
Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Proposal system diagram

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Abstract

This document outlines the implementation and analysis of an intelligent system designed to

evaluate the sentimental responses of visually impaired students. The system integrates speech

recognition, sentiment analysis, and predictive modeling to assess academic performance.

Introduction

The growing need to adapt educational tools for visually impaired students has led to the

development of innovative solutions that can process and analyze emotional feedback through

audio inputs. This project aims to leverage advanced machine learning algorithms to predict

student success and provide actionable insights into educational strategies.

System Overview

The system is composed of three main sub-systems: Speech Recognition, Sentiment Analysis, and

Prediction. Each sub-system plays a pivotal role in the processing and analysis pipeline, from audio

data input to predictive outputs on student performance.

Methodology

Detailed descriptions of the functionality and interplay between these sub-systems are provided,

focusing on the technical implementations and the underlying algorithms employed.

Implementation Details

- Data source

Our study involved 100 impaired vision students from various universities around Egypt and was

carried out for nine weeks. The course "Computer Skills Course in the English Language" was

started through Microsoft Teams. All participants were communicated to, and forms of consent

were signed before the course, whereby a choice of withdrawal/non-participation without penalties

was given. The process of data collection was extensive and carefully integrated into the Microsoft

Teams platform to ensure comprehensiveness and no loss of accuracy.

Throughout the course, multidimensional data were collected, including structured academic

performance indicators and unstructured sentimental feedback. Both these kinds of data, when

integrated, provided the opportunity to have an overall view of the progress and sentimental

responses of the student throughout the course. Our data collection was multi-faceted and

integrated into the Microsoft Teams platform. and we was gathering data as following:

• Digital Tracking on Microsoft Teams (Structured Data): We fully used the inbuilt functionalities

of Microsoft Teams in the process of participating in tracking student participation. The same

included checking attendance in each session, checking the submission rate of homework, and

analyzing involvement in classroom discussions. In this regard, Microsoft Teams provided us with

electronic logs and participation reports that were exported for analysis to quantify student

engagement. The first evaluation was done by the end of the fourth week, and the second one by

the end of the ninth week.

• Collection of Audio Feedback (Unstructured Data): This work illustrates the study's

responsiveness, which is useful to help provide a useful means for identifying the needs of visual

impairment in the section of the program where major assessments are needed. The first evaluation

was done by the end of the fourth week, and the second one by the end of the ninth week, after

audio feedback had been collected. The students were to audio-record themselves for every lesson

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

while speaking, self-assessing, and reflecting on the learning content, then submit their recordings

on the Microsoft Teams platform. The approach did not help in collecting valuable qualitative data

but also provided in-depth insights into the experiences and understanding of the students.

My system content of three sub-systems is as follows:

The first sub-system: speech recognition (STT)

 Libraries Used:

- speech_recognition: for converting speech into text.

- pydub: for manipulating audio files, especially useful for splitting the audio into chunks and

handling different audio formats.

- librosa: for audio normalization and processing.

Python Code for Speech Recognition Component

import speech_recognition as sr

from pydub import AudioSegment

from pydub.silence import split_on_silence

import librosa

def normalize_audio(audio_path):

 # Load audio file with librosa

 y, sr = librosa.load(audio_path, sr=None)

 # Normalize the audio to -20 dBFS

 y_norm = librosa.util.normalize(y, norm=float(librosa.db_to_amplitude(-20)))

 # Save the normalized audio back to a file

 librosa.output.write_wav(audio_path, y_norm, sr)

def transcribe_audio(audio_path):

 # Initialize the recognizer and load the audio file

 recognizer = sr.Recognizer()

 audio = AudioSegment.from_file(audio_path)

 # Split the audio file where silence is 0.5 seconds or more and dBFS difference is -30

 chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-30)

 # Process each chunk of audio

 complete_text = ''

 for chunk in chunks:

 with sr.AudioFile(chunk.export(format="wav")) as source:

 audio_data = recognizer.record(source)

 # Try recognizing the speech in the chunk

 try:

 text = recognizer.recognize_google(audio_data)

 complete_text += text + " "

 except sr.UnknownValueError:

 print("Could not understand audio")

 except sr.RequestError as e:

 print(f"Request Error from Google Speech Recognition service; {e}")

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

 return complete_text

Normalize the audio file before processing

normalize_audio("path_to_audio_file.wav")

Transcribe the normalized audio

transcript = transcribe_audio("path_to_audio_file.wav")

print(transcript)

