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Abstract 

This document outlines the implementation and analysis of an intelligent system designed to 

evaluate the sentimental responses of visually impaired students. The system integrates speech 

recognition, sentiment analysis, and predictive modeling to assess academic performance. 

Introduction 

The growing need to adapt educational tools for visually impaired students has led to the 

development of innovative solutions that can process and analyze emotional feedback through 

audio inputs. This project aims to leverage advanced machine learning algorithms to predict 

student success and provide actionable insights into educational strategies. 

System Overview 

The system is composed of three main sub-systems: Speech Recognition, Sentiment Analysis, and 

Prediction. Each sub-system plays a pivotal role in the processing and analysis pipeline, from audio 

data input to predictive outputs on student performance. 

Methodology 

Detailed descriptions of the functionality and interplay between these sub-systems are provided, 

focusing on the technical implementations and the underlying algorithms employed. 

Implementation Details 

- Data source 

Our study involved 100 impaired vision students from various universities around Egypt and was 

carried out for nine weeks. The course "Computer Skills Course in the English Language" was 

started through Microsoft Teams. All participants were communicated to, and forms of consent 

were signed before the course, whereby a choice of withdrawal/non-participation without penalties 

was given. The process of data collection was extensive and carefully integrated into the Microsoft 

Teams platform to ensure comprehensiveness and no loss of accuracy. 

Throughout the course, multidimensional data were collected, including structured academic 

performance indicators and unstructured sentimental feedback. Both these kinds of data, when 

integrated, provided the opportunity to have an overall view of the progress and sentimental 

responses of the student throughout the course. Our data collection was multi-faceted and 

integrated into the Microsoft Teams platform. and we was gathering data as following: 

• Digital Tracking on Microsoft Teams (Structured Data): We fully used the inbuilt functionalities 

of Microsoft Teams in the process of participating in tracking student participation. The same 

included checking attendance in each session, checking the submission rate of homework, and 

analyzing involvement in classroom discussions. In this regard, Microsoft Teams provided us with 

electronic logs and participation reports that were exported for analysis to quantify student 

engagement. The first evaluation was done by the end of the fourth week, and the second one by 

the end of the ninth week. 

• Collection of Audio Feedback (Unstructured Data): This work illustrates the study's 

responsiveness, which is useful to help provide a useful means for identifying the needs of visual 

impairment in the section of the program where major assessments are needed. The first evaluation 

was done by the end of the fourth week, and the second one by the end of the ninth week, after 

audio feedback had been collected. The students were to audio-record themselves for every lesson 
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while speaking, self-assessing, and reflecting on the learning content, then submit their recordings 

on the Microsoft Teams platform. The approach did not help in collecting valuable qualitative data 

but also provided in-depth insights into the experiences and understanding of the students. 

My system content of three sub-systems is as follows: 

The first sub-system: speech recognition (STT) 

 Libraries Used: 

- speech_recognition: for converting speech into text. 

- pydub: for manipulating audio files, especially useful for splitting the audio into chunks and 

handling different audio formats. 

- librosa: for audio normalization and processing. 

Python Code for Speech Recognition Component 

import speech_recognition as sr 

from pydub import AudioSegment 

from pydub.silence import split_on_silence 

import librosa 

def normalize_audio(audio_path): 

    # Load audio file with librosa 

    y, sr = librosa.load(audio_path, sr=None) 

    # Normalize the audio to -20 dBFS 

    y_norm = librosa.util.normalize(y, norm=float(librosa.db_to_amplitude(-20))) 

    # Save the normalized audio back to a file 

    librosa.output.write_wav(audio_path, y_norm, sr) 

def transcribe_audio(audio_path): 

    # Initialize the recognizer and load the audio file 

    recognizer = sr.Recognizer() 

    audio = AudioSegment.from_file(audio_path) 

    # Split the audio file where silence is 0.5 seconds or more and dBFS difference is -30 

    chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-30) 

    # Process each chunk of audio 

    complete_text = '' 

    for chunk in chunks: 

        with sr.AudioFile(chunk.export(format="wav")) as source: 

            audio_data = recognizer.record(source) 

