
SUPPLEMENTARY1

The supplementary material is divided into three distinct sections: Section A Architecture2

Details offers comprehensive information on the MuSe and DoMe architectures, encompassing3

details on the multiplication algorithm, ALU design, and data path control signals. In Section B4

Simulator Details we provide a detailed breakdown of the simulator structures through class5

descriptions. Lastly, Section C Survey delves into the specifics of the survey questions and the6

corresponding responses.7

A ARCHITECTURE DETAILS8

A.1 MuSe Architecture Design9

In this section, we present detailed information on the multiplication algorithm, ALU design,10

data path, and control signals within the MuSe Architecture. The architecture’s instructions, as11

outlined in Table 1, are further elaborated in Table 2, providing a comprehensive explanation12

for each instruction. Notably, the MuSe Architecture includes an instruction referred to as13

syscall, which, while not mandatory for simulator functionality, serves the purpose of enabling14

programmers to display register contents on an LCD screen when invoked. It’s worth mentioning15

that the jr and syscall instructions are exceptions within the architecture, as they do not make16

use of target and destination registers; however, they are categorized under the R-Format due to17

their utilization of source registers.18

A.1.1 MuSe Architecture: The Multiplication Algorithm19

Multiplication operations can be computationally intensive, often requiring significant pro-20

cessing time within the Arithmetic Logic Unit (ALU). In the MuSe Architecture, our approach21

to handling multiplication tasks follows the iterative algorithm proposed by Patterson and22

Hennessy, 2016. This methodology implements multiplication iteratively, utilizing registers and23

adders, as depicted in Fig. 1. To accommodate this iterative approach, the MuSe Architecture24

incorporates a specialized multiplication unit within the ALU. This unit comprises eight shift25

registers and eight 8-bit adders, tailored to efficiently handle multiplication operations.26

A.1.2 MuSe Architecture: The ALU Design27

The Arithmetic Logic Unit (ALU) serves as the central component of the CPU, responsible28

for executing all computational tasks. Within the MuSe Architecture, the ALU manages its29

operations through two input ports, referred to as input A and input B, along with an output30

port named output C. The ALU is highly versatile and capable of performing a wide array of31

calculations. The type of calculation to be executed is determined by the 3-bit ALU control32

lines denoted as F0, F1, and F2. These control lines are governed by the ALUOp control signal,33

which is introduced in the data path and changes dynamically as each incoming instruction is34

decoded.35

Table 3 presents a comprehensive list of mathematical operations supported by the MuSe36

Architecture, along with their corresponding control line values. MuSe Architecture’s ALU37

design accommodates eight distinct operations, each represented by specific combinations of38

these three control lines.39

A.1.3 MuSe Architecture: The Data-path and Control Signals40

The data-path within a processor serves as the central framework that interconnects essential41

hardware components, including functional units like the ALU, adders, memory, and registers.42

It is also equipped with a set of control signals that facilitate the coordination of different CPU43

units. For instance, when the load word (lw) instruction is executed, setting the memory read44

control signal to 1 enables reading data from memory. When designing the data-path for MuSe45

Architecture, the developers drew inspiration from the original MIPS data-path.46

In the conventional MIPS architecture, there are eight distinct control signals (MIPS, 2001).47

However, in the design of MuSe Architecture, 11 control signals are integrated to accommodate48

various instructions effectively. These additional control signals, in addition to those inherited49

from traditional MIPS architecture, include the System Call (syscall), Jump Register (JumReg),50

and Shift Register (Shift Reg) control signals. Control signal values for each instruction in MuSe51

1/14



Architecture are thoughtfully compiled in Table 4, aiming to facilitate and guide researchers in52

replicating the MuSe Architecture design.53

A.2 DoMe Architecture Design54

In this section, we delve into an in-depth exploration of the multiplication algorithm, ALU55

design, data path, and control signals incorporated within the DoMe Architecture.56

The instructions utilized in the DoMe architecture are thoughtfully laid out in Table 2,57

accompanied by their usage in desktop simulators. Notably, it is important to highlight that the58

suffix “-c” is exclusive to the application in R-type instructions.59

A.2.1 DoMe Architecture: The Multiplication Algorithm60

In this section, we delve into the multiplication algorithm employed in the DoMe Architecture61

design phase. Following extensive research, the DoMe Architecture designers initially opted62

for the Wallace Tree multiplication method (Wallace, 1964). However, during the design phase63

presentation, their project co-advisor recommended an alternative multiplication approach.64

