
1 ALGORITHMS1

Data:M data sets, X (m) ∈ RN×pm , ∀m ∈ {1, · · · ,M}
Parameters:Perp [Perplexity]; T [Number of iterations]; η [Learning rate]; α(t) [Momentum]
Result:Induced embedding, Y ∈ Rn×d . Often, d = 2
begin

Optional step of implementing PCA, or multi-CCA on X (m) ∀m ∈ {1, · · · ,M}
Compute pairwise affinities pm

i| j with perplexity Perp, ∀m ∈ {1, · · · ,M}

Set pm
i j =

pm
i| j+pm

j|i
2n , ∀m ∈ {1, · · · ,M}

Initialise solution Y (0) ∼N (0,0.1)
for t=1 to T do

Compute induced affinities qi| j and set sum of gradients, G = 0
for m=1 to M do

Compute gradient δCm
δY

G← G+ δCm
δY

end
Set Y (t) = Y (t−1)+ηG+α(t)(Y (t−1)−Y (t−2))

end
end

Algorithm 1: Multi-SNE

Data: M data sets, X (m) ∈ RN×pm , ∀m ∈ {1, · · · ,M}
Parameters: k [Number of neighbours]
Result: Induced embedding, Ŷ ∈ Rn×d . Often, d = 2
begin

for m=1 to M do
Find k nearest neighbours of X (m).
Compute W m by minimising equation (7).

end
Let Ŵ = ∑m αmW m, where ∑m αm = 1.
Compute the d-dimensional embeddings Ŷ by minimising equation (8) under Ŵ .

end
Algorithm 2: multi-LLE
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Data: M data sets, X (m) ∈ RN×pm , ∀m ∈ {1, · · · ,M}
Parameters: k [Number of neighbours]
Result: Induced embedding, Ŷ ∈ Rn×d . Often, d = 2
begin

for m=1 to M do
Construct a N×N neighborouhood graph, Gm ∼ (V,Em) with samples represented by

nodes.
The edge length between k nearest neighbours of each node is measured by Euclidean

distance.
end
Measure the average edge length between all nodes.
Combine all neighborouhood graphs into a single graph, G̃.
In DG ∈ R|V |×|V |, the computed shortest path distances between nodes in G̃ are stored.
Compute the d-dimensional embeddings Y by computing yi =

√
λpui

p, where λp is the pth

eigenvalue in decreasing order of the the matrix τ(DG) and ui
p the ith component of pth

eigenvector. The operator, τ is defined by τ(D) =−HSH
2 , where S is the matrix of squared

distances defined by Si j = D2
i j, and H is defined by Hi j = δi j− 1

N .
end

Algorithm 3: multi-ISOMAP
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2 DATA CLUSTERING EVALUATION MEASURES2

Let X = {X1, · · · ,Xr} be the true classes of the data and Y = {Y1, · · · ,Ys} the clusterings found on N3

objects. In this study, we assume to know the number of clusters and thus set r = s. Let ni j be the number4

of objects in Xi and Yj. A contingency table is defined as shown in Table S1.5

Table S1. A contingency table for data clustering. Xi refers to the ith class (truth) and Yj refers to the jth

cluster. ni j are the number of samples found in class i and cluster j. In this study, r = s was taken, as
K-means with the true number of classes known was performed.

Y1 Y2 · · · Ys ∑
s
j Yj

X1 n11 n12 · · · n1s ∑
r
i n1i = a1

X2 n21 n22 · · · n2s a2
...

...
. . .

...
...

...