            # Try recognizing the speech in the chunk 

            try: 

                text = recognizer.recognize_google(audio_data) 

                complete_text += text + " " 

            except sr.UnknownValueError: 

                print("Could not understand audio") 

            except sr.RequestError as e: 

                print(f"Request Error from Google Speech Recognition service; {e}") 
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    return complete_text 

# Normalize the audio file before processing 

normalize_audio("path_to_audio_file.wav") 

# Transcribe the normalized audio 

transcript = transcribe_audio("path_to_audio_file.wav") 

print(transcript) 

 Pseudocode for Speech Recognition System 

Define normalize_audio(audio_path): 

    Load audio file with librosa 

    Normalize the audio to uniform loudness 

    Save the normalized audio file 

Define transcribe_audio(audio_path): 

    Initialize speech recognizer 

    Load and split the audio file into chunks based on silence 

    For each chunk: 

        Convert chunk to audio format readable by speech recognizer 

        Adjust recognizer settings to handle ambient noise 

        Try to recognize speech in the chunk 

        If speech recognized: 

            Append recognized text to complete text 

        Else: 

            Handle errors and continue 

    Return the complete transcript 

Procedure to process audio feedback: 

    Normalize the audio to ensure uniform audio levels 

    Transcribe the normalized audio to text 

    Output the transcribed text 

Main: 

    Call normalize_audio with path to the audio file 

    Call transcribe_audio with path to the normalized audio file 

    Print the transcription results 

# This pseudocode sets up the complete flow from audio normalization to speech-to-text 

transcription. 

 

Parameters and Configuration 

- Audio Source Settings: WAV format, with a typical sampling rate of 16000 Hz for speech 

recognition. 

- Ambient Noise Adjustment: First few seconds of the audio are used to calibrate the recognizer's 

sensitivity to background noise. 
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- Timeout and Confidence Thresholds: A timeout might be set to avoid hanging during processing, 

and a confidence threshold could be set to ignore uncertain recognitions, though these aren't 

explicitly shown in the Python script above. 

Notes: 

- Ensure that the audio files are accessible at the specified path in your Python script. 

- Adjust the silence threshold and minimum silence length in `split_on_silence` according to the 

actual ambient noise levels in your audio files for optimal results. 

Second sub-system: sentiment analysis (SA): 

Libraries Used: 

- nltk: Natural Language Toolkit, used here for text preprocessing like stopword removal and 

tokenization. 

- vaderSentiment: For sentiment analysis, particularly suited for social media texts and short 

phrases. 

 Python Code for Sentiment Analysis Component 

import nltk 

from nltk.corpus import stopwords 

from nltk.tokenize import word_tokenize 

from nltk.stem import WordNetLemmatizer 

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer 

import string 

# Ensure necessary NLTK resources are downloaded 

nltk.download('punkt') 

nltk.download('stopwords') 

nltk.download('wordnet') 

def preprocess_feedback(feedback): 

    # Convert to lowercase 

    feedback = feedback.lower() 

    # Remove punctuation 
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    feedback = feedback.translate(str.maketrans('', '', string.punctuation)) 

    # Tokenize feedback 

    words = word_tokenize(feedback) 

    # Remove stopwords 

    words = [word for word in words if word not in stopwords.words('english')] 

    # Lemmatize the words 

    lemmatizer = WordNetLemmatizer() 

    words = [lemmatizer.lemmatize(word) for word in words] 

    return ' '.join(words) 

def analyze_sentiment(feedback): 

    # Preprocess the feedback 

    clean_feedback = preprocess_feedback(feedback) 

    # Initialize VADER sentiment analyzer 

    analyzer = SentimentIntensityAnalyzer() 

    # Get sentiment scores 

    sentiment_scores = analyzer.polarity_scores(clean_feedback) 

    return sentiment_scores 

# Example usage 

feedback_text = "The course was extremely helpful and the instructor was very encouraging!" 

processed_feedback = preprocess_feedback(feedback_text) 

sentiment_results = analyze_sentiment(feedback_text) 

print("Processed Feedback:", processed_feedback) 

print("Sentiment Scores:", sentiment_results) 

