiers against every pathway.

To learn more about our Pathway Analysis, please have a look at our relevant publications:

Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, … D’Eustachio P (2016). 
The reactome pathway knowledgebase. Nucleic Acids Research, 44(D1), D481–D487. 

https://doi.org/10.1093/nar/gkv1351. 

Fabregat A, Sidiropoulos K, Viteri G, Forner O, Marin-Garcia P, Arnau V, … Hermjakob H (2017). 
Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinformatics, 18. 
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2. Properties

This is an overrepresentation analysis: A statistical (hypergeometric distribution) test that de-
termines whether certain Reactome pathways are over-represented (enriched) in the submit-
ted data. It answers the question ‘Does my list contain more proteins for pathway X than 
would be expected by chance?’ This test produces a probability score, which is corrected for 

false discovery rate using the Benjamani-Hochberg method. 

•

65 out of 83 identifiers in the sample were found in Reactome, where 1091 pathways were hit 
by at least one of them.

•

All non-human identifiers have been converted to their human equivalent. •

IntAct interactors were included to increase the analysis background. This greatly increases 
the size of Reactome pathways, which maximises the chances of matching your submitted 
identifiers to the expanded pathway, but will include interactors that have not undergone 
manual curation by Reactome and may include interactors that have no biological signific-
ance, or unexplained relevance.

•

This report is filtered to show only results for species 'Homo sapiens' and resource 'all re-
sources'.

•

The unique ID for this analysis (token) is MjAyNDAzMTQwNjM0MTJfMTU2OTY%3D. This ID 
is valid for at least 7 days in Reactome's server. Use it to access Reactome services with your 
data.

•
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3. Genome-wide overview
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This figure shows a genome-wide overview of the results of your pathway analysis. Reactome path-
ways are arranged in a hierarchy. The center of each of the circular "bursts" is the root of one top-

level pathway, for example "DNA Repair". Each step away from the center represents the next level 
lower in the pathway hierarchy. The color code denotes over-representation of that pathway in 
your input dataset. Light grey signifies pathways which are not significantly over-represented.
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4. Most significant pathways

The following table shows the 25 most relevant pathways sorted by p-value.

Entities Reactions
Pathway name

found ratio p-value FDR* found ratio

RHO GTPases Activate Formins 5 / 203 0.009 0.019 0.754 10 / 27 0.002

Sema4D in semaphorin signaling 2 / 31 0.001 0.023 0.754 5 / 13 8.83e-04

Receptor-type tyrosine-protein 
phosphatases

2 / 37 0.002 0.032 0.754 2 / 6 4.08e-04

Defective Inhibition of DNA 
Recombination at Telomere Due to 
DAXX Mutations

1 / 5 2.18e-04 0.037 0.754 1 / 1 6.79e-05

GABA synthesis 1 / 6 2.62e-04 0.044 0.754 2 / 2 1.36e-04

G1/S-Specific Transcription 4 / 184 0.008 0.051 0.754 3 / 28 0.002

Signaling by membrane-tethered 
fusions of PDGFRA or PDGFRB

1 / 7 3.06e-04 0.051 0.754 2 / 2 1.36e-04

MECP2 regulates transcription of 
genes involved in GABA signaling

2 / 51 0.002 0.057 0.754 2 / 4 2.72e-04

PP2A-mediated dephosphorylation 
of key metabolic factors

1 / 9 3.93e-04 0.065 0.754 4 / 4 2.72e-04

Defective CHST3 causes SEDCJD 1 / 9 3.93e-04 0.065 0.754 1 / 1 6.79e-05

Defective CHST14 causes EDS, 
musculocontractural type

1 / 9 3.93e-04 0.065 0.754 1 / 1 6.79e-05

Defective CHSY1 causes TPBS 1 / 10 4.37e-04 0.072 0.754 2 / 2 1.36e-04

Synthesis of IPs in the ER lumen 1 / 10 4.37e-04 0.072 0.754 3 / 3 2.04e-04

N-glycan antennae elongation in the 
medial/trans-Golgi

2 / 59 0.003 0.073 0.754 2 / 14 9.51e-04

Opsins 1 / 11 4.80e-04 0.079 0.754 1 / 2 1.36e-04

RHO GTPases activate KTN1 1 / 12 5.24e-04 0.086 0.754 2 / 2 1.36e-04

NTRK2 activates RAC1 1 / 12 5.24e-04 0.086 0.754 1 / 2 1.36e-04

Regulation of signaling by NODAL 1 / 12 5.24e-04 0.086 0.754 1 / 3 2.04e-04

Inactivation of CDC42 and RAC1 1 / 12 5.24e-04 0.086 0.754 1 / 4 2.72e-04

Dermatan sulfate biosynthesis 1 / 13 5.68e-04 0.093 0.754 4 / 4 2.72e-04

Vitamin B1 (thiamin) metabolism 1 / 14 6.11e-04 0.1 0.754 1 / 5 3.40e-04

Signaling by GSK3beta mutants 1 / 15 6.55e-04 0.107 0.754 1 / 1 6.79e-05

ERKs are inactivated 1 / 15 6.55e-04 0.107 0.754 1 / 2 1.36e-04

Abasic sugar-phosphate removal via 
the single-nucleotide replacement 
pathway

1 / 15 6.55e-04 0.107 0.754 1 / 2 1.36e-04

MASTL Facilitates Mitotic 
Progression

1 / 15 6.55e-04 0.107 0.754 1 / 4 2.72e-04
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* False Discovery Rate
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5. Pathways details

For every pathway of the most significant pathways, we present its diagram, as well as a short sum-
mary, its bibliography and the list of inputs found in it.