Xr nr1 nr2 · · · nrs ar

∑
r
i ni1 = b1 b2 · · · bs S = ∑

r
i ∑

s
j ni j

The formulas of the four measures used to evaluate data clustering are given below, with the terms6

defined in Table S1.7

8

Accuracy (ACC)

(Acc) =
∑i ∑ j 1{i = j}ni j

S
(1)

Normalised Mutual Information (NMI)

(NMI) =
2I(X,Y)

H(X)+H(Y)
(2)

9

where I(X,Y) is the mutual information between X and Y, and H(X) is the entropy of X.10

11

Rand Index (RI)

(RI) =

(N
2

)
−
[

1
2 ∑i(∑ j ni j)

2 +∑ j(∑i ni j)
2−∑i ∑ j n2

i j

]
(N

2

) (3)

=
α +β(N

2

) (4)

12

where α refers to the number of elements that are in the same subset in X and in the same subset in Y ,13

while β is the number of elements that are in different subsets in X and in different subsets in Y .14

15

Adjusted Rand Index (ARI)

(ARI) =
∑i ∑ j

(ni j
2

)
− ∑i (

ai
2)∑ j (

b j
2 )

(n
2)

1
2

[
∑i

(ai
2

)
+∑ j

(b j
2

)]
− ∑i (

ai
2)∑ j (

b j
2 )

(n
2)

(5)

16

17

3/18



3 SINGLE-CELL DATA18

In the multi-omics single-cell data analysis, we used the publicly available data set provided by 10x Ge-19

nomics for human peripheral blood mononuclear cells (PBMC) 1. This data set can be downloaded and in-20

stalled via the R package SeuratData, by running the command InstallData("pbmcMultiome").21

In their vignette 2, Hoffman et al. (2021) explored this data set to demonstrate how to jointly integrate and22

analyse such data.23

In this data set, scRNA-seq and scATAC-seq profiles were simultaneously collected in the same cells24

by 10x Genomics. Data on 11909 single cells are available on 36601 genes and 108377 peaks in scRNA-25

seq and scATAC-seq, respectively. Cells with zero summed expression, along all genes were removed,26

leaving us with 10412 cells. Pre-processing was employed via the Seurat package, following the steps27

performed by Hoffman et al. (2021). Firstly, we log-normalised both data-views and then selected features28

for each individual data-view. In feature selection, we aim to identify a subset of features with high29

variability across cells (using the functions FindVariableFeatures and FindTopFeatures)30

(Stuart et al., 2019).31

The multi-omics single-cell data set consists of 19 imbalanced clusters that correspond to their32

corresponding cell types; we assume the annotations provided by Seurat to be accurate (Figure S1).33

To evaluate the clustering performance of multi-SNE, we took a balanced subset of the data. Cell-type34

clusters with less than 200 cells were removed entirely and we combined cells with cell types under the35

same hierarchy. For example, Intermediate B, Naive B and Memory B were combined to create a single36

cluster, B cells. Similarly, CD4 Naive, CD4 TCM and CD4 TEM were combined as CD4 cells. After this37

process, we ended up with a subset of 9105 single cells separated in 6 cell-type clusters (B cell, CD1438

Mono, CD4, CD8 Naive, CD8 TEM and NK).39

Figure S1. Visualisations of single-cell data. Projections of the full data set with unbalanced clusters
produced by t-SNE on RNA, ATAC, m-SNE and multi-SNE on both data-views with perplexity
Perp = 80 for the two t-SNE projections, Perp = 100 for m-SNE and Perp = 20 for multi-SNE.

M-SNE and multi-SNE combined the scRNA-seq and scATAC-seq to produce a more intelligible40

projection of the cells than t-SNE applied on either data-view. Qualitatively the superiority of the multi-41

view manifold learning algorithms may not be obvious at first, but subtle differences can be observed.42

Quantitatively, multi-SNE received the best evaluation scores, with NMI = 0.807, while m-SNE received43

NMI = 0.760. Single-view t-SNE scored NMI = 0.620 and NMI = 0.572 for scRNA-seq and scATAC-44

seq, respectively.45

1 https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_
granulocyte_sorted_10k