 

 Pseudocode for Sentiment Analysis System 
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Function preprocess_feedback(feedback): 

    Convert feedback to lowercase 

    Remove all punctuation from feedback 

    Tokenize feedback into words 

    Remove stopwords from tokenized words 

    Lemmatize each word to its base form 

    Combine lemmatized words back into a single string 

    Return the processed feedback 

Function analyze_sentiment(feedback): 

    Preprocess the feedback 

    Initialize the sentiment analyzer (VADER) 

    Analyze the preprocessed feedback for sentiment scores 

    Return sentiment scores 

Main Procedure: 

    Input: Raw feedback text 

    Call preprocess_feedback with raw feedback 

    Call analyze_sentiment with preprocessed feedback 

    Print processed feedback and sentiment scores 

 

 Parameters and Configuration 

- Text Normalization: Lowercase conversion and punctuation removal to standardize the text. 

- Tokenization: Splitting text into individual words to process each word for stop words and 

lemmatization. 

- Stopword Removal: Filtering out common words that don't contribute to sentiment analysis. 

- Lemmatization: Converting words to their base form to reduce the complexity of the analysis. 

- VADER Configuration: Using default settings which are generally well-tuned for social media 

texts. 
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Third Sud-system: prediction: 

We’ll integrate sentiment analysis data with structured academic performance data from Microsoft 

Teams to train two machine learning models: a Support Vector Machine (SVM) and a 

Convolutional Neural Network (CNN). These models will predict whether students pass or fail 

based on the integrated dataset. 

The first: SVM prediction: 

We integrate sentiment analysis data with structured academic performance data from various 

educational tools to train a Support Vector Machine (SVM). This model predicts whether students 

pass or fail based on an integrated dataset that includes both structured academic metrics and 

sentiment analysis results. 

Step 1: Load and Process Structured Data 

This step involves loading structured data, which might come from educational platforms like 

Microsoft Teams or other Learning Management Systems (LMS). The structured data includes 

metrics like: 

- Homework Grade: Numerical scores representing student performance on homework. 

- Homework Clicks: Count of interactions or clicks recorded in the homework module. 

- Attendance: Records showing whether students attended sessions. 

- Discussion Participation: Measures student engagement in course forums or discussion boards. 

 

 

 

Step 2: Process Sentiment Data: 

If available, this step involves processing sentiment analysis results which provide a sentiment 

score for each student based on their textual feedback. This data helps in understanding the 

emotional and psychological state of the students, which can be a significant factor in their overall 

performance. 

Step 3: Combine Datasets 

Here, both the structured academic metrics and the sentiment scores are merged to form a 

comprehensive dataset. This integration allows the model to utilize both numerical performance 

metrics and unstructured sentiment data. 

Step 4: Data Preprocessing 

Before training the SVM model, the combined dataset needs to be preprocessed: 
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- Categorical Data Encoding: Features like 'Sentiment Type' and 'Attendance' are converted from 

categorical to numerical formats using label encoding to make them suitable for the model. 

- Feature Aggregation: For each student (identified by 'Student ID'), aggregate multiple records by 

calculating the mean of numerical features and the mode of categorical features. 

Step 5: Model Training 

The preprocessed data is then used to train an SVM model. This involves: 

- Feature Selection: Selecting relevant features for the model, including academic metrics and, if 

available, sentiment scores. 

- Model Training: Training the SVM model on the dataset to predict the 'Pass/Fail' outcome for 

each student. 

Libraries and Tools 

- Scikit-learn: Used for building the SVM model, preprocessing data, and for splitting the dataset 

into training and testing sets. 

- Pandas: Utilized for data manipulation and merging datasets. 

- NumPy: Employed for numerical operations, especially for handling arrays and matrices during 

data preprocessing. 

- Joblib/Pickle: For saving the model state and ensuring that the predictions can be reproduced 

later. 