RHO GTPases Activate Formins (R-HSA-5663220)1. 

Cellular compartments: cytosol, nucleoplasm, plasma membrane, endosome membrane.

Formins are a family of proteins with 15 members in mammals, organized into 8 subfamilies. 
Formins are involved in the regulation of actin cytoskeleton. Many but not all formin family mem-
bers are activated by RHO GTPases. Formins that serve as effectors of RHO GTPases belong to dif-
ferent formin subfamilies but they all share a structural similarity to Drosophila protein diaphan-
ous and are hence named diaphanous-related formins (DRFs).

DRFs activated by RHO GTPases contain a GTPase binding domain (GBD) at their N-terminus, fol-
lowed by formin homology domains 3, 1, and 2 (FH3, FH1, FH2) and a diaphanous autoregulatory 
domain (DAD) at the C-terminus. Most DRFs contain a dimerization domain (DD) and a coiled-coil 
region (CC) in between FH3 and FH1 domains (reviewed by Kuhn and Geyer 2014). RHO GTPase-ac-
tivated DRFs are autoinhibited through the interaction between FH3 and DAD which is disrupted 
upon binding to an active RHO GTPase (Li and Higgs 2003, Lammers et al. 2005, Nezami et al. 2006). 
Since formins dimerize, it is not clear whether the FH3-DAD interaction is intra- or intermolecular. 
FH2 domain is responsible for binding to the F-actin and contributes to the formation of head-to-
tail formin dimers (Xu et al. 2004). The proline-rich FH1 domain interacts with the actin-binding 
proteins profilins, thereby facilitating actin recruitment to formins and accelerating actin polymer-
ization (Romero et al. 2004, Kovar et al. 2006).
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Different formins are activated by different RHO GTPases in different cell contexts. FMNL1 (form-
in-like protein 1) is activated by binding to the RAC1:GTP and is involved in the formation of lamel-
lipodia in macrophages (Yayoshi-Yamamoto et al. 2000) and is involved in the regulation of the 
Golgi complex structure (Colon-Franco et al. 2011). Activation of FMNL1 by CDC42:GTP contributes 
to the formation of the phagocytic cup (Seth et al. 2006). Activation of FMNL2 (formin-like protein 
2) and FMNL3 (formin-like protein 3) by RHOC:GTP is involved in cancer cell motility and invasive-
ness (Kitzing et al. 2010, Vega et al. 2011). DIAPH1, activated by RHOA:GTP, promotes elongation of 
actin filaments and activation of SRF-mediated transcription which is inhibited by unpolymerized 
actin (Miralles et al. 2003). RHOF-mediated activation of DIAPH1 is implicated in formation of 
stress fibers (Fan et al. 2010). Activation of DIAPH1 and DIAPH3 by RHOB:GTP leads to actin coat 
formation around endosomes and regulates endosome motility and trafficking (Fernandez-Borja et 
al. 2005, Wallar et al. 2007). Endosome trafficking is also regulated by DIAPH2 transcription iso-
form 3 (DIAPH2-3) which, upon activation by RHOD:GTP, recruits SRC kinase to endosomes (Tom-
inaga et al. 2000, Gasman et al. 2003). DIAPH2 transcription isoform 2 (DIAPH2-2) is involved in mi-
tosis where, upon being activated by CDC42:GTP, it facilitates the capture of astral microtubules by 
kinetochores (Yasuda et al. 2004, Cheng et al. 2011). DIAPH2 is implicated in ovarian maintenance 
and premature ovarian failure (Bione et al. 1998). DAAM1, activated by RHOA:GTP, is involved in 
linking WNT signaling to cytoskeleton reorganization (Habas et al. 2001).

References

Carlier MF, Egile C, Didry D, Romero S, Pantaloni D & Le Clainche C (2004). Formin is a processive 
motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell, 

119, 419-29. 

Banfi S, Philippe C, Arrigo G, Borsani G, Ballabio A, Manzini C, ... Zuccotti M (1998). A human 
homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with pre-
mature ovarian failure: evidence for conserved function in oogenesis and implications for hu-

man sterility. Am. J. Hum. Genet., 62, 533-41. 

Gomez TS, Billadeau DD & Colón-Franco JM (2011). Dynamic remodeling of the actin cytoskeleton 
by FMNL1? is required for structural maintenance of the Golgi complex. J. Cell. Sci., 124, 3118-

26. 

Nezami AG, Poy F & Eck MJ (2006). Structure of the autoinhibitory switch in formin mDia1. Struc-

ture, 14, 257-63. 

Wallar BJ, Alberts AS, Deward AD & Resau JH (2007). RhoB and the mammalian Diaphanous-re-

lated formin mDia2 in endosome trafficking. Exp. Cell Res., 313, 560-71. 