2 https://satijalab.org/seurat/articles/atacseq_integration_vignette.html

4/18

https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/1.0.0/pbmc_granulocyte_sorted_10k
https://satijalab.org/seurat/articles/atacseq_integration_vignette.html


4 ADDITIONAL COMPARISONS46

4.1 Multi-SNE, m-SNE and MV-tSNE247

This section justifies the exclusion of MV-tSNE2 from the comparisons against multi-SNE. Due to its48

superior performance, m-SNE was selected as an existing competitor of multi-SNE.49

Multi-SNE and m-SNE outperformed MV-tSNE2 on all data sets presented in this manuscript (Figure50

S2). By comparing the produced visualisations on two data sets, Figure S2 evaluates the three algorithms51

qualitatively. Multi-SNE produced the best separation among clusters on both data sets. In MV-tSNE2,52

a lot of the samples are projected bundled together, making it difficult to distinguish the true clusters.53

Quantitative evaluation of the methods agree with the conclusions reached by assessing the visualisations54

qualitatively.55

Figure S2. Visualisations by multi-SNE, m-SNE and MV-tSNE2. The three multi-view SNE-based
projections of cancer types and handwritten digits data sets.
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4.2 Multi-SNE, j-SNE and j-UMAP56

At the same time as multi-SNE was developed, Canzar and Hoan Do (2021) proposed generalisations of57

t-SNE (named j-SNE) and UMAP (named j-UMAP) based on a similar objective function as multi-SNE.58

Canzar and Hoan Do (2021) introduced a regularisation term that reduces the bias towards specific59

data-views; the proposed objective function is given by:60

C j−SNE = ∑
m

∑
i

∑
j

α
m pm

i j log
pm

i j

qi j
+λ ∑

m
α

m logα
m, (6)

where αm represents the weight provided for the mth data-view and λ is a regularisation parameter.61

The weights and low-dimensional embeddings are updated iteratively. The adjustments on the weights of62

each data-view are performed in accordance to the regularisation parameter, which requires tuning for63

optimal results.64

Figure S3. j-UMAP, j-SNE and multi-SNE visualisations. Projections of cancer types and
handwritten digits data sets, produced by j-UMAP, j-SNE and multi-SNE.

Figure S3 compares qualitatively multi-SNE with j-SNE and j-UMAP (with their respective tuning65

parameters optimised) on the cancer types and handwritten digits data. As expected, the projections by66

j-SNE and multi-SNE are very much alike for both data sets. The increasing complexity imposed by the67

regularisation term in j-SNE does not seem to benefit the visualisation of the samples. j-UMAP does68

not separate the three cancer types, but it manages to separate the 10 digits, even samples that represent69

the 6 and 9 numerals; j-SNE failed to do that. This was achieved by multi-SNE at the 3-dimensional70

visualisation, or alternatively by using multi-CCA as a pre-training step. All three algorithms allocated71

similar weight values to each data-view on both data sets. In particular, transcriptomics on cancer types72

and morphological features on handwritten digits received the lowest weight.73

6/18



4.3 Tuning parameters on real data74

In this section, we have explored how the parameter values affect the multi-view approaches when75

analysing real data sets. Figure S4 depicts the NMI evaluation measure on each real data set for parameter76

values in the range S.77

Figure S4. Real data sets evaluation via NMI. The NMI values are plotted against different parameter
values on all multi-view manifold learning algorithms investigated in this manuscript.