Python Code 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import LabelEncoder, StandardScaler 

from sklearn.svm import SVC 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import classification_report 

import joblib 

# Load your datasets 

data = pd.read_csv('your_dataset.csv')  # Replace with your actual filename 

# If there is textual feedback, process it (assuming sentiment analysis has been done) 

if 'Feedback Text' in data.columns: 

    data['Feedback Text'] = data['Feedback Text'].astype(str) 
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# Aggregate data by 'Student ID' 

def get_most_frequent(series): 

    return series.value_counts().idxmax() 

# Numerical features: Calculate the mean 

numerical_agg = data.groupby('Student ID')[['Homework Grade', 'Homework Click', 

'Discussion']].mean() 

# Categorical features: Calculate the most frequent value (mode) 

categorical_agg = data.groupby('Student ID')[['Sentiment Type', 

'Attendance']].agg(get_most_frequent) 

# Combine aggregated data 

aggregated_data = pd.merge(numerical_agg, categorical_agg, on='Student ID') 

# Preprocess the Data 

label_encoder = LabelEncoder() 

for column in ['Sentiment Type', 'Attendance']: 

    aggregated_data[column] = label_encoder.fit_transform(aggregated_data[column]) 

# Prepare Features and Labels 

X = aggregated_data[['Homework Grade', 'Homework Click', 'Discussion', 'Sentiment Type', 

'Attendance']].values 

y = np.array([0 if int(student_id.split('_')[-1]) % 2 == 0 else 1 for student_id in 

aggregated_data.index]) 

# Train the Model 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

model = SVC(kernel='linear', C=1) 

model.fit(X_train, y_train) 

# Save the model 

joblib.dump(model, 'svm_model.pkl') 

# Predict and Evaluate 

y_pred = model.predict(X_test) 

print(classification_report(y_test, y_pred)) 
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Pseudocode 

 

Procedure LoadAndProcessData: 

    Load the dataset from a CSV file 

    If 'Feedback Text' exists in data columns: 

        Convert 'Feedback Text' to string for each record 

    Aggregate numerical data by 'Student ID' using mean 

    Aggregate categorical data by 'Student ID' using mode 

    Merge all aggregated data into one DataFrame 

 

Procedure PreprocessData: 

    Initialize a LabelEncoder 

    For each categorical column in the dataset: 

        Encode the column using LabelEncoder 

    Prepare the feature matrix X and label vector y 

    Return X and y 

 

Procedure TrainSVM: 

    Split the dataset into training and testing parts 

    Initialize and train an SVM model with a linear kernel 

    Save the trained model using joblib 

    Return the trained model 

 

Procedure EvaluateModel: 

    Predict labels for the test set using the trained SVM model 

    Print the classification report for the predictions 

 

Main: 
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    Call LoadAndProcessData to load and preprocess the data 

    X, y <- Call PreprocessData to encode data and prepare features and labels 

    model <- Call TrainSVM to train the SVM model using X and y 

    Call EvaluateModel to test and evaluate the trained model 

 

Code Explanation 

1. Data Loading and Preprocessing: The script loads the dataset and checks for textual feedback, 

processing it as needed. It aggregates the numerical and categorical data by student, using the mean 

for numerical features and mode for categorical features. 

2. Data Encoding: Categorical features are encoded to numerical values using `LabelEncoder`, 

making them suitable for model training. 

3. Model Training and Evaluation: The script trains an SVM model using the preprocessed data, 

then evaluates its performance using a classification report, which provides metrics like precision, 

recall, and F1-score. 

4. Model Saving: The trained model is saved using ̀ joblib` for future use, ensuring that the training 

process does not need to be repeated. 

 

The second: CNN prediction: 

We integrate sentiment analysis data with structured academic performance data from various 

educational platforms to train a Convolutional Neural Network (CNN). This model predicts 

whether students pass or fail based on an integrated dataset that includes both structured academic 

metrics and unstructured sentiment analysis results. 

Step 1: Load and Process Structured Data 

This step involves loading structured data from educational platforms like Microsoft Teams. The 

structured data typically includes metrics such as: 

- Homework Grades: Numerical scores representing student performance on homework 

assignments. 

- Homework Clicks: Number of interactions or clicks in the homework module, indicating 

engagement. 

- Attendance: Records indicating whether students attended sessions, marked typically as present 

or absent. 