 Pseudocode for Speech Recognition System

Define normalize_audio(audio_path):

 Load audio file with librosa

 Normalize the audio to uniform loudness

 Save the normalized audio file

Define transcribe_audio(audio_path):

 Initialize speech recognizer

 Load and split the audio file into chunks based on silence

 For each chunk:

 Convert chunk to audio format readable by speech recognizer

 Adjust recognizer settings to handle ambient noise

 Try to recognize speech in the chunk

 If speech recognized:

 Append recognized text to complete text

 Else:

 Handle errors and continue

 Return the complete transcript

Procedure to process audio feedback:

 Normalize the audio to ensure uniform audio levels

 Transcribe the normalized audio to text

 Output the transcribed text

Main:

 Call normalize_audio with path to the audio file

 Call transcribe_audio with path to the normalized audio file

 Print the transcription results

This pseudocode sets up the complete flow from audio normalization to speech-to-text

transcription.

Parameters and Configuration

- Audio Source Settings: WAV format, with a typical sampling rate of 16000 Hz for speech

recognition.

- Ambient Noise Adjustment: First few seconds of the audio are used to calibrate the recognizer's

sensitivity to background noise.

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

- Timeout and Confidence Thresholds: A timeout might be set to avoid hanging during processing,

and a confidence threshold could be set to ignore uncertain recognitions, though these aren't

explicitly shown in the Python script above.

Notes:

- Ensure that the audio files are accessible at the specified path in your Python script.

- Adjust the silence threshold and minimum silence length in `split_on_silence` according to the

actual ambient noise levels in your audio files for optimal results.

Second sub-system: sentiment analysis (SA):

Libraries Used:

- nltk: Natural Language Toolkit, used here for text preprocessing like stopword removal and

tokenization.

- vaderSentiment: For sentiment analysis, particularly suited for social media texts and short

phrases.

 Python Code for Sentiment Analysis Component

import nltk

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

from nltk.stem import WordNetLemmatizer

from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

import string

Ensure necessary NLTK resources are downloaded

nltk.download('punkt')

nltk.download('stopwords')

nltk.download('wordnet')

def preprocess_feedback(feedback):

 # Convert to lowercase

 feedback = feedback.lower()

 # Remove punctuation

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

 feedback = feedback.translate(str.maketrans('', '', string.punctuation))

 # Tokenize feedback

 words = word_tokenize(feedback)

 # Remove stopwords

 words = [word for word in words if word not in stopwords.words('english')]

 # Lemmatize the words

 lemmatizer = WordNetLemmatizer()

 words = [lemmatizer.lemmatize(word) for word in words]

 return ' '.join(words)

def analyze_sentiment(feedback):

 # Preprocess the feedback

 clean_feedback = preprocess_feedback(feedback)

 # Initialize VADER sentiment analyzer

 analyzer = SentimentIntensityAnalyzer()

 # Get sentiment scores

 sentiment_scores = analyzer.polarity_scores(clean_feedback)

 return sentiment_scores

Example usage

feedback_text = "The course was extremely helpful and the instructor was very encouraging!"

processed_feedback = preprocess_feedback(feedback_text)

sentiment_results = analyze_sentiment(feedback_text)

print("Processed Feedback:", processed_feedback)

print("Sentiment Scores:", sentiment_results)

 Pseudocode for Sentiment Analysis System

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Function preprocess_feedback(feedback):

 Convert feedback to lowercase

 Remove all punctuation from feedback

 Tokenize feedback into words

 Remove stopwords from tokenized words

 Lemmatize each word to its base form

 Combine lemmatized words back into a single string

 Return the processed feedback

Function analyze_sentiment(feedback):

 Preprocess the feedback

 Initialize the sentiment analyzer (VADER)

 Analyze the preprocessed feedback for sentiment scores

 Return sentiment scores

Main Procedure:

 Input: Raw feedback text

 Call preprocess_feedback with raw feedback

 Call analyze_sentiment with preprocessed feedback

 Print processed feedback and sentiment scores

 Parameters and Configuration

- Text Normalization: Lowercase conversion and punctuation removal to standardize the text.

- Tokenization: Splitting text into individual words to process each word for stop words and

lemmatization.

- Stopword Removal: Filtering out common words that don't contribute to sentiment analysis.

- Lemmatization: Converting words to their base form to reduce the complexity of the analysis.

- VADER Configuration: Using default settings which are generally well-tuned for social media

texts.