Similar conclusions to the ones made in Section 4.3 were reached (Figure S4). SNE-based solutions78

had a more consistent performance than LLE and ISOMAP based approaches. In contrast to the conclu-79

sions reached by testing the tuning parameters on synthetic data, SNE-based approaches applied to the80

cancer types data set, performed the best when the perplexity was low. This observation highlights the81

importance of the tuning parameters (perplexity and the number of neighbours) in these algorithms, as82

discussed by their respective authors. For the remaining data sets, its performance was stable on different83

parameter values. With the exception of cancer types data, the performance of LLE-based solutions form84

similar behaviour with the synthetic data (i.e. their performance is reduced around NN = 50 and then it is85

regained.86
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4.4 Increased randomness in data87

We have further explored how additional noise affects the performance of the multi-view learning88

approaches.89

As discussed, the NDS data set contains three informative data-views and one noisy data-view.90

In Section 4.4, we concluded that the inclusion of the noisy data-view reduces the performance both91

qualitatively and quantitatively. This complication was targeted and solved through an automatic weight-92

updating approach in Section 4.5.1. The purpose of this section is to test the performance of multi-view93

manifold learning solutions on data sets with higher levels of randomness. To increase the noise in94

the synthetic data, additional noisy data-views were generated. In particular, this section compares the95

performance of manifold learning algorithms on three synthetic data sets: (a) NDS, (b) NDS with one96

additional noisy data-view, and (c) NDS with two additional noisy data-views. Each simulation was97

performed for 200 runs and with equal weights for a fair comparison.98

Multi-SNE was the superior algorithm in all simulations (Table S2). With each additional noisy99

data-view, all multi-view manifold learning algorithms saw a reduction in their performance. Although all100

evaluation measures reflect this observation, the change in their performance is best observed on the NMI101

values (Table S2). Further, with more noisy data-views, the variance of the evaluation measures increased.102

This observation suggests that all algorithms clustered the samples with higher uncertainty.103

The proposed automatic weight-adjusting process ensures that all data-views receive a weight value,104

which suggests that noisy data-views do not receive zero weight. For example, in the NDS with two105

additional noisy data-views scenario, this process returned higher weights for the informative data-views106

(X1, X2, X3), than the noisy ones (X4, X5, X6) (Figure S5). Although the weights between informative107

and noisy data-views are close in value, the proposed automatic weight-adjusting process can successfully108

distinguish informative from noisy data-views (Figures S5). To further assess if this process allocates109

substantial weight to noisy data-views, a scenario in which the data set contains more noisy data-views110

than informative ones was investigated.111

In particular, a simulation was performed in which 1 data-view is informative and 2 are noisy. The112

informative data-view contains information to split the samples into 3 clusters, while the 2 noisy data-113

views assign all samples on the same cluster. Multi-SNE separates the samples by their respective cluster,114

despite having more noisy data-views than informative ones (Figure S6). In accordance with the other115

simulations, multi-SNE assigns a higher weight value on the informative data-view than on the noisy116

data-views. The informative data-view received a weight of 0.4 and each of the two noisy data-view 0.3117

(Figure S6). This difference in the weights between the data-views acts as an incentive for the user to118

investigate the implementation of the algorithm by excluding the data-view(s) that received the lowest119

weight(s).120
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Table S2. Clustering performance of NDS and with additional noisy data-views. For each data set,
red highlights the method with the best performance on each measure between each group of algorithms
(SNE, LLE or ISOMAP based). The overall superior method for each data set is depicted with bold. The
parameters Perp and NN refer to the selected perplexity and number of nearest neighbours, respectively.
They were optimised for the corresponding methods.

Data Set Algorithm Accuracy NMI RI ARI

NDS

SNEconcat [Perp=80] 0.747 0.628 0.817 0.598
m-SNE [Perp=50] 0.650 0.748 0.766 0.629

multi-SNE [Perp=80] 0.989 0.951 0.969 0.987
LLEconcat [NN=5] 0.606 0.477 0.684 0.446
m-LLE [NN=20] 0.685 0.555 0.768 0.528

multi-LLE [NN=20] 0.937 0.768 0.922 0.823
ISOMAPconcat [NN=100] 0.649 0.528 0.750 0.475

m-ISOMAP [NN=5] 0.610 0.453 0.760 0.386
multi-ISOMAP [NN=300] 0.778 0.788 0.867 0.730