- Discussion Participation: Measures of how actively students participate in course forums or 

discussion boards. 
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Step 2: Process Sentiment Data  

This step involves processing sentiment analysis results, which provide a sentiment score for each 

student based on their textual feedback. This helps gauge the emotional and psychological state of 

the students, which can significantly impact their academic performance. 

Step 3: Combine Datasets 

Here, both the structured academic metrics and the sentiment scores (if available) are merged to 

create a comprehensive dataset. This combination allows the model to leverage both numerical 

performance metrics and unstructured sentiment data. 

Step 4: Data Preprocessing 

Before training the CNN model, the combined dataset undergoes several preprocessing steps: 

- Categorical Data Encoding: Features like 'Sentiment Type' and 'Attendance' are converted from 

categorical to numerical formats using label encoding. This makes them suitable for model input. 

- Feature Aggregation: For each student (identified by 'Student ID'), aggregate multiple records by 

calculating the mean of numerical features and the mode of categorical features. 

- Text Data Processing: If textual feedback is available, it's transformed into numerical data using 

TF-IDF (Term Frequency-Inverse Document Frequency), which helps in understanding the 

importance of words in the text. 

Step 5: Model Training 

The preprocessed data is used to train a CNN model. The steps include: 

- Feature Selection: Selecting relevant features for the model, which include academic metrics and, 

if available, sentiment scores. 

- Model Training: Training the CNN model on the dataset to predict the 'Pass/Fail' outcome for 

each student based on their aggregated and encoded features. 

 

Libraries and Tools 

- TensorFlow/Keras: For building and training the CNN model. 

- Scikit-learn: Used for SVM model building, data preprocessing, and for splitting the dataset into 

training and testing subsets. 

- Pandas: Utilized for data manipulation and merging datasets. 

- NumPy: Employed for numerical operations, especially for handling arrays and matrices during 

data preprocessing. 

- TfidfVectorizer: For converting text data into numerical vectors based on TF-IDF statistics. 
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Python Code 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder, StandardScaler, TfidfVectorizer 

from sklearn.metrics import accuracy_score 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Conv1D, GlobalMaxPooling1D, Flatten 

from tensorflow.keras.utils import to_categorical 

from google.colab import files 

 

# Step 1: Upload and Load the dataset 

uploaded = files.upload() 

filename = list(uploaded.keys())[0] 

data = pd.read_csv(filename) 

 

# Display the structure of the dataset 

print(data.head()) 

print("\nUnique values in 'Attendance' column:", data['Attendance'].unique()) 

 

# Step 2: Define the function to get the most frequent value 

def get_most_frequent(series): 

    return series.value_counts().idxmax() 

 

# Step 3: Aggregate data by 'Student ID' 

numerical_agg = data.groupby('Student ID')[['Homework Grade', 'Homework Click', 

'Discussion']].mean() 
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categorical_agg = data.groupby('Student ID')[['Sentiment Type', 

'Attendance']].agg(get_most_frequent) 

 

# Combine the aggregated data 

if 'Feedback Text' in data.columns: 

    text_agg = data.groupby('Student ID')['Feedback Text'].apply(' '.join).reset_index() 

    aggregated_data = pd.merge(pd.merge(numerical_agg, categorical_agg, on='Student ID'), 

text_agg, on='Student ID') 

else: 

    aggregated_data = pd.merge(numerical_agg, categorical_agg, on='Student ID') 

 

# Step 4: Preprocess the Data 

label_encoder = LabelEncoder() 

for column in ['Sentiment Type', 'Attendance']: 

    aggregated_data[column] = label_encoder.fit_transform(aggregated_data[column]) 

 

if 'Feedback Text' in aggregated_data.columns: 

    tfidf = TfidfVectorizer(max_features=500) 

    text_features = tfidf.fit_transform(aggregated_data['Feedback Text']).toarray() 

    X_full = np.hstack([aggregated_data.drop(['Feedback Text'], axis=1).values, text_features]) 

else: 

    X_full = aggregated_data.values 

 

X_full = np.expand_dims(X_full, axis=2) 

y = to_categorical([0 if int(sid.split('_')[-1]) % 2 == 0 else 1 for sid in aggregated_data.index]) 