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Third Sud-system: prediction:

We’ll integrate sentiment analysis data with structured academic performance data from Microsoft

Teams to train two machine learning models: a Support Vector Machine (SVM) and a

Convolutional Neural Network (CNN). These models will predict whether students pass or fail

based on the integrated dataset.

The first: SVM prediction:

We integrate sentiment analysis data with structured academic performance data from various

educational tools to train a Support Vector Machine (SVM). This model predicts whether students

pass or fail based on an integrated dataset that includes both structured academic metrics and

sentiment analysis results.

Step 1: Load and Process Structured Data

This step involves loading structured data, which might come from educational platforms like

Microsoft Teams or other Learning Management Systems (LMS). The structured data includes

metrics like:

- Homework Grade: Numerical scores representing student performance on homework.

- Homework Clicks: Count of interactions or clicks recorded in the homework module.

- Attendance: Records showing whether students attended sessions.

- Discussion Participation: Measures student engagement in course forums or discussion boards.

Step 2: Process Sentiment Data:

If available, this step involves processing sentiment analysis results which provide a sentiment

score for each student based on their textual feedback. This data helps in understanding the

emotional and psychological state of the students, which can be a significant factor in their overall

performance.

Step 3: Combine Datasets

Here, both the structured academic metrics and the sentiment scores are merged to form a

comprehensive dataset. This integration allows the model to utilize both numerical performance

metrics and unstructured sentiment data.

Step 4: Data Preprocessing

Before training the SVM model, the combined dataset needs to be preprocessed:

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

- Categorical Data Encoding: Features like 'Sentiment Type' and 'Attendance' are converted from

categorical to numerical formats using label encoding to make them suitable for the model.

- Feature Aggregation: For each student (identified by 'Student ID'), aggregate multiple records by

calculating the mean of numerical features and the mode of categorical features.

Step 5: Model Training

The preprocessed data is then used to train an SVM model. This involves:

- Feature Selection: Selecting relevant features for the model, including academic metrics and, if

available, sentiment scores.

- Model Training: Training the SVM model on the dataset to predict the 'Pass/Fail' outcome for

each student.

Libraries and Tools

- Scikit-learn: Used for building the SVM model, preprocessing data, and for splitting the dataset

into training and testing sets.

- Pandas: Utilized for data manipulation and merging datasets.

- NumPy: Employed for numerical operations, especially for handling arrays and matrices during

data preprocessing.

- Joblib/Pickle: For saving the model state and ensuring that the predictions can be reproduced

later.

Python Code

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder, StandardScaler

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.metrics import classification_report

import joblib

Load your datasets

data = pd.read_csv('your_dataset.csv') # Replace with your actual filename

If there is textual feedback, process it (assuming sentiment analysis has been done)

if 'Feedback Text' in data.columns:

 data['Feedback Text'] = data['Feedback Text'].astype(str)

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Aggregate data by 'Student ID'

def get_most_frequent(series):

 return series.value_counts().idxmax()

Numerical features: Calculate the mean

numerical_agg = data.groupby('Student ID')[['Homework Grade', 'Homework Click',

'Discussion']].mean()

Categorical features: Calculate the most frequent value (mode)

categorical_agg = data.groupby('Student ID')[['Sentiment Type',

'Attendance']].agg(get_most_frequent)

Combine aggregated data

aggregated_data = pd.merge(numerical_agg, categorical_agg, on='Student ID')

Preprocess the Data

label_encoder = LabelEncoder()

for column in ['Sentiment Type', 'Attendance']:

 aggregated_data[column] = label_encoder.fit_transform(aggregated_data[column])

Prepare Features and Labels

X = aggregated_data[['Homework Grade', 'Homework Click', 'Discussion', 'Sentiment Type',

'Attendance']].values

y = np.array([0 if int(student_id.split('_')[-1]) % 2 == 0 else 1 for student_id in

aggregated_data.index])

Train the Model

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = SVC(kernel='linear', C=1)

model.fit(X_train, y_train)

Save the model

joblib.dump(model, 'svm_model.pkl')

Predict and Evaluate

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Pseudocode

Procedure LoadAndProcessData:

 Load the dataset from a CSV file

 If 'Feedback Text' exists in data columns:

 Convert 'Feedback Text' to string for each record

 Aggregate numerical data by 'Student ID' using mean

 Aggregate categorical data by 'Student ID' using mode

 Merge all aggregated data into one DataFrame

Procedure PreprocessData:

 Initialize a LabelEncoder

 For each categorical column in the dataset:

 Encode the column using LabelEncoder

 Prepare the feature matrix X and label vector y

 Return X and y

Procedure TrainSVM:

 Split the dataset into training and testing parts

 Initialize and train an SVM model with a linear kernel

 Save the trained model using joblib

 Return the trained model

Procedure EvaluateModel:

 Predict labels for the test set using the trained SVM model

 Print the classification report for the predictions

Main:

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

 Call LoadAndProcessData to load and preprocess the data

 X, y <- Call PreprocessData to encode data and prepare features and labels

 model <- Call TrainSVM to train the SVM model using X and y

 Call EvaluateModel to test and evaluate the trained model

Code Explanation

1. Data Loading and Preprocessing: The script loads the dataset and checks for textual feedback,

processing it as needed. It aggregates the numerical and categorical data by student, using the mean

for numerical features and mode for categorical features.

2. Data Encoding: Categorical features are encoded to numerical values using `LabelEncoder`,

making them suitable for model training.

3. Model Training and Evaluation: The script trains an SVM model using the preprocessed data,

then evaluates its performance using a classification report, which provides metrics like precision,

recall, and F1-score.

4. Model Saving: The trained model is saved using ̀ joblib` for future use, ensuring that the training

process does not need to be repeated.

The second: CNN prediction:

We integrate sentiment analysis data with structured academic performance data from various

educational platforms to train a Convolutional Neural Network (CNN). This model predicts

whether students pass or fail based on an integrated dataset that includes both structured academic

metrics and unstructured sentiment analysis results.

Step 1: Load and Process Structured Data

This step involves loading structured data from educational platforms like Microsoft Teams. The

structured data typically includes metrics such as:

- Homework Grades: Numerical scores representing student performance on homework

assignments.

- Homework Clicks: Number of interactions or clicks in the homework module, indicating

engagement.

- Attendance: Records indicating whether students attended sessions, marked typically as present

or absent.

- Discussion Participation: Measures of how actively students participate in course forums or

discussion boards.

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Step 2: Process Sentiment Data

This step involves processing sentiment analysis results, which provide a sentiment score for each

student based on their textual feedback. This helps gauge the emotional and psychological state of

the students, which can significantly impact their academic performance.

Step 3: Combine Datasets

Here, both the structured academic metrics and the sentiment scores (if available) are merged to

create a comprehensive dataset. This combination allows the model to leverage both numerical

performance metrics and unstructured sentiment data.

Step 4: Data Preprocessing

Before training the CNN model, the combined dataset undergoes several preprocessing steps:

- Categorical Data Encoding: Features like 'Sentiment Type' and 'Attendance' are converted from

categorical to numerical formats using label encoding. This makes them suitable for model input.

- Feature Aggregation: For each student (identified by 'Student ID'), aggregate multiple records by

calculating the mean of numerical features and the mode of categorical features.

- Text Data Processing: If textual feedback is available, it's transformed into numerical data using

TF-IDF (Term Frequency-Inverse Document Frequency), which helps in understanding the

importance of words in the text.

Step 5: Model Training

The preprocessed data is used to train a CNN model. The steps include:

- Feature Selection: Selecting relevant features for the model, which include academic metrics and,

if available, sentiment scores.

- Model Training: Training the CNN model on the dataset to predict the 'Pass/Fail' outcome for

each student based on their aggregated and encoded features.

Libraries and Tools

- TensorFlow/Keras: For building and training the CNN model.

- Scikit-learn: Used for SVM model building, data preprocessing, and for splitting the dataset into

training and testing subsets.

- Pandas: Utilized for data manipulation and merging datasets.

- NumPy: Employed for numerical operations, especially for handling arrays and matrices during

data preprocessing.

- TfidfVectorizer: For converting text data into numerical vectors based on TF-IDF statistics.

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Python Code

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, StandardScaler, TfidfVectorizer

from sklearn.metrics import accuracy_score

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Conv1D, GlobalMaxPooling1D, Flatten

from tensorflow.keras.utils import to_categorical

from google.colab import files

Step 1: Upload and Load the dataset

uploaded = files.upload()

filename = list(uploaded.keys())[0]

data = pd.read_csv(filename)

Display the structure of the dataset

print(data.head())

print("\nUnique values in 'Attendance' column:", data['Attendance'].unique())

Step 2: Define the function to get the most frequent value

def get_most_frequent(series):

 return series.value_counts().idxmax()

Step 3: Aggregate data by 'Student ID'

numerical_agg = data.groupby('Student ID')[['Homework Grade', 'Homework Click',

'Discussion']].mean()