The advisor’s advice was grounded in the realization that implementing an 8-bit Wallace65

Tree multiplier would entail significant costs and complexities, potentially posing challenges66

during the planned physical implementation phase. Consequently, the DoMe Architecture67

designers pivoted to adopt the multiplication algorithm suggested by the MuSe Architecture in68

Section A.1.1 MuSe Architecture: The Multiplication Algorithm to enhance feasibility and69

practicality.70

A.2.2 DoMe Architecture: The ALU Design71

DoMe Architecture has been meticulously crafted to provide support for a broader spectrum72

of instructions compared to the MuSe Architecture. Consequently, the repertoire of DoMe73

Architecture instructions includes division and exclusive or (xor) operations, in addition to74

the other eight operations. Recognizing the challenge of representing ten different operations75

with merely three control lines, the DoMe Architecture designers astutely incorporated an76

additional control line (F3). This design choice resulted in six unused control signals. Further77

elaboration on ALU operations and their corresponding control line values can be found in the78

supplementary materials. Furthermore, the ALU operation list for the DoMe Architecture, as79

delineated in Table 3, encompasses a more extensive array of operations and includes the ALU80

control lines (F3), a notable expansion in comparison to MuSe Architecture’s ALU Design.81

A.2.3 DoMe Architecture: The Data-path & Control Signals82

In this section, we delve into the DoMe Architecture’s distinctive approach to designing its83

data-path and control signals. As previously highlighted in Section 3.2.4, the traditional84

MIPS architecture encompasses eight distinct control signals. However, the MuSe Architecture85

augmented this count to 11. In contrast, the DoMe Architecture streamlined its control signals86

to a total of seven, achieved by the elimination of the Register Destination (RegDst) and87

Memory to Register (MemtoReg) control signals. An additional control signal, known as ”jump,”88

was introduced to facilitate the management of jump instructions. To accommodate DoMe89

architecture, all unit and control signal connections in the MIPS data-path were meticulously90

revised. Much like in the MuSe Architecture, the control signal values pertinent to DoMe91

Architecture can be found in Table 5.92

B SIMULATOR DETAILS93

B.1 MuSe Architecture Simulator94

The architecture of the MuSe simulator is intricately composed of several well-defined classes,95

each dedicated to a specific aspect of the simulation. These classes encompass ALU, Controller96

Unit, Instructions, Instruction Memory, Data Memory, Register File, Program Counter, and97

Processor. Within the ALU class, the designers have favored the use of elementary operators for98

computational tasks rather than embarking on the intricate endeavor of implementing complex99

logic circuits such as full adders and multiplication logic. The Controller Unit class assumes the100

pivotal responsibility of assigning control signals to individual instructions through a meticu-101

lous evaluation of opcodes, is jump flags, and is imm values. The MuSe simulator primarily102

2/14



revolves around three distinct instruction types, namely R-type, I-type, and J-type instructions.103

To streamline the management of shared attributes across these instruction types, the simulator104

extends these instructions from an abstract class named Instruction. The Instruction Memory is105

constructed as an array of instructions, initialized upon program commencement. Meanwhile,106

the Data Memory module houses a two-dimensional byte array augmented with a stack pointer,107

effectively governing all essential memory read and write operations. The Register File class108

boasts a roster of registers, encompassing eight pre-defined registers and proficiently manages109

both read and write operations in alignment with control signals. The Program Counter class110

is characterized by its simplicity, storing merely an integer value to represent the program111

counter value and adeptly governing its manipulation. The Processor class orchestrates the112

harmonious interaction of the previously mentioned classes, meticulously choreographing their113

workflow. The program commences with the initialization of instruction memory, and as it114

unfurls, the processor diligently fetches instructions in a loop. Notably, in the MuSe architecture,115

the absence of a pipeline implementation means that the simulator only progresses to the next116

instruction once the current instruction is successfully executed. The program culminates either117

when all instructions are executed or in the event of an encountered error.118

B.2 DoMe Architecture Simulator119

The intricate structure of the DoMe Simulator consists of an array of classes, with certain classes120

sharing functional similarities with their counterparts in the MuSe Simulator. The essential121

classes used in the DoMe Simulator include Registers, Instructions, Data Memory, Instruction122