 

# Step 5: Train and Evaluate CNN Model 

X_train, X_test, y_train, y_test = train_test_split(X_full, y, test_size=0.2, random_state=42) 
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model = Sequential([ 

    Conv1D(64, 3, activation='relu', input_shape=(X_train.shape[1], 1)), 

    GlobalMaxPooling1D(), 

    Dense(32, activation='relu'), 

    Dense(2, activation='softmax') 

]) 

 

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 

model.fit(X_train, y_train, epochs=10, batch_size=10) 

 

# Predict and evaluate 

y_pred = np.argmax(model.predict(X_test), axis=1) 

y_true = np.argmax(y_test, axis=1) 

print("CNN Accuracy:", accuracy_score(y_true, y_pred)) 

 

# Step 6: Predict for the entire dataset 

final_predictions = np.argmax(model.predict(X_full), axis=1) 

aggregated_data['Pass/Fail'] = ['Pass' if pred == 0 else 'Fail' for pred in final_predictions] 

 

# Merge and Output the final dataset 

final_data = pd.merge(data, aggregated_data[['Pass/Fail']], left_on='Student ID', 

right_index=True, how='left') 

output_filename = 'CNN_Aggregated_Results_with_Pass_Fail.csv' 

final_data.to_csv(output_filename) 

 

# Download the result file 

files.download(output_filename) 

 

pseudocode  
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Procedure Process_and_Predict_with_CNN 

    Begin 

        // Import the necessary libraries 

        Import pandas as pd 

        Import numpy as np 

        Import LabelEncoder, StandardScaler from sklearn.preprocessing 

        Import train_test_split from sklearn.model_selection 

        Import accuracy_score from sklearn.metrics 

        Import TfidfVectorizer from sklearn.feature_extraction.text 

        Import Sequential from tensorflow.keras.models 

        Import Dense, Conv1D, GlobalMaxPooling1D, Flatten from tensorflow.keras.layers 

        Import to_categorical from tensorflow.keras.utils 

        Import files from google.colab 

 

        // Step 1: Upload and Load the dataset 

        Display "Please upload your dataset" 

        uploaded <- files.upload() 

        filename <- Get the first key from the uploaded dictionary 

        data <- Load CSV file into DataFrame from filename 

 

        // Display the structure of the dataset 

        Print the first few rows of the data 

        Print "Unique values in 'Attendance' column:", unique values in data['Attendance'] 

 

        // Step 2: Define the function to get the most frequent value 

        Define Function get_most_frequent(series) 

            Begin 

                counts <- Get value counts of the series 
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                If counts is not empty Then 

                    Return the most frequent element in counts 

                Else 

                    Return NaN 

            End 

 

        // Step 3: Aggregate data by 'Student ID' 

        numerical_agg <- Group data by 'Student ID' and calculate mean of ['Homework Grade', 

'Homework Click', 'Discussion'] 

        categorical_agg <- Group data by 'Student ID' and apply get_most_frequent on ['Sentiment 

Type', 'Attendance'] 

 

        If 'Feedback Text' exists in data columns Then 

            text_agg <- Group data by 'Student ID' and concatenate 'Feedback Text' into a single string 

            aggregated_data <- Merge numerical_agg, categorical_agg, and text_agg on 'Student ID' 

        Else 

            aggregated_data <- Merge numerical_agg and categorical_agg on 'Student ID' 

 

        // Step 4: Preprocess the Data 

        Initialize label_encoder as LabelEncoder 

        For each column in ['Sentiment Type', 'Attendance'] Do 

            Encode aggregated_data[column] using label_encoder 

 

        If 'Feedback Text' exists in aggregated_data columns Then 

            Initialize tfidf as TfidfVectorizer with max_features set to 500 

            text_features <- Transform aggregated_data['Feedback Text'] into numerical data using 

tfidf 

            X_full <- Combine aggregated_data (excluding 'Feedback Text') values and text_features 

horizontally 

        Else 



Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual 

Learning Environments 

            X_full <- Convert aggregated_data values to a numpy array 

 