Edit history

Date Action Author

2014-10-24 Authored Orlic-Milacic M

2014-12-26 Authored Rivero Crespo F

2015-01-17 Created Orlic-Milacic M

2015-02-02 Edited Orlic-Milacic M

2023-11-16 Modified Wright A

5 submitted entities found in this pathway, mapping to 5 Reactome entities
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Input UniProt Id Input UniProt Id Input UniProt Id

DIAPH1 O60610 MIS12 Q9H081 PPP2CB P62714

RAC1 P63000 RHOB P62745
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Sema4D in semaphorin signaling (R-HSA-400685)2. 

Semaphorin 4D (Sema 4D/CD100) is an axon guidance molecule with two disulfide-linked 150-kDa 
subunits.  SEMA4D is structurally defined by a conserved 500-amino acid extracellular domain with 
16 cysteines (sema domain) and also an Ig-like domain C-terminal to the sema domain. Sema4D is 
expressed on the cell surface as a homodimer; cysteine 679 within the sema domain is required for 
this dimerization.

The main receptors for Sema4D are plexin-B1 and CD72. The activation of plexins by semaphorins 
initiates a variety of signaling processes that involve several small GTPases of the Ras and Rho fam-
ilies. Sema4D-Plexin-B1 interaction appears to mediate different and sometimes opposite effects 
depending on the cellular context. Plexin-B1 activation inhibits integrin-mediated cell attachment 
and cell migration through the activation of the R-RasGAP activity inherent to plexin-B1 or through 
the inhibition of RhoA. However, activation of plexin-B1 by Sema4D stimulates the migration of en-
dothelial cells by mediating the activation of RhoA.

References

Kumanogoh A & Kikutani H (2004). Biological functions and signaling of a transmembrane sema-

phorin, CD100/Sema4D. Cell Mol Life Sci, 61, 292-300. 

Katoh H, Oinuma I & Negishi M (2005). Plexins: axon guidance and signal transduction. Cell Mol 

Life Sci, 62, 1363-71. 

Guan KL, Aurandt J & Kruger RP (2005). Semaphorins command cells to move. Nat Rev Mol Cell 

Biol, 6, 789-800. 

Edit history

Date Action Author

2009-03-23 Edited Garapati P V

2009-03-23 Authored Garapati P V

2009-03-24 Created Garapati P V

2009-09-02 Reviewed Kumanogoh A, Kikutani H

2023-11-16 Modified Wright A

2 submitted entities found in this pathway, mapping to 2 Reactome entities

Input UniProt Id Input UniProt Id

RAC1 P63000 RHOB P62745
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Receptor-type tyrosine-protein phosphatases (R-HSA-388844)3. 

Cellular compartments: plasma membrane.

Like neurexins, Receptor-like protein tyrosine phosphatases (RPTPs) make trans-synaptic adhesion 
complexes with multiple postsynaptic binding partners to regulate synapse organization. The type 
IIa RPTPs include three members, Receptor-type tyrosine-protein phosphatase F (PTPRF) some-
times referred to as leukocyte common antigen-related (LAR), Receptor-type tyrosine-protein phos-
phatase sigma (PTPRS) and Receptor-type tyrosine-protein phosphatase delta (PTPRD). These pro-
teins contain typical cell adhesion immunoglobulin-like (Ig) and fibronectin III (FNIII) domains, 
suggesting the involvement of RPTPs in cell-cell and cell-matrix interactions. To date, six different 
types of postsynaptic organizers for type-IIa RPTPs have been reported: interleukin-1 receptor ac-
cessory protein (IL1RAP, IL-1RAcP) (Yoshida et al. 2012), IL-1RAcP-like-1 (IL1RAPL1) (Yoshida et al. 
2011), Neurotrophin receptor tyrosine kinase 3 (NTRK3, TrkC) (Takahashi et al. 2011), Leucine-rich 
repeat-containing protein 4B (LRRC4B, Netrin-G ligand-3, NGL-3) (Woo et al. 2009, Kwon et al. 
2010), the Slit- and Trk-like (Slitrk) family proteins (Takahashi et al. 2012, Yim et al. 2013, Yamagata 
et al. 2015) and the liprins (Serra-Pagès et al. 1998, Dunah et al. 2005).

References

Craig AM & Takahashi H (2013). Protein tyrosine phosphatases PTPÎ´, PTPÏƒ, and LAR: presynaptic 

hubs for synapse organization. Trends Neurosci., 36, 522-34. 

Edit history

Date Action Author

2008-12-16 Authored Garapati P V

2008-12-16 Created Garapati P V

2017-02-02 Edited Jupe S

2017-02-03 Reviewed Ko J

2023-11-16 Modified Wright A

2 submitted entities found in this pathway, mapping to 2 Reactome entities

Input UniProt Id Input UniProt Id

IL1RAPL1 Q9NZN1 SLITRK3 O94933
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Defective Inhibition of DNA Recombination at Telomere Due to DAXX 

Mutations (R-HSA-9670613)

4. 

Cellular compartments: nucleoplasm.

Diseases: cancer.

A small portion of tumors that are positive for alternative lengthening of telomeres (ALT) markers 
and negative for mutations in the ATRX gene harbor loss-of-function mutations in the DAXX gene, 
which encodes the ATRX binding partner DAXX. For review, please refer to Gocha et al. 2013, and 
Pickett and Reddel 2015.