Higher dimension

SNEconcat [Perp=80] 0.723 0.648 0.787 0.585
m-SNE [Perp=50] 0.623 0.705 0.734 0.605

multi-SNE [Perp=80] 0.983 0.937 0.951 0.966
LLEconcat [NN=5] 0.575 0.427 0.628 0.402
m-LLE [NN=20] 0.671 0.534 0.755 0.513

multi-LLE [NN=20] 0.903 0.788 0.898 0.802
ISOMAPconcat [NN=100] 0.622 0.510 0.705 0.453

m-ISOMAP [NN=5] 0.589 0.439 0.734 0.344
multi-ISOMAP [NN=300] 0.765 0.767 0.859 0.711

One additional noisy

SNEconcat [Perp=10] 0.650 0.522 0.724 0.489
m-SNE [Perp=100] 0.689 0.584 0.786 0.530

multi-SNE [Perp=50] 0.965 0.854 0.956 0.901
LLEconcat [NN=10] 0.604 0.445 0.723 0.413

m-LLE [NN=10] 0.667 0.522 0.765 0.490
multi-LLE [NN=5] 0.912 0.692 0.891 0.756

ISOMAPconcat [NN=20] 0.543 0.375 0.733 0.481
m-ISOMAP [NN=20] 0.552 0.482 0.703 0.444

multi-ISOMAP [NN=5] 0.584 0.501 0.739 0.493

Two additional noisy

SNEconcat [Perp=10] 0.581 0.310 0.688 0.309
m-SNE [Perp=10] 0.603 0.388 0.712 0.359

multi-SNE [Perp=10] 0.936 0.781 0.926 0.832
LLEconcat [NN=10] 0.523 0.251 0.641 0.222

m-LLE [NN=10] 0.570 0.344 0.682 0.317
multi-LLE [NN=5] 0.858 0.557 0.832 0.622

ISOMAPconcat [NN=20] 0.470 0.389 0.565 0.409
m-ISOMAP [NN=20] 0.489 0.406 0.611 0.453

multi-ISOMAP [NN=5] 0.524 0.467 0.782 0.517
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Figure S5. Visualisations on NDS with 2 additional noisy data-views. (A) Scatter-plot of the
simulated samples obtained by multi-SNE with perplexity Perp = 200 and (B) Weights received by the
algorithm on the 6 data-views. The first 4 follow the structure of NDS simulation; three informative
data-views and a noisy one. Each informative data-view separates the samples differently, but taken
together they are split equally into three clusters. X5 and X6 represent the 2 additional noisy data-views.

Figure S6. Visualisations on new simulation with 1 informative and 2 noisy data-views. (A)
Scatter-plot of the simulated samples obtained by multi-SNE with perplexity Perp = 100 and (B) Weights
received by the algorithm on the 3 data-views. The informative data-view contains information to split
the samples into 3 clusters, while the 2 noisy data-views assign all samples to lie on the same cluster.
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4.5 t-SNE on single-view cancer types121

Table S3 presents the clustering performance of t-SNE applied on the three views in the cancer types data122

set, separately. Genomics was the favoured view on all evaluation measures.123

Table S3. Clustering performance on the induced embedding of a single view obtained by implementing
t-SNE on Cancer Types data. Standard deviation is reported in parentheses.

ACC NMI RI ARI
Genomics 0.595 (0.044) 0.299 (0.041) 0.667 (0.017) 0.253 (0.039)

Epigenomics 0.500 (0.036) 0.116 (0.033) 0.598 (0.018) 0.107 (0.035)
Transcriptomics 0.456 (0.023) 0.042 (0.011) 0.572 (0.006) 0.049 (0.013)
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4.6 Handwritten digits projection in 3 dimensions (3D)124

Figure S7. 3D multi-SNE visualisation of handwritten digits. Projections produced by weight
adjusting multi-SNE with multi-CCA as pre-training and perplexity Perp = 80. Colours present the true
clustering of the data points.
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4.7 Alternative quantitative evaluation measures for clustering125