        X_full <- Expand dimensions of X_full by adding a new last axis 

        y <- Convert array of [0 if student_id is even else 1 for each student_id in aggregated_data] 

to categorical data 

 

        // Step 5: Train and Evaluate CNN Model 

        Split X_full and y into X_train, X_test, y_train, y_test with test size 0.2 and random state 42 

 

        // Define and train CNN for Structured Data Only 

        model <- Create a new Sequential model 

        Add Conv1D layer with 64 filters, kernel size 3, activation 'relu', and input shape 

(X_train.shape[1], 1) to model 

        Add GlobalMaxPooling1D layer to model 

        Add Dense layer with 32 units and activation 'relu' to model 

        Add Dense layer with 2 units and activation 'softmax' to model 

        Compile model with optimizer 'adam', loss 'categorical_crossentropy', and metrics 

['accuracy'] 

        Train model on X_train and y_train with epochs 10 and batch size 10 

 

        // Predict and evaluate 

        y_pred <- Get argmax of model.predict(X_test) along axis 1 

        y_true <- Get argmax of y_test along axis 1 

        Print "CNN Accuracy:", accuracy_score(y_true, y_pred) 

 

        // Step 6: Predict for the entire dataset 

        final_predictions <- Get argmax of model.predict(X_full) along axis 1 

        aggregated_data['Pass/Fail'] <- ['Pass' if pred is 0 else 'Fail' for each pred in final_predictions] 
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        // Merge Predictions with the Original Data 

        final_data <- Merge data with aggregated_data['Pass/Fail'] on 'Student ID' 

        output_filename <- 'CNN_Aggregated_Results_with_Pass_Fail.csv' 

        Save final_data to CSV file named output_filename 

 

        // Download the result file 

        Attempt 

            Download file named output_filename 

        Catch any errors and display "Error downloading the file" 

         

    End 

Pseudocode Explanation 

1. Library Imports: The necessary Python libraries are imported, including data manipulation, 

machine learning preprocessing, model training, and utilities for working with files in Google 

Colab. 

2. Data Upload and Loading:  

    - The user is prompted to upload a dataset. 

    - The uploaded dataset is read into a DataFrame `data`. 

    - The structure of `data` is displayed to understand its columns and initial rows. 

    - The unique values in the 'Attendance' column are printed to understand its data distribution. 

3. Function Definition - `get_most_frequent`:  

    - A helper function `get_most_frequent` is defined to determine the most frequent (mode) 

value in a series, which is particularly useful for categorical data. 

4. Data Aggregation: 

    - Numerical features like 'Homework Grade', 'Homework Click', and 'Discussion' are 

aggregated by the mean for each 'Student ID'. 

    - Categorical features like 'Sentiment Type' and 'Attendance' are aggregated by the mode for 

each 'Student ID'. 

    - If 'Feedback Text' is available, it is concatenated into a single string for each 'Student ID'. 

    - The aggregated data is stored in `aggregated_data`. 
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5. Data Preprocessing: 

    - Categorical variables are encoded using `LabelEncoder`. 

    - If 'Feedback Text' is part of the data, it is transformed into numerical features using 

`TfidfVectorizer`. 

    - The structured and unstructured data are combined into `X_full`. 

    - The dimensions of `X_full` are expanded to fit the input requirements of `Conv1D`. 

    - Labels `y` are prepared based on the parity of the numeric part of 'Student ID' and converted 

to a categorical format. 

6. Model Training and Evaluation: 

    - The dataset is split into training and testing subsets. 

    - A CNN model is defined with layers including `Conv1D`, `GlobalMaxPooling1D`, and 

`Dense`. 

    - The model is compiled and trained. 

    - Predictions are made on the test set, and accuracy is printed. 

7. Predict and Merge Results: 

    - The CNN model is used to predict outcomes for the entire dataset. 

    - Predictions are converted to 'Pass' or 'Fail' and added to `aggregated_data`. 

    - These predictions are merged back with the original `data` to provide a comprehensive view. 

8. Output and Save: 

    - The final dataset with predictions is saved to a CSV file. 

    - An attempt is made to download this file, with any errors in downloading reported to the 

user. 

 