References

Groden J, Gocha AR & Harris J (2013). Alternative mechanisms of telomere lengthening: permissive 

mutations, DNA repair proteins and tumorigenic progression. Mutat. Res., 743, 142-50. 

Reddel RR & Pickett HA (2015). Molecular mechanisms of activity and derepression of alternative 

lengthening of telomeres. Nat. Struct. Mol. Biol., 22, 875-80. 

Edit history

Date Action Author

2019-12-11 Created Orlic-Milacic M

2020-04-30 Authored Orlic-Milacic M

2020-11-05 Reviewed Meeker AK

2020-11-09 Edited Orlic-Milacic M

2020-11-13 Reviewed Reddel RR

2020-11-16 Edited Orlic-Milacic M

2023-03-08 Modified Matthews L
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Interactors found in this pathway (1)

Input UniProt Id Interacts with Input UniProt Id Interacts with

EZH2 Q15910 P46100
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GABA synthesis (R-HSA-888568)5. 

Cellular compartments: cytosol, clathrin-sculpted gamma-aminobutyric acid transport vesicle 
membrane.

GABA synthesized uniquely by two forms of glutamate decarboxylases, GAD65 and GAD67, that are 
functionally distinct and have different co-factor requirements. GAD65 is functionally linked to 
VGAT, the GABA transporter and selectively GABA synthesized by GAD65 is preferably loaded into 
the synaptic vesicles. GABA synthesized by GAD67 may be used for functions other than  nuero-
transmission.

References

Petroff OA (2002). GABA and glutamate in the human brain. Neuroscientist, 8, 562-73. 

Barke KE & Martin DL (1998). Are GAD65 and GAD67 associated with specific pools of GABA in 

brain?. Perspect Dev Neurobiol, 5, 119-29. 

Soghomonian JJ & Martin DL (1998). Two isoforms of glutamate decarboxylase: why?. Trends Phar-

macol Sci, 19, 500-5. 

Edit history
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2008-11-27 Reviewed Restituito S

2010-06-30 Edited Mahajan SS
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2010-06-30 Created Mahajan SS

2023-11-16 Modified Wright A
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1 submitted entities found in this pathway, mapping to 1 Reactome entities

Input UniProt Id

GAD1 Q99259
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G1/S-Specific Transcription (R-HSA-69205)6. 

Cellular compartments: nucleoplasm.

The E2F family of transcription factors regulate the transition from the G1 to the S phase in the cell 
cycle. E2F activity is regulated by members of the retinoblastoma protein (pRb) family, resulting in 
the tight control of the expression of E2F-responsive genes. Phosphorylation of pRb by cyclin 
D:CDK complexes releases pRb from E2F, inducing E2F-targeted genes such as cyclin E.

E2F1 binds to E2F binding sites on the genome activating the synthesis of the target proteins. For 
annotation purposes, the reactions regulated by E2F1 are grouped under this pathway and informa-
tion about the target genes alone are displayed for annotation purposes.

Cellular targets for activation by E2F1 include thymidylate synthase (TYMS) (DeGregori et al. 1995), 
Rir2 (RRM2) (DeGregori et al. 1995, Giangrande et al. 2004), Dihydrofolate reductase (DHFR) (De-
Gregori et al. 1995, Wells et al. 1997, Darbinian et al. 1999), Cdc2 (CDK1) (Furukawa et al. 1994, De-
Gregori et al. 1995, Zhu et al. 2004), Cyclin A1 (CCNA1) (DeGregori et al. 1995, Liu et al. 1998), CDC6 
(DeGregori et al. 1995, Yan et al. 1998; Ohtani et al. 1998), CDT1 (Yoshida and Inoue 2004), CDC45 
(Arata et al. 2000), Cyclin E (CCNE1) (Ohtani et al. 1995), Emi1 (FBXO5) (Hsu et al. 2002), and ORC1 
(Ohtani et al. 1996, Ohtani et al. 1998). The activation of TK1 (Dnk1) (Dou et al. 1994, DeGregori et 
al. 1995, Giangrande et al. 2004) and CDC25A (DeGregori et al. 1995, Vigo et al. 1999) by E2F1 is con-
served in Drosophila (Duronio and O'Farrell 1994, Reis and Edgar 2004).
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RRM2 protein is involved in dNTP level regulation and activation of this enzyme results in higher 
levels of dNTPs in anticipation of S phase. E2F activation of RRM2 has been shown also in Droso-
phila by Duronio and O'Farrell (1994). E2F1 activation of CDC45 is shown in mouse cells by using 
human E2F1 construct (Arata et al. 2000). Cyclin E is also transcriptionally regulated by E2F1. Cyc-
lin E protein plays important role in the transition of G1 in S phase by associating with CDK2 
(Ohtani et al. 1996). E2F1-mediated activation of PCNA has been demonstrated in Drosophila (Duro-
nio and O'Farrell 1994) and in some human cells by using recombinant adenovirus constructs (De-
Gregori et al. 1995). E2F1-mediated activation of the DNA polymerase alpha subunit p180 (POLA1) 
has been demonstrated in some human cells. It has also been demonstrated in Drosophila by 
Ohtani and Nevins (1994). It has been observed in Drosophila that E2F1 induced expression of Orc1 
stimulates ORC1 6 complex formation and binding to the origin of replication (Asano and Wharton 
1999). ORC1 6 recruit CDC6 and CDT1 that are required to recruit the MCM2 7 replication helicases. 
E2F1 regulation incorporates a feedback mechanism wherein Geminin (GMNN) can inhibit MCM2 
7 recruitment of ORC1 6 complex by interacting with CDC6/CDT1. The activation of CDC25A and 
TK1 (Dnk1) by E2F1 has been inferred from similar events in Drosophila (Duronio RJ and O'Farrell 
1994; Reis and Edgar 2004). E2F1 activates string (CDC25) that in turn activates the complex of Cyc-
lin B and CDK1. A similar phenomenon has been observed in mouse NIH 3T3 cells and in Rat1 
cells.