Accuracy (ACC), Normalised Mutual Information (NMI), Rand Index (RI) and Adjusted Rand Index126

(ARI) are the evaluation measures chosen to quantitatively evaluate the clustering performance of the127

proposed multi-view approaches. These measures were chosen because the true annotations of the data128

sets are known and together they provide a wide assessment range. Practically, clustering is often applied129

to data with unknown annotations (labelling), therefore for completeness, we have further explored the130

implementation of the Silhouette score for identifying the optimal tuning parameter of the manifold131

visualisation approaches. The Silhouette score is a widely used measure for quantifying the clustering132

produced by the clustering algorithms, or for selecting the optimal number of clusters.133

Figure S8. Silhouette score on MCS. The clustering evaluation via Silhouette score is plotted against
different parameter values on all SNE, LLE and ISOMAP based algorithms.

Figure S8 presents the evaluation performance of the methods with respect to their tuning parameter134

when the Silhouette score is evaluated instead of the other four measures. This figure complements Figure135

7. The Silhouette score is not always in agreement with the other evaluation measures. For example, in136

SNE-based solutions, according to the Silhouette score, multi-SNE is favoured over the other methods137

only when perplexity is 100. Another difference between the silhouette score and other measures is138

that as the perplexity increases, multi-SNE remains stable for the other measures (for Perp≥ 50), while139

its silhouette score keeps increasing. Silhouette score measures how well the clusters are separated140

between them. This is conceptually different from what the other measures quantify which is how well141

the proposed clusters agree with the known clusters. It is therefore of no surprise that the findings are not142

always in agreement.143
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4.8 Alternative clustering algorithms144

For the clustering task of the samples, any clustering algorithm could have potentially been applied to the145

low-dimensional embeddings produced by the multi-view visualisation approaches proposed.146

Figure S9. K-means and DBSCAN on SNE-based solutions applied on handwritten digits data set.
The clustering evaluation measures are plotted against different perplexity values on multi-SNE, m-SNE
and SNEconcat . The performance of K-means and DBSCAN applied on the produced embeddings is
depicted in the first and second row of this figure, respectively

In the main body of this manuscript, the K-means algorithm was chosen due to its popularity, its strong147

robust performance and because the true number of clusters is known for all data sets. In practice, the148

latter is not always true, and clustering algorithms that do not require the number of clusters as a parameter149

input are preferable. Density-based spatial clustering of applications with noise (DBSCAN) is an example150

of such an algorithm (Ester et al., 1996). DBSCAN instead requires two other tuning parameters:151

the minimum number of samples required to form a dense cluster and a threshold in determining the152

neighbourhood of a sample, named ε .153

The implementation of DBSCAN on handwritten digits, smooths the performance of SNE-based154

solutions across different perplexity values (Figure S9). For all parameter values, DBSCAN performs155

equally well, while the performance of K-means slightly oscillates.156

A greater disagreement between the two unsupervised learning algorithms is observed in their appli-157

cation to caltech7 data set (Figure S10). While the accuracy of multi-SNE by implementing K-means158

reduces with higher perplexity, the opposite behaviour is observed when DBSCAN is implemented. In159

addition, DBSCAN finds multi-SNE to be superior over m-SNE, while K-means concludes the opposite.160

161

This section demonstrates that the implementation of clustering on the produced embeddings is not162

restricted only to K-means, but alternative clustering solutions may be used. In particular, DBSCAN is a163

good choice, especially when the true number of clusters is unknown.164

165
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Figure S10. K-means and DBSCAN on SNE-based solutions applied on caltech7 data set. The
clustering evaluation measures are plotted against different perplexity values on multi-SNE, m-SNE and
SNEconcat . The performance of K-means and DBSCAN applied on the produced embeddings is depicted
in the first and second row of this figure, respectively
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5 REPRODUCIBILITY166