Memory, Definitions, Instruction Functions, Assembler, and Processor. The Registers class,123

much like in the MuSe Simulator, serves as the repository for registers, with their initialization124

taking place here. The Instructions class stores the assembly instructions within an array and125

enables their retrieval by the Processor class through a systematic loop. Data Memory, much126

like its MuSe counterpart, plays a pivotal role in memory operations, with memory contents127

being stored within an array. It’s noteworthy that, unlike the MuSe Simulator, the DoMe128

Simulator foregoes the inclusion of a dedicated ALU class. Instead, it features the Instruction129

Functions class, which defines a function for each instruction operation and establishes a linkage130

between function and instruction. This unique approach allows the simulator to directly access131

these functions and execute the requisite operations. The Assembler class within the DoMe132

Simulator shares similarities with the Control Unit class in the MuSe simulator, responsible for133

the assignment of control bits, opcodes, registers, and other essential values. The Definitions134

class serves as a valuable look-up table, pre-defining the properties of each instruction and is135

instrumental in aiding the Assembler class in the configuration of instruction attributes. Despite136

disparities in the implementation of specific components within their data-path, the designers137

of the DoMe Simulator are acutely aware that this aspect of the project places a distinct focus138

on augmenting the capacity and workflow of their architecture.139

C SURVEY140

This section delineates the survey questions and presents the responses provided by 50 students.141

Question 1 aims to assess participants’ perception of their hardware design knowledge and142

experience, both before and after the course (Fig. 2).143

Question 2 measures the participants’ self-reported self-learning ability before and after the144

course, which is a vital aspect of their educational growth (Fig. 3).145

Question 3 gauges the change in participants’ interest in working on low-level systems like146

Computer Hardware Engineering from before to after the course, helping understand how the147

course impacts their preferences (Fig. 4).148

Question 4 investigates participants’ awareness of developing software considering hard-149

ware limitations before the course, offering insights into their initial perspectives (Fig. 5).150

Question 5 focuses on the impact of visual tools on the participants’ learning experience151

throughout the course, examining how such tools influenced their engagement (Fig. 6).152

Question 6 explores the influence of group work on the learning experience, uncovering the153

effect of collaborative learning on participants’ perceptions (Fig. 7).154

3/14



Question 7 assesses how hands-on experiences during the course influenced participants,155

providing insights into the practical aspects of their learning (Fig. 8).156

Question 8 evaluates the effect of designing their own architecture on participants’ learning157

experience, highlighting the significance of practical application in the course (Fig. 9).158

Question 9 measures the impact of simulators and internet-shared tools on participants’159

learning experience, indicating the relevance of digital resources (Fig. 10).160

Question 10 evaluates the overall satisfaction level of participants with the Computer161

Architecture course, summarizing their general contentment (Fig. 11).162

Question 11 investigates the alignment between participants’ expectations and the course’s163

content and delivery, offering insights into how well the course met their initial anticipations164

(Fig. 12).165

Question 12 assesses participants’ confidence in their understanding of hardware design166

after completing the course, indicating the level of self-assuredness in their knowledge (Fig. 13).167

Question 13 aims to measure how well participants believe the course prepared them for168

low-level system work like Computer Hardware Engineering (Fig. 14).169

Question 14 captures participants’ overall enjoyment of the course, providing a holistic170

perspective on their satisfaction and engagement with the educational experience (Fig. 15).171

4/14



Figure 1. Multiplication Algorithm Flow Chart.
5/14



Figure 2. Results for ”How would you rate your knowledge and experience level about hardware
design before/after the course?”

Figure 3. Results for ”How would you rate your self-learning ability before/after the course?”

6/14



Figure 4. Results for ”How interested were you in working on low-level systems, such as Computer
Hardware Engineering before/after the course?”

Figure 5. Results for ”How aware were you of developing software by considering hardware abilities
and limitations before the course?”