References

Ohtani K, Ikeda M, Nakamura M & Tsujimoto A (1998). Regulation of cell growth-dependent expres-
sion of mammalian CDC6 gene by the cell cycle transcription factor E2F. Oncogene, 17, 1777-85. 

Wang J, Dou QP, Pardee AB, Zhao S, Helin K & Levin AH (1994). G1/S-regulated E2F-containing pro-
tein complexes bind to the mouse thymidine kinase gene promoter. J. Biol. Chem., 269, 1306-13. 

Hateboer G, Vigo E, Helin K, Prosperini E, Cartwright P, Moroni MC & Muller H (1999). CDC25A 
phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol, 

19, 6379-95. 

Tretiakova A, Kundu M, Gallia GL, Khalili K, Giordano A, Shcherbik N & Darbinian N (1999). Associ-
ation of Pur alpha and E2F-1 suppresses transcriptional activity of E2F-1. Oncogene, 18, 6398-402

. 

Kijima S, Ohtani K, Fujita M, Arata Y & Kato JY (2000). Cdk2-dependent and -independent pathways 

in E2F-mediated S phase induction. J Biol Chem, 275, 6337-45. 
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2 submitted entities found in this pathway, mapping to 4 Reactome entities
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DHFR P00374 TYMS P04818

https://reactome.org Page 18

http://www.ncbi.nlm.nih.gov/pubmed/9778043
http://www.ncbi.nlm.nih.gov/pubmed/8288595
http://www.ncbi.nlm.nih.gov/pubmed/10454584
http://www.ncbi.nlm.nih.gov/pubmed/10597240
http://www.ncbi.nlm.nih.gov/pubmed/10692433
https://reactome.org


Input Ensembl Id Input Ensembl Id
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Signaling by membrane-tethered fusions of PDGFRA or PDGFRB (R-HSA-

9673768)

7. 

Diseases: cancer.

In addition to activating missensse and in-frame deletion mutations, PDGFRA and PDGFRB are also 
subject to low frequency gene fusion events arising from chromosomal rearrangements. To date 
there are about 35 identified PDGFRA or B fusion partners, with PDGFRB being the more common 
partner (reviewed in Appiah-Kubi et al, 2017). Although some of the PDGF fusions proteins are 
cytosolic by virtue of removal of the PDGFR transmembrane region (TMD), a number of fusions re-
tain the TMD and are linked to the plasma membrane (Hidalgo-Curtis et al, 2010; Ozawa et al, 2010; 
Curtis et al, 2007; Medves et al, 2010; reviewed in Appiah-Kubi et al, 2017). The most common trans-
membrane fusion partner of PDGFRA and PDGFRB is ETV6 (also known as TEL1), a transcriptional 
repressor with known ability to homodimerize (Curtis et al, 2007; Golub et al, 1994; Andrae et al, 
2008; reviewed in de Braekeleer et al, 2012; Wang et al, 2016; Appiah-Kubi et al, 2017).
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MECP2 regulates transcription of genes involved in GABA signaling (R-HSA-

9022927)

8. 

MECP2 regulates expression of several genes involved in GABA (gamma-aminobutyric acid) signal-
ing. Transcription of GAD1 (GAD67) and GAD2 (GAD65) genes is directly positively regulated by 
MECP2. GAD1 and GAD2 are components of the glutamic acid decarboxylase complex involved in 
production of the neurotransmitter GABA. Mice lacking Mecp2 from GABA-releasing neurons have 
decreased GABA levels and exhibit multiple Rett syndrome features (Chao et al. 2010).

Mecp2 deletion in mouse GABAergic parvalbumin-expressing (PV) cells, cortical interneurons play-
ing a key role in visual experience-induced ocular dominance plasticity, does not result in Rett-like 
phenotype, other than defects in motor coordination and motor learning. While functions of the 
visual cortex are preserved in mice lacking Mecp2 in GABAergic PV cells, the visual input-induced 
spiking responses are decreased. Mecp2 loss impairs maturation of membrane functions of cortical 
GABAergic PV cells. Mecp2 may be needed for PV cell-mediated cortical GABA inhibition. Mecp2-
deficient cortical PV cells show reduced mRNA levels of several genes involved in GABA signaling, 
such as Parvalbumin, Gad2, Calretinin, Gabra1 and Gabra2, as well as reduced levels of Glu3, a 
glutamate receptor subunit, and Kv3.1, a potassium channel (He et al. 2014).
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PP2A-mediated dephosphorylation of key metabolic factors (R-HSA-163767)9. 

Cellular compartments: nucleoplasm, cytosol.