The code of multi-SNE was based on the publicly available software, written by the author of t-SNE,167

found in the following link:168

https://lvdmaaten.github.io/tsne/169

In this manuscript, all t-SNE results were obtained by running the original R implementation170

(https://cran.r-project.org/web/packages/tsne/) and verified by the original Python implementation171

(https://lvdmaaten.github.io/tsne/).172

We refer the readers to follow the code and functions provided in the link below to reproduce the173

findings of this paper. The software for m-SNE and m-LLE were not found publicly available and thus we174

used our own implementation of the method that can be found in the same link below:175

https://github.com/theorod93/multiView_manifoldLearning176

An R package that contains the code for multi-SNE can be installed via devtools and it can be177

found in https://github.com/theorod93/multiSNE178

We refer the readers to follow the links provided in the main body of the paper for the public multi-view179

data used in this paper.180
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6 COMPUTATIONAL TIME AND SCALABILITY181

In terms of computation time, none of the multi-view manifold learning algorithms was consistently182

faster than the rest (Table S4). However, multi-SNE was often the slowest algorithm, while m-SNE and183

multi-ISOMAP had the fastest computation time. The SNE-based solutions are based on the original184

t-SNE algorithm, as described in Section 5 of the Supplemental material.185

Table S4. Averaged running time recorded in minutes. Taken for each manifold learning algorithm
on all data sets seen in this paper; standard deviation is given in parentheses. All algorithms ran on High
Performance Computing with 4 nodes.

Running time
MMDS NDS MCS Caltech7 Handwritten Digits Cancer Types

m-SNE 0.43 (0.019) 0.29 (0.07) 0.42 (0.01) 4.29 (0.54) 13.34 (3.43) 251.71 (15.68)
multi-SNE 1.07 (0.100) 0.78 (0.14) 1.02 (0.01) 15.95 (0.71) 45.76 (8.44) 252.00 (11.23)
m-LLE 0.25 (0.071) 0.40 (0.12) 0.42 (0.34) 37.5 (2.21) 26.28 (8.82) 159.52 (17.49)
multi-LLE 0.28 (0.099) 0.41 (0.15) 0.30 (0.14) 37.9 (2.57) 27.94 (5.29) 157.73 (18.19)
m-ISOMAP 0.22 (0.015) 0.57 (0.06) 0.37 (0.01) 38.07 (3.09) 29.52 (5.37) 154.83 (18.04)
multi-ISOMAP 0.24 (0.032) 0.54 (0.13) 0.33 (0.05) 21.23 (2.24) 16.77 (4.65) 85.47 (14.57)

We have further explored the scalability of the methods, and most specifically the effect of the sample186

size to the running time of the methods. For the purposes of this experiment, the Caltech7 dataset was187

utilised, where the running time of the methods was evaluated on different subsets of the dataset.188

Figure S11. Scalability. Averaged running time recorded in minutes taken for each manifold learning
algorithm on Caltech7 dataset with four different sets of samples: (i) All of the samples (N = 1474), (ii)
Half of the samples (N/2 = 737), (iii) Third of the samples (N/3 = 491), and (iv) Quarter of the samples
(N/4 = 368). All algorithms ran on High Performance Computing with 4 nodes. The shaded regions
correspond to the standard deviation of the running time.

From Figure S11 it can be seen that the fastest algorithm is m-SNE that almost has a constant running189

time across the different sample sizes. The second fastest is the multi-SNE approach, on the other hand,190

the slowest running time is recorded by the m-LLE approach. The running time of the methods seems to191

follow a power law relationship with the number of samples, where the methods with lower exponents192

are more scalable with N. M-SNE is found to be the most scalable (0.77 power law exponent), followed193

by multi-SNE (1.96), while m-LLE had the largest exponent of 7.73. The power law exponents were194

computed by using the R package, poweRlaw (Gillespie, 2015).195
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