7/14



Figure 6. Results for ”How did the use of visual tools during the course impact your learning
experience?”

Figure 7. Results for ”How did working in groups during the course affect your learning
experience?”

Figure 8. Results for ”How did hands-on experiences during the course influence your learning
experience?”

8/14



Figure 9. Results for ”How did implementing and designing your own architecture during the
course affect your learning experience?”

Figure 10. Results for ”How did using simulators and tools shared on the internet during the course
impact your learning experience?”

Figure 11. Results for ”How satisfied were you with the Computer Architecture course?”

9/14



Figure 12. Results for ”To what extent did this course meet your expectations?”

Figure 13. Results for ”How confident do you feel in your understanding of hardware design after
completing this course?”

Figure 14. Results for ”How well do you think the course prepared you for low-level system work,
such as Computer Hardware Engineering?”

10/14



Figure 15. Results for ”How would you describe your overall enjoyment of this course?”

Table 1. Instruction Format of each Architecture

MuSe Architecture

R-Type
Field opcode is jump is imm rs rt rd unsued Total

Bit 3 1 1 3 3 3 2 16

I-Type
Field opcode is jump is imm rs rt immediate Total

Bit 3 1 1 3 3 5 16

J-Type
Field opcode is jump is imm label Total

Bit 3 1 1 11 16

DoMe Architecture

R-Type
Field opcode control bit rt rs function code Total

Bit 4 1 3 3 5 16

I-Type
Field opcode control bit rt immediate Total

Bit 4 1 3 8 16

11/14



Table 2. Instruction List (*Not a MUST instruction)

MuSe Architecture

R-Type

000 0 0 rs rt rd unused ADD

001 0 0 rs rt rd unused SUB

100 0 0 rs rt rd unused MUL

010 0 0 rs rt rd unused AND

011 0 0 rs rt rd unused OR

101 0 0 rs rt rd unused SLL

110 0 0 rs rt rd unused SRL

101 1 0 rs rt rd unused *SYSCALL

111 0 0 rs rt rd unused SLT

001 1 0 rs rt rd unused JR

I-Type

101 0 1 rs rt imm[4:0] LUI

111 0 1 rs rt imm[4:0] SLTI

100 0 1 rs rt imm[4:0] MULI

001 0 1 rs rt imm[4:0] BEQ

011 0 1 rs rt imm[4:0] BNE

000 0 1 rs rt imm[4:0] SW

010 0 1 rs rt imm[4:0] LW

J-Type
000 1 0 imm[10:0] JAL

001 1 0 imm[10:0] J

DoMe Architecture

R-Type

1000 control bit rt rs 00010 AND(C)

1000 control bit rt rs 01000 OR(C)

1000 control bit rt rs 00000 ADD(C)

1000 control bit rt rs 01101 SUB(C)

1000 control bit rt rs 01010 SLT(C)

1000 control bit rt rs 00110 SRL(C)

1000 control bit rt rs 00101 MUL(C)

1000 control bit rt rs 01011 SLL(C)

1000 control bit rt rs 11010 *SLLV(C)

1000 control bit rt rs 11011 *XOR(C)

1000 control bit rt rs 10110 *SRLV(C)

1000 control bit rt rs 10111 *SRAV(C)

1000 control bit rt rs 11111 *DIV(C)

I-Type

1110 1 rt imm[7:0] LUI

1100 1 rt imm[7:0] SLTI

1101 1 rt imm[7:0] MULI

0000 0 rt imm[7:0] BEQ

0000 1 rt imm[7:0] BNE

1111 1 rt imm[7:0] LW

0011 1 rt imm[7:0] SW

0001 0 rt imm[7:0] J

0001 1 rt imm[7:0] JR

1001 1 rt imm[7:0] JAL

0101 1 rt imm[7:0] *SRA

1011 1 rt imm[7:0] *ADDI

12/14



Table 3. Operation Control Values

Group Name Operation Operation Control

MuSe Architecture

add 0 0 0 -

sub 0 0 1 -

and 0 1 0 -

or 0 1 1 -

mul 1 0 0 -

sll 1 0 1 -

srl 1 1 0 -

slt 1 1 1 -

DoMe Architecture

add 0 0 0 0

sub 0 0 0 1

and 0 0 1 0

or 0 0 1 1

mul 0 1 0 0

sll 0 1 0 1

srl 0 1 1 0

slt 0 1 1 1

div 1 0 0 0

xor 1 0 0 1

Table 4. MuSe Architecture Control Signal Values

Format Instruction RegDst ALUSrc RegWrite MemRead MemWrite Branch ALUOP Jump JumpReg ShiftReg Syscall