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

categorical_agg = data.groupby('Student ID')[['Sentiment Type',

'Attendance']].agg(get_most_frequent)

Combine the aggregated data

if 'Feedback Text' in data.columns:

 text_agg = data.groupby('Student ID')['Feedback Text'].apply(' '.join).reset_index()

 aggregated_data = pd.merge(pd.merge(numerical_agg, categorical_agg, on='Student ID'),

text_agg, on='Student ID')

else:

 aggregated_data = pd.merge(numerical_agg, categorical_agg, on='Student ID')

Step 4: Preprocess the Data

label_encoder = LabelEncoder()

for column in ['Sentiment Type', 'Attendance']:

 aggregated_data[column] = label_encoder.fit_transform(aggregated_data[column])

if 'Feedback Text' in aggregated_data.columns:

 tfidf = TfidfVectorizer(max_features=500)

 text_features = tfidf.fit_transform(aggregated_data['Feedback Text']).toarray()

 X_full = np.hstack([aggregated_data.drop(['Feedback Text'], axis=1).values, text_features])

else:

 X_full = aggregated_data.values

X_full = np.expand_dims(X_full, axis=2)

y = to_categorical([0 if int(sid.split('_')[-1]) % 2 == 0 else 1 for sid in aggregated_data.index])

Step 5: Train and Evaluate CNN Model

X_train, X_test, y_train, y_test = train_test_split(X_full, y, test_size=0.2, random_state=42)

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

model = Sequential([

 Conv1D(64, 3, activation='relu', input_shape=(X_train.shape[1], 1)),

 GlobalMaxPooling1D(),

 Dense(32, activation='relu'),

 Dense(2, activation='softmax')

])

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(X_train, y_train, epochs=10, batch_size=10)

Predict and evaluate

y_pred = np.argmax(model.predict(X_test), axis=1)

y_true = np.argmax(y_test, axis=1)

print("CNN Accuracy:", accuracy_score(y_true, y_pred))

Step 6: Predict for the entire dataset

final_predictions = np.argmax(model.predict(X_full), axis=1)

aggregated_data['Pass/Fail'] = ['Pass' if pred == 0 else 'Fail' for pred in final_predictions]

Merge and Output the final dataset

final_data = pd.merge(data, aggregated_data[['Pass/Fail']], left_on='Student ID',

right_index=True, how='left')

output_filename = 'CNN_Aggregated_Results_with_Pass_Fail.csv'

final_data.to_csv(output_filename)

Download the result file

files.download(output_filename)

pseudocode

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

Procedure Process_and_Predict_with_CNN

 Begin

 // Import the necessary libraries

 Import pandas as pd

 Import numpy as np

 Import LabelEncoder, StandardScaler from sklearn.preprocessing

 Import train_test_split from sklearn.model_selection

 Import accuracy_score from sklearn.metrics

 Import TfidfVectorizer from sklearn.feature_extraction.text

 Import Sequential from tensorflow.keras.models

 Import Dense, Conv1D, GlobalMaxPooling1D, Flatten from tensorflow.keras.layers

 Import to_categorical from tensorflow.keras.utils

 Import files from google.colab

 // Step 1: Upload and Load the dataset

 Display "Please upload your dataset"

 uploaded <- files.upload()

 filename <- Get the first key from the uploaded dictionary

 data <- Load CSV file into DataFrame from filename

 // Display the structure of the dataset

 Print the first few rows of the data

 Print "Unique values in 'Attendance' column:", unique values in data['Attendance']

 // Step 2: Define the function to get the most frequent value

 Define Function get_most_frequent(series)

 Begin

 counts <- Get value counts of the series

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

 If counts is not empty Then

 Return the most frequent element in counts

 Else

 Return NaN

 End

 // Step 3: Aggregate data by 'Student ID'

 numerical_agg <- Group data by 'Student ID' and calculate mean of ['Homework Grade',

'Homework Click', 'Discussion']

 categorical_agg <- Group data by 'Student ID' and apply get_most_frequent on ['Sentiment

Type', 'Attendance']

 If 'Feedback Text' exists in data columns Then

 text_agg <- Group data by 'Student ID' and concatenate 'Feedback Text' into a single string

 aggregated_data <- Merge numerical_agg, categorical_agg, and text_agg on 'Student ID'

 Else

 aggregated_data <- Merge numerical_agg and categorical_agg on 'Student ID'

