Supporting Information for: Applying a deep learning pipeline to classify low-quality historical RGB imagery into land cover classes

Harold N. Eyster 1,2,* and Brian Beckage 1,2

¹Gund Institute for Environment, University of Vermont, USA ²Department of Plant Biology, University of Vermont, USA

*Corresponding author. Please direct any questions or comments to haroldeyster@gmail.com.

1 Additional figures

Figure S1: Modern confusion matrix, normalized by column.

Figure S2: Modern confusion matrix after binning into water, built, and greenery categories, normalized by column.

Figure S3: Historical confusion matrix after training on hand-annotated historical imagery augmented by rotation, normalized by column.

Figure S4: Historical confusion matrix after binning into water, built, and greenery categories and after training on hand-annotated historical imagery augmented by rotation, normalized by column.

Figure S5: Confusion matrix of modern land cover model predictions, normalized by row of (a) all land cover types and (b) binned land cover categories

Figure S6: Map of Metro Vancovuer, with black bounding box showing extent of training data. Basemap \bigcirc OpenStreetMap.

Figure S7: Historical RGB imagery tiles and land cover predictions.