A member of the PP2A family of phosphatases dephosphorylates both cytosolic and nuclear forms 
of ChREBP (Carbohydrate Response Elemant Binding Protein). In the nucleus, dephosphorylated 
ChREBP complexes with MLX protein and binds to ChRE sequence elements in chromosomal DNA, 
activating transcription of genes involved in glycolysis and lipogenesis. The phosphatase is activ-
ated by Xylulose-5-phosphate, an intermediate of the pentose phosphate pathway (Kabashima et al. 
2003). The rat enzyme has been purified to homogeneity and shown by partial amino acid sequence 
analysis to differ from previously described PP2A phosphatases (Nishimura and Uyeda 1995) - the 
human enzyme has not been characterized.
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Defective CHST3 causes SEDCJD (R-HSA-3595172)10. 

Diseases: spondyloepimetaphyseal dysplasia.

Carbohydrate sulfotransferase 3 (CHST3) transfers sulfate (SO4(2-)) to position 6 of N-acet-
ylgalactosamine (GalNAc) residues of chondroitin-containg proteins resulting in chondroitin 
sulfate (CS), the predominant glycosaminoglycan present in cartilage. Defects in CHST3 result in 
spondyloepiphyseal dysplasia with congenital joint dislocations (SEDCJD; MIM:143095), a bone dys-
plasia clinically characterized by severe progressive kyphoscoliosis (abnormal curvature of the 
spine), arthritic changes with joint dislocations and short stature in adulthood (Unger et al. 2010).
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Defective CHST14 causes EDS, musculocontractural type (R-HSA-3595174)11. 

Diseases: Ehlers-Danlos syndrome.

Carbohydrate sulfotransferase 14 (CHST14 also known as D4ST-1) mediates the transfer of sulfate to 
position 4 of further N-acetylgalactosamine (GalNAc) residues of dermatan sulfate (DS). Defects in 
CHST14 cause Ehlers-Danlos syndrome, musculocontractural type (MIM:601776). The Ehlers-Dan-
los syndromes (EDS) are a group of connective tissue disorders that share common features such as 
skin hyperextensibility, articular hypermobility and tissue fragility (Beighton et al. 1998). The mus-
culocontractural form of EDS (MIM:601776) include distinctive characteristics such as craniofacial 
dysmorphism, congenital contractures of fingers and thumbs, clubfeet, severe kyphoscoliosis and 
muscular hypotonia (Malfait et al. 2010).
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Defective CHSY1 causes TPBS (R-HSA-3595177)12. 

Diseases: brachydactyly.

Chondroitin sulfate synthases (CHSY) are involved in the synthesis of chondroitin sulfate, adding 
alternatingly glucuronate (GlcA) and N-acetylgalactosamine (GalNAc) to the growing chondroitin 
polymer (Mizumoto et al. 2013). Defects in CHSY1 cause temtamy preaxial brachydactyly syndrome 
(TPBS; MIM:605282), a syndrome characterized by multiple congenital anomalies, mental retarda-
tion, sensorineural deafness, growth retardation and bilateral symmetric digital anomalies mainly 
in the form of preaxial brachydactyly (literally, shortness of fingers and toes) and hyperphalangism 
(Temtamy et al. 1998, Race et al. 2010, Tian et al. 2010).
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Synthesis of IPs in the ER lumen (R-HSA-1855231)13. 

In the endoplasmic reticulum (ER) lumen, inositol phosphates IP4, IP5, and IP6 are dephos-
phorylated by multiple inositol polyphosphate phosphatase 1 (MINPP1) (Caffrey et al. 1999, Chi et 
al. 1999, Deleu et al. 2006, Nogimori et al. 1991).
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N-glycan antennae elongation in the medial/trans-Golgi (R-HSA-975576)14. 

In the latter compartments of the distal Golgi the N-Glycan is further modified, leading to the wide 
range of N-Glycans observed in multicellular organisms. The first step of N-Glycan elongation in 
the Golgi is the addition of a GlcNAc residue on the alpha 1,3 branch by the enzyme MGAT1 
(GlcNAc-TI), which commits the elongation pathway to Complex or Hybrid N-Glycans from Oligo-
mannose N-Glycans. At this point, the pathway bifurcates again to generate Complex or Hybrid N-
Glycans. The addition of a GlcNAc in the middle of the two arms of the N-Glycan, catalyzed by 
MGAT3 (GNT-III), inhibits the removal of the mannoses on the alpha1,3 branches by MAN2 and the 
addition of a GlcNAc by MGAT2 (GlcNAc-TII), and commits the pathway toward the synthesis of hy-
brid N-Glycans. Alternatively, the removal of these mannoses and the action of MGAT2 leads to the 
synthesis of complex N-Glycans (Kornfeld and Kornfeld 1985).

The exact structure of the network of reactions leading to Complex or Hybrid N-Glycans is still not 
completely described and validated experimentally. Here we will annotate only one generic reac-
tion for each of the enzymes known to participate in this process. For a better annotation on the re-
actions and genes involved in the synthesis of Complex and Hybrid N-Glycans we recommend the 
GlycoGene Database (Ito H. et al, 2010) (http://riodb.ibase.aist.go.jp/rcmg/ggdb/textsearch.jsp) for 
a n n o t a t i o n s  o n  g e n e s ,  a n d  t h e  C o n s o r t i u m  f o r  F u n c t i o n a l  G e n o m i c s  
(http://riodb.ibase.aist.go.jp/rcmg/ggdb/textsearch.jsp) for annotation of Glycan structures and re-
actions. Moreover, a computationally inferred prediction on the structure of this network is avail-
able through the software GlycoVis (Hossler P. et. al. 2006).
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Opsins (R-HSA-419771)15. 