 // Step 4: Preprocess the Data

 Initialize label_encoder as LabelEncoder

 For each column in ['Sentiment Type', 'Attendance'] Do

 Encode aggregated_data[column] using label_encoder

 If 'Feedback Text' exists in aggregated_data columns Then

 Initialize tfidf as TfidfVectorizer with max_features set to 500

 text_features <- Transform aggregated_data['Feedback Text'] into numerical data using

tfidf

 X_full <- Combine aggregated_data (excluding 'Feedback Text') values and text_features

horizontally

 Else

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

 X_full <- Convert aggregated_data values to a numpy array

 X_full <- Expand dimensions of X_full by adding a new last axis

 y <- Convert array of [0 if student_id is even else 1 for each student_id in aggregated_data]

to categorical data

 // Step 5: Train and Evaluate CNN Model

 Split X_full and y into X_train, X_test, y_train, y_test with test size 0.2 and random state 42

 // Define and train CNN for Structured Data Only

 model <- Create a new Sequential model

 Add Conv1D layer with 64 filters, kernel size 3, activation 'relu', and input shape

(X_train.shape[1], 1) to model

 Add GlobalMaxPooling1D layer to model

 Add Dense layer with 32 units and activation 'relu' to model

 Add Dense layer with 2 units and activation 'softmax' to model

 Compile model with optimizer 'adam', loss 'categorical_crossentropy', and metrics

['accuracy']

 Train model on X_train and y_train with epochs 10 and batch size 10

 // Predict and evaluate

 y_pred <- Get argmax of model.predict(X_test) along axis 1

 y_true <- Get argmax of y_test along axis 1

 Print "CNN Accuracy:", accuracy_score(y_true, y_pred)

 // Step 6: Predict for the entire dataset

 final_predictions <- Get argmax of model.predict(X_full) along axis 1

 aggregated_data['Pass/Fail'] <- ['Pass' if pred is 0 else 'Fail' for each pred in final_predictions]

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

 // Merge Predictions with the Original Data

 final_data <- Merge data with aggregated_data['Pass/Fail'] on 'Student ID'

 output_filename <- 'CNN_Aggregated_Results_with_Pass_Fail.csv'

 Save final_data to CSV file named output_filename

 // Download the result file

 Attempt

 Download file named output_filename

 Catch any errors and display "Error downloading the file"

 End

Pseudocode Explanation

1. Library Imports: The necessary Python libraries are imported, including data manipulation,

machine learning preprocessing, model training, and utilities for working with files in Google

Colab.

2. Data Upload and Loading:

 - The user is prompted to upload a dataset.

 - The uploaded dataset is read into a DataFrame `data`.

 - The structure of `data` is displayed to understand its columns and initial rows.

 - The unique values in the 'Attendance' column are printed to understand its data distribution.

3. Function Definition - `get_most_frequent`:

 - A helper function `get_most_frequent` is defined to determine the most frequent (mode)

value in a series, which is particularly useful for categorical data.

4. Data Aggregation:

 - Numerical features like 'Homework Grade', 'Homework Click', and 'Discussion' are

aggregated by the mean for each 'Student ID'.

 - Categorical features like 'Sentiment Type' and 'Attendance' are aggregated by the mode for

each 'Student ID'.

 - If 'Feedback Text' is available, it is concatenated into a single string for each 'Student ID'.

 - The aggregated data is stored in `aggregated_data`.

Automated Sentiment Analysis of Visually Impaired Students' Audio Feedback in Virtual

Learning Environments

5. Data Preprocessing:

 - Categorical variables are encoded using `LabelEncoder`.

 - If 'Feedback Text' is part of the data, it is transformed into numerical features using

`TfidfVectorizer`.

 - The structured and unstructured data are combined into `X_full`.

 - The dimensions of `X_full` are expanded to fit the input requirements of `Conv1D`.

 - Labels `y` are prepared based on the parity of the numeric part of 'Student ID' and converted

to a categorical format.

6. Model Training and Evaluation:

 - The dataset is split into training and testing subsets.

 - A CNN model is defined with layers including `Conv1D`, `GlobalMaxPooling1D`, and

`Dense`.

 - The model is compiled and trained.

 - Predictions are made on the test set, and accuracy is printed.

7. Predict and Merge Results:

 - The CNN model is used to predict outcomes for the entire dataset.

 - Predictions are converted to 'Pass' or 'Fail' and added to `aggregated_data`.

 - These predictions are merged back with the original `data` to provide a comprehensive view.

8. Output and Save:

 - The final dataset with predictions is saved to a CSV file.

 - An attempt is made to download this file, with any errors in downloading reported to the

user.