R

add 1 0 1 0 0 0 0 0 0 0 0

sub 1 0 1 0 0 0 1 0 0 0 0

mul 1 0 1 0 0 0 100 0 0 0 0

and 1 0 1 0 0 0 10 0 0 0 0

or 1 0 1 0 0 0 11 0 0 0 0

sll 1 0 1 0 0 0 101 0 0 0 0

srl 1 0 1 0 0 0 110 0 0 0 0

jr 1 0 1 0 0 0 xxx x 1 1 0

syscall 0 0 0 0 0 0 xxx x 0 0 1

slt 1 0 1 0 0 0 100 0 0 0 0

I

lui 0 1 1 0 0 0 101 0 0 1 0

slti 0 1 1 0 0 0 100 0 0 0 0

muli 0 1 1 0 0 0 100 0 0 0 0

beq 0 0 0 0 0 1 1 0 0 0 0

bne 1 0 0 0 0 1 1 0 0 0 0

sw 0 1 0 0 1 0 0 0 0 0 0

lw 0 1 1 1 0 0 0 0 0 0 0

J
jal 0 0 1 0 0 0 xxx 1 0 0 0

j 0 0 0 0 0 0 xxx 1 0 0 0

13/14



Table 5. DoMe Architecture Control Signal Values

Format Instruction ALUSrc RegWrite MemRead MemWrite ALUOp3 ALUOp2 ALUOp1 ALUOp0 Jump Branch

R

add 0 1 0 0 0 0 0 0 0 0

sub 0 1 0 0 0 0 0 1 0 0

mul 0 1 0 0 0 1 0 0 0 0

and 0 1 0 0 0 0 1 0 0 0

or 0 1 0 0 0 0 1 1 0 0

sll 0 1 0 0 0 1 0 1 0 0

srl 0 1 0 0 0 1 1 0 0 0

sllv 0 1 0 0 0 1 0 1 0 0

srlv 0 1 0 0 0 1 1 0 0 0

div 0 1 0 0 1 0 0 0 0 0

xor 0 1 0 0 1 0 0 1 0 0

srav 0 1 0 0 0 1 1 0 0 0

slt 0 1 0 0 0 1 1 1 0 0

I

lui 1 1 0 0 0 1 0 1 0 0

slti 1 1 0 0 0 1 0 0 0 0

muli 1 1 0 0 0 1 0 0 0 0

beq 0 0 x 0 0 0 0 1 0 1

bne 0 0 x 0 0 0 0 1 0 1

lw 1 1 1 0 0 0 0 0 0 0

sw 1 0 0 1 0 0 0 0 0 0

sra 1 1 0 0 0 1 1 0 0 0

addi 1 1 0 0 0 0 0 0 0 0

jr x 0 x 0 x x x x 1 x

jal x 1 x 0 x x x x 1 x

j x 0 x 0 x x x x 1 x

REFERENCES172

MIPS (2001). Mips32 architecture for programmers. vol. ii: The mips32 instruction set.173

Patterson, D. A. and Hennessy, J. L. (2016). Computer organization and design ARM edition: the174

hardware software interface. Morgan kaufmann.175

Wallace, C. S. (1964). A suggestion for a fast multiplier. IEEE Transactions on Electronic176

Computers, EC-13(1):14–17.177

14/14


	Architecture Details
	MuSe Architecture Design
	MuSe Architecture: The Multiplication Algorithm
	MuSe Architecture: The ALU Design
	MuSe Architecture: The Data-path and Control Signals

	DoMe Architecture Design
	DoMe Architecture: The Multiplication Algorithm
	DoMe Architecture: The ALU Design
	DoMe Architecture: The Data-path & Control Signals


	Simulator Details
	MuSe Architecture Simulator
	DoMe Architecture Simulator

	Survey
	References