Opsins are light-sensitive, 35-55 kDa membrane-bound G protein-coupled receptors of the ret-
inylidene protein family found in photoreceptor cells of the retina. Five classical groups of opsins 
are involved in vision, mediating the conversion of a photon of light into an electrochemical signal, 
the first step in the visual transduction cascade (Terakita A, 2005; Nickle B and Robinson PR, 2007). 
Another opsin found in the mammalian retina, melanopsin, is involved in circadian rhythms and 
pupillary reflex but not in image-forming (Hankins MW et al, 2008; Kumbalasiri T and Provencio I, 
2005). Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers 
in various transmembrane signaling systems. The G protein transducin, encoded by GNAT genes, is 
one of the transducers of a visual impulse that performs the coupling between rhodopsin and cG-
MP-phosphodiesterase. Defects in GNAT1 are the cause of congenital stationary night blindness 
autosomal dominant type 3, also known as congenital stationary night blindness Nougaret type. 
Congenital stationary night blindness is a non-progressive retinal disorder characterized by im-
paired night vision (Dryja TP et al, 1996). Defects in GNAT2 are the cause of achromatopsia type 4 
(ACHM4). Achromatopsia is an autosomal recessively inherited visual disorder that is present from 
birth and that features the absence of color discrimination (Kohl S et al, 2002).
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RHO GTPases activate KTN1 (R-HSA-5625970)16. 

Cellular compartments: endoplasmic reticulum membrane, cytosol.

GTP-bound active forms of RHO GTPases RHOA, RHOG, RAC1 and CDC42 bind kinectin (KTN1), a 
protein inserted in endoplasmic reticulum membranes that interacts with the cargo-binding site of 
kinesin and activates its microtubule-stimulated ATPase activity required for vesicle motility (Vign-
al et al. 2001, Hotta et al. 1996). The effect of RHOG activity on cellular morphology, exhibited in the 
formation of microtubule-dependent cellular protrusions, depends both on RHOG interaction with 
KTN1, as well as on the kinesin activity (Vignal et al. 2001). RHOG and KTN1 also cooperate in mi-
crotubule-dependent lysosomal transport (Vignal et al. 2001). The precise mechanism of kinectin-
mediated Rho GTPase signaling cascade needs further elucidation, and only the first two steps, 
KTN1-activated RHO GTPase binding, and KTN1-kinesin-1 binding are annotated here.
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NTRK2 activates RAC1 (R-HSA-9032759)17. 

DOCK3-mediated activation of RAC1 downstream of BDNF-induced signaling by NTRK2 (TRKB) 
plays a role in axonal growth and regeneration. DOCK3 can be recruited to the plasma membrane 
to activate RAC1 by binding to NTRK-associated FYN (Namekata et al. 2010). Alternatively, DOCK3 
can, upon poorly elucidated RHOG activation by the BDNF:NTRK2 complex, bind to the RHOG:GTP 
complex and activate RAC1 in an ELMO1-dependent manner (Namekata et al. 2012).
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Regulation of signaling by NODAL (R-HSA-1433617)18. 

Cellular compartments: plasma membrane, extracellular region.

Mature NODAL can form heterodimers with LEFTY1, LEFTY2, or CERBERUS. The heterodimers do 
not activate the NODAL receptor. LEFTY1 and LEFTY2 also bind CRIPTO and CRYPTIC coreceptors 
and prevent them from interacting with other components of the NODAL receptor. By these mech-
anisms LEFTY1, LEFTY2, and CERBERUS negatively regulate NODAL signaling (reviewed in Shen 
2007, Schier 2009).
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Inactivation of CDC42 and RAC1 (R-HSA-428543)19. 

Cellular compartments: plasma membrane.

Rho family GTPases, including RAC1, RHOA, and CDC42, are ideal candidates to regulate aspects of 
cytoskeletal dynamics downstream of axon guidance receptors. Biochemical and genetic studies 
have revealed an important role for CDC42 and RAC1 in ROBO repulsion. ROBO controls the activ-
ity of Rho GTPases by interacting with a family of SLIT/ROBO-specific GAPs (SrGAPs) and 
Vilse/CrossGAP. SrGAPs inactivate CDC42 and Vilse/CrossGAP specifically inactivates RAC1.

It was recently implicated that SRGAP3 may inactivate RAC1 downstream of SLIT1-activated 
ROBO2, which promotes neurite outgrowth in mammalian dorsal root ganglion (DRG) neurons 
(Zhang et al. 2014).
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Dermatan sulfate biosynthesis (R-HSA-2022923)20. 

Dermatan sulfate (DS) consists of N-acetylgalactosamine (GalNAc) residues alternating in glycosidic 
linkages with glucuronic acid (GlcA) or iduronic acid (IdoA) residues. As with CS, GalNAc residues 
can be sulfated in CS chains but also the uronic acid

residues may be substituted with sulfate at the 2- and 4- positions. The steps below outline the syn-
thesis of a simple DS chain (Silbert & Sugumaran 2002).
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Vitamin B1 (thiamin) metabolism (R-HSA-196819)21. 

Vitamin B1 (thiamin) is found naturally in certain foodstuffs such as green peas, spinach, liver, ba-
nanas, whole grains and legumes. Human diseases associated with thiamin deficiency include 
beriberi, due to a thiamin-deficient diet, TMRA, due to defects in the SLC19A2 transport protein, 
and Wernicke-Korsakoff Syndrome, associated with thiamin deficiency in alcoholism (Haas 1988). 
Thiamin is water-soluble so is not stored in the body. When pyrophosphorylated, thiamin is con-
verted into the coenzyme thiamin pyrophosphate (ThPP, codecarboxylase) which plays an essential 
role in oxidative decarboxylation and group transfer reactions.
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Signaling by GSK3beta mutants (R-HSA-5339716)22. 

Cellular compartments: cytosol.

Diseases: chronic myeloid leukemia.

GSK3beta is subject to in-frame missplicing in CML stem cells resulting in the production of mutant 
protein that lacks the AXIN and FRAT binding domains.  Cells containing this mutant GSK3beta 
show elevated levels of nuclear beta-catenin and enhanced TCF-dependent reporter activity (Jam-
ieson et al, 2008; Abrahamsson et al, 2009).
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ERKs are inactivated (R-HSA-202670)23. 

MAP Kinases are inactivated by a family of protein named MAP Kinase Phosphatases (MKPs). They 
act through dephosphorylation of threonine and/or tyrosine residues within the signature sequence 
-pTXpY- located in the activation loop of MAP kinases (pT=phosphothreonine and pY=phosphotyr-
osine). MKPs are divided into three major categories depending on their preference for dephos-
phorylating; tyrosine, serine/threonine and both the tyrosine and threonine (dual specificity 
phoshatases or DUSPs). The tyrosine-specific MKPs include PTP-SL, STEP  and HePTP, 
serine/threonine-specific MKPs are PP2A and PP2C, and many DUSPs acting on MAPKs are known. 
Activated MAP kinases trigger activation of transcription of MKP genes. Therefore, MKPs provide a 
negative feedback regulatory mechanism on MAPK signaling, by inactivating MAPKs via dephos-
phorylation, in the cytoplasm and the nucleus. Some MKPs are more specific for ERKs, others for 
JNK or p38MAPK.
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Abasic sugar-phosphate removal via the single-nucleotide replacement 

pathway (R-HSA-73930)

24. 

Cellular compartments: nucleoplasm.

Abasic sugar phosphate removal via the single nucleotide replacement pathway requires displace-
ment of DNA glycosylase by APEX1, APEX1-mediated endonucleolytic cleavage at the 5' side of the 
base free deoxyribose residue, recruitment of POLB to the AP site and excision of the abasic sugar 
phosphate (5'dRP) residue at the strand break (Lindahl and Wood, 1999).
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MASTL Facilitates Mitotic Progression (R-HSA-2465910)25. 

Cellular compartments: nucleoplasm.

The activity of MASTL, also known as the Greatwall kinase (GWL), is necessary for the entry and 
progression of mitosis. MASTL is activated by phosphorylation of several key residues during mitot-
ic entry. Phosphorylation on the serine residue S875 (S883 in Xenopus), likely through autophos-
phorylation (Blake-Hodek et al. 2012) appears to be critical (Vigneron et al. 2011). Several other 
sites, including putative CDK1 targets T194, T207 and T741, contribute to the full activation of 
MASTL (Yu et al. 2006, Blake-Hodek et al. 2012). Other kinases, such as PLK1 (Vigneron et al. 2011) 
and other MASTL phosphorylation sites may also be functionally important (Yu et al. 2006, Blake-
Hodek et al. 2012).

Activated MASTL phosphorylates ARPP19 and ENSA on serines S62 and S67, respectively, enabling 
them to bind to and inhibit the phosphatase activity of PP2A complexed with the regulatory subunit 
PPP2R2D (B55-delta). Inhibition of PP2A-PPP2R2D activity by ARPP19 or ENSA prevents dephos-
phorylation of CDK1 targets, hence allowing entry and maintenance of mitosis (Mochida et al. 2010, 
Gharbi-Ayachi et al. 2010, Burgess et al. 2010).
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6. Identifiers found

Below is a list of the input identifiers that have been found or mapped to an equivalent element in 
Reactome, classified by resource.

65 of the submitted entities were found, mapping to 75 Reactome entities
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CSTF3 Q12996 CTCF P49711 DHFR P00374

DIAPH1 O60610 EP300 Q09472 EZH2 Q15910

FLRT3 Q9NZU0 FOXG1 P55316 FUT8 Q9BYC5

GAD1 Q99259 HIBADH P31937 IL1RAPL1 Q9NZN1
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7. Identifiers not found

These 18 identifiers were not found neither mapped to any entity in Reactome.

AGAP1 ARL5A CBLN4 EFCAB5 EHBP1 FBXO47 FRMD4B GOLGA6B

GPR22 KBTBD2 MYPN PCDH9 PRDM13 SALL3 SAMD13 SLC35F3

STAG3L4 TAPBPL


